Microsoft Word - 5-Agra_39382 875 Original Article Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 CHEMICAL DIVERSITY OF ESSENTIAL OILS FROM Hyptis pectinata (L.) Poit DIVERSIDADE QUÍMICA DE ÓLEOS ESSENCIAIS DE Hyptis pectinata (L.) Poit Rosana Barroso FEITOSA-ALCANTARA 1 ; Maria de Fátima ARRIGONI-BLANK 2 ; Arie Fitzgerald BLANK 2 ; Paulo Cesar de Lima NOGUEIRA 3 ; Taís Santos SAMPAIO 1 ; Daniela Aparecida de Castro NIZIO 1 ; Camila Santos ALMEIDA-PEREIRA 1 1. Doutora em Biotecnologia, Universidade Federal de Sergipe – UFS, SE, Brasil; 2. Professor, Doutor, Departamento de Engenharia Agronômica, UFS, São Cristóvão, SE, Brasil; 3 Professor, Doutor, Departamento de Química, UFS, São Cristóvão, SE, Brasil. ABSTRACT: The essential oils are secondary metabolites formed by several chemical compounds that confer to these substances great social and economic importance. This diversity of compounds is generally determined by the genetic constitution of the plant, although environmental factors may also influence the type, amount, and concentrations of the compounds present in the essential oil. The aim of this work was to analyze the chemical diversity of the essential oils of native Hyptis pectinata plants collected in the state of Sergipe. The essential oils of 24 plants were obtained by hydrodistillation and analyzed by GC-MS/FID, revealing 30 compounds. Two clusters were formed by the cluster analysis. Cluster I consisted of 18 plants, and presented β-elemene (2.46-25.77%), β-caryophyllene (16.20-60.95%), germacrene D (0.00-21.59%), and caryophyllene oxide (5.38-42.21%) as major compounds. Cluster II consisted of six plants, and presented β-caryophyllene (5.68-15.57%), (Z)-β-guaiene (2.18-7.31%), caryophyllene oxide (1.58-22.89%), and calamusenone (23.12-64.36%) as major compounds. Strong correlation was observed between p- cymene and γ-terpinene (r=0.94), and between (E)-β-guaiene and lepidozene (r=0.95). Results of the present study indicate variation in the essential oil content, and show that the compounds β-elemene, β-caryophyllene, germacrene D, (Z)-β-guaiene, caryophyllene oxide and calamusenone were detected in greater proportions in native plants of H. pectinata of the state of Sergipe. The knowledge of the chemical diversity found in H. pectinata plants can assist in the selection of plants of specific interest. KEYWORDS: Medicinal plant. Germplasm. Volatile oil. Chemical compounds. INTRODUCTION The Lamiaceae family has about 300 genera and approximately 7500 species. In Brazil, approximately 350 species are distributed in 26 genera (SOUZA; LORENZI, 2008). The family is known for the chemical variability of its essential oils, and its plants are widely used by the population for therapeutic purposes (RAYMUNDO et al., 2011). The genus Hyptis is composed of several medicinal and aromatic species of great economic interest. Among these species, H. pectinata, popularly known in the Brazilian Northeast as "sambacaitá" or "canudinho", is extensively used in folk medicine in the treatment of bacterial infections and inflammation (ARRIGONI-BLANK et al., 2005). In addition, several biological properties of its essential oils or extracts have already been proved, such as its antidematogenic, antinociceptive (ARRIGONI-BLANK et al., 2008), antimicrobial (NASCIMENTO et al., 2008), insecticide (SILVA et al., 2008), anti-inflammatory (RAYMUNDO et al., 2011), and leishmanicide activities (FALCAO et al., 2013). The essential oils are products of secondary metabolism, characterized as complex chemical mixtures extracted from different parts of the plant, and confer adaptive advantages to the different environments in which they are inserted (OUSSALAH et al., 2007). The genetic constitution is usually the main determinant of plant adaptive responses, allowing for differences in the synthesis of secondary metabolites related to the types, amounts, and concentrations of the compounds. However, these variations can also be influenced by environmental factors, such as luminosity, temperature, water availability, soil conditions, among others (MARTINS et al., 2006). The characterization of the chemical composition of the essential oils of plants of the same species allows generating information for the obtainment of the most suitable plants for therapeutic use, and for the obtainment of plants with higher essential oil content, allowing selection and insertion in genetic improvement programs (VELOSO et al., 2014). Several studies have found great chemical diversity in the essential oil of medicinal and aromatic species, such as Ocimum basilicum L. (VELOSO et al., 2014; COSTA et al., 2015), Lippia alba (Mill.) N. E. Brown (NETO et al., 2012; BLANK et al., 2015), Varronia curassavica Jacq. (NIZIO et al., 2015), Lippia sidoides Cham. (SANTOS et al., 2015), and Hyptis pectinata Received: 15/08/17 Accepted: 20/02/18 876 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 (TCHOUMBOUGNANG et al., 2005; NASCIMENTO et al., 2008; SANTOS et al., 2008; ARRIGONI-BLANK et al., 2008; RAYMUNDO et al., 2011). Thus, the objective of the present study was to evaluate the chemical diversity and the essential oil content of native plants of Hyptis pectinata of the state of Sergipe. MATERIAL AND METHODS Plant material Leaves of 24 native plants of H. pectinata were collected from 21 municipalities of the state of Sergipe, Brazil (Table 1). Table 1. Identification and origin of H. pectinata plants collected in Sergipe, Brazil. Plants Origin (municipality) Georeferenced information Plant-01 Poço Redondo 9º58’23.01’S; 37°52'05.0”W Plant-02 Poço Redondo 9°57’45.2”S; 37°51’51.2”W Plant-03 Canindé do São Francisco 9°42'06.7''S; 37°51'06.1’’W Plant-04 Nossa Senhora da Glória 10°08'41.0"S; 37°31.17'05”W Plant-05 São Cristóvão 11°00'00.0’’S; 37°12'00.0’’W Plant-06 São Cristóvão 10°54’44.9”S; 37°11’45.9”W Plant-07 São Cristóvão 10°53’33.4”S; 37°10’50.9”W Plant-08 Capela 10°35’29.8”S; 36°59’08.5”W Plant-09 Graccho Cardoso 10°17’11.8”S; 37°16’58.3”W Plant-10 Itabaiana 10°35’06.6”S; 37°28’21.4”W Plant-11 Itaporanga 10°59’44.8”S; 37°20’ 04.2”W Plant-12 Japaratuba 10°35’01.6”S; 36°57’50.3”W Plant-13 Barra dos Coqueiros 10°48’22.6”S; 36°55’56.6”W Plant-14 Lagarto 10°58’19.5”S; 37°24’44.1”W Plant-15 Malhador 10°39’40.3”S; 37°18’43.8”W Plant-16 Moita Bonita 10°37’47.2”S; 37°21’48.2”W Plant-17 Muribeca 10°24’34.6”S; 36°57’27.2”W Plant-18 Neopólis 10°20’11.3”S; 36°41’16.5”W Plant-19 Pirambú 10°17’19.1”S; 36°51’42.4”W Plant-20 Porto da Folha 9°58’11.2”S; 37°27’12.0”W Plant-21 Riachão do Dantas 10°05’46.8”S; 37°43’28.5”W Plant-22 Riachuelo 10°43’04.8”S; 37°12’41.6”W Plant-23 Ribeirópolis 10°33’34.1”S; 37°22’23.7”W Plant-24 Santana do São Francisco 10°16’04.8”S; 36°36’53.3”W Extraction, content and chemical analyses of essential oils The essential oils were extracted and analyzed in the Phytotechnology Laboratory and Laboratory of Chromatography respectively, both in the Federal University of Sergipe. The collected leaves were dried in a forced air circulation oven, at 40ºC, for five days. The essential oils of H. pectinata were extracted using 70g, in triplicate, by the hydrodistillation method, in a modified Clevenger apparatus, for 150 minutes (EHLERT et al., 2006). The essential oils were stored in amber flasks, and kept in freezer at -20 °C until chemical composition analysis. The analyses of the chemical composition of the essential oils of H. pectinata were performed using a GC-MS/FID (QP2010 Ultra, Shimadzu Corporation, Kyoto, Japan), equipped with an autosampler AOC-20i (Shimadzu). Separations were accomplished using an Rtx®-5MS Restek fused silica capillary column (5%-diphenyl–95%- dimethyl polysiloxane) of 30 m × 0.25 mm i.d., 0.25µm film thickness, at a constant helium (99.999%) flow rate of 1.2 mL/min. Injection volume of 0.5 µL (5 mg/mL) was employed, with a split ratio of 1:10. The oven temperature was programmed from 50 °C (isothermal for 1.5 min), with an increase of 4 °C/min, to 200 °C, then 10 °C/min to 250 °C, ending with a 5 min isothermal at 250 °C. The MS and FID data were simultaneously acquired employing a Detector Splitting System; the split flow ratio was 4:1 (MS:FID). A 0.62 m x 0.15 mm i.d. restrictor tube (capillary column) was used to connect the splitter to the MS detector; a 0.74 m x 0.22 mm i.d. restrictor tube was used to connect the splitter to the FID detector. The MS data (total ion chromatogram, TIC) were acquired in the full scan mode (m/z of 40–350) at a scan rate of 0.3 scan/s using the electron ionization (EI) with an electron energy of 70 eV. The injector temperature was 250 °C and the ion-source 877 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 temperature was 250°C. The FID temperature was set to 250 ºC, and the gas supplies for the FID were hydrogen, air, and helium at flow rates of 30, 300, and 30 mL/min, respectively. Quantification of each constituent was estimated by FID peak-area normalization (%). Compound concentrations were calculated from the GC peak areas and they were arranged in order of GC elution. The retention index (Van den Dool and Kratz 1963) was obtained by injecting a C7-C30 linear hydrocarbon mixture under these same conditions, and identification of constituents was made on the basis of comparison of retention index and MS with those in the literature (ADAMS, 2007), as well as by computerized matching of the acquired mass spectra with those stored in NIST21, NIST107, and WILEY8 mass spectral libraries of the GC-MS data system. Statistical analyses Two multivariate analysis techniques were used for the chemical diversity analysis (cluster analysis and principal component analysis - PCA), using the Statistica software version 7.0. A dendrogram was generated using the Ward clustering method, based on a dissimilarity matrix constructed using the Euclidean distances of the chemical composition of each sampled plant and the correlation analysis between the chemical compounds of the essential oil of the sampled plants. The results of the essential oils contents were subject to analysis of variance. Means were compared by the Scott-Knott test (P≤0.05), using the Sisvar® software, when significant. The graph with the means of the chemical compounds and standard deviations for each chemical cluster was obtained using the Graph Pad Prism® software. RESULTS AND DISCUSSION The diversity of the chemical compounds of the essential oils was significant among the native plants of H. pectinata of the state of Sergipe. Thirty compounds were detected in the chemical analyses of the 24 plants (Table 2, Figure 1). Essential oil content varied between the plants, and a higher percentage (0.90) was obtained in the plant from the municipality of Porto da Folha (Table 2). The plant kingdom presents wide chemical diversity. Variation in chemical compounds is usually observed among plants of the same species (KLEINE and MULLER, 2011). The number of compounds and the concentrations of each compound in the essential oil of the plants and the oil content can be influenced by genetic, climatic, and/or edaphic factors (OLIVEIRA et al., 2012; TEIXEIRA et al., 2013; BLANK et al., 2015; COSTA et al., 2015; PINTO et al., 2015). These factors can redirect the metabolic pathway, and thus form other compounds that help plants adapt to the conditions to which they are subject (KLEINE and MULLER, 2011). This redirection is possibly related to the catalytic flexibility of the terpene-synthase enzymes, which often produce multiple products from a single substrate. The monoterpenes are synthesized from geranyl diphosphate (GDP), farnesyl diphosphate (FDP) sesquiterpenes, and geranylgeranyl diphosphate diterpenes (GGDP) (ARIMURA et al., 2009). Considering the similarities of the chemical compounds of the essential oils of the H. pectinata plants, two main clusters were characterized by the cluster analysis (Figure 2). The first cluster consisted of the following compounds: β-elemene (2.46-25.77%), β- caryophyllene (16.20-60.95%), germacrene (0.00- 21.59%), and caryophyllene oxide (5.38-42.21%). This cluster was divided into subcluster I (Plant- 01, Plant-02, Plant-04, Plant-08, Plant-11, Plant- 14, Plant-21 and Plant-22), and subcluster II (Plant-06, Plant-07, Plant-12, Plant-13, Plant-15, Plant-16, Plant-17, Plant-19, Plant-23, Plant-24). The mean values of β-caryophyllene and caryoplyllene oxide were the main determinant factor for the subdivision of these plants. The second cluster consisted of the following compounds: β-caryophyllene (5.68- 15.57%), (Z)-β-guaiene (2.18-7.31%), caryophyllene oxide (1.58-22.89%), and calamusenone (23.12-64.36%); and was subdivided into subcluster I (Plant-03, Plant-05, Plant-09 and Plant-10), and subcluster II (Plant-18 and Plant-20) (Figures 2 and 3). The compound calamusenone was the determinant for this subdivision. Results showed that some plants collected in the same municipality or in neighboring municipalities, with similar climatic and edaphic factors, such as Canindé do São Francisco and Poço Redondo, were clustered according to their chemical composition. 878 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 Table 2. Content (%) of the chemical compounds of the essential oil H. pectinata collected in Sergipe, Brazil. COMPOUNDS Plants (H. pectinata) IRRl 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 β-pinene 974 2.26 - 1.57 0.30 - - - - - 0.97 - 0.35 - 0.59 - 1.27 - 2.20 - 0.55 - - - - 1-octen-3-ol 974 - - 4.07 - - - - - - - - - - - - - - - - - - - - - p-cymene 1020 1.32 - 0.74 0.31 - - - - - - - 5.47 - - - 0.58 - - - - - - 0.62 - γ-terpinene 1054 - - - - - - - - - - - 2.63 - - - 0.70 - - - - - - 0.56 - δ-elemene 1335 3.92 0.58 - 2.85 - 0.53 0.83 0.43 - 1.45 2.75 - 1.57 5.11 1.00 2.28 0.98 - 1.02 - 4.29 2.40 1.02 0.28 α-copaene 1374 4.85 4.02 2.08 4.56 1.12 0.96 1.91 5.33 3.25 1.81 3.72 1.90 2.02 2.61 1.97 2.28 2.76 1.74 2.25 1.02 2.47 3.04 2.59 2.71 β-elemene 1389 7.79 11.38 - 9.87 2.05 6.70 12.32 25.77 8.53 7.78 9.35 2.46 9.42 11.93 3.59 10.50 7.16 1.42 3.28 2.27 20.83 15.46 2.94 3.14 β-caryophyllene 1417 17.66 16.20 11.68 18.37 9.42 27.28 43.06 24.47 15.57 12.53 30.97 27.63 38.68 28.69 36.97 35.89 39.00 5.68 27.51 8.34 22.29 25.34 31.63 60.95 γ-elemene 1434 - 2.64 - - 0.63 - - - 1.71 - - - - - - 0.75 1.02 0.81 0.45 0.66 0.99 1.35 - - (Z)-muurola-3,5-diene 1448 - - - 1.08 0.56 - - 1.72 - 0.47 - 0.67 - 0.14 - 0.66 0.59 - 0.42 - 0.62 - 0.78 1.09 α-humulene 1452 1.66 1.86 0.92 1.37 0.81 1.55 2.71 2.83 1.66 1.26 1.48 1.18 2.02 1.48 1.19 1.64 1.56 0.56 0.90 0.47 1.91 1.72 1.17 1.85 γ-muurolene 1478 5.66 - 1.34 - - - - - - - - - - - - - - - - - - - - - germacrene D 1484 0.00 5.68 - 9.58 1.87 4.81 10.11 17.48 5.09 9.08 14.88 12.97 14.34 14.00 4.62 8.06 12.27 2.71 17.86 3.49 12.62 21.59 14.09 15.41 (Z)- β-guaiene 1492 0.00 7.46 2.18 - 4.77 0.57 2.35 0.40 7.31 4.38 1.06 - - 0.40 0.18 0.22 0.30 6.23 - 6.07 0.56 - - - bicyclogermacrene 1500 4.57 3.14 - - - 1.95 1.22 1.39 2.04 2.44 7.94 1.17 5.27 2.32 1.88 1.54 2.21 0.41 4.66 0.82 5.20 1.72 1.15 - (E)- β-guaiene 1502 - 0.52 - 2.47 - - - - - 0.25 - - - 0.28 - - - - - - - - - - Lepidozene 1502 - - - 4.38 0.68 - - - - - - - - - - - - - - - - - - - γ-cadinene 1513 - 1.37 1.88 0.77 2.72 0.91 - 0.69 1.57 0.94 0.32 - - 1.04 0.69 1.44 1.23 1.44 1.65 0.87 1.87 - - 1.26 (E)-calamenene 1521 5.76 3.11 1.93 - 1.81 - - - 1.76 - - 1.84 1.76 - - - - - - - - - 2.92 - δ-cadinene 1522 - 1.06 - 2.58 - 1.16 0.72 2.34 - 1.74 2.59 - - 0.08 - 0.67 - 1.32 - - 0.37 2.14 - 0.52 spathulenol 1577 10.09 5.91 5.83 3.63 - 1.44 1.38 0.23 4.51 0.81 3.69 1.47 2.04 1.50 1.93 2.09 0.75 - 3.51 2.19 2.32 1.67 1.21 - Caryophyllene oxide 1582 11.52 11.22 12.78 10.86 22.89 42.21 19.78 5.38 13.62 6.27 10.27 25.41 17.23 16.52 37.18 17.65 21.21 1.58 29.23 8.03 10.64 17.71 27.64 9.63 1,10-di-epi-cubenol 1618 - 1.58 1.91 - - - - - 2.38 1.37 - - - - - - - - - - - - - - 1-epi-cubenol 1627 - - - - - - - - - - - - - - - - - 1.68 - 2.53 - - - - α -acorenol 1632 - - - - 0.15 0.29 - - - 0.93 0.71 - 0.37 2.58 0.28 1.75 0.25 - - - 1.50 - 0.97 - epi-α-cadinol 1638 4.88 1.74 - - - 0.00 - 0.62 - 0.54 1.40 1.14 0.67 0.91 0.18 1.12 0.62 0.21 1.11 0.49 1.63 - 1.02 - epi-α-muurolol 1640 - 2.81 - - - 0.58 - - - 0.55 0.83 0.33 - - - - - - - - - 1.31 0.58 - Cubenol 1645 - - - - 3.29 - - - - - - - - - - - - 0.38 - 0.49 - - - - α-cadinol 1652 2.22 - 2.12 1.41 1.59 - - - - - - - - - - - - - - - - - - - Calamusenone - - 10.05 23.12 11.02 36.08 - - 0.72 28.97 38.88 - - - - - - 0.43 64.36 - 53.56 - - - - Essential oil content (%) 0.67c 0.52d 0.62c 0.76b 0.52d 0.48d 0.67c 0.52d 0.62c 0.62c 0.57d 0.43d 0.57d 0.62c 0.62c 0.62c 0.38d 0.67c 0.44d 0.90a 0.52d 0.52d 0.48d 0.66c IRRo: Relative Retention Index - observed; IRRl: Relative Retention Index – literature. Means followed by the same letter in the line did not significantly differ from each other by the Scott-Knott test, p<0.05. 879 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 OH β-pinene 1-octen-3-ol p-cymene γ-terpinene δ-elemene α-copaene β-elemene β-caryophyllene γ-elemene (Z)-muurola-3,5-diene α-humulene γ-muurolene germacrene D (Z)- β-guaiene bicyclogermacrene 880 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 (E)- β-guaiene Lepidozene γ-cadinene OH (E)-calamenene δ-cadinene Spathulenol O Caryophyllene oxide 1,10-di-epi-cubenol 1-epi-cubenol HO H H α-acorenol epi- α-cadinol epi- α-muurolol OH Cubenol α-cadinol Calamusenone Figure 1. Chemical structure of compounds identified in the essential oils of H. pectinata collected in Sergipe, Brazil. 881 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 Figure 2. Bidimensional dendrogram representing the similarity between 24 H. pectinata plants for the chemical composition of essential oils. Figure 3. Means of the chemical compounds of the essential oils of H. pectinate plants, clusters I and II. (C7) β-elemene, (C8) β-caryophyllene, (C13) germacrene-D, (C14) (Z)-β-guaiene, (C22), caryophyllene oxide, and (C30) calamusenone. The conventional propagation process of the genus Hyptis is through seeds, which may allow great genetic variability (WULFF, 1973). This suggests that the differences found may be related mainly to genetic factors, since such plants were subject to the same or very similar environmental conditions. Similar results were found in studies on Varronia curassavica, in which some plants collected in the same municipality were also classified into different clusters (NIZIO et al., 2015). The major compounds reported in this study corroborate other works involving the essential oil of H. pectinata, in which the main chemical compounds commonly detected were: p- cymene (33.7%), β-pinene (6.95%), β- caryophyllene (7.00-54.07%), caryophyllene oxide (1.98-38.05%), calamusenone (1.85-48.00%), 882 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 germacrene D (3.07-28.00%) (TCHOUMBOUGNANG et al., 2005, ARRIGONI-BLANK et al., 2008, NASCIMENTO et al., 2008, SANTOS et al., 2008, ARRIGONI- BLANK et al., 2010, RAYMUNDO et al., 2011, MENEZES et al., 2015). The bioactive compounds α-copaene, β- caryophyllene, α-humulene and caryophyllene oxide were detected in all plants, with levels ranging from 0.96% (SC-2) to 5.33% (CA); 5.68% (NE) to 60.95% (SF); 0.47% (FP) to 2.83% (CA); and 1.58% (NE) to 42.21% (SC-2) (Table 2), respectively. According to the principal component analysis (Figure 4), the first principal component represented 20.31% of the total variance, and was positively related to the compound (Z)-β-guaiene (r =-0.70), and calamusenone (r=-0.79); and negatively related to germacrene D (r =-0.84) and β-caryophyllene (r=-0.73). The second principal component represented 16.33% of the total variance, and was positively related to the compounds γ-muurolene (r = 0.85), (E)- calamenene (r = 0.71), spathulenol (r = 0.84), and epi-α-cadinol (r = 0.86) (Figure 4). Figure 4. Distribution of the chemical compounds of the essential oil of 24 H. pectinate plants in relation to the two principal components, by means of the principal component analysis (PCA). C1: β-pinene. C2:1-octen-3-ol. C3: p-cymene. C4: γ-terpinene. C5: δ-elemene. C6:α-copaene. C7:β-elemene. C8: β-caryophyllene. C9: γ-elemene. C10: (Z)-muurola-3.5-diene. C11: α-humulene. C12: γ- muurolene. C13: germacrene D. C14: (Z)-β-guaiene. C15: bicyclogermacrene. C16: (E)-β-guaiene. C17: lepidozene. C18: γ-cadinene. C19: (E)-calamenene. C20: δ-cadinene. C21: spathulenol. C22: caryophyllene oxide. C23: 1.10-di-epi-cubenol. C24: 1-epi-cubenol. C25: α-acorenol. C26: epi-α- cadinol. C27: epi-α-muurolol. C28: cubenol. C29:α-cadinol. C30: calamusenone. The principal components of this study explained only about 36% of the total variance. According to Sampaio et al (2016), the use of many variables for the analysis may generate this low explanation of the principal components. High positive correlation was observed between some constituents of the essential oil of the studied plants (Table 3). Very strong correlation was observed between p-cymene and γ-terpinene (r= 0.94); and between (E)-β-guaine and lepidozene (r=0.95). The compound γ-muurolene presented positive correlation with (E)- calamenene (0.73), spathulenol (r=0.76), and epi- α-cadinol (0.79). Positive correlation coefficient (0.79) was observed between β-elemene and α- humulene, and between calamusenone and (Z)-β- guaiene. The compound β-caryophyllene presented negative correlation with calamusenone (-0,72) and (Z)-β-guaiene (-0,62). The compound α-cubenene presented positive correlation between α-copaene (0.66) and epi-α-cadinol (0.65). Epi-α- cadinol positively correlated to spathulenol (0.69) and (E)-calamenene (0.68) (Table 3). 883 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 Table 3. Correlation coefficients for the chemical compounds of the essential oils of H. pectinata plants in Sergipe, Brazil. Compostos C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C01 0.35 0.17 0.02 0.13 0.02 -0.28 -0.44 -0.13 -0.23 -0.35 0.62 -0.56 0.15 -0.14 -0.04 -0.05 0.06 0.33 -0.06 0.39 -0.41 0.11 0.33 0.05 0.41 -0.22 -0.06 0.49 0.43 C02 0.07 -0.06 -0.20 -0.10 -0.28 -0.23 -0.14 -0.17 -0.21 0.19 -0.34 0.03 -0.23 -0.06 -0.05 0.27 0.15 -0.17 0.31 -0.09 0.48 -0.06 -0.13 -0.16 -0.10 -0.05 0.54 0.13 C03 0.94 -0.12 -0.03 -0.24 -0.01 -0.21 0.13 -0.14 0.19 -0.00 -0.22 -0.11 -0.04 -0.02 -0.31 0.34 -0.22 0.11 0.16 -0.07 -0.10 -0.12 0.26 -0.03 -0.09 0.12 -0.16 C04 -0.17 -0.15 -0.20 0.09 -0.14 0.20 -0.12 -0.08 0.13 -0.21 -0.15 -0.09 -0.07 -0.28 0.16 -0.20 -0.12 0.23 -0.13 -0.09 0.02 0.10 0.01 -0.08 -0.13 -0.18 C05 0.36 0.47 0.09 -0.13 -0.04 0.22 0.31 0.25 -0.45 0.50 0.24 0.18 -0.19 0.02 0.15 0.29 -0.13 -0.30 -0.28 0.67 0.50 -0.04 -0.25 0.10 -0.42 C06 0.56 0.02 0.12 0.38 0.51 0.38 0.24 -0.18 0.24 0.39 0.31 -0.26 0.30 0.46 0.47 -0.41 0.08 -0.34 -0.11 0.46 0.22 -0.34 0.22 -0.36 C07 0.10 0.17 0.34 0.79 -0.08 0.47 -0.20 0.30 0.09 0.03 -0.16 -0.20 0.48 -0.04 -0.28 -0.10 -0.30 0.26 0.14 0.15 -0.26 -0.25 -0.40 C08 -0.30 0.23 0.50 -0.18 0.54 -0.62 0.11 -0.17 -0.16 -0.34 -0.24 -0.11 -0.29 0.33 -0.40 -0.43 0.14 -0.10 -0.13 -0.35 -0.39 -0.72 C09 -0.24 0.01 -0.17 -0.09 0.60 0.04 -0.03 -0.13 0.37 0.12 -0.02 0.18 -0.19 0.44 0.11 -0.12 0.02 0.59 0.07 -0.21 0.21 C10 0.29 -0.20 0.41 -0.36 -0.29 0.28 0.34 0.09 -0.20 0.26 -0.39 -0.17 -0.26 -0.24 0.04 -0.10 -0.24 0.05 -0.04 -0.22 C11 0.01 0.42 -0.29 0.21 -0.02 -0.08 -0.35 -0.03 0.28 -0.01 -0.10 -0.05 -0.52 0.04 0.10 0.11 -0.35 -0.22 -0.60 C12 -0.42 -0.14 0.19 -0.07 -0.06 -0.20 0.73 -0.20 0.76 -0.13 0.02 -0.07 -0.15 0.79 -0.12 -0.07 0.69 -0.09 C13 -0.54 0.28 -0.02 -0.05 -0.37 -0.40 0.31 -0.40 0.03 -0.37 -0.32 0.19 -0.13 0.10 -0.33 -0.55 -0.56 C14 -0.19 -0.05 -0.11 0.42 0.12 -0.03 0.07 -0.39 0.61 0.49 -0.25 -0.17 0.30 0.33 -0.03 0.79 C15 -0.21 -0.27 -0.22 0.12 0.09 0.37 -0.02 -0.09 -0.23 0.24 0.55 0.20 -0.28 -0.18 -0.38 C16 0.95 -0.02 -0.08 0.45 0.15 -0.18 0.01 -0.09 -0.06 -0.11 0.08 -0.08 0.29 0.01 C17 0.03 -0.10 0.40 0.08 -0.11 -0.10 -0.07 -0.14 -0.18 -0.11 0.10 0.39 0.04 C18 -0.17 -0.22 -0.10 -0.10 0.33 0.06 0.09 -0.25 -0.13 0.52 0.20 0.41 C19 -0.38 0.69 -0.01 0.27 -0.18 -0.21 0.68 0.23 0.10 0.55 -0.06 C20 -0.13 -0.37 -0.08 -0.06 -0.09 -0.16 0.33 -0.17 -0.11 0.00 C21 -0.12 0.39 -0.14 -0.17 0.69 0.22 -0.25 0.58 -0.13 C22 -0.24 -0.35 0.01 -0.15 -0.02 0.06 -0.12 -0.45 C23 -0.13 -0.15 -0.12 0.30 -0.11 0.16 0.33 C24 -0.18 -0.11 -0.14 0.12 -0.13 0.74 C25 0.14 -0.10 -0.11 -0.25 -0.22 C26 0.13 -0.18 0.31 -0.27 C27 -0.12 -0.20 -0.10 C28 0.36 0.41 C29 0.13 C30 C1: β-pinene. C2:1-octen-3-ol. C3: p-cymene. C4: γ-terpinene. C5: δ-elemene. C6:α-copaene. C7:β-elemene. C8: β-caryophyllene. C9: γ-elemene. C10: (Z)-muurola-3,5-diene. C11: α-humulene. C12: γ-muurolene. C13: germacrene D. C14: (Z)-β-guaiene. C15: bicyclogermacrene. C16: (E)-β-guaiene. C17: lepidozene. C18: γ-cadinene. C19: (E)-calamenene. C20: δ-cadinene. C21: spathulenol. C22: caryophyllene oxide. C23: 1.10-di-epi-cubenol. C24: 1-epi-cubenol. C25: α-acorenol. C26: epi-α-cadinol. C27: epi-α-muurolol. C28: cubenol. C29:α-cadinol. C30:calamusenone 884 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 The high correlation between compounds indicates that a plant with high content of the first compound will probably present high content of the second compound. This information can assist in the selection process of breeding programs (NIZIO et al., 2015). Possibly, this correlation can be explained by the ability of a single enzyme to synthesize different products, due to the similarity between the biosynthetic pathways of the compounds (DEGENHARDT et al., 2009). Results of the present study indicate variation in the essential oil content, and show that the compounds β-elemene, β-caryophyllene, germacrene D, (Z)-β-guaiene, caryophyllene oxide and calamusenone were detected in greater proportions in native plants of H. pectinate of the state of Sergipe. The knowledge of the chemical diversity found in H. pectinata plants can assist in the selection of plants of specific interest. It also assists in the correct use and conservation of these genetic resources and in the discovery of new biological properties from the exploration and study of the different compounds present in the species. ACKNOWLEDGMENTS The authors thank CNPq, FAPITEC/SE, CAPES, FINEP, and RENORBIO for their financial support for this work. RESUMO: Os óleos essenciais são metabólitos secundários formados por diversos compostos químicos que atrelam a estas substâncias grande importância social e econômica. Essa diversidade de compostos geralmente é determinada pela constituição genética da planta, embora fatores ambientais também possam influenciar quanto ao tipo, quantidade e concentrações dos compostos presentes no óleo essencial. O objetivo deste trabalho foi analisar a diversidade química dos óleos essenciais de plantas nativas de H. pectinata coletadas no Estado de Sergipe. O óleo essencial de 24 plantas foi obtido por hidrodestilação e analisados por GC/MS-FID. Foram detectados 30 compostos no óleo essencial. Pela análise de agrupamento, foi observada a formação de dois grupos. Grupo 1 foi constituído por 18 plantas, e apresentou o β-elemeno (2,46-25,77%), β-cariofileno (16,20-60,95%), germacreno-D (0,00-21,59%) e óxido de cariofileno (5,38-42,21%) como compostos majoritários. Grupo 2 foi constituído por 6 plantas com β-cariofileno (5,68-15,57%), Z-β- guaieno (2,18-7,31%), óxido de cariofileno (1,58-22,89%) e calamusenona (23,12-64,36%) como compostos majoritários. Uma forte correlação foi observada entre os compostos p-cimeno e γ-terpineno (r=0,94) e entre (E)-β-guaieno e lepidozeno (r=0,95). Os resultados do presente estudo indicam que existe variação no teor do óleo essencial, e que os compostos β- elemeno, β-cariofileno, germacreno-D, (Z)-β-guaieno, óxido de cariofileno e calamusenona, foram detectados em maiores proporções nas plantas nativas de H. pectinata do Estado de Sergipe. O conhecimento da diversidade química encontrada nas plantas de H. pectinata pode auxiliar na seleção de plantas de interesse específico. PALAVRAS-CHAVE: Planta medicinal. Germoplasma. Óleo volátil. Compostos químicos. REFERENCES ADAMS, R. P. Identification of essential oil components by gas chromatograpy/mass spectrometry. 4. ed. Carol Stream, Illinois: Allured Publishing Corporation, 2007. 804p. ARIMURA, G.; GARMS, S.; MAFFEI, B. S.; SCHULZE, B.; LEITNER, M.; MITHÖFER, A.; BOLAND, W. Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta, Berlin v. 227, n. 2, p. 453-464, 2008. http://dx.doi.org/10.1007/s00425-007-0631-y. ARRIGONI-BLANK, M. F.; ANTONIOLLI, A. R.; CAETANO, L. C.; CAMPOS, D. A.; BLANK, A. F.; ALVES, P. B. Antinociceptive activity of the volatile oils of Hyptis pectinate L. Poit. (Lamiaceae) genotypes. Phytomedicine, Stuttgart, v. 15, n. 5, p. 334-339, 2008. http://dx.doi.org/10.1016/j.phymed.2007.09.009. ARRIGONI-BLANK, M. F.; BLANK, A. F.; COSTA, A. G.; ALVES, P. B.; COSTA, A. S. Influência do horário de colheita e de secagem no óleo essencial de Hyptis pectinata L. Poit (Lamiaceae). Scientia Plena, São Cristóvão, v. 6, n. 10, p. 1-5, 2010. 885 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 ARRIGONI-BLANK, M. F.; SILVA-MANN, R.; CAMPOS, D. A.; SILVA, P. A.; ANTONIOLLI, A. R.; CAETANO, L. C.; SANT'ANA, A. E. G.; BLANK, A. F. Morphological, agronomical and pharmacological characterization of Hyptis pectinata (L.) Poit germplasm. Revista Brasileira Farmacognosia, São Paulo, v. 15, n. 4, p. 298-303, 2005. http://dx.doi.org/10.1590/S0102-695X2005000400007. BLANK, A. F.; CAMÊLO, L. C. A.; ARRIGONI-BLANK, M. F.; PINHEIRO, J. B.; ANDRADE, T. M.; NICULAU, E. S.; ALVES, P. B. Chemical Diversity in Lippia alba (Mill.) N. E. brown germplasm. The Scientific World Journal, Cairo v. 2015, p. 1-11, 2015. http://dx.doi.org/10.1155/2015/321924. COSTA, A. S.; ARRIGONI-BLANK, M. F.; CARVALHO-FILHO, J. L. S.; SANTANA, A. D. D.; SANTOS, D. A.; ALVES, P. B.; BLANK, A. F. Chemical diversity in Basil (Ocimum sp.) Germplasm. The Scientific World Journal, Cairo v. 2015, p. 1-9, 2015. http://dx.doi.org/10.1155/2015/352638. DEGENHARDT, J.; KÖLLNER, T. G.; GERSHENZON, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, New York, v. 70, n. 15, p. 1621-1637, 2009. https://doi.org/10.1016/j.phytochem.2009.07.030. EHLERT, P. A. D.; BLANK, A. F.; ARRIGONI-BLANK, M. F.; PAULA, J. W. A.; CAMPOS, D. A.; ALVIANO, C. S. Tempo de hidrodestilação na extração de óleo essencial de sete espécies de plantas medicinais. Revista Brasileira de Plantas Medicinais, Botucatu, v. 8, n. 2, p. 79-80, 2006. FALCAO, R. A.; NASCIMENTO, P. L. A.; SOUZA, S. Antileishmanial Phenylpropanoids from the Leaves of Hyptis pectinata (L.) Poit. Journal of Evidence-Based Complementary & Alternative Medicine, Thousand Oaks, v. 2013, p.1-7, 2013. http://dx.doi.org/10.1155/2013/460613. KLEINE S.; MÜLLER, C. Intraspecific plant chemical diversity and its relation to herbivory. Oecologia, Berlin, v. 166, n. 1, p. 175-186, 2011. http://dx.doi.org/10.1007/s00442-010-1827-6. MARTINS, F. T.; SANTOS, M. H.; POLO, M.; BARBOSA, L. C. A. Variação química do óleo essencial de Hyptis suaveolens (L.) Poit., sob condições de cultivo. Química Nova, São Paulo, v. 29, n. 6, p. 1203-1209, 2006. http://dx.doi.org/10.1590/S0100-40422006000600011. MENEZES, P. P.; ARAUJO, A. A. S.; DORIA, A. A.; QUINTANS-JUNIOR, L. J.; OLIVEIRA, M. G.; SANTOS, M. R.; OLIVEIRA, J. F.; MATOS, J. R.; CARVALHO, F. M.; ALVES, P. B.; MATOS, I. L.; SANTOS, D. A.; MARRETO, R. N.; SILVA, G. F.; SERAFINI, M. R. Physicochemical characterization and analgesic effect of inclusion complexes of essential oil from Hyptis pectinata L. Poit leaves with β- Cyclodextrin. Current Pharmaceutical Biotechnology, Milano, v. 16, n. 5, p. 440-450, 2015. http://dx.doi.org/10.2174/1389201015666141202101909. NASCIMENTO, P. F. C.; ALVIANO, W. S.; NASCIMENTO, A. L. C.; SANTOS, P. O.; ARRIGONI- BLANK, M. F.; JESUS, R. A.; AZEVEDO, V. G.; ALVIANO, D. S.; BOLOGNESE, A. M.; TRINDADE, R. C. Hyptis pectinata essential oil: chemical composition and anti-Streptococcus mutans activity. Oral Diseases, Houndmills v. 14, n. 6, p. 485-489, 2008. http://dx.doi.org/10.1111/j.1601-0825.2007.01405.x. NETO, J. J. B.; LEAL, T. C. B.; NUNES, M. V.; CASTRO, E. G.; SANTOS, S. F.; AGUIAR, R. W. S. Produção de biomassa e de óleo essencial de três quimiotipos (I, II e III) e quatro acessos de erva-cidreira [Lippia alba (Mill.) N. E. Brown] no sul do Estado do Tocantins. Journal of Biotechnology and Biodiversity, Tocantins, v. 3, n. 1, p. 45-50, 2012. NIZIO, D. A. C.; BRITO, F. A.; SAMPAIO, T. S.; MELO, J. O.; SILVA, F. L. S.; GAGLIARDI, P. R.; ARRIGONI-BLANK, M. F.; ANJOS, C. S.; ALVES, P. B.; WISNIEWSKI JUNIOR, A.; BLANK, A. F. Chemical diversity of native populations of Varronia curassavica Jacq. and antifungal activity against Lasiodoplodia theobromae. Industrial Crops and Products, Amsterdam, v. 76, p. 437-448, 2015. https://doi.org/10.1016/j.indcrop.2015.07.026. 886 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 OLIVEIRA, A. R. M. F.; JEZLER, C. N.; OLIVEIRA, R. A.; COSTA, L. C. B. Influência da idade da planta na produção de óleo essencial de alevante. Revista Ceres, Viçosa, v. 59, n. 2, p. 241-245, 2012. http://dx.doi.org/10.1590/S0034-737X2012000200013. OUSSALAH, M.; CAILLET, S.; SAUCIER, L.; LACROIX, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, Guildford v. 18, n. 5, p. 414-420, 2007. https://doi.org/10.1016/j.foodcont.2005.11.009. PINTO, Z. T.; SÁNCHEZ, F. F.; SANTOS, A. R.; AMARAL, A. C.; FERREIRA, J. L.; ESCALONA- ARRANZ, J. C.; QUEIROZ, M. M. Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly. Revista Brasileira de Parasitologia Veterinária, Jaboticabal, v. 24, n. 1, p. 36-44, 2015. https://doi.org/10.1590/S1984-29612015006. RAYMUNDO, L. J. R. P.; GUILHON, C. C.; ALVIANO, D. S.; MATHEUS, M. E.; ANTONIOLLI, A. R.; CAVALCANTI, S. C.; ALVES, P. B.; ALVIANO, C. S.; FERNANDES, P. D. Characterisation of the anti- inflammatory and antinociceptive activities of the Hyptis pectinata (L.) Poit essential oil. Journal of Ethnopharmacology, Limerick, v. 134, n. 3, p. 725-732, 2011. https://doi.org/10.1016/j.jep.2011.01.027. SAMPAIO, T. S.; NIZIO, D. A. C.; WHITE, L. A. S.; MELO, J. O.; ALMEIDA, C. S.; ALVES, M. F.; GAGLIARDI, P. R.; ARRIGONI-BLANK, M. F.; JUNIOR, A. W.; SOBRAL, M. E. G.; BLANK, A. F. Chemical diversity of a wild population of Myrcia ovata Cambessedes and antifungal activity against Fusarium solani. Industrial Crops and Products, Amsterdam, v. 86, p. 196-209, 2016. https://doi.org/10.1016/j.indcrop.2016.03.042. SANTOS, P. O.; COSTA, M. J. C.; ALVES, J. A. B.; NASCIMENTO, P. F. C.; MELO, D. L. F. M.; BARBOSA, A. M.; TRINDADE, R. C.; BLANK, A. F.; ARRIGONI-BLANK, M. F.; ALVES, P. B.; NASCIMENTO, M. P. F. Chemical composition and antimicrobial activity of the essential oil of Hyptis pectinate (L.) Poit. Quimica Nova, São Paulo, v. 31, n. 7, p. 1648-1652, 2008. http://dx.doi.org/10.1590/S0100-40422008000700009. SANTOS, C. P.; OLIVEIRA, T. C.; PINTO, J. A. O.; FONTES, S. S.; CRUZ, E. M. O.; ARRIGONI-BLANK, M. F.; ANDRADE, T. M.; MATOSA, I. L.; ALVES, P. B.; INNECCO, R.; BLANK, A. F. Chemical diversity and influence of plant age on the essential oil from Lippia sidoides Cham. germplasm. Industrial Crops Products, Amsterdam, v. 76, p. 416-421, 2015. https://doi.org/10.1016/j.indcrop.2015.07.017. SILVA, W. J.; DÓRIA, G. A. A.; MAIA, R. T.; NUNES, R. S.; CARVALHO, G. A.; BLANK, A. F.; ALVES, P. B.; MARÇAL, R. M.; CAVALCANTI, S. C. H. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresource Technology, Barking, v. 9, n. 8, p. 3251-3255, 2008. https://doi.org/10.1016/j.biortech.2007.05.064. SOUZA, V.; LORENZI, H. Botanica sistematica: guia ilustrado para identificaçao das familias de Angiospermas da flora brasileira, baseado em APG II. 2. ed. Nova Odessa, São Paulo: Instituto Plantarum de Estudos da Flora, 2008. 703 p. TCHOUMBOUGNANG, F.; ZOLLO, P. H. A.; BOYOM, F. F.; NYEGUE, M. A.; BESSIÈRE, J. M.; MENUT, C. Comparative study of the essential oils of four Hyptis species from Cameroon: H. lanceolata Poit., H. pectinata (L.) Poit., H. spicigera Lam. and H. suaveolens Poit. Flavour and Fragrance Journal, Chichester, v. 20, n. 3, p. 340-343, 2005. https://doi.org/10.1002/ffj.1441. TEIXEIRA, B.; MARQUES, A.; RAMOS, C.; NENG, N. R.; NOGUEIRA, J. M. F.; SARAIVA, J. A.; NUNES, M. L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, Amsterdam, v. 43, p. 587-595, 2013. https://doi.org/10.1016/j.indcrop.2012.07.069. 887 Chemical diversity… FEITOSA-ALCANTARA, R. B. et al. Biosci. J., Uberlândia, v. 34, n. 4, p. 875-887, July/Aug. 2018 VAN DEN DOOL, H.; KRATZ, P. D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, Amsterdam, v. 11, n. 2, p. 463-471, 1963. https://doi.org/10.1016/S0021-9673(01)80947-X. VELOSO, R.A.; CASTRO, H. G.; BARBOSA, L. C. A.; CARDOSO, D. P. I.; CHAGAS JÚNIOR, A. F. I.; SCHEIDT, G. N. I. Teor e composição do óleo essencial de quatro acessos e duas cultivares de manjericão (Ocimum basilicum L.). Revista Brasileira de Plantas Medicinais, Botucatu, v. 16, n. 2, p. 364-371, 2014. http://dx.doi.org/10.1590/1983-084X/12_180. WULFF, R. Intrapopulational variation in the germination of seeds in Hyptis suaveolens. Ecology, Washington, v. 54, n. 3, p. 646-649, 1973. http://dx.doi.org/10.2307/1935354.