Microsoft Word - 7-Agra_39919 58 Original Article Biosci. J., Uberlândia, v. 34, supplement 1, p. 58-70, Dec. 2018 AGRONOMIC CHARACTERIZATION AND GENETIC PARAMETER ESTIMATION IN YELLOW PASSION FRUIT CARACTERIZAÇÃO AGRONÔMICA E ESTIMATIVA DE PARÂMETROS GENÉTICOS EM MARACUJAZEIRO AZEDO Hugo de Souza Motta MOREIRA 1 ; Anne Pinheiro COSTA 1 ; José Ricardo PEIXOTO 1 ; Michelle Souza VILELA 1 ; Márcio de Carvalho PIRES 1 ; Nilton Tadeu Vilela JUNQUEIRA 2 1. Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brasil. annecosta@gmail.com; 2. Empresa Brasileira de Pesquisa Agropecuária, Embrapa, Planaltina, DF, Brasil ABSTRACT: The selection of yellow passion fruit (Passiflora edulis Sims) genotypes with high yield and fruit quality is essential for the development of passion fruit crop in the country. Therefore, the objective of this study was to evaluate the agronomic performance and estimate the genetic parameters of 32 yellow passion fruit genotypes cultivated in the Federal District, Brazil. The experiment consisted of randomized block design with 32 treatments, eight plants per plot, and four replications. Fruits were classified based on their equatorial diameter. Yield, number of fruits per hectare, and fruit weight were evaluated. Genotypes MAR20#23 and UnB-P7 presented the highest total yield, and MAR20#23 also showed the greatest total number of fruits per hectare. BRS GA1 and MAR20#23 had the best performance for industrial purposes dues to the fruits of smaller diameter classes. UnB-P7, AR-01, and MSC were more indicated for in natura consumption owing to the fruits of greater diameter classes. The high magnitude estimates for heritability and genetic variation coefficients indicate the possibility of greater genetic gains with direct selection for yield and number of fruits of 1C diameter class. Significant phenotypic correlations were observed, indicating the possibility of indirect selection for number of fruits, fruit weight, and yield. KEYWORDS: Agronomic performance. Plant breeding. Passion fruit cultivation. INTRODUCTION Brazil stands out as the world's largest producer and consumer of passion fruit. In 2016, fruit production reached 703,489 tons in an area of 49,889 hectares (IBGE, 2016). Yellow passion fruit (Passiflora edulis Sims), also known as sour passion fruit, represents approximately 95% of the national production (COSTA et al., 2008). The Brazilian passion fruit mean yield (14.10 t ha-1) (IBGE, 2016) is considered as low when compared with the productive potential of the species, which can reach more than 40 t ha-1 (FREITAS et al., 2011; NEVES et al., 2013). The cultivation of inadequate varieties (JUNQUEIRA et al., 1999), the low production technology usage (MELO et al., 2001), and the lack of homogeneous and productive materials (MELETTI et al., 2000) are limiting factors to the increase of fruit quality and orchards yield. The development of genotypes with high yield, uniformity, and fruit quality is important for breeding programs (FALEIRO et al., 2006) since they increase the species production potential (NEVES et al., 2013). In addition, these materials may increase the producers’ income and simplify some stages of the productive process, such as post-harvest fruit classification (MELETTI et al., 2000). Fruit quality is measured both by its internal and external characteristics. The former is related to flavor (acidity and sugars content) and juice content (yield). The latter is associated with appearance and fruit standardization parameters, which influence the consumer’s choice. Fruits with better external appearance are usually intended for the fresh fruit market, while the others are destined for the industry (BALBINO, 2005). Therefore, the objective of this study was to evaluate the agronomic performance of 32 yellow passion fruit genotypes cultivated in the Federal District, Brazil, and to estimate some essential genetic parameters for the definition of breeding strategies. MATERIAL AND METHODS The experiment was conducted at Água Limpa Farm, belonging to University of Brasilia (UnB) (16oS and 48oW, 1,100 m asl), located in Brasilia, DF, Brazil. It consisted of a randomized Received: 19/09/17 Accepted: 15/06/18 59 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, supplement 1, p. 58-70, Dec. 2018 block design, with 32 treatments, eight plants per plot, and four replications. The genotypes evaluated in this study were obtained from Embrapa and UnB and were selected based on yield, fruit quality, and resistance to diseases. The plants were arranged in the field, spaced 2.75 m between rows, and 3 m between plants, totaling 1,024 useful plants, with external border. The experiment was carried out in Clayey Red-Yellow Latosol; soils were deep, well drained, and low fertile. Soil analysis presented the following results: Al (0.05 meq); Ca+Mg (1.9 meq); P (4.5 ppm); K (46 ppm); pH 5.4; and 4% Al saturation. Liming was applied, and 1 kg of simple superphosphate per pit was incorporated at the pre-planting stage. Monthly topdressings were performed in a circle, at a distance of 40 to 50 cm from the stem, while simple superphosphate was incorporated into the soil. The crop was managed using a trellis fence system comprised of 6 m-distant wooden stakes and two pieces of smooth wire, at 1.60 and 2.20 m from the ground. Formation pruning was performed. The crop was daily watered by a drip irrigation system, with the application of approximately 5 L m-2 of water. Drippers were spaced at 30 cm apart. Weeds were controlled by periodic hoeing between rows and post- emergent herbicides in the rows. No chemical control of diseases or artificial pollination was performed to increase fruiting during the experiment evaluation period. The agronomic performance was evaluated at one year after planting, from November 2009 to April 2010, totaling 20 harvests. Fruits were weekly harvested from the ground, weighed, and classified according to their equatorial diameter (D), as follows: 1C (D ≤ 55 mm); 1B (55 < D ≤ 65 mm); 1A (65 < D ≤ 75 mm); 2A (75 < D ≤ 90 mm); 3A (D > 90 mm) (ABREU et al., 2009). Estimated yield (kg ha-1) and number of fruits per hectare (considering 9,697 plants per hectare), and fruit weight (g) were evaluated for all diameter classes together (total), as well as for each diameter class. Data were subject to analysis of variance, and means were compared by the Tukey’s test, at 5% probability. Mean genotypic (σ2g), phenotypic (σ 2 p), and environmental (σ2e) estimates; mean broad sense heritability (h2); and coefficients of experimental (CVe) and genetic (CVg) variation were obtained for each of the variables analyzed. A phenotypic correlation was calculated between the variables, using the following expression: , where is the estimator of phenotypic covariance between two traits X and Y; is the estimator of the phenotypic variance of trait X; and is the estimator of the phenotypic variance of trait Y. The intensity of the correlation was classified based on the magnitude of the values, as suggested by Carvalho et al. (2004): r = 0 (null); 0 < |r| ≤ 0.30 (weak); 0.30 < |r| ≤ 0.60 (intermediate); 0.60 < |r| ≤ 0.90 (strong); 0.90 < |r| ≤ 1 (very strong); and |r|= 1 (perfect). All statistical analyses were performed using the Genes software (CRUZ, 2013). RESULTS AND DISCUSSION Significant differences were observed between genotypes for all traits, except for fruit weight of diameter classes 2A and 3A. Studies carried out with yellow passion fruit progenies have demonstrated high genetic variability for some traits, such as number of fruits per plant, and fruit weight and length (FREITAS et al., 2012; KRAUSE et al., 2012). This variability evidences the breeding potential of genotypes selection (OLIVEIRA et al., 2008). The total yield varied from 4,055.19 (EC-3-0) to 15,474.39 kg ha-1 (MAR20#23), with a mean of 9,543.88 kg ha-1 for all genotypes (Table 1). For some of the genotypes studied, the total yield was higher than the national mean (IBGE, 2015). Studies on the agronomic traits of different yellow passion fruit genotypes cultivated in the Federal District have demonstrated distinct behavior for EC-3-0. According to these data, genotype EC-3-0 presented superior performance, with a total yield of 15,460 (ABREU et al., 2009) and 26,480 kg ha-1 (JUNQUEIRA et al., 2003). Coimbra et al. (2012), Maia et al. (2009), and Junqueira et al. (2003) observed a superior performance for EC-RAM in relation to the other genotypes, with an estimated total yield of 43,287; 13,968; and 32,880 kg ha-1, respectively. However, in the present study, EC-RAM exhibited a total yield of only 6,350.40 kg ha-1. The total number of fruits per hectare ranged from 31,063 (UnB-P5) to 119,715 (MAR20#23). In general, the most productive genotypes also presented the greatest number of fruits. Although they did not 60 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, supplement 1, p. 58-70, Dec. 2018 significantly differ, a considerable numerical variation of 52,000 fruits between AR-01 and EC-RAM was recorded. These fruits, in practical terms, could be commercialized (Table 1). MAR20#23 can produce 342,847 fruits per hectare in the edaphoclimatic conditions of the Federal District (COIMBRA et al., 2012), confirming the superior performance of the genotype in this region. Table 1. Total yield (TY; Kg ha-1), number of fruits per hectare (TNF), and fruit weight (TFW; g) in 32 yellow passion fruit (Passiflora edulis Sims) genotypes cultivated in Brasilia, DF, Brazil. Genotype TY TNF TFW UnB-P6 12,213.28 abc 86,729.25 abcd 137.06 a MAR20#40 9,742.20 abc 86,582.06 abcd 114.56 ab UnB-P1 8,353.54 abc 68,512.06 abcd 125.56 ab MAR20#29 4,219.94 bc 35,720.00 cd 120.00 ab MAR22#2005 9,886.31 abc 79,100.56 abcd 125.56 ab Roxo Australiano 5,369.65 abc 62,874.56 abcd 84.56 b MAR20#15 12,659.36 abc 97,187.06 abcd 131.25 ab MSC 5,149.49 abc 33,123.00 cd 155.25 a RC-3 5,129.09 abc 39,899.06 bcd 125.56 ab Rubi Gigante 10,499.22 abc 85,994.56 abcd 120.00 ab AR-01 13,996.95 abc 102,879.56 abcd 137.06 a AR-02 8,791.22 abc 69,827.06 abcd 125.56 ab MAR20#49 8,258.44 abc 68,250.56 abcd 120.00 ab BRS Sol Cerrado 7,663.21 abc 61,627.06 abcd 125.56 ab MAR20#6 13,010.45 abc 104,005.25 abc 120.00 ab UnB-P5 4,601.02 abc 31,063.06 d 137.06 a MAR20#23 15,474.39 a 119,715.00 a 125.56 ab UnB-P4 10,916.42 abc 83,087.06 abcd 125.56 ab UnB-P2 12,164.40 abc 106,601.25 abc 109.25 ab UnB-P7 14,663.15 ab 102,879.56 abcd 149.06 a MAR20#03 13,149.69 abc 101,123.00 abcd 125.56 ab EC-3-0 4,055.19 c 37,055.25 cd 109.25 ab MAR20#10 9,282.68 abc 90,299.25 abcd 104.06 ab MAR20#34 11,085.57 abc 99,855.00 abcd 109.25 ab MAR20#21 13,647.48 abc 118,507.06 ab 109.25 ab FB200 10,578.75 abc 81,509.25 abcd 131.25 ab FP-01 8,529.32 abc 72,494.56 abcd 114.56 ab BRS GA1 11,035.68 abc 105,949.25 abc 104.06 ab EC-RAM 6,350.40 abc 50,962.06 abcd 125.56 ab GA2 10,873.51 abc 92,415.00 abcd 120.00 ab Redondão 8,278.57 abc 70,356.56 abcd 114.56 ab MAR20#39 5,775.61 abc 49,616.56 abcd 109.25 ab Different lowercase letters in the columns indicate significant differences (Tukey’s test, P ≤ 0.05). Fruits of diameter classes 1C and 1B are of great interest to the industry for being small and usually rejected by the fresh fruit market. Fruits of greater diameter classes (1A, 2A, and 3A) are intended for the in natura market (COIMBRA et al., 2012). The highest yield and the greatest number of fruits of 1C diameter class were observed in BRS GA1, with 3,343.41 kg ha-1 and 53,939 fruits, respectively. MSC presented the lowest yield and number of fruits of 1C diameter class, with 238.14 kg ha-1 and 4,455 fruits. For 1B diameter class, MAR20#23 presented the highest yield (9,019.51 kg ha-1) and the greatest number of fruits (62,875). MSC showed the lowest yield (2,295.98 kg ha-1) and UnB- P5 showed the lowest number of fruits (16,192). For fruits classified as 1A, UnB-P7 presented the highest Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, supplement 1, p. 58-70, Dec. 2018 yield (4.156.60 kg ha-1) and number of fruits (19,251). In contrast, EC-3-0 showed the lowest yield (643,60 kg ha-1), and MAR20#29 exhibited the lowest number of fruits (3,480) (Table 2). Low yields were observed for larger fruits (2A and 3A) when compared with the other diameter classes. For 2A diameter class, AR-01 presented the greatest fruit yield (639.99 kg ha-1) and the greatest number of fruits (2449), differing only from genotype MAR20#29, which registered 2.86 kg ha-1 and 13 fruits (Table 2). This result corroborates other studies that reported the superior performance of AR-01 in relation to fruit yield and number of fruits in the diameter classes 1A and 2A (ABREU et al., 2009; MAIA et al., 2009; COIMBRA et al., 2012). For the fruits of 3A diameter class, MSC presented the best performance, with 115.94 kg ha-1 and 409 fruits (Table 2). Greater fruit weight is fundamental to the fresh fruit market. Larger fruits have better commercial classification and, consequently, better prices. Neves et al. (2013) stated that fruits with fruit weight greater than 180 g present good commercial value for the fresh fruit market. The total weight per fruit ranged between 84.56 g (Roxo Australiano) and 155.25 g (MSC), with a mean weight of 121.58 g for all genotypes evaluated (Table 1). Coimbra et al. (2012) reported similar results for genotypes AR-01, AR-02, MAR20#03, FP-01, RC-3, and EC-RAM, and did not detect differences between genotypes. However, the fruit weight range obtained in this study, as well as that reported by Coimbra et al. (2012), was lower than the variations recorded by Campos et al. (2007) (191 and 228 g fruit-1) and by Vale et al. (2013) (207 and 286 g fruit-1). Considering the diameter classes 1C and 1B, genotypes UnB-P7 (71.25 g) and MAR20#15 (155.25 g) presented the highest fruit weight, respectively, while genotypes EC-RAM (38.06 g) and Roxo Australiano (99.00 g) showed the lowest values, respectively. UnB-P5 obtained the greatest fruit weight in the 1A diameter class (231.56 g), differing only from EC-3-0 (174.56 g). No significant differences were recorded between fruit weight in the diameter classes 2A and 3A for the different genotypes (Table 2). The contrasts observed among the different studies may be due to the genetic nature of the analyzed materials since they are originated from open pollination. Additionally, different water and nutritional management, distinct harvest times, different substrates and packages used for seedling formation, plant physiological conditions, and environmental factors favorable to the occurrence of phytopathogens may have contributed to these variations. The pollination type should also be considered since it influences fruiting. Artificial pollination, which was not performed in the present study, would have substantially increased yield, fruit weight, fruit diameter and length, and percentage of pulp; and reduced peel thickness (KRAUSE et al., 2012). Such traits would favor both the fresh fruit market and the industry. Fruits with greater pulp weight and size are preferred by the in natura market. Conversely, high pulp yield and reduced peel thickness are desirable traits for industrial purposes (FERREIRA et al., 2010). The three variables evaluated presented heritability estimates of high magnitude (Table 3). The CVg for the variables total yield (14.70), total number of fruits (15.06), and total fruit weight (4.09) were low when compared with the results obtained by Freitas et al. (2011) (Table 3). These low values may indicate the existence of low genetic variability among the evaluated genotypes. Heritability values ranged from 8.17 (fruit weight of 2A diameter class) to 81.70% (number of fruits of 1C diameter class) (Table 4). Considering the magnitudes of heritability estimates and the CVg, higher gains with direct selection are expected for yield and number of fruits of 1C diameter class since the environment has little influence on the expression of these traits. Oliveira et al. (2008) reported the highest estimates of coefficients of heritability (greater than 50%) for fruit length, number of fruits per plant, and fruit weight. Similarly, Freitas et al. (2011) reported high heritability values for the number of fruits per plot (98.02%) and fruit length (82.69%). Despite the low CVg observed for the different diameter classes, the CVg/CVe ratio was greater than 1 for number of fruits of 1C diameter class (1.06) and total fruit yield for the same diameter class (1.02) (Table 4). These values indicate a favorable selection condition since the genetic variance surpasses the environmental variance. These variables also presented the highest heritability estimates, contributing to the values of CVg/CVe ratio. For the other variables, CVg/CVe ratio was lower than 1, indicating that the use of simple breeding methods, such as mass selection, will not provide significant gains during the selection process. Breeding methods based on family performance are more appropriate Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, supplement 1, p. 58-70, Dec. 2018 than those based on individual performance (FREITAS et al., 2015). Seventy significant phenotypic correlations were observed, with valuesvarying between 0.34 and 0.99. In 60% of the significant correlations, estimates values were equal to or greater than 0.6, indicating a strong correlation and the possibility of indirect selection for these traits. The presence of significance for low correlation values has been detected by other authors (VASCONCELOS et al., 1998; KUREK et al., 2002), and may be associated with the high degrees of freedom included in the t-test (VASCONCELOS et al., 1998) (Table 5). In this study, the increase in the total number of fruits increased the total yield (rf = 0.96), as also reported in other studies (OLIVEIRA et al., 2011; NEVES et al., 2013). Similarly, Pimentel et al. (2008) recorded a strong phenotypic correlation between number of fruits and yield per plant. Strong phenotypic correlations were observed between number of fruits and fruit yield for each diameter class: 1C (rf = 0.98), 1B (rf = 0.97), 1A (rf = 0.99), 2A (rf = 0.99), 3A (rf = 0.98). For fruits of 3A diameter class, a strong correlation was reported between number of fruits and fruit weight (rf = 0.92), and between fruit yield and fruit weight (rf = 0.94) (Table 5). 63 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, n. 6, p. 58-70, Nov./Dec. 2018 Table 2. Yield (Y; Kg ha-1), number of fruits per hectare (NF), and fruit weight (FW; g) of diameter classes 1C, 1B, 1A, 2A, and 3A in 32 yellow passion fruit (Passiflora edulis Sims) genotypes cultivated in Brasilia, DF, Brazil. Genotype Y1C NF1C FW1C Y1B NF1B FW1B UnB-P6 1,621.8 abcde 25,200.56 abcdef 67.06 ab 7,082.25 ab 45,795.00 ab 149.06 ab MAR20#40 2,555.2 abc 39,401.25 abcd 63.00 ab 5,683.45 abc 39,999.00 ab 143.00 ab UnB-P1 857.94 cde 16,575.56 cdef 51.56 ab 5,161.98 abc 41,208.00 ab 125.56 ab MAR20#29 616.22 cde 11,341.25 cdef 51.56 ab 2,843.44 abc 20,519.56 ab 131.25 ab MAR22#2005 1,769.56 abcd 28,644.56 abcde 63.00 ab 5,770.8 abc 39,600.00 ab 143.00 ab Roxo Australiano 771.32 cde 16,769.25 bcdef 44.56 ab 3,378.24 abc 37,732.06 ab 99.00 b MAR20#15 2,000.81 abcd 31,772.06 abcde 63.00 ab 7,823.21 abc 51,983.00 ab 155.25 a MSC 238.14 e 4,454.56 f 51.56 ab 2,295.98 c 16,383.00 b 143.00 ab RC-3 503.04 de 9,949.06 ef 44.56 ab 2,960.11 abc 21,903.00 ab 125.56 ab Rubi Gigante 1,745.04 abcd 29,583.00 abcde 55.25 ab 6,326.48 abc 45,368.00 ab 143.00 ab AR-01 1,661.52 abcde 27,059.25 abcde 63.00 ab 7,886.28 abc 55,813.06 ab 137.06 ab AR-02 839.06 cde 14,640.00 cdef 55.25 ab 5,164.26 abc 40,601.25 ab 120.00 ab MAR20#49 939.45 cde 20,519.56 abcdef 48.00 ab 4,204.55 abc 33,214.06 ab 125.56 ab BRS Sol Cerrado 802.37 cde 14,160.00 cdef 55.25 ab 4,229.19 abc 34,595.00 ab 120.00 ab MAR20#6 1,950.21 abcd 31,328.00 abcde 63.00 ab 8,305.92 abc 59,657.06 a 137.06 ab UnB-P5 549.08 de 8,234.56 ef 63.00 ab 2,540.04 bc 16,191.56 b 149.06 ab MAR20#23 2,581.64 abc 38,024.00 abcd 67.06 ab 9,019.51 a 62,874.56 a 143.00 ab UnB-P4 877.5 cde 15,251.25 cdef 55.25 ab 6,484.66 abc 49,394.06 ab 131.25 ab UnB-P2 2,559.20 abc 39,302.06 abcd 67.06 ab 6,524.19 abc 52,325.56 ab 120.00 ab UnB-P7 2,019.95 abcd 28,644.56 abcde 71.25 a 7,752.05 abc 51,983.00 ab 149.06 ab MAR20#03 1,737.78 abcd 30,536.56 abcde 55.25 ab 7,914.37 abc 54,989.25 ab 149.06 ab EC-3-0 651.25 cde 11,288.06 def 55.25 ab 2,621.97 abc 20,735.00 ab 120.00 ab MAR20#10 2,057.79 abcd 38,906.56 abcd 55.25 ab 5,296.9 abc 41,411.25 ab 131.25 ab MAR20#34 2,240.26 abcd 39,899.06 abc 55.25 ab 6,498.67 abc 48,619.25 ab 131.25 ab MAR20#21 3,259.83 ab 49,394.06 ab 63.00 ab 8,792.71 ab 61,131.56 a 137.06 ab FB200 1,977.54 abcd 28,055.25 abcde 67.06 ab 6,959.04 abc 46,009.25 ab 143.00 ab FP-01 1,190.28 abcde 21,903.00 abcdef 55.25 ab 5,542.49 abc 41,513.06 ab 131.25 ab BRS GA1 3,343.41 a 53,939.06 a 63.00 ab 5,881.84 abc 42,641.25 ab 137.06 ab EC-RAM 680.21 cde 15,624.00 cdef 38.06 b 3,621.41 abc 26,081.25 ab 137.06 ab GA2 1,460.47 abcde 26,731.25 abcde 55.25 ab 7,014.55 abc 53,475.56 ab 131.25 ab Redondão 1,377.10 abcde 24,179.25 abcdef 59.06 ab 5,196.12 abc 38,219.25 ab 137.06 ab MAR20#39 973.18 bcde 16,834.06 bcdef 55.25 ab 3,452.16 abc 25,599.00 ab 131.25 ab Different lowercase letters in the columns indicate significant differences (Tukey’s test, P ≤ 0.05). 64 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, n. 6, p. 58-70, Nov./Dec. 2018 Table 2. Continuation. Genotype Y1A NF1A FW1A Y2A NF2A FW2A Y3A NF3A FW3A UnB-P6 3,076.52 ab 13,629.56 ab 224.00 ab 316.69 ab 1,313.06 ab 231.56 a 9.31 b 41.25 b 67.06 a MAR20#40 1,364.22 ab 6,723.00 ab 195.00 ab 7.40 ab 41.25 ab 55.25 a 0.00 b 0.00 b 0.00 a UnB-P1 1,778.89 ab 8,601.56 ab 202.06 ab 449.57 ab 1.405.25 ab 323.00 a 0.00 b 0.00 b 0.00 a MAR20#29 713.6 b 3,480.00 b 188.06 ab 2.86 b 13.06 b 24.00 a 0.00 b 0.00 b 0.00 a MAR22#2005 2,067.84 ab 9,554.06 ab 209.25 ab 233.05 ab 929.25 ab 239.25 a 0.00 b 0.00 b 0.00 a Roxo Australiano 1,119.36 ab 5,928.00 ab 174.56 ab 34.5 ab 161.56 ab 120.00 a 5.22 b 35.00 b 17.06 a MAR20#15 2,502.72 ab 11,555.25 ab 216.56 ab 154.84 ab 575.00 ab 143.00 a 0.00 b 0.00 b 0.00 a MSC 1,772.89 ab 9,024.00 ab 202.06 ab 608.40 ab 2.375.56 ab 255.00 a 115.94 a 409.06 a 168.00 a RC-3 1,467.73 ab 7,097.06 ab 209.25 ab 162.61 ab 769.06 ab 209.25 a 0.00 b 0.00 b 0.00 a Rubi Gigante 2,183.74 ab 9,899.25 ab 216.56 ab 174.72 ab 675.00 ab 149.06 a 0.00 b 0.00 b 0.00 a AR-01 3,706.59 a 17,094.56 a 209.25 ab 639.99 a 2,449.25 a 263.06 a 13.05 ab 41.25 b 94.06 a AR-02 2,383.16 ab 12,044.06 ab 195.00 ab 276.41 ab 1,104.56 ab 255.00 a 0.00 b 0.00 b 0.00 a MAR20#49 2,374.68 ab 11,235.00 ab 216.56 ab 567.38 ab 2,184.56 ab 155.25 a 0.00 b 0.00 b 0.00 a BRS Sol Cerrado 2,256.75 ab 11,129.25 ab 202.06 ab 212.06 ab 840.00 ab 239.25 a 6.16 b 24.00 b 26.56 a MAR20#6 2,560.80 ab 12,154.06 ab 209.25 ab 158.20 ab 599.25 ab 255.00 a 0.00 b 0.00 b 0.00 a UnB-P5 1,296.18 ab 5,661.56 ab 231.56 a 145.16 ab 599.25 ab 137.06 a 0.00 b 0.00 b 0.00 a MAR20#23 3,634.74 a 17,555.25 a 209.25 ab 161.40 ab 741.56 ab 202.06 a 0.00 b 0.00 b 0.00 a UnB-P4 2,840.07 ab 15,128.00 ab 181.25 ab 506.59 ab 2,208.00 ab 224.00 a 0.00 b 0.00 b 0.00 a UnB-P2 2,510.64 ab 12,768.00 ab 188.06 ab 390.62 ab 1,443.00 ab 255.00 a 10.40 b 35.00 b 29.25 a UnB-P7 4,156.50 a 19,250.56 a 216.56 ab 510.15 ab 2,001.56 ab 149.06 a 0.00 b 0.00 b 0.00 a MAR20#03 2,899.36 ab 13,224.00 ab 224.00 ab 408.96 ab 1.599.00 ab 255.00 a 16.64 ab 59.06 ab 89.25 a EC-3-0 643.6 b 3,874.06 b 174.56 b 24.88 ab 104.06 ab 67.06 a 0.00 b 0.00 b 0.00 a MAR20#10 1,781.56 ab 8,835.00 ab 195.00 ab 60.02 ab 296.57 ab 114.56 a 0.00 b 0.00 b 0.00 a MAR20#34 2,077.20 ab 10,049.06 ab 202.06 ab 142.51 ab 587.06 ab 137.06 a 0.00 b 0.00 b 0.00 a MAR20#21 1,459.26 ab 7,097.06 ab 202.06 ab 54.17 ab 224.00 ab 143.00 a 0.00 b 0.00 b 0.00 a FB200 1,462.28 ab 6,682.06 ab 216.56 ab 59.90 ab 296.56 ab 120.00 a 5.70 b 24.00 b 24.00 a FP-01 1,737.78 ab 8,788.06 ab 195.00 ab 28.31 ab 109.25 ab 155.25 a 0.00 b 0.00 b 0.00 a BRS GA1 1,639.04 ab 8,099.00 ab 202.06 ab 67.08 ab 399.00 ab 120.00 a 0.00 b 0.00 b 0.00 a EC-RAM 1,698.46 ab 7,831.25 ab 216.56 ab 82.51 ab 350.56 ab 131.25 a 0.00 b 0.00 b 0.00 a GA2 2,174.15 ab 10,815.00 ab 195.00 ab 121.63 ab 624.00 ab 195.00 a 0.00 b 0.00 b 0.00 a Redondão 1,598.33 ab 7,568.00 ab 202.06 ab 57.6 ab 224.00 ab 155.25 a 0.00 b 0.00 b 0.00 a MAR20#39 1,169.64 ab 6,083.00 ab 202.06 ab 81.22 ab 389.06 ab 120.00 a 0.00 b 0.00 b 0.00 a Different lowercase letters in the columns indicate significant differences (Tukey’s test, P ≤ 0.05). 65 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, n. 6, p. 58-70, Nov./Dec. 2018 Table 3. Estimates of mean phenotypic (Vp), genotypic (Vg), and environmental variances (Ve), mean broad sense heritability (h 2), coefficient of genetic variation (CVg), and coefficient of relative variance (CVg/CVe) for total yield (TY; Kg ha -1), total number of fruits per hectare (TNF), and total fruit weight (TFW; g) in 32 yellow passion fruit (Passiflora edulis Sims) genotypes cultivated in Brasilia, DF, Brazil. Genetic parameters TY TNF TFW σ 2 p 305,608.45 2,406.28 0.39 σ 2 e 105,835.73 689.31 0.19 σ 2 g 199,772.71 1,716.97 0.20 h2% 65.37 71.35 52.38 CVg 14.70 15.06 4.09 CVg/CVe 0.69 0.79 0.52 Table 4. Estimates of mean phenotypic (Vp), genotypic (Vg), and environmental variances (Ve), mean broad sense heritability (h 2), coefficient of genetic variation (CVg), and coefficient of relative variance (CVg/CVe) for yield (Y; Kg ha -1), number of fruits per hectare (NF), and fruit weight (FW; g) of diameter classes 1C, 1B, 1A, 2A, and 3A in 32 yellow passion fruit (Passiflora edulis Sims) genotypes cultivated in Brasilia, DF, Brazil. Genetic parameters Y 1C NF 1C FW 1C Y 1B NF 1B FW 1B Y 1A NF 1A FW 1A Y 2A NF 2A FW 2A Y 3A NF 3A FW 3A σ 2 p 115,268.71 1,556.88 0.25 188,934.94 1,206.35 0.26 83,431.72 366. 37 0.22 44,511.70 161.92 8.19 4,811.06 14.97 10.46 σ 2 e 22,249.63 285.44 0.14 64,613.05 399.23 0.17 35,332.58 150.42 0.11 17,727.21 67.55 7.52 1,768.98 5.41 4.77 σ 2 g 93,019.08 1,271.44 0.11 124,321.89 807.11 0.09 48,099.14 215.95 0.11 26,784.50 94.37 0.67 3,042.08 9.57 5.69 h2% 80.7 81.7 43.86 65.8 66.91 35.1 57.65 58.94 50.85 60.17 58.28 8.17 63.23 63.9 54.41 CVg 25.77 23.14 4.37 15.11 14.2 2.59 15.57 15 2.33 39.4 36.52 6.31 170.94 113.8 90.32 CVg/CVe 1.02 1.06 0.44 0.69 0.71 0.37 0.58 0.6 0.51 0.62 0.59 0.15 0.66 0.67 0.55 66 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, n. 6, p. 58-70, Nov./Dec. 2018 Table 5. Estimates of phenotypic correlation (rp) among total number of fruits per hectare (TNF), total yield (TY; Kg ha -1), total fruit weight (TFW; g), and yield (Y; Kg ha-1), number of fruits per hectare (NF), and fruit weight (FW; g) of diameter classes 1C, 1B, 1A, 2A, and 3A, in 32 yellow passion fruit (Passiflora edulis Sims) genotypes cultivated in Brasilia, DF, Brazil. TNF TY TFW NF1C Y1C FW 1C NF1B Y1B FW1B NF1A Y1A FW1A NF2A Y2A FW2A NF3A Y3A FW3A TNF 1 0.96* -0.13 0.90* 0.89* 0.57* 0.97* 0.95* 0.25 0.65* 0.65* 0.13 0.18 0.17 0.27 -0.18 -0.16 -0.03 TY - 1 0.15 0.78* 0.81* 0.65* 0.94* 0.98* 0.43 0.78* 0.79* 0.3 0.35* 0.34 0.39 -0.09 -0.06 0.08 TFW - - 1 -0.34 -0.24 0.25 -0.10 0.08 0.64* 0.43* 0.48* 0.57* 0.60* 0.60* 0.39* 0.37* 0.39* 0.39 NF1C - - - 1 0.98* 0.54* 0.78* 0.79* 0.26 0.32 0.33 0.10 -0.14 -0.15 -0.05 -0.31 -0.29 -0.18 Y1C - - - - 1 0.67* 0.79* 0.81* 0.34 0.34 0.36* 0.13 -0.12 -0.13 -0.04 -0.27 -0.25 -0.15 FW1C - - - - - 1 0.52* 0.63* 0.52* 0.40* 0.42* 0.22 0.11 0.11 0.09 -0.04 -0.01 0.07 NF1B - - - - - - 1 0.97* 0.19 0.67* 0.67* 0.09 0.20 0.20 0.35* -0.18 -0.16 -0.01 Y1B - - - - - - - 1 0.41* 0.69* 0.70* 0.25 0.21 0.21 0.33 -0.18 -0.15 0.004 FW1B - - - - - - - - 1 0.29 0.36* 0.70* 0.16 0.15 0.02 0.05 0.07 0.11 NF1A - - - - - - - - - 1 0.99* 0.30 0.74* 0.73* 0.65* 0.12 0.15 0.26 Y1A - - - - - - - - - - 1 0.41* 0.73* 0.72* 0.64* 0.11 0.14 0.27 FW1A - - - - - - - - - - - 1 0.32 0.32 0.26 0.05 0.07 0.17 NF2A - - - - - - - - - - - - 1 0.99* 0.75* 0.43* 0.45* 0.49* Y2A - - - - - - - - - - - - - 1 0.76* 0.43* 0.45* 0.49* FW2A - - - - - - - - - - - - - - 1 0.34* 0.36* 0.41* NF3A - - - - - - - - - - - - - - - 1 0.98* 0.92* Y3A - - - - - - - - - - - - - - - - 1 0.94* FW3A - - - - - - - - - - - - - - - - - 1 *Correlation is significant at 0.05 level. 67 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, n. 6, p. 58-70, Nov./Dec. 2018 The total number of fruits was negatively correlated with the fruit weight (rf = -0.13), as also observed by Pimentel et al. (2008) and Neves et al. (2013) for genetic correlations in parents and hybrids of yellow passion fruit. Therefore, an increase in the number of fruits reduced fruits size, which is undesirable for the fresh fruit market. The total number of fruits negatively correlated with the number of fruits of 1C (rf = -0.34) and 1B (rf = - 0.10) diameter classes, as well as with the yield of fruits of 1C diameter class (rf = -0.24). A negative correlation was also reported between the variables of fruits of smaller diameter class (1C and 1B) and the variables of fruits of greater diameter class (2A and 3A) (Table 5). CONCLUSIONS Genotypes MAR20#23 and UnB-P7 presented the highest total yield, with values higher than the national mean. MAR20#23 also showed the greatest total number of fruits per hectare, standing out from the other genotypes. The highest yield and the greatest number of fruits suitable for industrial purposes (diameter classes 1C and 1B) were identified in genotypes BRS GA1 and MAR20#23. For the in natura consumption, the best performance was verified in UnB-P7, AR-01, and MSC (diameter classes 1A, 2A, and 3A, respectively). High heritability values and CVg/CVe ratio greater than 1 for yield and number of fruits of 1C diameter class indicate a favorable selection condition. The differences in yield and fruit quality recorded for the genotypes of this study confirm the potential for selection and future crosses that aim at increasing these traits. 68 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, n. 6, p. 58-70, Nov./Dec. 2018 RESUMO: A seleção de genótipos de maracujazeiro azedo (Passiflora edulis Sims) que apresentem alta produtividade e qualidade de frutos é essencial para o desenvolvimento da cultura do maracujá no país. Portanto, este trabalho teve como objetivo avaliar o desempenho agronômico e de estimar parâmetros genéticos de 32 genótipos de maracujazeiro azedo cultivados no Distrito Federal, Brasil. O experimento consistiu de um delineamento em blocos casualizados com 32 tratamentos, oito plantas por parcela, e quatro repetições. Os frutos foram classificados de acordo com o seu diâmetro equatorial. Produtividade, número de frutos por hectare e peso de frutos foram avaliados. Os genótipos MAR20#23 e UNB-P7 apresentaram as maiores produtividades totais, com valores superiores à média nacional. MAR20#23 também mostrou o maior número total de frutos por hectare. BRA GA1 e MAR20#23 exibiram a melhor performance para frutos de menores classes de diâmetro, que são destinados a fins industriais. Para o consumo in natura (frutos de maiores classes de diâmetro), UnB-P7, AR-01 e MSC apresentaram o melhor desempenho. As altas magnitudes das estimativas de herdabilidade e dos coeficientes de variação genéticos indicam a possibilidade de maiores ganhos por seleção direta para produtividade e número de frutos classe 1C. Correlações fenotípicas significativas foram observadas, indicando a possibilidade de seleção indireta para número de frutos, peso de frutos e produtividade. PALAVRAS-CHAVE: Desempenho agronômico; Melhoramento vegetal; Passicultura. REFERENCES ABREU, S. P. M.; PEIXOTO, J. R.; JUNQUEIRA, N. T. V.; SOUSA, M. A. F. Características agronômicas de seis genótipos de maracujazeiro-azedo cultivados no Distrito Federal. Revista Brasileira de Fruticultura, v. 31, n. 3, p. 920-924, 2009. https://doi.org/10.1590/S0100-29452009000300042 BALBINO, J. M. S. Manejo na colheita e pós-colheita do maracujá. In: COSTA, A. F. S.; COSTA, A. N. (Ed.). Tecnologias para a produção de maracujá. Vitória: Incaper, 2005. p. 153-179. CAMPOS, V. B.; CAVALCANTE, L. F.; DANTAS, T. A. G.; MOTA, J. K. M.; RODRIGUES, A. C.; DINIZ, A. A. Caracterização física e química de frutos de maracujazeiro-amarelo sob adubação potássica, biofertilizante e cobertura morta. Revista Brasileira de Produtos Agroindustriais, v. 9, n. 1, p. 59-71, 2007. https://doi.org/10.15871/1517-8595/rbpa.v9n1p59-71 CARVALHO, F. I. F.; LORENCETTI, C.; BENIN, G. Estimativas e implicações da correlação no melhoramento vegetal. Pelotas: Editora e Gráfica Universitária – UFPel, 2004. 141p. COIMBRA, K. G.; PEIXOTO, J. R.; SOUSA, M. A. F.; JUNQUEIRA, N. T. V. Produtividade e qualidade de frutos de progênies de maracujazeiro-azedo cultivados no Distrito Federal. Revista Brasileira de Fruticultura, v. 34, n. 4, p. 1121-1128, 2012. https://doi.org/10.1590/S0100-29452012000400020 COSTA, A. F. S.; COSTA, A. N.; VENTURA, J. A.; FANTON, C. J.; LIMA, I. M.; CAETANO, L. C. S.; SANTANA, E. N. Recomendações técnicas para o cultivo do maracujazeiro. Vitória: Incaper, 2008. 56p. (Documentos, 162). CRUZ, C. D. GENES: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, v. 35, n. 3, p. 271-276, 2013. https://doi.org/10.4025/actasciagron.v35i3.21251 FALEIRO, F. G.; PEIXOTO, J. R.; VIANA, A. P.; BRUCKNER, C. H.; LARANJEIRA, F. F.; DAMASCENO, F.; MELETTI, L. M. M.; CONSOLI, L.; SOUSA, M. A. F.; SILVA, M. S.; PEREIRA, M. G.; STENZEL, N.; SHARMA, R. D. Demandas para pesquisas relacionadas ao melhoramento genético. In: FALEIRO, F. G.; JUNQUEIRA, N. T.; BRAGA, M. F. (Ed). Maracujá: Demandas para a pesquisa. Brasília: Embrapa, 2006. p. 25-29. FERREIRA, F. M.; NEVES, L. G.; BRUCKNER, C. H.; VIANA, A. P.; CRUZ, C. D.; BARELLI, M. A. A. Formação de super-caracteres para seleção de famílias de maracujazeiro amarelo. Acta Scientiarum. Agronomy, v. 32, n. 2, p. 247-254, 2010. https://doi.org/10.4025/actasciagron.v32i2.3328 69 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, n. 6, p. 58-70, Nov./Dec. 2018 FREITAS, J. C. O.; PIO VIANA, A.; SANTOS, E. A.; SILVA, F. H. L.; PAIVA, C. L.; RODRIGUES, R.; SOUZA, M. M.; EIRAS, M. Genetic basis of the resistance of a passion fruit segregant population to Cowpea aphid-borne mosaic virus (CABMV). Tropical Plant Pathology, v. 40, p. 291-297, 2015. https://doi.org/10.1007/s40858-015-0048-2 FREITAS, J. P. X.; OLIVEIRA, E. J.; CRUZ NETO, A. J.; SANTOS, L. R. Avaliação de recursos genéticos do maracujazeiro-amarelo. Pesquisa Agropecuária Brasileira, v. 46, n. 9, p. 1013-1020, 2011. https://doi.org/10.1590/S0100-204X2011000900007 FREITAS, J. P. X.; OLIVEIRA, E. J.; JESUS, O. N.; CRUZ NETO, A. J.; SANTOS, L. R. Formação de população base para seleção recorrente em maracujazeiro-amarelo com uso de índices de seleção. Pesquisa Agropecuária Brasileira, v. 47, n. 3, p. 393-401, 2012. https://doi.org/10.1590/S0100-204X2012000300011 IBGE – Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal – Culturas temporárias e permanentes. Rio de Janeiro: IBGE, 2016. 62 p. JUNQUEIRA, N. T. V.; ANJOS, J. R. N.; SILVA, A. P. O.; CHAVES, R. C.; GOMES, A. C. Reação às doenças e produtividade de onze cultivares de maracujá-azedo cultivadas sem agrotóxicos. Pesquisa Agropecuária Brasileira, v. 38, n. 8, p. 1005-1010, 2003. https://doi.org/10.1590/S0100-204X2003000800014 JUNQUEIRA, N. T. V.; ICUMA, I. M.; VERAS, M. C. M.; OLIVEIRA, M. A. S.; DOS ANJOS, J. R. N. Cultura do maracujazeiro. In: SILVA, J. M. M. (Ed.). Incentivo a fruticultura no Distrito Federal: manual de fruticultura. Brasília: COOLABORA, 1999. p. 42-52. KRAUSE, W.; NEVES, L. G.; VIANA, A. P.; ARAÚJO, C. A. T.; FALEIRO, F. G. Produtividade e qualidade de frutos de cultivares de maracujazeiro‑amarelo com ou sem polinização artificial. Pesquisa Agropecuária Brasileira, v. 47, n. 12, p. 1737-1742, 2012. https://doi.org/10.1590/S0100-204X2012001200009 KUREK, A. J.; CARVALHO, F. I. F.; OLIVEIRA, A. C.; CARGNIN, A.; MARCHIORO, V. S.; LORENCETTI, C. Coeficiente de correlação entre caracteres agronômicos e de qualidade de grãos e sua utilidade na seleção de plantas de aveia. Ciência Rural, v. 32, n. 3, p. 371-376, 2002. https://doi.org/ 10.1590/S0103-84782002000300002 MAIA, T. E. G.; PEIXOTO, J. R.; JUNQUEIRA, N. T. V.; SOUSA, M. A. F. Desempenho agronômico de genótipos de maracujazeiro cultivados no Distrito Federal. Revista Brasileira de Fruticultura, v. 31, n. 2, p. 500-506, 2009. https://doi.org/10.1590/S0100-29452009000200026 MELO, K. T.; MANICA, I.; JUNQUEIRA, N. T. V. Produtividade de seis cultivares de maracujazeiro-azedo durante três anos em Vargem Bonita, DF. Pesquisa Agropecuária Brasileira, v. 36, n. 9, p. 1117-1125, 2001. https://doi.org/10.1590/S0100-204X2001000900005 MELETTI; L. M. M.; SANTOS, R. R.; MINAMI, K. Melhoramento do maracujazeiro-amarelo: obtenção do cultivar ‘Composto IAC-27’. Scientia Agricola, v. 57, n. 3, p. 491-498, 2000. https://doi.org/10.1590/S0103- 90162000000300019 NEVES, C. G.; JESUS, O. N.; LEDO, C. A. S.; OLIVEIRA, E. J. Avaliação agronômica de parentais e híbridos de maracujazeiro-amarelo. Revista Brasileira de Fruticultura, v. 35, n. 1, p. 191-198, 2013. https://doi.org/10.1590/S0100-29452013000100022 OLIVEIRA, E. J.; SANTOS, V. S.; LIMA, D. S.; MACHADO, M. D.; LUCENA, R. S; MOTTA, T. B. N. Estimativas de correlações genotípicas e fenotípicas em germoplasma de maracujazeiro. Bragantia, v. 70, n. 2, p. 255-261, 2011. https://doi.org/10.1590/S0006-8705201100020000 OLIVEIRA, E. J.; SANTOS, V. S.; LIMA, D. S.; MACHADO, M. D.; LUCENA, R. S.; MOTTA, T. B. N.; CASTELLEN, M. S. Seleção em progênies de maracujazeiro amarelo com base em índices multivariados. 70 Agronomic characterization… MOREIRA, H. S. M. et al., Biosci. J., Uberlândia, v. 34, n. 6, p. 58-70, Nov./Dec. 2018 Pesquisa Agropecuária Brasileira, v. 43, n. 11, p. 1543‑1549, 2008. https://doi.org/10.1590/S0100- 204X2008001100013 PIMENTEL, L. D.; STENZEL, N. M. C.; CRUZ, C. D.; BRUCKNER, C. H. Seleção precoce de maracujazeiro pelo uso da correlação entre dados de produção mensal e anual. Pesquisa Agropecuária Brasileira, v. 43, n. 10, p. 1303-1309, 2008. https://doi.org/10.1590/S0100-204X2008001000007 VALE, L. S. R.; MATOS, G. R.; SOARES, R. S.; SILVA, J. K. R. M. Desempenho agronômico de cultivares de maracujazeiro híbrido. Global Science and Technology, v. 6, n. 3, p. 178-183, 2013. https://doi.org/10.14688/1984-3801.v06n03a18 VASCONCELLOS, N. J. S.; CARVALHO, F. I. F.; COIMBRA, J.; SILVA, S. A.; MARCHIORO, V. S.; AZEVEDO, R.; LORECETTI, C. Efeito do ambiente e correlação entre componentes do grão em genótipos de aveia cultivados no Sul do Brasil. Revista Brasileira de Agrociência, v. 2, p. 85-88, 1998.