Microsoft Word - 5-Agra_42275 353 Bioscience Journal Original Article Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 MORPHO-AGRONOMIC CHARACTERIZATION OF Varronia curassavica GERMPLASM CONSERVATED “EX SITU” CARACTERIZAÇÃO MORFOAGRONÔMICA DE GERMOPLASMA DE Varronia curassavica CONSERVADO “EX SITU” Bruna Maria Santos de OLIVEIRA1*; Arie Fitzgerald BLANK2; Daniela Aparecida de Castro NIZIO3; Maria de Fátima ARRIGONI-BLANK2; Leandro BACCI2; Luís Fernando de Andrade NASCIMENTO4; José Carlos Freitas de SÁ FILHO4 1. Doutora em Agricultura e Biodiversidade, UFS, São Cristóvão, SE, Brasil. bruna_barreiros02@hotmail.com; 2. Professor do Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, São Cristóvão, SE, Brasil; 3. Pós-doutoranda em Agronomia da Universidade Federal de Sergipe, São Cristóvão, SE, Brasil; 4. Estudante de Engenharia Agronômica, UFS, São Cristóvão, SE, Brasil ABSTRACT: Varronia curassavica Jacq. is a medicinal and aromatic plant native to Brazil. The essential oil of this species is valued by the pharmaceutical industry due to its bioactive substances containing anti-inflammatory properties. This study aimed to morpho-agronomically characterize 27 accessions of the collection of V. curassavica of the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe. The experiment consisted of a randomized block design with three replications. The morphological characterization occurred in the field, by evaluating the variables plant height; canopy width; canopy shape; stem diameter; stem color; leaf blades width, length, and length/width ratio; leaves, petals, and sepals color. The agronomic characterization was performed using the essential oils extracted from dried leaves by hydrodistillation in a Clevenger apparatus. Leaves dry matter yield per plant and essential oil yield and content were also evaluated. The accessions showed great variation for leaves color, with different shades of green, which allowed separating them into dark green leaf and light green leaf plants. Plant height values ranged from 101.33 cm (VCUR-801) to 345.33 cm (VCUR-701). The clustering analysis of the traits revealed seven distinct groups. The accessions VCUR-103 and VCUR-001 were the most divergent, whereas the accessions VCUR-401 and VCUR-404 were the most similar. The morpho-agronomic characterization of V. curassavica accessions provides a correct description of the species by pointing out perspectives for genetic improvement, besides optimizing the conservation process. KEYWORDS: Cordiaceae. Medicinal plant. Aromatic plant. Essential oil. Domestication. Genetic breeding INTRODUCTION Brazil is rich in plant biodiversity (SOUZA et al., 2010). However, in recent years, its biodiversity has undergone accelerated destruction, mainly affecting the natural vegetation. This fact is due to agricultural expansion, fires, logging, extractivism, and uncontrolled urban growth. All these changes have posed a great threat to several plant species in the country (OLIVEIRA, 2010). An alternative for the maintenance and conservation of endangered species is the formation of collections in Active Germplasm Banks, which holds base collections for the conservation of a broad plant genetic variability, enabling biodiversity maintenance (SILVA et al., 2012). Varronia curassavica Jacq. (ex Cordia verbenacea DC.)] is a medicinal and aromatic plant native to Brazil, belonging to the Cordiaceae family (GASPARINO; BARROS, 2009). It occurs from Central America to southern Brazil (LORENZI; MATOS, 2008) in a wide range of habitats, such as beaches, restinga, forests, and cerrado (WANDERLEY et al., 2002). V. curassavica has stood out both in folk medicine and in the pharmaceutical industry, mainly due to the anti- inflammatory substances present in its essential oil (PASSOS et al., 2007; PARISSOTO et al., 2012; PIMENTEL et al., 2012). The effectiveness of V. curassavica is recognized by the National Sanitary Surveillance Agency (ANVISA). The plant is included in the List of the Unified Health System (SUS) and the National List of Medicinal Plants of Interest to the Unified Health System (RENISUS) (BRASIL, 2011). Due to its therapeutic properties, several studies have been developed aimed at the selection Received: 14/05/18 Accepted: 20/11/19 354 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 of superior accession for its agronomic aspects and chemical composition (VAZ et al., 2006). Studies have proved several biological activities of the essential oil of V. curassavica, such as inhibition of gram-positive bacteria (CARVALHO JR. et al., 2004; MECCIA et al., 2009), fungistatic activity against Candida albicans (PINHO et al., 2012), anti-bacterial action against Staphylococcus aureus and Escherichia coli (RODRIGUES et al., 2012), antifungal activity against the plant pathogenic fungi Oidium eucalypti (SILVA et al., 2014) and Lasiodiplodia theobromae (NIZIO et al., 2015), and antiprotozoal activity against Ichthyophthirius multifiliis (NIZIO et al., 2018). In 2012, a V. curassavica collection was implanted in the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe, containing accessions from the states of Sergipe and São Paulo, aiming to conserve the genetic variability of the species. An Active Germplasm Bank provides information on molecular, morphological, and agronomic variability. Moreover, it allows the knowledge about the diversity and instability of the essential oil chemical composition of the conserved accessions and their biological activities, consequently enhancing the exploitation of the species' genetic resources. Besides the germplasm maintenance, the Active Germplasm Bank also provides the characterization of conserved accessions. Thus, all information regarding the morphological and agronomic traits, besides providing an "identity" for each accession, may be useful in the genotype selection process to compose breeding programs for this species (GOEDERT, 2007). Characterization is an essential activity in germplasm collections management and consists of describing, identifying, and differentiating accessions of the same species (BURLE; OLIVEIRA, 2010). Morphological and agronomic characterization is the starting point for the knowledge of a plant species, especially when the objective is the selection of accessions of interest both for cultivation and for use in breeding programs (BLANK et al., 2017; OLIVEIRA et al., 2018). Therefore, this study aimed to morpho- agronomically characterize 27 V. curassavica accessions of the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe. MATERIAL AND METHODS The Varronia curassavica Jacq. (ex Cordia verbenacea DC.) collection from the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe is implemented in the Research Farm "Campus Rural da UFS," located in the municipality of São Cristóvão, Sergipe, Brazil (lat. 11°00'S, long. 37°12'W). The collection contains accessions, obtained by vegetative propagation, from different locations in the states of Sergipe and São Paulo (Table 1). The experiment consisted of a randomized blocks design with three replications. Each plot consisted of one plant, spaced at 2.0 m between plants and 3.0 m between rows. Fertilization was carried out every three months, using 5 L of bovine manure per plant. Monthly weeding was also performed. The morphological and agronomic characterization of 27 V. curassavica accessions was carried out in June 2015. The morphological characterization of the plants kept in the V. curassavica collection of the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe was performed based on Blank et al. (2004). The following variables were evaluated: plant height (cm); canopy width (cm); stem diameter at 10 cm from the ground (cm); leaf blade length and width (mean of four fully expanded leaves randomly sampled from each plant), and leaf blade length/width ratio. Canopy width was measured by the mean between the smallest and the largest diameter. Qualitative evaluations were also performed for canopy shape (rounded, goblet, or irregular); stem, leaf vein, petals, and sepals color. The leaf area index was measured in four leaves per plant, using the LICOR leaf area meter, model LI-3 100C. Leaf color was determined by scanning four leaves collected from each plant on an HP 1005 MPF scanner. Colors were analyzed in R (red), G (green), and B (blue) patterns, using the color picker tool of Paint software for Windows. Six color measurements were performed on each side of the leaves (abaxial and adaxial). The mean of the color measurements for each side of each leaf formed the means for each plant. These means were used to transform the RGB color system into hexadecimal code, using the online software Webcalc, which represents the color pattern of the leaves of each plant. Sepals and petals colors were determined shortly after blooming, and stem color was determined visually. The agronomic characterization was performed by analyzing the leaves dry matter and the essential oil content and yield. Leaves were 355 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 collected and then weighed on an electronic scale. Afterward, they were dried in a forced-air circulation oven at 40 ºC ± 1 ºC for five days. After drying, the material was weighed to determine the dry matter. The essential oil was extracted by hydrodistillation in a modified Clevenger apparatus for 140 minutes, coupled to a 3000 mL round bottom flask. For each accession, samples of 50 g of dry leaves were used for two liters of distilled water in triplicate. The essential oil content and yield were calculated for each accession, following the equations: Content (%, v/m) = (Volume of essential oil extracted from the sample/leaves dry matter) x 100 Essential oil yield (mL/plant) = (content% x total plant dry matter) Table 1. Accession code, origin, and geographic information of 27 V. curassavica accessions from the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe (UFS) (BRITO et al., 2016). The quantitative data of the morpho- agronomic characterization were subject to analysis of variance (ANOVA), and the means were compared by the Scott-Knott test (p≤0.05) with the aid of the statistical package Sisvar, version 5.6 (FERREIRA, 2011). From the morphological and agronomic characterization data, two multivariate analyses were performed, cluster analysis and principal component analysis (PCA), using the Statistica software. Subsequently, a dissimilarity matrix was constructed based on the morpho- agronomic characteristics of each accession, according to their Euclidean distances. The dissimilarity matrix was simplified with dendrograms, using the Ward's clustering method. Due to the differences of the units of the morpho-agronomic traits, data were standardized according to (REGAZZI, 2000), using the formula: Accession code Origin (municipality, state, country) Voucher of UFS herbarium Georeferenced data VCUR-001 Donated by Centro Multidisciplinar de Pesquisas Químicas, Biológicas e Agrícolas da Universidade Estadual de Campinas, Campinas, Estado de São Paulo, Brasil 30.913 - VCUR-002 Ubatuba, São Paulo, Brasil 36.095 23°32’18.0”S; 45°03’73.4”W VCUR-003 Ilha Comprida, São Paulo, Brasil 36.096 25°02’44.0”S; 47°53’17.0”W VCUR-004 Mongaguá, São Paulo, Brasil 36.097 24°08’00.0”S; 46°42’54.0”W VCUR-005 Ilha Comprida, São Paulo, Brasil 36.098 24°43’08.0”S; 47°30’36.0”W VCUR-101 Graccho Cardoso, Sergipe, Brasil 35.763 10°14’48.5”S; 37°12’52.8”W VCUR-102 Graccho Cardoso, Sergipe, Brasil 35.759 10°14’47.6”S; 37°12’52.8”W VCUR-103 Graccho Cardoso, Sergipe, Brasil 36.099 10°14’47.9”S; 37°12’52.2”W VCUR-104 Graccho Cardoso, Sergipe, Brasil 36.100 10°14’46.1”S; 37°12’52.8”W VCUR-105 Graccho Cardoso, Sergipe, Brasil 36.101 10°14’46.4”S; 37°13’26.6”W VCUR-201 Tobias Barreto, Sergipe, Brasil 33.470 11°03’54.2”S; 38°03’21.1”W VCUR-202 Tobias Barreto, Sergipe, Brasil 33.471 11°04’10.1”S; 38°04’03.4”W VCUR-301 São Cristóvão, Sergipe, Brasil 36.102 10°54’26.3”S; 37°11’53.1”W VCUR-302 São Cristóvão, Sergipe, Brasil 36.205 10°54’59.7”S; 37°11’16.3”W VCUR-303 São Cristóvão, Sergipe, Brasil 36.208 10°54’48.5”S; 37°11’50.3”W VCUR-401 Japaratuba, Sergipe, Brasil 36.227 10°38’05.4”S; 36°55’10.5”W VCUR-402 Japaratuba, Sergipe, Brasil 36.103 10°37’59.9”S; 36°55’16.1”W VCUR-403 Japaratuba, Sergipe, Brasil 36.104 10°37’39.0”S; 36°55’25.8”W VCUR-404 Japaratuba, Sergipe, Brasil 36.105 10°37’37.8”S; 36°56’00.0”W VCUR-501 Tomar do Geru, Sergipe, Brasil 36.106 11°21’12.0”S; 37°50’59.0”W VCUR-502 Tomar do Geru, Sergipe, Brasil 36.107 11°19’17.1”S; 37°52’02.4”W VCUR-503 Tomar do Geru, Sergipe, Brasil 36.239 11°19’05.2”S; 37°52’17.5”W VCUR-504 Tomar do Geru, Sergipe, Brasil 36.108 11°19’01.7”S; 37°52’25.0”W VCUR-505 Tomar do Geru, Sergipe, Brasil 36.109 11°19’04.0”S; 37°51’51.8”W VCUR-601 Itabi, Sergipe, Brasil 30.914 10°09’24.9”S; 37°08’27.0”W VCUR-701 Cedro de São João, Sergipe, Brasil 36.110 10°18’06.9”S; 36°53’27.7”W VCUR-801 Itabaiana, Sergipe, Brasil 36.111 10°50’27.6”S; 37°12’49.3”W 356 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 Where: Zij = is the standardized value of observation i in variable j Xij = is the original value of observation i in variable j Xj = is the mean of the variable j S(Xj) = is the standard deviation of variable j RESULTS AND DISCUSSION V. curassavica accessions presented phenotypic variability for the evaluated traits. Accessions presented great uniformity for sepals and petals colors. However, some variations were identified for stem color, canopy shape, and leaf color (two shades of green) (Table 2). Table 2. Stem, veins, sepals, and petals color and canopy shape of 27 V. curassavica accessions of the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe. Color Accessions Stem Veins Sepals Petals Canopy shape VCUR-001 Brown Green Olive green White Irregular VCUR-002 Brown Light green Olive green White Irregular VCUR-003 Brown Green Olive green White Rounded VCUR-004 Brown Green Olive green White Rounded VCUR-005 Brown Green Olive green White Rounded VCUR-101 Brown Green Olive green White Rounded VCUR-102 Brown Green Olive green White Rounded VCUR-103 Brown Green Olive green White Rounded VCUR-104 Brown Green Olive green White Rounded VCUR-105 Brown Light green Olive green White Irregular VCUR-201 Gray Green Olive green White Rounded VCUR-202 Gray Light green Olive green White Irregular VCUR-301 Brown Light green Olive green White Irregular VCUR-302 Brown Green Olive green White Irregular VCUR-303 Brown Light green Olive green White Irregular VCUR-401 Brown Green Olive green White Rounded VCUR-402 Brown Green Olive green White Rounded VCUR-403 Brown Light green Olive green White Irregular VCUR-404 Brown Green Olive green White Rounded VCUR-501 Brown Green Olive green White Irregular VCUR-502 Brown Light green Olive green White Irregular VCUR-503 Brown Light green Olive green White Irregular VCUR-504 Brown Green Olive green White Rounded VCUR-505 Brown Green Olive green White Rounded VCUR-601 Brown Green Olive green White Rounded VCUR-701 Brown Light green Olive green White Irregular VCUR-801 Brown Green Olive green White Rounded A great variation was observed between the accessions for leaf color due to their different shades of green, which allowed separating them into dark green leaf and light green leaf plants (Table 3). Considering the adaxial side, the accessions VCUR-002, VCUR-003, VCUR-004, VCUR-401, and VCUR-404 stood out for their dark green leaves, whereas the accessions VCUR-701, VCUR- 303, and VCUR-105 stood out for their light green leaves. The RGB color blending indicates the specific color of the leaves sampled from the V. curassavica collection. The variation of the percentage of green determines the greenish shade of the leaves. A higher percentage of red in the three-color blend expresses a lighter shade of green, whereas a higher percentage of blue indicates a darker shade of green. In general, the accessions had a lighter shade of green on the abaxial side of the leaves. All the quantitative parameters evaluated showed significant differences (Table 4). Considering the variables leaf length (LL) and leaf width (LW), the accessions VCUR-103 (10.88 and 3.66 cm), VCUR-301 (10.07 and 3.71 cm), VCUR- 357 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 302 (10.13 and 3.13 cm), VCUR-402 (11.47 and 4.44 cm), VCUR-503 (9.98 and 3.42 cm), VCUR- 505 (10.68 and 3.28 cm), VCUR-601 (12.09 and 3.98 cm), and VCUR-801 (10.28 and 3.38 cm) stood out for having the highest means for both traits. The other accessions showed a mean leaf length of 9.04 cm and a mean leaf width of 2.88 cm. For the length/width ratio (L/W), the accessions VCUR-002 and VCUR-005 stood out with 3.98 and 3.66, respectively. The other accessions had a mean of 3.09. For leaf area (LA), the accessions VCUR- 402 and VCUR-601 revealed the highest means, with 144.38 and 117.48 mm², respectively, differing significantly from the others. Concomitantly, they were clustered with accessions that had the highest means for leaf length and width. The accession VCUR-202 had the widest canopy width (CW), with 291.67 cm. The mean of the other accessions was 125.55cm. Such result is possibly due to the irregular canopy shape of this material. The accession VCUR-202 also had higher means for plant height (PH) and stem diameter (SD); conversely, this accession showed lower values for the other variables analyzed. The accessions VCUR-701 (345.33 and 19.33cm), VCUR-202 (295.00 and 18.33 cm), VCUR-201 (236.67 and 16.00 cm), and VCUR-001 (250.00 and 14.00 cm) had, simultaneously, the highest means for plant height (PH) and stem diameter (SD), respectively. The other accessions showed a mean of 9.04 cm of PH and 2.88 cm of SD. Table 3. Leaf-blade color (adaxial and abaxial side) of 27 V. curassavica accessions, based on the RGB (Red, Green, and Blue) pattern and hexadecimal codes. Leaf-blade Adaxial Abaxial Accession R G B Color Code R G B Color Code VCUR-001 63 100 16 #3F6410 117 142 65 #758E41 VCUR-002 39 68 16 #274410 103 124 62 #677C3E VCUR-003 45 72 27 #2D481B 98 120 57 #627839 VCUR-004 44 70 28 #2C461C 102 135 60 #66873C VCUR-005 49 75 27 #314B1B 98 127 58 #627F3A VCUR-101 55 91 11 #375B0B 108 131 53 #6C8335 VCUR-102 49 80 19 #315013 101 122 58 #657A3A VCUR-103 51 90 13 #335A0D 99 144 51 #639033 VCUR-104 53 92 11 #355C0B 113 136 62 #71883E VCUR-105 61 97 12 #3D610C 119 138 66 #778A42 VCUR-201 51 88 14 #33580E 105 128 58 #69803A VCUR-202 53 89 14 #35590E 110 131 59 #6E833B VCUR-301 51 85 19 #335513 109 130 57 #6D8239 VCUR-302 44 80 13 #2C500D 106 126 58 #6A7E3A VCUR-303 64 104 11 #40680B 116 140 60 #748C3C VCUR-401 39 72 15 #27480F 99 119 55 #637737 VCUR-402 46 85 11 #2E550B 99 127 53 #637F35 VCUR-403 53 85 14 #35550E 115 130 66 #738242 VCUR-404 44 76 16 #2C4C10 101 121 55 #657937 VCUR-501 57 92 15 #395C0F 112 132 57 #708439 VCUR-502 54 86 23 #365617 108 130 60 #6C823C VCUR-503 55 90 18 #375A12 111 133 62 #6F853E VCUR-504 48 80 18 #305012 109 129 62 #6D813E VCUR-505 49 78 21 #314E15 105 124 58 #697C3A VCUR-601 50 88 11 #32580B 105 130 56 #698238 VCUR-701 60 99 15 #3C630F 113 135 60 #71873C VCUR-801 38 74 11 #264A0B 97 123 55 #617B37 The accession VCUR-105 stood out with the highest essential oil content among the 27 accessions evaluated, with 3.20%, proving to be a promising accession to be used in breeding programs aimed at increasing essential oil production. For the essential oil yield, the accessions VCUR-505, VCUR-504, VCUR-101, VCUR-303, and VCUR-002 stood out with means 358 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 ranging from 9.19 to 11.71 mL/plant. The accessions VCUR-601, VCUR-505, VCUR-504, VCUR-502, VCUR-402, VCUR-301, VCUR-303, and VCUR-002 had the highest value for dry matter, with means ranging from 470.46 g to 755.90 g (Table 5). Results obtained with the hierarchical cluster analysis revealed high phenotypic variability among V. curassavica accessions. Seven groups were formed: group 1 (VCUR-103, VCUR-402, and VCUR-601); group 2 (VCUR-401, VCUR-404, VCUR-801, and VCUR-302); group 3 (VCUR-005, VCUR-004, and VCUR-003); group 4 (VCUR-701 and VCUR-202); group 5 (VCUR-002, VCUR-505, VCUR-504, VCUR-502, and VCUR-301); group 6 (VCUR-101, VCUR-501, VCUR-102, and VCUR- 201); and group 7 (VCUR-105, VCUR-104, VCUR- 503, VCUR-403, VCUR-303, and VCUR-001). The differences observed between the accessions for the morphological traits may be due to their genetic origin. The accessions VCUR-103 and VCUR-001 were the most divergent, being the former from the municipality of Graccho Cardoso-SE, and the latter, from the state of São Paulo. Conversely, the lowest divergence was detected between the accessions VCUR-401 and VCUR-404, both from Japaratuba- SE (Figure 1). No duplicate accessions were observed. The phenotypic traits showed high variability; however, studies developed with the same accessions detected low to intermediate genetic diversity (BRITO et al., 2016). In a study carried out with plants of natural populations of V. curassavica of the state of Sergipe revealed a high chemical diversity of the essential oil (NIZIO et al., 2015). That work studied traits influenced by the environment, which indicates that this species has phenotypic plasticity, attributed mainly to different responses to environment x genotypes interactions. Table 2. Stem, veins, sepals, and petals color and canopy shape of 27 V. curassavica accessions of the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe. Accessions LL (cm) LW (cm) L/W (cm) LA (cm) CW (cm) PH (cm) SD (cm) VCUR001 9.55 b 2.81 b 3.41 b 65.96 c 185.00 c 250.00 b 14.00 b VCUR002 11.37 a 2.88 b 3.98 a 84.14 c 138.67 d 208.33 c 13.33 b VCUR003 8.63 b 2.84 b 3.09 c 62.90 c 52.67 f 149.00 c 6.33 c VCUR004 8.03 b 2.66 b 3.04 c 51.49 d 53.33 f 141.67 c 5.67 c VCUR005 6.76 b 1.85 b 3.66 a 37.17 d 66.00 f 165.00 c 7.33 c VCUR101 9.57 b 2.94 b 3.25 b 74.95 c 108.33 d 181.67 c 9.33 c VCUR102 8.64 b 2.55 b 3.46 b 48.87 d 113.33 d 188.33 c 11.00 c VCUR103 10.88 a 3.66 a 2.99 c 96.40 b 136.67 d 176.00 c 12.67 b VCUR104 9.13 b 3.12 a 2.95 c 71.62 c 96.67 e 145.00 c 9.00 c VCUR105 11.33 a 3.68 a 3.10 c 97.89 b 82.33 e 105.33 c 8.33 c VCUR201 6.93 b 2.20 b 3.15 c 34.85 d 183.33 c 236.67 b 16.00 a VCUR202 8.73 b 2.60 b 3.38 b 54.25 d 291.67 a 295.00 a 18.33 a VCUR301 10.07 a 3.71 a 2.73 c 91.09 b 138.33 d 144.67 c 11.33 c VCUR302 10.13 a 3.13 a 3.27 b 76.77 c 126.67 d 167.33 c 8.00 c VCUR303 9.33 b 2.95 b 3.30 b 66.73 c 135.33 d 155.33 c 10.33 c VCUR401 9.61 b 3.42 a 2.84 c 79.71 c 112.67 d 174.00 c 11.33 c VCUR402 11.47 a 4.44 a 2.61 c 144.38 a 143.33 d 186.67 c 13.33 b VCUR403 9.13 b 3.21 a 2.96 c 74.90 c 127.33 d 143.33 c 8.67 c VCUR404 9.43 b 3.27 a 2.91 c 74.65 c 118.33 d 176.67 c 9.67 c VCUR501 8.41 b 2.73 b 3.12 c 52.90 d 101.67 e 148.33 c 9.00 c VCUR502 9.59 b 3.11 a 3.15 c 72.82 c 159.33 d 170.00 c 12.33 b VCUR503 9.98 a 3.42 a 2.99 c 80.29 c 107.67 d 138.00 c 8.67 c VCUR504 9.19 b 3.23 a 2.88 c 73.41 c 163.33 d 188.33 c 11.00 c VCUR505 10.68 a 3.28 a 3.29 b 85.66 c 151.00 d 153.67 c 10.67 c VCUR601 12.09 a 3.98 a 3.09 c 117.48 a 132.67 d 150.00 c 12.33 b VCUR701 8.35 b 2.59 b 3.22 b 50.84 d 231.67 b 345.33 a 19.33 a VCUR801 10.28 a 3.38 a 3.10 c 82.86 c 98.67 e 101.33 c 6.33 c CV (%) 11.54 14.89 8.18 22.92 20.11 22.91 28.18 Values followed by the same letter in the column did not statistically differ from each other by the Scott-Knott test (P <0.05%). Variations for morphological and agronomic traits were observed among genotypes of Ocimum sp. (BLANK et al., 2004), among accessions of Lippia alba (CAMÊLO et al., 2011), and among 359 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 sweet-potato (Ipomoea batatas) accessions, indicating phenotypic variability (ALVES et al., 2017). The knowledge of the morpho-agronomic traits evaluated in germplasm collections allows better use of the species under conservation. The information generated in the characterization of the material also collaborated with the optimization of germplasm banks by eliminating accession duplication and reducing maintenance costs (BLANK, 2013). Variability is important both for germplasm conservation and for use in breeding programs, as it increases the possibilities of the selection of materials that have promising and desirable attributes for the industry and the consumer market (CARVALHO et al., 2014). Table 5. Dry matter and essential oil content and yield of 27 V. curassavica accessions from the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe. Accession Essential oil content (%) Essential oil yield (mL/planta) Leaf dry matter per plant (g) VCUR001 0.98 d 4.61 c 345.23 b VCUR002 1.45 c 10.93 a 755.90 a VCUR003 2.20 b 2.97 c 138.87 b VCUR004 1.60 c 1.22 c 78.13 b VCUR005 1.52 c 6.78 b 164.07 b VCUR101 2.51 b 9.43 a 375.60 b VCUR102 2.33 b 8.88 b 377.73 b VCUR103 1.17 d 4.72 c 400.73 b VCUR104 1.78 c 6.54 b 384.53 b VCUR105 3.20 a 6.59 b 213.03 b VCUR201 1.93 b 5.38 c 279.47 b VCUR202 1.90 b 5.13 c 271.23 b VCUR301 1.63 c 8.29 b 506.43 a VCUR302 1.16 d 3.13 c 277.23 b VCUR303 1.32 d 9.20 a 465.70 a VCUR401 1.31 d 4.14 c 354.67 b VCUR402 0.85 d 4.20 c 489.87 a VCUR403 1.60 c 3.11 c 188.40 b VCUR404 1.16 d 3.22 c 281.17 b VCUR501 2.12 b 3.36 c 157.43 b VCUR502 1.53 c 8.03 b 523.30 a VCUR503 1.20 d 2.70 c 235.03 b VCUR504 1.52 c 11.72 a 800.83 a VCUR505 1.75 c 11.29 a 648.80 a VCUR601 1.04 d 4.91 c 470.47 a VCUR701 1.32 d 3.43 c 226.73 b VCUR801 1.20 d 1.30 c 105.47 b CV (%) 14.44 40.26 52.39 Values followed by the same letter in the column did not statistically differ from each other by the Scott-Knott test (P <0.05%). The principal component analysis with two principal components explained 53.52% of the total variation (Figure 2). The first principal component represented 29.40% of the total variation and was positively related to the variables R (AB) (r = 0.86); G (AB) (r = 0.91); R (AD) (r = 0.83); and G (AD) (r = 0.72). The second principal component represented 24.11% of the total variation and was negatively related to LL (r = -0.85), LW (r = -0.97), and LA (r = -0.94). 360 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 Figure 1. A two-dimensional dendrogram representing the similarity between 27 V. curassavica accessions, obtained by the Ward's method, based on the Euclidean distance of the morpho-agronomic traits. São Cristóvão-SE. Figure 2. Graphical dispersion of 15 morpho-agronomic traits of the 27 Varronia curassavica accessions in relation to the two principal components by the principal component analysis (PCA) of the V. curassavica collection of the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe. São Cristóvão-SE. Variables: Leaf Length (LL), Leaf Width (LW), Leaf Length/width ratio (L/W), Leaf Area (LA), Canopy Width (CW), Plant Height (PH), stem diameter at 10 cm from the ground (SD), Essential Oil Content (EOC), Essential Oil Yield (EOY), and leaf color as RGB – R (Red), G (Green), B (Blue), where: R(AD), G(AD), B(AD), R(AB), G(AB), and B(AB) refer to the colors of the adaxial and abaxial sides of leaves. CONCLUSION The results confirm the existence of phenotypic variability among V. curassavica accessions of the Active Germplasm Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe. The information obtained in the present study assists the establishment of strategies to improve the species conservation and allows the exchange, extension, and availability of materials for breeding programs. The preserved accessions, by means of genetic breeding programs, may generate superior cultivars adapted to specific environments and with favorable traits, such as high yield of essential oils rich in the desired compounds. 361 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 ACKNOWLEDGEMENTS This study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq), the Fundação de Apoio à Pesquisa e a Inovação Tecnológica do Estado de Sergipe (Fapitec/SE) - Brasil, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES - Finance Code 001), and the Financiadora de Estudos e Projetos - Brasil (FINEP). RESUMO: Varronia curassavica Jacq. é uma planta medicinal e aromática nativa do Brasil. O óleo essencial desta espécie é utilizado pela indústria farmacêutica por conter substâncias bioativas com propriedades anti-inflamatórias. Objetivou-se caracterizar morfoagronomicamente 27 acessos da coleção de V. curassavica do Banco Ativo de Germoplasma de Plantas Medicinais e Aromáticas da Universidade Federal de Sergipe. O delineamento experimental foi em blocos casualizados com três repetições. A caracterização morfológica foi realizada em campo, por meio da avaliação da altura da planta; largura da copa; formato da copa; diâmetro do caule a 10 cm do solo; cor do caule; largura, comprimento e relação comprimento/largura das lâminas foliares; e cor das folhas, pétalas e sépalas. A caracterização agronômica foi realizada a partir dos óleos essenciais extraídos de folhas secas por hidrodestilação em aparelho Clevenger. Foi avaliado o rendimento de massa seca das folhas por planta e o teor e rendimento do óleo essencial. Grande variação foi observada entre os acessos para a coloração das folhas, as quais apresentaram diferentes tonalidades de verde, sendo possível separá-las entre plantas com folhas verde-escuro e plantas com folhas verde-claro. Para a variável altura de planta, os valores variaram de 101,33 cm (VCUR-801) a 345,33 cm (VCUR-701). Sete grupos distintos foram formados na análise de agrupamento realizada a partir dos caracteres avaliados. Os acessos VCUR-103 e VCUR-001 foram os que se mostraram mais divergentes, enquanto que os mais semelhantes foram os acessos VCUR-401 e VCUR-404. A caracterização morfoagronômica dos acessos de erva-baleeira permitirá a realização de uma correta descrição da espécie, apontando perspectivas para o melhoramento genético, além de possibilitar a otimização do processo de conservação. PALAVRAS-CHAVE: Cordiaceae. Planta medicinal. Planta aromática. Óleo essencial. Domesticação. Melhoramento genético. REFERENCES BLANK, A. F.; CARVALHO FILHO, J. L. S.; SANTOS NETO, A. L.; ALVES, P.B.; ARRIGONI-BLANK, M. F.; SILVA-MANN, R.; MENDONÇA, M. C. Caracterização morfológica e agronômica de acessos de manjericão e alfavaca. Horticultura Brasileira, Brasília, v.22, n.1, p. 113-116, Jan-Mar. 2004. https://doi.org/10.1590/S0102-05362004000100024 BLANK, A. F. Transformação de recursos genéticos de plantas aromáticas nativas em riqueza: o potencial do alecrim-de-tabuleiro (Lippia gracilis). Artigo da capa. Horticultura Brasileira, Brasília v. 31, n 3. Jul-Set. 2013. https://doi.org/10.1590/S0102-05362013000300029 BLANK, A. F.; OLIVEIRA NETO, M. A.; FERNANDES, R. P. M.; ANDRADE, T. M.; OLIVEIRA, A. M. S.; LUZ, J. M. Q. Performance of sweet potato clones for starch and ethanol in three regions of the state of Sergipe, Brazil. Bioscience Journal, v.33, n.1, p.66-75, Jan./Feb. 2017. https://doi.org/10.14393/BJ- v33n1a2017-35969 BRASIL. Agência Nacional de Vigilância Sanitária. Formulário de Fitoterápicos da Farmacopéia Brasileira / Agência Nacional de Vigilância Sanitária. Brasília: Anvisa, 2011. 126p. Disponível em: < http://www.anvisa.gov.br/hotsite/farmacopeiabrasileira/conteudo/ Formulario_de_Fitoterapicos_da_Farmacopeia_Brasileira.pdf > Acesso em: 13 Out. 2017. 362 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 BRITO, F. A.; NIZIO, D. A. C.; SILVA, A. V.; DINIZ, L. E.; RABBANI, A. R.; ARRIGONI-BLANK, M. F.; ALLVARES-CARVALHO, S. V.; FIGUEIRA, G. M.; MONTANARI JÚNIOR, I.; BLANK, A. F. 2016. Genetic diversity analysis of Varronia curassavica Jacq. accessions using ISSR markers. Genetics and Molecular Research, v. 15, n. 3. Set, 2016. https://doi.org/10.4238/gmr.15038681 BURLE, M. L.; OLIVEIRA, M. S. P. Manual de curadores de germoplasma vegetal: caracterização morfológica. Brasília: Embrapa Recursos genéticos e Biotecnologia, Belém: Embrapa Amazônia Oriental, 2010. 15p. (Documentos, 312, 378). CAMÊLO, L. C. A.; BLANK, A. F.; EHLERT, P. A. D.; CARVALHO, C. R. D. ARRIGONI-BLANK, M. F. MATTOS. J. Caracterização morfológica e agronômica de acessos de ervacidreira-brasileira [Lippia alba (Mill.) N. E. Br.]. Scientia Plena, v. 7, n. 5, p.1-8, 2011. CARVALHO JR, P. M.; RODRIGUES, R. F. O.; SAWAYA, A. C. H. F.; MARQUES, M. O. M.; SHIMIZU, M. T. Chemical composition and antimicrobial activity of the essential oil of Cordia verbenacea DC. Journal of Ethnopharmacology, v. 95, p. 297–301. Dec. 2004. https://doi.org/10.1016/j.jep.2004.07.028 CARVALHO, A. V.; MACIEL, R. A.; BECKMAN, J. C.; POLTRONIERI, M. C. Caracterização de genótipos de pimentas Capsicum spp. durante a maturação. Belém: Embrapa Amazônia Oriental, 2014. 19 p. (Boletim de Pesquisa e Desenvolvimento, 90). COLOR CONVERTER (RGB - Hexadecimal). Disponível em: http://webcalc.com.br/ Utilitarios/form/rgb_hex. Acesso em: 08 de Set. 2017. FERREIRA, D. F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia. Lavras, v. 35, n. 6, p. 1039-1042, nov./dec., 2011. http://dx.doi.org/10.1590/S1413-70542011000600001 GASPARINO, E. C.; BARROS, M. A. V. C. Palinotaxonomia das espécies de Cordiaceae (Boraginales) ocorrentes no Estado de São Paulo. Brazilian Journal of Botany, São Paulo, v. 32, n. 1, p. 33-55, Jan. 2009. http://dx.doi.org/10.1590/S0100-84042009000100005 GOEDERT, C. O. Recursos genéticos vegetais. In: NASS, L.L. (Ed.). Histórico e avanços em recursos genéticos no Brasil. Brasília: Embrapa, 2007. 23-60p. LORENZI, H.; MATOS, F. J. A. Plantas medicinais no Brasil: nativas e exóticas. Nova Odessa: Instituto Plantarum de Estudos da Flora, 2008. 544p. MECCIA, G.; ROJAS, L. B.; VELASCO, J.; DIAZ, T.; USUBILLAGA, A.; ARZOLA, J.C.; RAMOS, S. Chemical composition and antibacterial activity of the essential oil of Cordia verbenacea from the Venezuelan Andes. Natural Product Communications, v. 4, n. 8, p. 1119–1122. Aug. 2009. PMID: 19768996. https://doi.org/10.1177/1934578X0900400821 NIZIO, D. A. C.; BRITO, F. A.; SAMPAIO, T. S.; MELO, J. O.; SILVA, F. L. S.; GAGLIARDI, P. R.; ARRIGONI-BLANK, M. F.; ANJOS, C. S.; ALVES, P. B.; WISNIEWSKI JUNIOR, A.; BLANK, A. F. Chemical diversity of native populations of Varronia curassavica Jacq. and antifungal activity against Lasiodoplodia theobromae. Industrial Crops And Products, 76: p. 437-448. 2015. http:// dx.doi.org/10.1016/j.indcrop. 2015.07.026 NIZIO, D. A. C.; FUJIMOTO, R. Y.; MARIA, A.N.; CARNEIRO, P. C. F.; FRANÇA, C. C. S.; SOUSA, N. C.; BRITO, F. A.; SAMPAIO, T. S.; ARRIGONI-BLANK, M. F.; BLANK, A. F. Essential oils of Varronia curassavica accessions have different activity against white spot disease in freshwater fish. Parasitology Research, v. 117, p. 97–105. Jan. 2018. https://doi.org/10.1007/s00436-017-5673-x OLIVEIRA, R. L. C. Etnobotânica e plantas medicinais: estratégias de conservação. Revista de Biologia e Ciências da Terra, v. 10, n. 2, p. 76-82. 2010. 363 Morpho-agronomic characterization Oliveira, B. M. S.et al. Biosci. J., Uberlândia, v. 36, n. 2, p. 353-363, Mar./Apr. 2020 http://dx.doi.org/10.14393/BJ-v36n2a2020-42275 OLIVEIRA, J. T.; RIBEIRO, I. S; ROQUE, C. G.; MONTANARI, R.; GAVA, R.; TEODORO, P. E. Contribution of morphological traits for grain yield in common bean. Bioscience Journal, Uberlândia, v. 34, n. 2, p. 951-956, Mar./Apr. 2018. https://doi.org/10.14393/BJ-v34n2a2018-39701 PARISOTTO, E. B.; MICHIELIN, E. M. Z.; BISCARO, F.; FERREIRA, S. R. S.; FILHO, D. W.; PEDROSA, R. C. The antitumor activity of extracts from Cordia verbenacea D.C. obtained by supercritical fluid extraction. Journal of Supercritical Fluids, Netherlands, v. 61, p. 101-107, Jan. 2012. https://doi.org/10.1016/j.supflu.2011.08.016 PASSOS, G. F.; FERNANDES, E. S.; CUNHA, F. M.; FERREIRA, J.; PIANOWSKI, L. F.; CAMPOS, M. M.; CALIXTO, J. B. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. Journal of Ethnopharmacology, Ireland, v. 110, n. 2, p. 323–333, 2007. https://doi.org/10.1016/j.jep.20 06.09.032 PIMENTEL, S. P.; BARRELLA, G. E.; CASARIN, R. C. V.; CIRANO, F. R.; CASATI, M. Z.; FOGLIO, M. A.; FIGUEIRA, G. F.; RIBEIRO, F. V. R. Protective effect of topical Cordia verbenacea in a rat periodontitis model: immune-inflammatory, antibacterial and morphometric assays. BMC Complementary and Alternative Medicine, London, v. 12, n. 224, p. 1-8, Nov. 2012. https://doi.org/10.1186/1472-6882-12-224 PINHO, L; SOUZA, P. N. S.; SOBRINHO, E. M.; ALMEIDA, A. C.; MARTINS, E. R. Antimicrobial activity of hydroalcoholic extracts from rosemary peppertree barbatimao and 33 erva-baleeira leaves and from pequi peel meal. Ciencia Rural, v. 42, n. 2, p. 326–331. Feb. 2012. http://dx.doi.org/10.1590/S0103- 84782012005000003. REGAZZI, A. J. Análise multivariada, notas de aula INF 766, Departamento de Informática da Universidade Federal de Viçosa, v.2, 2000. RODRIGUES, F. F. G.; OLIVEIRA, L. G. S.; RODRIGUES, F. F. G.; SARAIVA, M. E.; ALMEIDA, S. C. X.; CABRAL, M. E. S.; CAMPOS, A. R.; COSTA, J. G. M. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves. Pharmacognosy Research, v. 4 n. 3, p. 161-165. Jul. 2012. http://dx.doi.org/10.4103/0974-8490.99080. SILVA, A. R.; SOUZA, A. L. P.; SANTOS, E. A. A.; LIMA, G. L.; PEIXOTO, G. C. X.; SOUZA, P. C.; CASTELO, T. S. Formação de Bancos de Germoplasma e sua contribuição para a conservação de espécies silvestres no Brasil. Ciência Animal, v. 22, n. 1, p. 219-234, 2012. SILVA, A. C.; SOUZA, P. E.; RESENDE, M. L. V.; SILVA JR, M. B.; RIBEIRO JR, P. M.; ZEVIANI, W. M. Local and systemic control of powdery mildew in eucalyptus using essential oils and decoctions from traditional Brazilian medicinal plants. Forest Pathology, v. 44, p. 145–153. Dec. 2014. https://doi.org/10.1111/efp.12079 SOUZA, S. A. M.; MEIRA, M. R.; FIGUEIREDO, L. S.; MARTINS, E.R. Óleos essenciais: aspectos econômicos e sustentáveis. Enciclopédia Biosfera v. 6, n. 10, p. 01-11. 2010. VAZ, A. P. A.; SCARANARI, C.; BATISTA, L. A. R.; FIGUEIRA, G. M.; SARTORATTO, A.; MAGALHÃES, P. M. Biomassa e composição química de genótipos melhorados de espécies medicinais cultivadas em quatro municípios paulistas. Pesquisa Agropecuária Brasileira, v. 41, n. 5, p. 869-872, 2006. http://dx.doi.org/10.1590/S0100-204X2006000500021 WANDERLEY, M. G. L.; SHEPHERD, T. S.; MELHEM, A. M.; MARTINS, G. S. E. Flora Fanerogâmica do estado de São Paulo. FAPESP: HUCITEC: Instituto de Botânica. 2002. 386p.