Microsoft Word - 6-Agra_42419


1688 
Bioscience Journal  Original Article 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1688-1694, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42419 

SOIL BIOMASS AND MICROBIAL ACTIVITY IN SOYBEAN CROP AREA 
UNDER DIFFERENT COVER CROPS AND DIFFERENT SOIL 

CORRECTION SYSTEMS 
 

BIOMASSA E ATIVIDADE MICROBIANA DO SOLO EM ÁREA DE CULTIVO DE 
SOJA SOB DIFERENTES PLANTAS DE COBERTURA E DIFERENTES SISTEMAS 

DE CORREÇÃO DE SOLO 
 

Jéssica Ferreira DINIZ1; Cassiano Garcia ROQUE1;  
Monica Cristina Rezende Zuffo BORGES2; Pedro Paulo Vilela BARROS1;  

Paulo Henrique Menezes das CHAGAS1; Othon Lauar GODINHO1;  
Paulo Eduardo TEODORO1* 

1. Universidade Federal de Mato Grosso do Sul - UFMS, Chapadão do Sul, MS, Brasil; 2. Universidade Federal do Vale do São 
Francisco – UNIVASF, Petrolina, PE, Brasil. eduteodoro@hotmail.com 

 
ABSTRACT: This study aimed to evaluate soil biomass and microbial activity and soybean yield 

under different limestone and gypsum doses and different cover crops. The experiment was carried out in the 
experimental area of the Fundação de Apoio a Pesquisa Agropecuária de Chapadão, on a Dystrophic Red 
Latosol, using cultivar Desafio. The experiment consisted of a randomized blocks design, in a split-plot 
factorial scheme (3x4x3), with three replications. Plots consisted of three gypsum doses: control (without 
gypsum), recommended dose (2.3 Mg ha-1), and double dose (4.6 Mg ha-1). Subplots consisted of four 
limestone doses (2, 4, and 6 Mg ha-1) and the control (without limestone). Each block had three different cover 
crops: Brachiaria, Millet, and allow. The values obtained with the test revealed that brachiaria had better basal 
respiration in the absence of gypsum. Conversely, millet had better basal respiration in with the gypsum dose. 
Basal respiration, using brachiaria as cover crop, was higher at the dose of 2700 kg ha-1 of limestone. However, 
for the fallow and the millet, basal respiration was higher when using the highest limestone dose of 6000 kg ha-
1. The variable microbial biomass showed differences between cover crops only in the absence of gypsum. 
Brachiaria and fallow presented the highest mean for microbial biomass. The use of millet as a cover crop 
together with gypsum doses increased the microbial biomass. The variables mass of 100 grains and grain yield 
had higher mean at the limestone dose of 6000 kg ha-1 . 
 

KEYWORDS: Microbial biomass. Microbial activity. Limestone. Gypsum. Millet. Brachiaria. 
 
INTRODUCTION 
 

Nowadays, agriculture has given more 
attention to practices that aim at lower soil 
degradation and greater sustainability. The use of 
cover crops is an ecological and economical 
alternative to an efficient soil management, allowing 
the balance of physical, chemical, and biological 
properties of the soil-plant system (SOUZA et al., 
2008). 

Cover crops, such as millet (Pennisetum 
glaucum) and brachiaria (Urochloa riziziensis) in 
the Cerrado have stood out due to their high organic 
matter production, continuous and deep root growth, 
soil preservation ability (such as improving 
structure, aggregation, permeability, infiltration), 
nutrients recycling ability (BETTIOL et al., 2015). 
These facts were reported by Torres et al. (2008), 
who concluded that millet was one of the cover 
crops with the highest phytomass production and N 

accumulation, and brachiaria had the highest 
decomposition rate. 

According to Duarte et al. (2014), cover 
crops altered soil microbial biomass, its activity, and 
its derivatives and indices. 

Among the soil biological characteristics, 
soil microbial biomass is defined as a living 
microbial component of the soil, composed of 
bacteria, fungi, protozoa, actinomycetes, and algae, 
which act in the decomposition process of organic 
residues by promoting nutrients cycling and the 
energy flow in the soil (CARDOSO, 2004). The 
high rate of microbial respiration is indicative of 
high activity, which reflects in the mineralization 
rate of the organic matter that will contribute to 
greater nutrients availability to the crop. Thus, the 
maximum potential of the soil can be known by the 
determination of microbial respiration. 

Cerrado soils present acidity, aluminum 
toxicity, and are poor in nutrients. These are limiting 

Received: 16/05/18 
Accepted: 10/12/18 



1689 
Soil biomass…  DINIZ, J. F. et al. 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1688-1694, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42419 

factors to agricultural production. Liming is the best 
practice for soil correction since it enables achieving 
the maximum crop yield, with the benefit of 
neutralizing soil acidity, providing calcium and 
magnesium, reducing aluminum toxicity, increasing 
nutrient availability, and increasing soil bases 
saturation. However, in the no-tillage system, liming 
is performed by applying limestone to the soil 
surface, without incorporation (NETO, 2016). 

Surface liming without incorporation does 
not reach the deeper layers of the soil and 
consequently does not correct the acidity at greater 
depths. Therefore, gypsum is used together with 
liming. Agricultural gypsum acts as a soil 
conditioner, improving nutrients availability on the 
subsurface layers. Gypsum has been used in 
soybean, corn, pasture, and in perennial crops, such 
as sugarcane, increasing yield due to the more 
efficient use of water and soil nutrients (DEMATTÊ 
et al., 2011; RAMPIM et al., 2013). 

The application of limestone and gypsum 
can influence the development of cover crops, 
causing them to produce a greater amount of dry 
matter and to develop a better root system, besides 
providing minerals to the soil. Such results may 
influence soybean yield, as well as biomass and soil 
microbial activity. 

This study aimed to evaluate the soil 
biomass and microbial activity and soybean yield 
under the effect of different limestone and gypsum 
doses and different cover crops. 

 
MATERIAL AND METHODS  
 

The experiment was carried out at the 
Foundation for Agricultural Research Support of 
Chapadão, in the municipality of Chapadão do Sul, 
MS (18°41'33"S, 52°40'45"W, alt. 810 m asl). 
According to Köppen, the climate is classified as 
tropical humid (Aw). The soil of the experimental 
area was classified as medium-textured, Dystrophic 
Red Latosol. The experimental area had been under 
no-tillage system for six years. Limestone had been 
applied to increase the base saturation to 50%, and 
gypsum was used at the implantation of the no-
tillage system. Cover crops were sown in October 
2015, with 5 and 15 kg ha-1 seeds of U. ruziziensis 
and P. glaucum (cv ADR 300), respectively, using a 
mismatched disk seeder, with a spacing of 0.17 m 
between rows. 

The experiment consisted of a randomized 
blocks design, in a split-plot factorial scheme 
(3x4x3), with three replications. The plots consisted 

of three gypsum doses, with the following measures: 
control (without gypsum), recommended dose (2.3 
Mg ha-1), and double dose (4.6 Mg ha-1). The 
subplots consisted of four limestone doses (2, 4, and 
6 Mg ha-1), and a control (without limestone). Each 
block had three different cover crops: Braquiaria, 
Millet, and fallow. Plots had 3.15 x 22 m, and the 
subplots had 3.15 x 5.5 m. With subplots, the three 
central rows were considered as useful area, 
excluding 0.5 m of their extremities. 

Soybean (variety Desafio) was cultivated in 
the experimental area. After harvest, at the end of 
2016, the variables of one hundred grain mass 
(HGM) and grain yield. At the beginning of 2017, 
the soil was collected at 0-10 depth for the 
evaluation of carbon biomass (SMB) and basal 
respiration (SBR). 

The 100-grain mass was determined by the 
random collection of two samples of 100-grains per 
plot. Yield was evaluated by counting, harvesting, 
and mechanical tracing of plants in the useful. 
Grains were weighed and transformed into kg/ha 
(13% wet basis). 

The SMB was determined using the 
fumigation-extraction method of Polli & Guerra 
(1997), by determining the carbon of the fumigated 
and non-fumigated samples, by dichromatometry. 
SBR was determined using the CO2 value emitted 
by the non-fumigated samples during the incubation 
period in the BOD, reflecting the microbial activity. 

Results were subject to analysis of variance. 
The factors cover crops and gypsum doses were 
subject to means comparison by the Tukey’s test. 
The factor limestone dose was subject to polynomial 
regression analysis. In all cases, 5% probability was 
adopted. All analyses were performed in the Sisvar 
software. 

The analysis of variance for carbon biomass 
(SMB), basal respiration (SBR), one hundred grain 
mass (HGM), and yield (Y) is presented in Table 1. 
The factor cover crops influenced only SBR, which 
was also influenced by gypsum doses. The isolated 
limestone effect influenced SBR, HGM, and Y.  
Results revealed Cover crops x gypsum doses 
interaction for SMB and SBR.  Cover crops x 
limestone doses interactions were significant only 
for SBR, which was also influenced by the gypsum 
doses x limestone doses interaction. 

The cover crop and soil management also 
promote changes in its physical and chemical 
properties, affecting the microbial activity, and 
consequently the potential of soil use for cultivation 
(MOREIRA; SIQUEIRA, 2006). 

 
 



1690 
Soil biomass…  DINIZ, J. F. et al. 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1688-1694, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42419 

Table 1. Summary of the analysis of variance for carbon biomass (SBM), basal respiration (SBR), one hundred 
grain mass (HGM), and grain yield (Y) of soybean cultivated under different cover crops and 
limestone and gypsum doses 

Source of variation DF SMB SBR HGM Y 
Block 2 6.37 366.92 1.83 263973.69 
Cover crop (C) 2 38.86ns 2103.61* 0.10ns 678185.25ns 

Gypsum (G) 2 835.69ns 3602.40* 0.16ns 176645.02ns 

Limestone (L) 3 645.09ns 5362.05* 4.87* 1173481.78* 
C x G 4 4048.83* 7898.21* 0.08ns 70436.20ns 

C x L 6 908.56ns 4599.89* 0.32ns 186651.10ns 

G x L 6 2035.52ns 3185.017* 0.24ns 159112.98ns 

Error 1 4 466.41 118.95 0.19 105726.64 
Error 2 8 11.09 204.36 0.04 31746.07 
Error 3 70 69.05 109.76 0.26 71953.14 
ns, *: not significant and significant at 5% probability by the F test, respectively. 
 

At lower gypsum doses, millet and fallow 
obtained the highest mean SBR (Table 2). However, 
brachiaria and millet presented the highest values 
for SBR at the highest gypsum dose (4600 kg ha-1). 
High respiration rates indicate that soil 
microorganisms are under stress, whereas low rates 
imply a balance in the microbial community, under 

favorable conditions. According to Moreira (2016), 
gypsum may cause this stress. Bernardes & Santos 
(2016) studies the microbial population using the 
gypsum as one of the management systems and 
reported that the possible changes in the microbial 
population may be related to the soil chemical and 
physical conditions. 

 
Table 2. Unfolding of the cover crops x   gypsum doses interaction for basal respiration in soybean cultivation. 

Cover crop 
Gypsum doses (kg ha-1) 
0 2300 4600 

Brachiaria 88.32 bB 69.96 Bc 109.08 aA 
Fallow 108.05 aA 98.08 Aa 55.05 bB 
Millet 114.19 aA 82.50 abB 115.87 aA 
Means followed by lower case letters in the same column and upper case on the same row do not differ by the Tukey’s test at 5% 
probability. 
 
 

Torres et al. (2008) reported that millet was 
one of the cover crops with higher phytomass 
production and N accumulation. Greater amounts of 
phytomass enrich the soil with organic matter and 
nutrients, influencing the microbial biomass that 
acts in the decomposition process of organic 
residues and nutrient cycling. 

Fallow and millet showed an increasing 
linear behavior in response to the limestone doses, 
reaching the highest values at the dose of 6000 kg 
ha-1 (Figure 1). Conversely,  a quadratic response 
was detected for brachiaria, whose maximum 
respiration was obtained with the limestone dose of 
2700 kg ha-1. The coefficients of determination (R²) 
indicated adequate adjustment of the models in 
response to limestone doses. Similarly, Schneider et 
al. (2011) concluded that soil liming increased soil 
microbiota, which influenced the respiration rates. 

Brachiaria presents an intermediate degree 
of adaptation to the conditions of fertility and bases 

saturation, being a more rustic species, not very 
demanding in relation to fertility, as shown in 
recommendation tables elaborated according to the 
experimentation and consensus between researchers 
of Embrapa Gado de Corte and Embrapa Cerrados. 
The recommended base saturation and fertilization 
are 40% and a maximum of 5000 kg ha-1, 
respectively, as reported by Coan (2008), in an 
adaptation of Werner et al. (1996). 

The increase of limestone dose promoted a 
linear increase of this variable at the extreme 
gypsum doses (0 and 4600 kg ha-1), with R² higher 
than 80% (Figure 2). For the intermediate gypsum 
dose (2300 kg ha-1), any of the linear models tested 
could me adjusted. Bettio & Araújo (2016) 
concluded that mineral fertilization resulted in 
microbial changes, and the respiration rate had a 
higher mean in the treatment with limestone and 
gypsum. 



1691 
Soil biomass…  DINIZ, J. F. et al. 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1688-1694, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42419 

 
Figure 1. Unfolding of the significant limestone doses x crop cover interaction for microbial biomass 

respiration. 
 
 

 
Figure 2. Unfolding of the significant limestone doses x gypsum doses interactions for microbial biomass 

respiration. 
 

Table 3 shows that difference between the 
cover crops for SMB only in the absence of gypsum. 
Conversely, brachiaria and fallow presented the 
highest means for this variable. Gypsum application, 
regardless of the dose (2300 and 4600 kg ha-1), did 
not influence the cover crops for SMB. For the 

brachiaria, the absence of gypsum promoted 
approximately twice the SMB when compared with 
the treatment with gypsum application. For the 
fallow, gypsum application did not increase this 
variable. However, the use of millet as a cover crop 
together with gypsum doses increased SMB. 

 
Table 3. Unfolding of the cover crops x gypsum doses interaction for carbon biomass in soybean cultivation. 

Cover crop 
Gypsum doses (kg ha-1) 

0 2300 4600 

Brachiaria 60.88 aA 36.33 Ab 27.87 aB 
Fallow 51.56 aA 50.28 Aa 29.39 aA 
Millet 22.10 bB 51.18 Aa 54.03 aA 
Means followed by lower case letters in the same column and upper case in the same row do not differ by the Tukey’s test at 5% 
probability. 
 

The microorganisms are responsible for the 
mineralization of the organic matter, and thus, the 
more available the cover crop, the greater is the 

SMB. The effect of cover crops on the organic 
matter accumulation in the soil and on the 
improvement of its biological attributes should be 



1692 
Soil biomass…  DINIZ, J. F. et al. 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1688-1694, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42419 

quantified regionally and for each production 
system. This is because this process depends on soil 
texture and mineralogy, relief, and temperature and 
humidity conditions (CUNHA et al., 2011). 

The ability to better use nutrients results in a 
vigorous growth, reaching two meters in height. 
Another advantage of millet is the slow straw 
decomposition, which gradually releases the 
nutrients absorbed by the plant, making them 
available for subsequent crops (CHAGAS, 2004). 

In this case, gypsum contributed to the 
increase in SMB, and it may have caused changes in 
the dry biomass production of millet,  unlike the 
results obtained by Carvalho & Nascente (2014), 
who reported that the gypsum application did not 
change the dry biomass production of millet. The 
use of agricultural gypsum has provided large 

increases in yield. These increases are mainly 
attributed to the better development of the root 
system, which improves water and nutrients 
absorption. 

Unlike the results obtained for brachiaria in 
the work of Guedes et al. (2000), the gypsum 
application increased the dry matter production of 
the studied cover crop. However, no significant 
responses were recorded with fertilizations higher 
than 0.5 t/ha. This is because brachiaria is more 
rustic and does not respond so well to heavier 
fertilization 

Limestone was the only treatment that 
influenced the soybean agronomic components. 
Figures 3 and 4 show   a linear increase of one 
hundred grain mass and yield in response to 
limestone doses up to 6000 kg ha-1. 

 

 
Figure 3. Response of one hundred grain mass of soybean plants to limestone doses. 
 

 
Figure 4. Response of soybean grain yield to limestone doses. 

 
Liming is an essential practice to achieving 

crop yield ceilings since it neutralizes soil acidity, 
provides calcium and magnesium, reduces 
aluminum toxicity, increases nutrient availability, 
and increases soil base saturation. Correction of soil 
acidity by liming is the first step to obtain a highly 
productive crop (SFREDO, 2008). Veronese et al. 
(2012) reported that the higher the limestone dose, 
the higher is the soybean yield, which is consistent 
with the present results. 

ACKNOWLEDGMENTS  
 

This study was partially funded in part by 
the Brazilian Conselho Nacional de 
Desenvolvimento Cienfico e Tecnológico (CNPq), 
Coordination of Improvement of Higher Education 
Personnel - Brazil (CAPES) - Finance Code 001, 
Fundação de Apoio ao Desenvolvimento do Ensino, 
Ciência e Tecnologia do Estado de Mato Grosso do 



1693 
Soil biomass…  DINIZ, J. F. et al. 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1688-1694, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42419 

Sul. and Federal University of Mato Grosso do Sul 
(UFMS). 

 

 
 
RESUMO: O objetivo do trabalho foi avaliar a biomassa e atividade microbiana do solo, e 

produtividade da soja sob efeito das diferentes doses de calcário e gesso e diferentes coberturas de solo. O 
experimento foi conduzido na área experimental da Fundação de Apoio a Pesquisa Agropecuária de Chapadão, 
sob Latossolo Vermelho Distrófico, com a cultivar Desafio. O delineamento experimental utilizado foi em 
blocos casualizados, em esquema fatorial (3x4x3) de parcelas subdividas, com 3 repetições. As parcelas foram 
constituídas por 3 quantidades de gesso agrícola, sendo: controle (sem gesso), recomendado (2,3 Mg ha-1) e o 
dobro (4,6 Mg ha-1), as subparcelas por 4 doses de calcário (2, 4 e 6 Mg ha-1), além do controle (sem calcário), 
onde cada bloco apresentou 3 coberturas diferentes: Braquiaria, Milheto e Pousio. Os resultados foram 
submetidos ao teste de Tukey 5%. Com os valores obtidos pudemos observar que a respiração basal foi melhor 
para braquiária na ausência de gesso, e na presença o milheto se saiu melhor. A respiração basal, utilizando a 
braquiária como cobertura, foi maior na dose de 2700 kg ha-1 de calcário. Já utilizando o pousio e o milheto foi 
na maior dose 6000 kg ha-1. A variável biomassa microbiana apresentou diferença entre as coberturas apenas na 
ausência de gesso, onde a braquiária e o pousio apresentaram as maiores médias para esta variável. A utilização 
do milheto como cobertura em conjunto com as doses de gesso acarretou aumento da biomassa microbiana. A 
massa de 100 grãos e a produtividade de grãos apresentaram maior média na dose de 6000 kg ha-1 de calcário. 

 
PALAVRAS-CHAVE: Biomassa microbiana. Atividade microbiana. Calcário. Gesso. Milheto. 

Braquiária. 
 
 
REFERENCES 
 
BERNARDES, C. M.; SANTOS, M. A. População microbiana como indicadora de interferência de diferentes 
manejos de solos de cerrado com cultivo de soja. Bioscience Journal, Uberlândia, v. 22, n. 2, p. 7-16, 2006.  
 
BETTIO, D. P; ARAÚJO, F. F. Alterações microbiológicas do solo após três anos de sistema integração 
lavoura – pecuária sob diferentes adubações e escarificação do solo. Colloquium Agrariae, Presidente 
Prudente, SP, v. 12, n. Especial, p. 01-07, 2016. https://doi.org/10.5747/ca.2016.v12.nesp.000163 
 
BETTIOL, J. V. T.; PEDRINHO, A.; MERLOTI, L. F.; BOSSOLANI, J. W.; SÁ, M.E. de. Plantas de 
Cobertura, Utilizando Urochloa ruziziensis solteira e em Consórcio com Leguminosas e seus Efeitos Sobre a 
Produtividade de Sementes do Feijoeiro. Uniciências, Londrina, PR, v. 19, n. 1, p. 3-10, 2015. 
 
CARDOSO, M. O. Método para quantificação da biomassa microbiana do solo. Agropecuária Técnica, v. 25, p. 
1-12, 2004.CLAESSEN, M. E. C. (Org.). Manual de métodos de análise de solo. 2. ed. rev. atual. Rio de 
Janeiro: Embrapa Solos, 1997. 212 p. (Embrapa-CNPS. Documentos, 1). 
 
CARVALHO, M. da C. S; NASCENTE, A. S. Calcário, gesso e efeito residual de fertilizantes na produção de 
biomassa e ciclagem de nutrientes de milheto. Pesquisa Agropecuária Tropical, Goiânia, v. 44, n. 4, p. 370-
380, 2014. https://doi.org/10.1590/S1983-40632014000400008 
 
CHAGAS, R. C. S. Avaliação de fontes de silício para as culturas do arroz e milheto. Tese (doutorado)- 
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba,SP, p.80 2004. 
 
COAN, R. M. Calagem em pastagens tropicais. Artigos Técnicos, Jaboticabal, SP,2008. 
 
CUNHA, E. Q.; STONE, L. F.; FERREIRA, E. P. B.; DIDONET, A.D.; MOREIRA, J. A. A.; LEANDRO, W. 
M. Sistemas de preparo do solo e culturas de cobertura na produção orgânica de feijão e milho. II - atributos 
biológicos do solo. Revista Brasileira de Ciência do Solo, Viçosa, v. 35, n. 2, p.603-611, 2011. 
https://doi.org/10.1590/S0100-06832011000200029 
 



1694 
Soil biomass…  DINIZ, J. F. et al. 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1688-1694, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42419 

DEMATTÊ, J. L. I.; PAGGIARO, C. M.; BELTRAME, J. A.; RIBEIRO, S. S. Uso de silicatos em cana-de-
açúcar. Informações Agronômicas, Piracicaba, SP, n.133, p. 7-12, 2011. 
 
DUARTE, I. B.; GALLO, A. S.; GOMES, M. S; GUIMARÃES, N. F; ROCHA, D. P.; SILVA, R. F. Plantas de 
cobertura e seus efeitos na biomassa microbiana do solo. Acta Iguazu, Cascavel, PR, v. 3, n. 2, p. 150-165, 
2014. 
 
GUEDES, L. M.; GRAÇA, D. S.; MORAIS, M. G.; ANTUNES, R. C.; GONÇALVES, L. C. Influência da 
aplicação de gesso na produção de matéria seca, na relação nitrogênio: enxofre e concentrações de enxofre, 
cobre, nitrogênio e nitrato em pastagens de Brachiaria decumbens Stapf. Arquivo Brasileiro de Medicina 
Veterinária e Zootecnia, Belo Horizonte, MG, v. 52, 2000. https://doi.org/10.1590/S0102-
09352000000500019  
 
MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e bioquímica do solo. Lavras: UFLA, 2006. 
 
MOREIRA, M. C. D. L. Indicadores de qualidade biológica de um latossolo argiloso sob diferentes 
sistemas de manejo. Dissertação (mestrado)- Universidade Estatual do Oeste do Paraná, Cascavel, 2016. 
 
NETO, J. F. Qualidade física e química do solo em função do sistema de produção e da aplicação 
superficial de silicato e calcário em experimento de longa duração. (Tese de Doutorado- Universidade 
Estadual Paulista, Botucatu. 184p., 2016. 
 
RAMPIM, L.; LANA, M. C.; FRANDOLOSO, J. F. Fósforo e enxofre disponível, alumínio trocável e fósforo 
remanescente em Latossolo Vermelho submetido ao gesso cultivado com trigo e soja. Semina: Ciências 
Agrárias, Londrina, PR, v. 34, n. 4, p. 1623- 1638, 2013. https://doi.org/10.5433/1679-0359.2013v34n4p1623 
 
SCHNEIDER, J.; KLAUBERG FILHO, O.; FONTOURA, S. M.; ALVES, M. V. Infuência de diferentes 
sistemas de manejo e calagem em experimento de longa duração sobre fungos micorrízicos arbusculares. 
Ciência e Agrotecnologia, Lavras, MG, v. 35, n. 4, p. 701-709, 2011. https://doi.org/10.1590/S1413-
70542011000400008 
 
SFREDO, G. J. Soja no Brasil: calagem, adubação e nutrição mineral. Londrina, PR: Embrapa Soja, 2008. 145 
p. (Documentos, nº 305). 
 
SOUZA, K. B.; PEDROTTI, A.; RESENDE, S. C.; SANTOS, H. M. T.; MENEZES, M. M. G.; SANTOS, L. 
A. M. Importância de Novas Espécies de Plantas de Cobertura de Solo para os Tabuleiros Costeiros. Revista 
da Fapese, Aracaju, SE, v. 4, p. 131-140, 2008. 
 
TORRES, J. L. R.; PEREIRA, M. G.; FABIAN, A. J. Produção de fitomassa por plantas de cobertura e mineralização 
de seus resíduos em plantio direto. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 43, n. 3, p. 421-428, 2008. 
https://doi.org/10.1590/S0100-204X2008000300018 
 
VERONESE, M.; FRANCISCO, E. A. B.; ZANCANARO, L.; ROSOLEM, C. A. Plantas de cobertura e 
calagem na implantação do sistema plantio direto. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 47, p. 
1158-1165, 2012. https://doi.org/10.1590/S0100-204X2012000800017