Microsoft Word - Issue 3.DOCX 117 Neutrosophic Hedge Algebras Florentin Smarandache University of New Mexico 705 Gurley Ave., Gallup, New Mexico 87301, USA Phone: +1 505-277-0111 fsmarandache@gmail.com Abstract We introduce now for the first time the neutrosophic hedge algebras as an extension of classical hedge algebras, together with an application of neutrosophic hedge algebras. 1. Introduction The classical hedge algebras deal with linguistic variables. In neutrosophic environment we have introduced the neutrosophic linguistic variables. We have defined neutrosophic partial relationships between single-valued neutrosophic numbers. Neutrosophic operations are used in order to aggregate the neutrosophic linguistic values. 2. Materials and Methods We introduce now, for the first time, the Neutrosophic Hedge Algebras, as extension of classical Hedge Algebras. Let's consider a Linguistic Variable: with π·π‘œπ‘š(π‘₯) as the word domain of π‘₯, whose each element is a word (label), or string of words. Let π’œ be an attribute that describes the value of each element π‘₯ ∈ π·π‘œπ‘š(π‘₯), as follows: π’œ: π·π‘œπ‘š(π‘₯) β†’ [0, 1] . (1) π’œ(π‘₯) is the neutrosophic value of π‘₯ with respect to this attribute: 𝐴(π‘₯) = βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ, (2) where 𝑑 , 𝑖 , 𝑓 ∈ [0, 1], such that – 𝑑 means the degree of value of π‘₯; – 𝑖 means the indeterminate degree of value of π‘₯; – 𝑓 means the degree of non-value of π‘₯. We may also use the notation: π‘₯βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ. A neutrosophic partial relationship ≀ on π·π‘œπ‘š(π‘₯), defined as follows: π‘₯βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ≀ π‘¦βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ, (3) if and only if 𝑑 ≀ 𝑑 , and 𝑖 β‰₯ 𝑖 , 𝑓 β‰₯ 𝑓 . Therefore, (π·π‘œπ‘š(π‘₯), ≀ ) becomes a neutros-ophic partial order set (or neutrosophic poset), and ≀ is called a neutrosophic inequality. Let 𝐢 = {0, 𝑀, 1} be a set of constants, 𝐢 βŠ‚ π·π‘œπ‘š(π‘₯), where: – 0 = the least element, or 0〈 , , βŒͺ; – w = the neutral (middle) element, or π‘€βŒ© . , . , . βŒͺ; – and 1 = the greatest element, or 1〈 , , βŒͺ. Let 𝐺 be a word-set of two neutrosophic generators, 𝐺 βŠ‚ π·π‘œπ‘š(π‘₯), qualitatively a negative primary neutrosophic term (denoted 𝑔 ), and the other one that is qualitatively a positive primary neutrosophic term (denoted 𝑔 ), such that: BRAIN – Broad Research in Artificial Intelligence and Neuroscience Volume 10, Issue 3 (September, 2019), ISSN 2067-3957 118 0 ≀ 𝑔 ≀ 𝑀 ≀ 𝑔 ≀ 1, (4) or transcribed using the neutrosophic com-ponents: 0〈 , , βŒͺ ≀ 𝑔 〈 , , βŒͺ ≀ π‘€βŒ© . , . , . βŒͺ ≀ 𝑔 〈 , , βŒͺ ≀ 1〈 , , βŒͺ, where – 0 ≀ 𝑑 ≀ 0.5 ≀ 𝑑 ≀ 1 (here there are classical inequalities) – 1 β‰₯ 𝑖 β‰₯ 0.5 β‰₯ 𝑖 β‰₯ 0, and – 1 β‰₯ 𝑓 β‰₯ 0.5 β‰₯ 𝑓 β‰₯ 0. Let 𝐻 βŠ‚ π·π‘œπ‘š(π‘₯) be the set of neutrosophic hedges, regarded as unary operations. Each hedge h∈H is a functor, or comparative particle for adjectives and adverbs as in the natural language (English). h:Dom(x)β†’Dom(x) xβ†’h(x). (5) Instead of h(x) one easily writes hx to be closer to the natural language. By associating the neutrosophic components, one has: h_〈t_h,i_h,f_h βŒͺ x_〈t_x,i_x,f_x βŒͺ . A hedge applied to x may increase, decrease, or approximate the neutrosophic value of the element x. There also exists a neutrosophic identity I∈Dom(x), denoted I_〈0,0,0βŒͺ that does not hange on the elements: I_〈0,0,0βŒͺ x_〈t_x,i_x,f_x βŒͺ . In most cases, if a hedge increases / decreases the neutrosophic value of an element x situated above the neutral element w, the same hedge does the opposite, decreases / increases the neutrosophic value of an element y situated below the neutral element w. And reciprocally. If a hedge approximates the neutrosophic value, by diminishing it, of an element x situated above the neutral element w, then it approximates the neutrosophic value, by enlarging it, of an element y situated below the neutral element w. Let's refer the hedges with respect to the upper part (βŠ”), above the neutral element, since for the lower part (L) it will automatically be the opposite effect. We split de set of hedges into three disjoint subsets: H_βŠ”^+ = the hedges that increase the neutrosophic value of the upper elements; H_βŠ”^- = the hedges that decrease the neutrosophic value of the upper elements; H_βŠ”^∼ = the hedges that approximate the neutrosophic value of the upper elements. Notations: Let π‘₯ = π‘₯βŠ” βˆͺ 𝑀 βˆͺ π‘₯ , where π‘₯βŠ” cons-titutes the upper element set, while π‘₯ the lower element subset, 𝑀 the neutral element. π‘₯βŠ” and π‘₯ are disjoint two by two. 3. Operations on Neutrosophic Components Let βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ, βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ neutrosophic numbers. Then: 𝑑 + 𝑑 = 𝑑 + 𝑑 , if 𝑑 + 𝑑 ≀ 1; 1, if 𝑑 + 𝑑 > 1; (6) and F. Smarandache - Neutrosophic Hedge Algebras 119 𝑑 βˆ’ 𝑑 = 0, if 𝑑 βˆ’ 𝑑 < 0; 𝑑 βˆ’ 𝑑 , if 𝑑 βˆ’ 𝑑 β‰₯ 0. (7) Similarly for 𝑖 and 𝑓 : 𝑖 + 𝑖 = 𝑖 + 𝑖 , if 𝑖 + 𝑖 ≀ 1; 1, if 𝑖 + 𝑖 > 1; (8) 𝑖 βˆ’ 𝑖 = 0, if 𝑖 βˆ’ 𝑖 < 0; 𝑖 βˆ’ 𝑖 , if 𝑖 βˆ’ 𝑖 β‰₯ 0. (9) and 𝑓 + 𝑓 = 𝑓 + 𝑓 , if 𝑓 + 𝑓 ≀ 1; 1, if 𝑓 + 𝑓 > 1; (10) 𝑓 βˆ’ 𝑓 = 0, if 𝑓 βˆ’ 𝑓 < 0; 𝑓 βˆ’ 𝑓 , if 𝑓 βˆ’ 𝑓 β‰₯ 0. (11) 4. Neutrosophic Hedge-Element Operators We define the following operators: 4.1. Neutrosophic Increment Hedge ↑ Element = βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ↑ βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ = βŒ©π‘‘ + 𝑑 , 𝑖 βˆ’ 𝑖 , 𝑓 βˆ’ 𝑓 βŒͺ, (12) meaning that the first triplet increases the second. 4.2. Neutrosophic Decrement Hedge ↓ Element = βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ↓ βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ = βŒ©π‘‘ βˆ’ 𝑑 , 𝑖 + 𝑖 , 𝑓 + 𝑓 βŒͺ, (13) meaning that the first triplet decreases the second. 4.3. Theorem 1 The neutrosophic increment and decrement operators are non-commutattive. 5. Neutrosophic Hedge-Hedge Operators Hedge ↑ Hedge = βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ↑ βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ = βŒ©π‘‘ + 𝑑 , 𝑖 + 𝑖 , 𝑓 + 𝑓 βŒͺ (14) Hedge ↓ Hedge = βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ↓ βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ = βŒ©π‘‘ βˆ’ 𝑑 , 𝑖 βˆ’ 𝑖 , 𝑓 βˆ’ 𝑓 βŒͺ (15) 6. Neutrosophic Hedge Operators Let π‘₯βŠ”βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ∈ π·π‘œπ‘š(π‘₯) i.e. π‘₯βŠ” is an upper element of π·π‘œπ‘š(π‘₯), and – β„ŽβŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ∈ π»βŠ” , – β„ŽβŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ∈ π»βŠ” , – β„ŽβŠ” βˆ½βŒ©π‘‘ βŠ” ∽ , 𝑖 βŠ” ∽ , 𝑓 βŠ” ∽ βŒͺ ∈ π»βŠ” ∽, then β„ŽβŠ” applied to π‘₯βŠ” gives (β„ŽβŠ” π‘₯βŠ”)βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ↑ βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ, and β„ŽβŠ” applied to π‘₯βŠ” gives (β„ŽβŠ” π‘₯βŠ”)βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ↓ βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ, and β„ŽβŠ” ∽ applied to π‘₯βŠ” gives (β„ŽβŠ” ∼π‘₯βŠ”)βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ↓ βŒ©π‘‘ βŠ”βˆΌ , 𝑖 βŠ”βˆΌ , 𝑓 βŠ”βˆΌ βŒͺ. BRAIN – Broad Research in Artificial Intelligence and Neuroscience Volume 10, Issue 3 (September, 2019), ISSN 2067-3957 120 Now, let π‘₯ βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ∈ π·π‘œπ‘š(π‘₯ ), i.e. π‘₯ is a lower element of π·π‘œπ‘š(π‘₯). Then, β„ŽβŠ” applied to π‘₯ gives: β„ŽβŠ” π‘₯ βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ↓ βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ, and β„ŽβŠ” applied to π‘₯ gives: β„ŽβŠ” π‘₯ βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ↑ βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ, and β„ŽβŠ” ∽ applied to π‘₯ gives: β„ŽβŠ” ∽π‘₯ βŒ©π‘‘ , 𝑖 , 𝑓 βŒͺ ↑ βŒ©π‘‘ βŠ” ∽ , 𝑖 βŠ” ∽ , 𝑓 βŠ” ∽ βŒͺ. In the same way, we may apply many increasing, decreasing, approximate or other type of hedges to the same upper or lower element β„ŽβŠ” β„ŽβŠ” β„ŽβŠ” … β„ŽβŠ” π‘₯, generating new elements in π·π‘œπ‘š(π‘₯). The hedges may be applied to the constants as well. 6.1. Theorem 2 A hedge applied to another hedge wekeans or stengthens or approximates it. 6.2. Theorem 3 If β„ŽβŠ” ∈ π»βŠ” and π‘₯βŠ” ∈ π·π‘œπ‘š(π‘₯βŠ”), then β„ŽβŠ” π‘₯βŠ” β‰₯ π‘₯βŠ”. If β„ŽβŠ” ∈ π»βŠ” and π‘₯βŠ” ∈ π·π‘œπ‘š(π‘₯βŠ”), then β„ŽβŠ” π‘₯βŠ” β‰₯ π‘₯βŠ”. If β„ŽβŠ” ∈ π»βŠ” and π‘₯ ∈ π·π‘œπ‘š(π‘₯ ), then β„ŽβŠ” π‘₯ ≀ π‘₯ . If β„ŽβŠ” ∈ π»βŠ” and π‘₯ ∈ π·π‘œπ‘š(π‘₯ ), then β„ŽβŠ” π‘₯ β‰₯ π‘₯ . 6.3. Converse Hedges Two hedges β„Ž and β„Ž ∈ 𝐻 are converse to each other, if βˆ€π‘₯ ∈ π·π‘œπ‘š(π‘₯), β„Ž π‘₯ ≀ π‘₯ is equivalent to β„Ž π‘₯ β‰₯ π‘₯. 6.4. Compatible Hedges Two hedges β„Ž and β„Ž ∈ 𝐻 are compatible, if βˆ€π‘₯ ∈ π·π‘œπ‘š(π‘₯), β„Ž π‘₯ ≀ π‘₯ is equivalent to β„Ž π‘₯ ≀ π‘₯. 6.5. Commutative Hedges Two hedges β„Ž and β„Ž ∈ 𝐻 are commutative, if βˆ€π‘₯ ∈ π·π‘œπ‘š(π‘₯), β„Ž β„Ž π‘₯ = β„Ž β„Ž π‘₯. Otherwise they are called non-commutative. 6.6. Cumulative Hedges If β„Ž βŠ” and β„Ž βŠ” ∈ 𝐻 , then two neutrosophic edges can be cumulated into one: β„Ž βŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ β„Ž βŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ = β„Ž βŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ↑ βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ. (16) Similarly, if β„Ž βŠ” and β„Ž βŠ” ∈ 𝐻 , then we can cumulate them into one: β„Ž βŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ β„Ž βŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ = β„Ž βŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ↑ βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ. (17) F. Smarandache - Neutrosophic Hedge Algebras 121 Now, if the two hedges are converse, β„Ž βŠ” and β„Ž βŠ” , but the neutrosophic components of the first (which is actually a neutrosophic number) are greater than the second, we cumulate them into one as follows: β„Ž βŠ” = β„Ž βŠ” β„Ž βŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ↓ βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ. (18) But, if the neutrosophic components of the second are greater, and the hedges are com- mutative, we cumulate them into one as follows: β„Ž βŠ” = β„Ž βŠ” β„Ž βŠ” βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ ↓ βŒ©π‘‘ βŠ” , 𝑖 βŠ” , 𝑓 βŠ” βŒͺ (19) 7. Neutrosophic Hedge Algebra 𝑁𝐻𝐴 = (π‘₯, 𝐺, 𝐢, 𝐻 βˆͺ 𝐼, ≀ ) constitutes an abstract algebra, called Neutrosophic Hedge Algebra. 7.1. Example of a Neutrosophic Hedge Algebra 𝝉 Let 𝐺 = {π‘†π‘šπ‘Žπ‘™π‘™, 𝐡𝑖𝑔} the set of generators, repres-ented as neutrosophic generators as follows: π‘†π‘šπ‘Žπ‘™π‘™βŒ© . , . , . βŒͺ, π΅π‘–π‘”βŒ© . , . , . βŒͺ. Let 𝐻 = {π‘‰π‘’π‘Ÿπ‘¦, 𝐿𝑒𝑠𝑠} the set of hedges, repres-ented as neutrosophic hedges as follows: π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺ, πΏπ‘’π‘ π‘ βŒ© . , . , . βŒͺ, where π‘‰π‘’π‘Ÿπ‘¦ ∈ π»βŠ” and 𝐿𝑒𝑠𝑠 ∈ π»βŠ” . π‘₯ is a neutrosophic linguistic variable whose domain is 𝐺 at the beginning, but extended by generators. The neutrosophic constants are 𝐢 = 0〈 , , βŒͺ, π‘€π‘’π‘‘π‘–π‘’π‘šβŒ© . , . , . βŒͺ, 1〈 , , βŒͺ . The neutrosophic identity is 𝐼〈 , , βŒͺ. We use the neutrosophic inequality ≀ , and the neutrosophic increment / decrement operators previously defined. Let's apply the neutrosophic hedges in order to generate new neutrosophic elements of the neutrosophic linguistic variable π‘₯. π‘‰π‘’π‘Ÿπ‘¦ applied to 𝐡𝑖𝑔 [upper element] has a positive effect: π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺπ΅π‘–π‘”βŒ© . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ 𝐡𝑖𝑔)〈 . . , . . , . . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ 𝐡𝑖𝑔)〈 . , . , . βŒͺ. Then: π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺ(π‘‰π‘’π‘Ÿπ‘¦ 𝐡𝑖𝑔)〈 . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦ 𝐡𝑖𝑔)〈 . , , . βŒͺ. π‘‰π‘’π‘Ÿπ‘¦ applied to π‘†π‘šπ‘Žπ‘™π‘™ [lower element] has a negative effect: π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺπ‘†π‘šπ‘Žπ‘™π‘™βŒ© . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘†π‘šπ‘Žπ‘™π‘™)〈 . . , . . , . . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘†π‘šπ‘Žπ‘™π‘™)〈 . , . , . βŒͺ. If we compute (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦) first, which is a neutrosophic hedge-hedge operator: π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺπ‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦) 〈 . . , . . , . . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦)〈 . , . , . βŒͺ, and we apply it to Big, we get: (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦)〈 . , . , . βŒͺπ΅π‘–π‘”βŒ© . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦ 𝐡𝑖𝑔)〈 . . , . . , . . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦ 𝐡𝑖𝑔)〈 . , , . βŒͺ, so, we get the same result. 𝐿𝑒𝑠𝑠 applied to 𝐡𝑖𝑔 has a negative effect: BRAIN – Broad Research in Artificial Intelligence and Neuroscience Volume 10, Issue 3 (September, 2019), ISSN 2067-3957 122 πΏπ‘’π‘ π‘ βŒ© . , . , . βŒͺπ΅π‘–π‘”βŒ© . , . , . βŒͺ = (𝐿𝑒𝑠𝑠 𝐡𝑖𝑔)〈 . . , . . , . βŒͺ = (𝐿𝑒𝑠𝑠 𝐡𝑖𝑔)〈 . , . , . βŒͺ. 𝐿𝑒𝑠𝑠 applied to π‘†π‘šπ‘Žπ‘™π‘™ has a positive effect: πΏπ‘’π‘ π‘ βŒ© . , . , . βŒͺπ‘†π‘šπ‘Žπ‘™π‘™βŒ© . , . , . βŒͺ = (𝐿𝑒𝑠𝑠 π‘†π‘šπ‘Žπ‘™π‘™)〈 . . , . . , . . βŒͺ = (𝐿𝑒𝑠𝑠 π‘†π‘šπ‘Žπ‘™π‘™)〈 . , . , . βŒͺ. The set of neutrosophic hedges H is enriched through the generation of new neutrosophic hedges by combining a hedge with another one using the neutrosophic hedge-hedge operators. Further, the newly generated neutrosophic hedges are applied to the elements of the linguistic variable, and more new elements are generated. Let's compute more neutrosophic elements: 𝑉𝐿𝐡 = π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺπΏπ‘’π‘ π‘ βŒ© . , . , . βŒͺπ΅π‘–π‘”βŒ© . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ 𝐿𝑒𝑠𝑠 𝐡𝑖𝑔) 〈 . , . , . βŒͺ ↑ 〈 . , . , . βŒͺ ↓ 〈 . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ 𝐿𝑒𝑠𝑠 𝐡𝑖𝑔)〈 . . , . . , . . βŒͺ ↓ 〈 . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ 𝐿𝑒𝑠𝑠 𝐡𝑖𝑔)〈 . . , . . , . . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ 𝐿𝑒𝑠𝑠 𝐡𝑖𝑔)〈 . , , βŒͺ 𝑉𝑀 = π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺπ‘€π‘’π‘‘π‘–π‘’π‘šβŒ© . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘€π‘’π‘‘π‘–π‘’π‘š)〈 . , . , . βŒͺ ↑ 〈 . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘€π‘’π‘‘π‘–π‘’π‘š)〈 . , . , . βŒͺ 𝐿𝑀 = πΏπ‘’π‘ π‘ βŒ© . , . , . βŒͺπ‘€π‘’π‘‘π‘–π‘’π‘šβŒ© . , . , . βŒͺ = (𝐿𝑒𝑠𝑠 π‘€π‘’π‘‘π‘–π‘’π‘š)〈 . , . , . βŒͺ ↓ 〈 . , . , . βŒͺ = (𝐿𝑒𝑠𝑠 π‘€π‘’π‘‘π‘–π‘’π‘š)〈 . , . , . βŒͺ 𝑉𝑉𝑆 = π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺπ‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺπ‘†π‘šπ‘Žπ‘™π‘™βŒ© . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦)〈 . , . , . βŒͺπ‘†π‘šπ‘Žπ‘™π‘™βŒ© . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ π‘‰π‘’π‘Ÿπ‘¦ π‘†π‘šπ‘Žπ‘™π‘™)〈 . , . , . βŒͺ 𝑉𝐿𝑆 = π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺπΏπ‘’π‘ π‘ βŒ© . , . , . βŒͺπ‘†π‘šπ‘Žπ‘™π‘™βŒ© . , . , . βŒͺ = π‘‰π‘’π‘Ÿπ‘¦βŒ© . , . , . βŒͺ(𝐿𝑒𝑠𝑠 π‘†π‘šπ‘Žπ‘™π‘™)〈 . , . , . βŒͺ = (π‘‰π‘’π‘Ÿπ‘¦ 𝐿𝑒𝑠𝑠 π‘†π‘šπ‘Žπ‘™π‘™)〈 . , . , . βŒͺ πΏπ΄π‘€π‘Žπ‘₯ = πΏπ‘’π‘ π‘ βŒ© . , . , . βŒͺπ΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘šβŒ© , , βŒͺ = (𝐿𝑒𝑠𝑠 π΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š)〈 . , . , . βŒͺ ↓ 〈 , , βŒͺ = (𝐿𝑒𝑠𝑠 π΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š)〈 . , . , . βŒͺ 𝐿𝐴𝑀𝑖𝑛 = πΏπ‘’π‘ π‘ βŒ© . , . , . βŒͺπ΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘€π‘–π‘›π‘–π‘šπ‘’π‘šβŒ© , , βŒͺ = (𝐿𝑒𝑠𝑠 π΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘€π‘–π‘›π‘–π‘šπ‘’π‘š)〈 . , . , . βŒͺ ↑ 〈 , , βŒͺ = (𝐿𝑒𝑠𝑠 π΄π‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š)〈 . , . , . βŒͺ 7.2. Theorem 4 Any increasing hedge β„ŽβŒ© , , βŒͺ applied to the absolute maximum cannot overpass the absolute maximum. Proof: β„ŽβŒ© , , βŒͺ ↑ 1〈 , , βŒͺ = (β„Ž1)〈 , , βŒͺ = (β„Ž1)〈 , , βŒͺ = 1〈 , , βŒͺ. 7.3. Theorem 5 Any decreasing hedge β„ŽβŒ© , , βŒͺ applied to the absolute minimum cannot pass below the absolute minimum. Proof: β„ŽβŒ© , , βŒͺ ↓ 0〈 , , βŒͺ = (β„Žπ‘œ)〈 , , βŒͺ = (β„Žπ‘œ)〈 , , βŒͺ = 0〈 , , βŒͺ. 8. Diagram of the Neutrosophic Hedge Algebra Ο„ 1〈 , , βŒͺ ABSOLUTE MAXIMUM π‘‰π‘‰π΅βŒ© . , , . βŒͺ Very Very Big F. Smarandache - Neutrosophic Hedge Algebras 123 πΏπ΄π‘€βŒ© . , . , . βŒͺ Less Absolute Maximum π‘‰π΅βŒ© . , . , . βŒͺ Very Big π΅π‘–π‘”βŒ© . , . , . βŒͺ π‘‰π‘€βŒ© . , . , . βŒͺ Very Medium πΏπ‘‰βŒ© . , . , . βŒͺ Less Big π‘‰πΏπ΅βŒ© . , , βŒͺ Very Less Big π‘‰πΏπ‘†βŒ© . , . , . βŒͺ Very Less Small π‘€βŒ© . , . , . βŒͺ MEDIUM πΏπ‘€βŒ© . , . , . βŒͺ Less Medium πΏπ‘†βŒ© . , . , . βŒͺ Less Small π‘†π‘šπ‘Žπ‘™π‘™βŒ© . , . , . βŒͺ π‘‰π‘†βŒ© . , . , . βŒͺ Very Small πΏπ΄π‘€π‘–π‘›βŒ© . , . , . βŒͺ Less Absolute Minimum π‘‰π‘‰π‘†βŒ© . , . , . βŒͺ Very Very Small 0〈 , , βŒͺ ABSOLUTE MINIMUM 9. Conclusions In this paper, the classical hedge algebras have been extended for the first time to neutrosophic hedge algebras. With respect to an attribute, we have inserted the neutrosophic degrees of membership / indeterminacy / nonmembership of each generator, hedge, and constant. More than in the classical hedge algebras, we have introduced several numerical hedge operators: for hedge applied to element, and for hedge combined with hedge. An extensive example of a neutrosophic hedge algebra is given, and important properties related to it are presented. References Cat Ho, N.; Wechler, W. Hedge Algebras: An algebraic Approach to Structure of Sets of Linguistic Truth Values. Fuzzy Sets and Systems 1990, 281-293. Lakoff, G. Hedges, a study in meaning criteria and the logic of fuzzy concepts. 8th Regional Meeting of the Chicago Linguistic Society, 1972. Zadeh, L.A. A fuzzy-set theoretic interpretation of linguistic hedges. Journal of Cybernetics 1972, Volume 2, 04-34.