1http://dx.doi.org/10.20396/bjos.v20i00.8663641 Volume 20 2021 e213641 Original Article 1 Professor, Department of Oral Rehabilitation, School of Dentistry, University of Cartagena, Cartagena de Indias, Colombia. 2 Undergraduate student, School of Dentistry, University of Cartagena, Cartagena de Indias, Colombia. * Corresponding author at: Department of Oral Rehabilitation, School of Dentistry, University of Cartagena, Cartagena de Indias, Colombia. Phone: (+57) 6698172, ext: 118. e-mail address: cmadridt@unicartagena.edu.co. Received: December 15, 2020 Accepted: March 9, 2021 Editor: Dr. Altair A. Del Bel Cury Bond strength of self- adhesive flowable resin composites to tooth structure: a systematic review Cristhian Camilo Madrid Troconis1,* , Samantha Molina Pérez2 Aim: To review the current literature regarding the bond strength of self-adhesive flowable resin composites (SAFRCs) to tooth structure, comparing the outcomes with conventional flowable resin composites (CFRCs). Methods: PubMed/ Medline, EbscoHost and Scopus databases were screened (last update on November 2020) using related Medical Subject Headings (MeSH) and free terms. We included in vitro studies published in English language assessing the bond strength of SAFRCs and CFRCs to enamel and/or dentin from primary and/or permanent teeth. Results: In total, 23 articles were included. Unlike CFRCs, SAFRCs such as Vertise® Flow and Fusio™ Liquid Dentin exhibited statistically lower bond strength to enamel and dentin from permanent teeth. There  were limited studies comparing the enamel bond strength of CFRCs and SAFRCs (prior phosphoric acid etching and/or adhesive system use). Also, we found few studies that evaluated the bonding effectiveness of Constic® and other SAFRCs to primary teeth. Conclusions: Current SAFRCs showed low bond strength to permanent teeth, which impedes to recommend them as a reliable alternative to CFRCs. The bonding performance of Constic® on both hard dental tissues should be evaluated on future studies. Also, more evidence assessing the bond strength of SAFRCs to primary teeth and etched enamel is needed. Keywords: Composite resins. Dental bonding. Systematic review as topic. mailto:cmadridt@unicartagena.edu.co https://orcid.org/0000-0003-4058-1447 https://orcid.org/0000-0002-6776-7391 2 Troconis et al. Introduction The simplification of dental techniques represents one of the main goals and ten- dencies in current restorative dentistry. Interestingly, clinical studies have shown that dental restorations performed with simplified dental materials such as uni- versal adhesive systems, self-adhesive resin cements and bulk-fill resin com- posites have an acceptable performance1-4. Recently, another simplified dental materials known as self-adhesive flowable resin composites (SAFRCs) were intro- duced into the market. SAFRCs are indicated for pit and fissure sealants, base/ liner and restorative material in small cavities5-7, the same clinical indications than conventional flowable resin composites (CFRCs). According to manufacturer’s instructions, SAFRCs could be used without previous phosphoric acid etching and adhesive systems, especially for dentin bonding procedures5-7. This was possi- ble by acidic functional monomers such as glycerol phosphate dimethacrylate (GPDM), 10-methacryloyloxi-decyl-dihydrogen-phosphate (10-MDP) and 4-meth- acryloxyethyl trimellitic acid (4-META) incorporated into Vertise® Flow, Constic® and Fusio™ Liquid Dentin, respectively. These functional monomers establish a chemical interaction with inorganic phase of hard dental tissues which theoret- ically would guarantee acceptable bond strength. In some cases, only previous phosphoric acid etching on uncut enamel surface is recommended to increase the bond strength of SAFRCs5, but findings from some in vitro studies using this approach are controversial8-9. SAFRCs could represent a good alternative to perform dental restorative/pre- ventive procedures because they would reduce clinical time, operative errors and post-operative sensitivity5-7. Nonetheless, the number of clinical trials assessing the performance of SAFRCs restorations or pit and fissure sealants are extremely limited and controversial10-12 to contraindicate or recommend these novel dental materials. However, there are fairly available in vitro studies which evaluate micro- leakage, nanoleakage, solubility, water sorption and bond strength of SAFRCs13-16. This latter is one of the most important and critical features on self-adhesive materials due to it reflects the physico-chemical interaction with hard dental tis- sues, which could partially predict common clinical problems such as microle- akage and retention loss. Until now, no consensus on the bonding effectiveness of SAFRCs has been established to determine if these novel dental materials could be used as a reliable alternative to conventional flowable resin compos- ites (CFRCs). Therefore, a compilation of in vitro studies on this issue is urgently needed to indicate whether current SAFRCs should be used on future research or more technological developments are required. The  aim of this study was to review the current literature regarding the bond strength of self-adhesive flow- able resin composites to tooth structure, comparing the results with conventional flowable resin composites. Materials and methods The present systematic review was conducted following all parameters described in PRISMA guidelines (Preferred Reported Items for Systematic Reviews and Meta-anal- 3 Troconis et al. ysis)17. The research question was: Do SAFRCs exhibit comparable enamel and den- tin bond strength to CFRCs? Selection criteria We included studies that used human enamel and/or dentin from primary and/or permanent teeth, independently if dental substrates were cut, grounded and/or laser ablated (patient). The studies had to evaluate SAFRCs (intervention) such as Vertise® Flow, Fusio™ Liquid Dentin and/or Constic® used with or without previous phosphoric acid etching and/or adhesive system. Also, CFRCs (control/comparison) used as pit and fissure sealant and/or restorative material bonded by etch-and-rinse adhesive systems (ERAs), self-etch adhesive systems (SEAs) or universal adhesive systems (UAs). All included studies had to compare the bond strength between SAFRCs and CFRCs to enamel and/or dentin (outcome). Reports not published in English lan- guage, literature reviews, clinical studies, case reports/case series, book chapters, congress abstracts, editor letters and studies which exclusively evaluated the bond strength of experimental SAFRCs were excluded from the analysis of the current sys- tematic review. Search strategy and study selection Different systematic searches were conducted by two trained and independent reviewers (C.M.T and S.M.P) until November 2020. We screened PubMed/Med- line, EbscoHost and Scopus, using search strategies as follows; PubMed/Med- line, ((((((((self-adhesive flowable composite resin) OR (self adhesive flowable resin composites)) OR (self-adhering flowable resin composite)) OR (self-adhering flowable composite resin) OR (vertise flow)) OR (fusio liquid dentin)) OR (constic)) AND (bond strength); Ebscohost, self-adhesive flowable composite resins OR self-adhesive flowable resin composite OR self-adhering flowable composite resin OR self-adhering flowable resin composite OR vertise flow OR fusio liquid dentin OR constic AND bond strength; Scopus, self-adhesive AND flowable AND resin AND composite OR self-adhering AND resin AND composite OR self-adhesive AND composite AND resin OR self-adhering AND flowable AND composite AND resin OR vertise AND flow OR fusio AND liquid AND dentin OR constic AND bond AND strength. Article titles were exported to Microsoft Excel® 2016 (Microsoft Corpo- ration, Redmond, Washington, USA) to eliminate repeated hits in the same data- base and between them. Later, remaining titles and abstracts were screened in detail by two reviewers (C.M.T and S.M.P), excluding those that seem not to meet inclusion criteria. When abstracts presented limited information to be classified or seemed to meet all inclusion criteria, articles were downloaded for full-text reading. The titles were codified into 6 categories according to selection criteria, as follows: C1 (Articles not published in English language), C2 (clinical studies/case reports/ case series), C3 (Articles which did not compare the bond strength of SAFRCs with CFRCs), C4 (Studies that exclusively evaluated the bond strength of experimental SAFRCs), C5 (Others types of papers such as literature reviews, book chapters, congress abstracts and editor letters) and C6 (included studies). Finally, reference lists from selected studies were screened in detail to find possible articles which could meet inclusion  criteria. 4 Troconis et al. Data extraction Data extraction was performed by two trained reviewers (C.M.T and S.M.P), using a standardized form containing information such as first author name, publication year, sample size (n), type of teeth, tested materials, type of mate- rials, dental substrate (enamel, dentin or both), bonding test, aging technique, sample dimensions/load speed, failure mode analysis and predominant failure mode in SAFRCs. If relevant methodological information was missed from a study, we contacted the correspondence author via e-mail. If no answer was received after 2 weeks, we sent other mail, requesting the same methodolog- ical information. Finally, if no response was obtained four weeks following the first attempt, the article was included in the systematic review with not reported data (NR). Data analysis After methodological data extraction, meta-analysis was considered inappropriate due to great methodological divergences among included studies, especially in terms of bonding tests, load speed, adhesive systems and CFRCs. Nevertheless, means and standard deviations of bond strength values of SAFRCs and CFRCs groups from indi- vidual studies, were extracted and tabulated, indicating statistically significant differ- ences (p≤0.05) among groups. Risk of bias assessment Risk of bias assessment was conducted in duplicate by two trained reviewers (C.M.T and S.M.P) and both analyses were later contrasted to find possible incon- sistencies. To assess evidence quality, we employed an adapted instrument previ- ously used in other systematic reviews about dental adhesion18-19. This instrument contains the following domains or items: randomization, sample size calculation, teeth free of caries, sample with similar dimensions, failure mode evaluation, manufacturer instructions, single operator and operator blinded. Each item was checked in individual studies, judging as “Yes” when reported in the methodology, but if not, the specific domain received “No”. The number of positive responses obtained in each included study were counted to determine the overall risk of bias, as follows: high risk of bias (Yes:1 to 3), medium risk (Yes: 4 or 5) and low risk of bias (Yes: 6 to 8). Results Search and selection Figure 1 summarizes the selection process, according to PRISMA guidelines. Overall, electronic searches on three databases yielded 196 articles. After excluding repeated hits, screening and full-text reading, 20 articles remained. Complementary searches resulted in 3 new papers that met inclusion criteria. Finally, 23 articles were included in the qualitative analysis of the current sys- tematic review. 5 Troconis et al. Id en tifi ca tio n P U B M ED (n =8 7) EB S C O H O S T (n =8 5) S C O P U S (n =2 4) S el ec tio n El ig ib ili ty In cl ud ed Articles identified through database search (n=196) Articles removed by duplicate (n=15) Articles reviewed (n=181) Full-text articles evaluated for eligibility (n=20) Full-text articles included in qualitative analysis (n=23) Articles identified through another strategy (n=3) Excluded articles (n=161) Reports not published in English Literature reviews, clinical cases, book chapters Articles that did not compare the bonding performance of SAFRCs with CFRCs Bond strength of experimental SAFRCs Others types of papers Figure 1. Selection process, according to PRISMA guidelines. Study characteristics Table 1 presents the main methodological aspects from included studies. In total, 23 in vitro studies met inclusion criteria (published between 2012 and 2019)8,9,16,20-39 and most of them (n=18) used permanent teeth (ranging from 30 to 160) for the bonding tests. The bond strength of SAFRCs to primary teeth was evaluated in six studies, pub- lished between 2013 and 201916,22,26,30,34,38. Vertise® Flow (Kerr Corp, Orange, CA, USA) (n=22) followed by Fusio™ Liquid Dentin (Pentron Clinical, Orange, CA, USA) (n=5) were the most tested SAFRCs, while Constic® was evaluated only in three studies29,35,37. The bond strength of SAFRCs was mainly assessed by shear bonding test (n=20)8,16,20- 27,29-33,35-39 and tensile bonding test (n=3)9,28,34, using dentin (n=13), enamel (n=3) or both tissues (n=7) as substrates. Most studies tested the immediate bond strength of SAFRCs to enamel and dentin. Only six studies employed thermocycling as an aging method and the number of cycles varied from 500 to 5000 (temperature from 5ºC to 55ºC)26,29,33,35,36,38. Failure mode analysis was evaluated in 20 of 23 studies, using stereomicroscope/opti- cal microscope, digital microscope and/or Scanning Electron Microscopy (SEM), show- ing a predominant adhesive failure pattern in SAFRCs groups8,9,20-24,27-39. 6 Troconis et al. Ta bl e 1. M ai n m et ho do lo gi ca l d at a fr om in cl ud ed s tu di es . A ut ho r (Y ea r) S am pl e si ze Ty pe o f te et h Te st ed M at er ia ls Ty pe o f m at er ia ls D en ta l su bs tr at e B on di ng te st A ge in g/ te ch ni qu e S am pl e di m en si on / Lo ad s pe ed Fa ilu re m od e an al ys is P re do m in an t fa ilu re m od e in S A FR C Ju lo sk i J (2 01 2) 8 En am el (n =5 0) D en tin (n =5 0) P er m an en t m ol ar s PA + O pt iB on d™ F L + P re m is e ™ fl ow ab le O pt iB on d™ X TR + P re m is e™ fl ow ab le PA + O pt iB on d™ X TR + P re m is e™ fl ow ab le V er tis e Fl ow ® PA + V er tis e Fl ow ® ER A s + C FR C 2S -S EA s+ C FR C 2S -S EA s+ C FR C SA FR C SA FR C En am el an d de nt in SB S N ot / N A 3m m in di am et er / 0. 5m m / m in St er eo m ic ro sc op e A F W aj do w ic z (2 01 2) 20 N R Th ird m ol ar s V er tis e Fl ow ® Fu si o™ L iq ui d D en tin PA + O pt ib on d™ F L + V er tis e Fl ow ® PA + O pt ib on d™ F L + Fu si o™ L iq ui d D en tin PA + O pt ib on d™ F L + R ev ol ut io n™ SA FR C SA FR C ER A s+ SA FR C ER A s+ SA FR C ER A s+ C FR C En am el SB S N ot / N A 2. 4m m in di am et er / 1m m /m in St er eo m ic ro sc op e A F in F us io ™ Li qu id D en tin V ic hi A (2 01 3) 21 En am el (n =6 0) D en tin (n =6 0) P er m an en t m ol ar s Ea sy B on d® + F ilt ek ™ S up re m e X T Fl ow X en o® V + X F lo w ® G -B on d™ + G ra di a® D ire ct L oF lo A dh eS E O ne ® + T et ric E vo Fl ow ® iB on d® + V en us F lo w ® V er tis e Fl ow ® 1S -S EA s+ C FR C 1S -S EA s+ C FR C 1S -S EA s+ C FR C 1S -S EA s+ C FR C 1S -S EA s+ C FR C SA FR C En am el an d de nt in SB S N ot / N A 3m m in di am et er / 0. 5m m / m in O pt ic al m ic ro sc op e A F P ac ifi ci E (2 01 3) 22 50 P rim ar y m ol ar s O pt ib on d™ A ll- In -O ne +P re m is e ™ F lo w PA + O pt ib on d™ F L+ P re m is e ™ F lo w P ol yA +F uj i I I® P ol yA +F uj i I X ® V er tis e Fl ow ® 1S -S EA s+ C FR C ER A s+ C FR C G la ss io no m er G la ss io no m er SA FR C D en tin SB S N ot / N A 3m m in di am et er / 1m m /m in St er eo m ic ro sc op e A F Ya zi ci A R (2 01 3) 23 80 P er m an en t m ol ar s PA +O pt ib on d™ S ol o P lu s+ P re m is e™ F lo w V er tis e Fl ow ® ER A s+ C FR C SA FR C D en tin SB S N ot / N A 2. 38 m m in di am et er / 1m m /m in O pt ic al m ic ro sc op e A F M ar gv el as hv ili M , ( 20 13 )2 4 30 P er m an en t m ol ar s PA + V er tis e Fl ow ® PA + G ua rd ia n Se al ® A dp er ™ P ro m pt L -P op + C lin pr o™ S ea la nt SA FR C C FR C 1S -S EA s+ C FR C En am el SB S N ot / N A 3m m in di am et er / 0. 5m m /m in O pt ic al m ic ro sc op e SE M A F B ek ta s O O (2 01 3) 25 30 Th ird m ol ar s O pt ib on d™ A ll- In -O ne + R ev ol ut io n™ F or m ul a2 V er tis e Fl ow ® O pt ib on d™ A ll- In -O ne + V er tis e Fl ow ® 1S -S EA s+ C FR C SA FR C 1S -S EA s+ SA FR C D en tin µ SB S N ot / N A 0. 7m m in di am et er / 1m m /m in N A N A C on tin ue ... https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow http://www.ncbi.nlm.nih.gov/pubmed/?term=vichi%25252525252525252525252520a%2525252525252525252525255bauthor%2525252525252525252525255d&cauthor=true&cauthor_uid=23086332 https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.ncbi.nlm.nih.gov/pubmed/?term=pacifici%2525252525252525252520e%25252525252525252525255bauthor%25252525252525252525255d&cauthor=true&cauthor_uid=24683779 https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow http://www.ncbi.nlm.nih.gov/pubmed/?term=yazici%25252525252525252525252520ar%2525252525252525252525255bauthor%2525252525252525252525255d&cauthor=true&cauthor_uid=22821150 https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow 7 Troconis et al. P oi te vi n A (2 01 3) 9 En am el (n =4 0) D en tin (n =5 5) Th ird m ol ar s Fu si o™ L iq ui d D en tin V er tis e Fl ow ® PA + V er tis e Fl ow ® A dh es e O ne ® + T et ric E vo fl ow ® A dp er ™ P ro m pt L -P op + Fi lte k™ S up re m e X T Fl ow ab le iB on d® + V en us F lo w ® X en o® V + X fl ow ® PA +O pt iB on d™ F L + P re m is e ™ fl ow ab le SA FR C SA FR C SA FR C 1S -S EA s+ C FR C 1S -S EA s+ C FR C 1S -S EA s+ C FR C 1S -S EA s+ C FR C E R A s+ C FR C En am el an d de nt in µT B S N ot / N A 1m m in di am et er / 1m m /m in St er eo m ic ro sc op e F eg -S EM A F Tu lo gl u N (2 01 4) 26 60 30 p rim ar y m ol ar s 30 pe rm an en t m ol ar s V er tis e Fl ow ® O pt ib on d™ A ll- In -O ne + F ilt ek ™ U lti m at e Fl ow ab le O pt ib on d™ A ll- In -O ne + V er tis e Fl ow ® SA FR C 1S -S EA s+ C FR C 1S -S EA s+ SA FR C D en tin SB S TC 5 00 cy cl es (b et w ee n 5° C a nd 55 °C fo r 10 s) 2 m m in di am et er / 1m m /m in N A N A R us so D (2 01 4) 27 72 P er m an en t m ol ar s PA +O pt ib on d™ F L + P re m is e™ F lo w ab le O pt ib on d™ X TR + P re m is e ™ F lo w ab le V er tis e Fl ow ® Sm ar t C em 2® R el yX ™ U ni ce m 2 Sp ee dC em ® M ax C em E lit e™ R el yX ™ U ni ce m K et ac ™ C on di tio ne r R efi ll + K et ac ™ F il P lu s A pl ic ap ER A s+ C FR C 2S -S EA s+ C FR C SA FR C SA R C SA R C SA R C SA R C SA R C SA G IC D en tin µS B S N ot / N A 0. 95 - 1. 45 m m in di am et er / 1m m /m in SE M A F Yu an H (2 01 5) 28 40 Th ird m ol ar s A dp er ™ E as y O ne + F ilt ek ™ Z 35 0 Fl ow ab le C le ar fil ™ S E B on d+ F ilt ek ™ Z 35 0 Fl ow ab le PA +P rim e  &  B on d N T® + Fi lte k™ Z 35 0 Fl ow ab le D ya d™ F lo w Δ 1S -S EA s+ C FR C 2S -S EA s+ C FR C ER A s+ C FR C SA FR C D en tin µT B S N ot / N A 1m m in di am et er / 0. 5m m / m in St er eo m ic ro sc op e SE M A F Sc hu ld t (2 01 5) 29 90 Th ird m ol ar s C on st ic ® PA + C on st ic ® PA + H el io se al F ® SA FR C SA FR C C FR C En am el SB S TC 5 00 0 cy cl es (b et w ee n 5° C a nd 55 °C ) 2. 38 in di am et er / 1m m /m in St er eo m ic ro sc op e A F C on tin ue ... Ta bl e 1. C on tin ua tio n. http://www.ncbi.nlm.nih.gov/pubmed/?term=poitevin%25252525252525252525252520a%2525252525252525252525255bauthor%2525252525252525252525255d&cauthor=true&cauthor_uid=23107191 https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow http://www.ncbi.nlm.nih.gov/pubmed/?term=tuloglu%25252525252525252525252520n%2525252525252525252525255bauthor%2525252525252525252525255d&cauthor=true&cauthor_uid=24127036 https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow 8 Troconis et al. Sa ch de va P (2 01 6) 16 60 P rim ar y te et h D ya d™ F lo w Δ Fu si o™ L iq ui d D en tin A dh es iv e (N R ) + G -a en ia l U ni ve rs al F lo ® SA FR C SA FR C N R +C FR C D en tin SB S N ot / N A 2. 5m m in di am et er / 0. 5m m / m in N A N A M em ar po ur M (2 01 6) 30 En am el (n =6 0) D en tin (n =6 0) P rim ar y ca ni ne s O pt iB on d™ A ll- In -O ne + P re m is e™ F lo w ab le V er tis e Fl ow ® O pt iB on d™ A ll- In -O ne + V er tis e Fl ow ® 1S -S EA +C FR C SA FR C 1S -S EA +S A FR C En am el an d de nt in SB S N ot / N A 3m m in di am et er / 1m m /m in D ig ita l m ic ro sc op e SE M A F an d M F. A lm az M , (2 01 6) 31 48 P er m an en t m ol ar s V er tis e Fl ow ® C le ar fil ™ S E B on d+ C le ar fil ™ M aj es ty F lo w A ll- B on d SE ® + A el ite ™ F lo A dp er ™ E as y O ne + Fi lte k™ U lti m at e Fl ow SA FR C 2S -S EA s+ C FR C 1S -S EA s+ C FR C 1S -S EA s+ C FR C D en tin SB S N ot / N A 3 m m in di am et er / N R Ilu m in at ed m ic ro sc op e A F M os le m i (2 01 6) 32 40 Th ird m ol ar s Si C + E r,C r:Y SG G la se r + S in gl e- B on d® + C FR C (N R ) Si C + Er ,C r:Y SG G la se r + D ya d™ F lo w Δ Si C + S in gl e- B on d® + C FR C (N R ) Si C + D ya d™ F lo w Δ ER A s+ C FR C SA FR C ER A s+ C FR C SA FR C D en tin µS B S N ot / N A 0. 7m m in di am et er / 0. 5m m /m in St er eo m ic ro sc op e A F in SA FR C s w ith ou t la se r. B um ru ng ru an (2 01 6) 33 60 Th ird m ol ar s V er tis e Fl ow ® PA +O pt iB on d™ F L+ P re m is e™ F lo w ab le O pt iB on d™ A ll- In -O ne + P re m is e™ F lo w ab le SA FR C ER A s+ C FR C 1S -S EA +C FR C D en tin µS B S B et w ee n 5C a nd 55 C fo r 50 00 cy cl es 0. 8 in di am et er / 1m m /m in St er eo m ic ro sc op e A F D ur m uş la r S (2 01 7) 34 60 P rim ar y m ol ar s V er tis e Fl ow ® G -a en ia l B on d® + G -a en ia l U ni ve rs al F lo ® PA + Te tr ic ® N -B on d+ T et ric ® N -F lo w SA FR C 1S -S EA s+ C FR C ER A s+ C FR C D en tin µT B S N ot / N A 3m m in di am et er / 1m m /m in SE M A F P et er so n J (2 01 7) 35 En am el (n =6 4) D en tin (n =6 4) P er m an en t m ol ar s C on st ic ® Fu si o™ L iq ui d D en tin V er tis e Fl ow ® PA +O pt ib on d™ F L + V en us D ia m on d Fl ow ® SA FR C SA FR C SA FR C ER A s+ C FR C En am el an d de nt in SB S TC (5 00 0 cy cl es (b et w ee n 5° C a nd 55 °C ) 3m m in di am et er / 1m m /m in St er eo m ic ro sc op e A F B ru ec kn er C (2 01 7) 36 En am el (n =8 0) D en tin (n =8 0) P er m an en t m ol ar s V er tis e Fl ow ® Fu si o™ L iq ui d D en tin A dp er ™ P ro m pt L -P op + F ilt ek ™ S up re m e X T flo w ab le SA FR C SA FR C 1S -S EA s+ C FR C En am el an d de nt in SB S TC (1 50 0 cy cl es (b et w ee n 5° C a nd 55 °C ) 3m m in di am et er / 0. 75 ± 0. 25  m m / m in SE M A F C on tin ue ... Ta bl e 1. C on tin ua tio n. https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow 9 Troconis et al. R an ga pp a A (2 01 8) 37 64 P er m an en t m ol ar s C on st ic ® D ya d™ F lo w Δ PA + Te tr ic ® N -B on d+ T et ric ® N -F lo w SA FR C SA FR C ER A s+ C FR C D en tin SB S N ot / N A 3m m in di am et er / 1m m /m in SE M A F P oo rz an dp ou sh (2 01 9) 38 48 P rim ar y ca ni ne s an d fir st m ol ar s PA + O pt iB on d™ F L+ P re m is e™ F lo w ab le V er tis e Fl ow ® ER A s+ C FR C SA FR C D en tin SB S 10 00 cy cl es be tw ee n 5- 55 °C 3m m in di am et er / 1m m /m in St er eo m ic ro sc op e A F A bd el ra ou f (2 01 9) 39 En am el (n =2 4) D en tin (n =1 2) P er m an en t m ol ar s D ya d™ F lo w Δ PA + U ni ve rs al S in gl e B on d® + Fi lte k™ Z 35 0- X T SA FR C U A s+ C FR C En am el an d de nt in SB S N ot / N A 3m m in di am et er / 0. 5m m / m in D ig ita l m ic ro sc op e A F N A : n ot a pp lie d; N R : n ot re po rt ed P ol yA : P ol ya cr ili c A ci d; P A : P ho sp ho ric a ci d; S iC : s ili co n ca rb id e sa nd pa pe r; SB S: S he ar b on d st re ng th ; µ SB S: m ic ro -s he ar b on d st re ng th ; µ TB S: M ic ro -t en si le b on d st re ng th ; S EM : S ca nn in g El ec tr on M ic ro sc op y; F eg -S EM : fi el d- em is si on g un s ca nn in g el ec tr on m ic ro sc op y; 1 S- SE A s: o ne -s te p se lf- et ch -a dh es iv e sy st em ; 2 S- SE A s: tw o- st ep s se lf- et ch a dh es iv e sy st em ; E R A s: e tc h an d rin se a dh es iv e; U A s: u ni ve rs al a dh es iv e sy st em ; S A R C : s el f- ad he si ve re si n ce m en t; SA G IC : s el f- ad he si ve g la ss io no m er c em en t; TC : T he rm oc yc lin g; A F: a dh es iv e fa ilu re ; C F: c oh es iv e fa ilu re ; M F: m ix ed fa ilu re . Δ V er tis e® F lo w is m ar ke te d as D ya d™ F lo w in s om e co un tr ie s. O pt ib on d™ F L (K er r, O ra ng e, C A , U SA ), P re m is e™ F lo w ab le (K er r, O ra ng e, C A , U SA ), O pt ib on d™ X TR (K er r, O ra ng e, C A , U SA ), V er tis e Fl ow ® (K er r, O ra ng e, C A , U SA ), Fu si o™ L iq ui d D en tin (P en tr on C lin ic al , O ra ng e, U SA ), R ev ol ut io n™ (K er r, O ra ng e, C A , U SA ), Ea sy B on d (3 M E SP E, S t. P au l, M N , U SA ), Fi lte k™ S up re m e X T Fl ow (3 M E SP E, S t. P au l, M N , U SA ), X en o® V (D en ts pl y, D et re y, K os ta nz , G er m an y) , X F lo w ® (D en ts pl y, D et re y, K os ta nz , G er m an y) , G -B on d™ (G C , T ok yo , J ap an ), G ra di a® D ire ct L oF lo (G C , T ok yo , J ap an ), A dh SE O ne ® (I vo cl ar V iv ad en t, Sc ha an , L ie ch te ns te in ), Te tr ic ® E vo F lo w (I vo cl ar V iv ad en t, Sc ha an , L ie ch te ns te in ), R ev ol ut io n™ F or m ul a2 (K er r, O ra ng e, C A , U SA ), iB on d® (H er ae us K ul ze r, H an au , G er m an y) , O pt ib on d™ A ll in o ne (K er r, O ra ng e, C A , U SA ), Fu ji II® (G C , T ok yo , J ap an ), Fu ji® IX (G C , T ok yo , J ap an ), O pt ib on d™ S ol o P lu s (K er r, O ra ng e, C A , U SA ), G ua rd ia n Se al ® (K er r, O ra ng e, C A , U SA ), A dp er ™ P ro m pt L -P op (3 M E SP E, S t. P au l, M N , U SA ), C lin pr o™ S ea la nt (3 M E SP E, S t. P au l, M N U SA ), Fi lte k™ U lti m at e Fl ow ab le (3 M E SP E, S t. P au l, M N , U SA ), A dp er ™ E as y O ne (3 M E SP E, S t. P au l, M N , U SA ), Fi lte k™ Z 35 0 Fl ow ab le (3 M E SP E, S t. P au l, M N , U SA ), Sm ar t C em 2® (D en ts pl y, Y or k, P A , U SA ), R el yX ™ U ni ce m 2 (3 M E SP E, G er m an y) , Sp ee dC em ® (I vo cl ar V iv ad en t, Sc ha an , L ie ch te ns te in ), M ax C em E lit e™ (K er r, O ra ng e, C A , U SA ), R el yX ™ U ni ce m (3 M E SP E, G er m an y) , K et ac ™ C on di tio ne r R efi ll( 3M E SP E, G er m an y) , K et ac ™ F il P lu s A pl ic ap (3 M E SP E, G er m an y) , C le ar fil ™ S E B on d (K ur ar ay , O ka ya m a, J ap an ), P rim e  &  B on d N T® (D en ts pl y, Y or k, P A , U SA ), C on st ic ® (D M G , H am bu rg , G er m an y) , H el io se al F ® (I vo cl ar V iv ad en t, Sc ha an , L ie ch te ns te in ), G -a en ia l™ U ni ve rs al F lo (G C , T ok yo , J ap an ), C le ar fil ™ M aj es ty F lo w (K ur ar ay , O ka ya m a, J ap an ), A ll B on d SE ® (B is co In c, Sc ha um bu rg , I L, U SA ), A el ite ™ F lo (B is co In c, S ch au m bu rg , I L, U SA ), Si ng le B on d® (3 M E SP E, S t. P au l, M N , U SA ), G -a en ia l™ B on d (G C , T ok yo , J ap an ), Te tr ic ® N -B on d (I vo cl ar V iv ad en t, Sc ha an , L ie ch te ns te in ), Te tr ic ® N -F lo w (I vo cl ar V iv ad en t, Sc ha an , L ie ch te ns te in ), V en us D ia m on d Fl ow ® (H er ae us K ul ze r, H an au , G er m an y) ; U ni ve rs al S in gl e B on d® (3 M ES P E, G er m an y) . Ta bl e 1. C on tin ua tio n. https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow 10 Troconis et al. Risk of bias assessment Table 2 summarizes the risk of bias of the included studies. Only one of the studies reported sample size was calculated, but none of the studies reported if operators were blinded. Most included studies (n=21) did not report in the methodology section whether experiments were conducted by a single operator. Conversely, aspects such as randomization, teeth free of caries, samples with similar dimensions and manu- facturer instructions were reported. Overall, 20 studies scored medium risk of bias, two studies had low risk and other one scored high risk. Synthesis of results Enamel Bond Strength of SAFRCs and CFRCs Table 3 presents means, standard deviations and statistically significant differ- ences on enamel bond strength between SAFRCs and CFRCs. Mean enamel bond strength of SAFRCs (without prior phosphoric acid etching and/or adhesive system use) in permanent teeth showed the following variations: Vertise® Flow (from 2.035 to 15.3  Mpa9), Fusio™ Liquid Dentin (from 3.035 to 13.0 MPa9) and Constic® (from 3.929 to 4.5 MPa35). Overall, mean bond strength of SAFRCs to previously etched enamel varied from 9.878 to 23.1 MPa9. Conversely, the mean enamel bond strength of CFRCs associated with different types of adhesive systems ranged between 5.021 and 28.0 MPa9 in permanent teeth. The only study that used primary teeth to evaluate the bond strength of a SAFRC (Vertise® Flow) reported mean values of 9.29 MPa and 14.84 MPa for SiC and laser treated surfaces, respectively30. Most studies showed significant lower enamel bond strength values on SAFRCs compared to CFRCs. Dentin bond strength of SAFRCs and CFRCs Table 4 presents means, standard deviations and significant differences on den- tin bond strength between SAFRCs and CFRCs. Mean bond strength values of SAFRCs used without prior phosphoric acid etching and/or adhesive system use in permanent teeth showed the following variations: Vertise® Flow (from 1.035 to 32.66 MPa28), Fusio™ Liquid Dentin (from 2.835 to 17.7 MPa9) and Constic® (from 0.835 and 12.2  MPa37). Overall, the bond strength of SAFRCs used on previously etched dentin or associated to an adhesive system ranged between 5.488 and 35.08 MPa25. Two studies employed thermocycling33,36 and the results revealed that bond strength of Fusio™ Liquid Dentin decreased from 4.4 MPa to 1.6 MPa36 following thermocycling while the values for Vertise® Flow diminished from 3.0 to 1.0 MPa36 and from 22.1 to 21.1 MPa33. Six studies evaluated the bonding performance of SAFRCs to primary teeth16,22,26,30,34,38 without prior acid etching or adhesive system use. The mean dentin bond strength values were: Vertise® Flow (from 2.334 to 12.17 MPa30) and Fusio™ Liquid Dentin (14.15 MPa16). Two studies26,30 evaluated the dentin bond strength of Vertise® Flow associated to Optibond™ All-In-One adhesive system and mean bond strength ranged between 8.726 and 16.89 MPa30. On the other hand, mean bond strength of CFRCs associated to different adhesive systems varied from 14.8738 to 21.11 MPa16. Overall, most studies reported statistically significant lower dentin bond strength on SAFRCs compared to CFRCs groups. 11 Troconis et al. Ta bl e 2. R is k of b ia s as se ss m en t i n in cl ud ed s tu di es . A ut ho r R an do m iz at io n S am pl e si ze ca lc ul at io n Te et h fr ee o f ca ri es S am pl e w ith s im ila r di m en si on s Fa ilu re m od e ev al ua tio n M an uf ac tu re r’s in st ru ct io ns S in gl e op er at or O pe ra to r bl in de d R is k of b ia s Ju lo sk i e t a l8 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m W aj do w ic z et  a l20 N o N o Ye s Ye s Ye s Ye s N o N o M ed iu m V ic hi e t a l21 Ye s N o Ye s Ye s Ye s Ye s Ye s N o Lo w P ac ifi ci e t a l22 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m Ya zi ci e t a l23 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m M ar gv el as hv ili e t a l24 Ye s N o Ye s N o Ye s Ye s Ye s N o M ed iu m B ek ta s et  a l25 Ye s N o Ye s Ye s N o Ye s N o N o M ed iu m P oi te vi n et  a l9 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m Tu lo gl u et  a l26 Ye s N o Ye s N o N o Ye s N o N o H ig h R us so e t a l27 Ye s N o Ye s Ye s Ye s N o N o N o M ed iu m Yu an e t a l28 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m Sc hu ld t e t a l29 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m Sa ch de va e t a l16 Ye s N o Ye s Ye s N o Ye s N o N o M ed iu m M em ar po ur e t a l30 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m A lm az e t a l31 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m M os le m i e t a l32 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m B um ru ng ru an e t a l33 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m D ur m uş la r e t a l34 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m P et er so n et  a l35 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m B ru ec kn er e t a l36 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m R an ga pp a et  a l37 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m P oo rz an dp ou sh e t a l38 Ye s Ye s Ye s Ye s Ye s Ye s N o N o Lo w A bd el ra ou f e t a l39 Ye s N o Ye s Ye s Ye s Ye s N o N o M ed iu m 12 Troconis et al. Table 3. Means, standard deviations and statistically significant differences on enamel bond strength between SAFRCs and CFRCs. Permanent teeth Author (year) Materials Enamel Bond Strength in MPa Mean ± Standard deviation Significant difference Juloski (2012)8 PA + OptiBond™ FL + Premise ™ flowable PA + Vertise Flow® OptiBond™ XTR + Premise™ flowable. PA + OptiBond™ XTR + Premise™ flowable Vertise Flow® 16.83±2.93 9.87±4.24 8.59±4.39 7.04±3.63 6.61±2.41 A B B B B Wajdowicz (2012)20 PA + Optibond™ FL + Vertise Flow® PA + Optibond™ FL + Fusio™ Liquid Dentin PA + Optibond™ FL + Revolution™ Fusio™ Liquid Dentin Vertise Flow® 10.2±NR 8.5±NR 8.3±NR 3.6±NR 3.5±NR A A A B B Vichi A (2013)21 EasyBond + Filtek™ Supreme XT Flow Xeno® V + X Flow® G-Bond™ + Gradia® Direct LoFlo AdheSE One + Tetric Evo Flow® iBond® + Venus Flow® Vertise Flow® 12.1±5.0 10.4±4.0 7.7±1.9 6.0±4.0 5.0±1.8 2.6±2.6 A AB ABC BCD CD D Margvelashvili (2013)24 PA + Vertise Flow® Adper™ Prompt L-Pop + Clinpro™ Sealant PA + Guardian Seal 17.9±2.9 12.9±6.0 11.7±4.6 A AB B Poitevin (2013)9 Adper™ Prompt L-Pop + Filtek™ Supreme XT Flowable PA + Vertise Flow® Fusio™ Liquid Dentin Vertise Flow® Bur-cut:28.0±9.8/SiC- Ground:25.5±8.2 Bur-cut:23.1±7.1/SiC- Ground:22.6±7.6 Bur-cut:13.0±4.3/SiC- Ground:10.8±5.8 Bur-cut:11.0±4.2/SiC- Ground:15.3±6.0 A/A A/A B/B B/B Schuldt (2015)29 PA + Helioseal F® PA + Constic® Constic® 19.1±6.2 / TC:15.6±4.4 17.1±5.1 / TC:13.0±3.8 4.3±1.6 / TC:3.9±1.4 A/A A/AB C/C Peterson (2017)35 PA+Optibond™ FL + Venus Diamond Flow® Constic® Fusio™ Liquid Dentin Vertise Flow® 13.0±5.1 4.5±NR 3.0±NR 2.0±NR A B B B Brueckner (2017)36 Adper™ prompt L-pop + Filtek™ Supreme XT Flowable Experimental flowable Vertise Flow® Fusio™ Liquid Dentin 9.8±3.6 /TC: 8.3±3.7 4.4±3.0 / TC: 0.7±0.4 4.0±2.1 / TC: 0.4±0.4 3.5±2.3 / TC: 0.5±0.1 A/A B/B B/BC C/C Abdelraouf (2019)39 PA+ Universal Single Bond®+ Filtek™ Z350- XT Dyad™ FlowΔ Uncut: 24.6±6.2/ Cut: 12.7±4.5 Uncut: 3.5±1.6/ Cut: 4.5±2.7 A/B C/C Primary teeth Memarpour (2016)30 OptiBond™ All-In-One+Vertise Flow® OptiBond™ All-In-One+Premise™ Flowable Vertise Flow® SiC:15.05±2.12 / Er:YAG laser:16.16±3.16 SiC:13.06±2.36 / Er:YAG laser:13.90±2.76 SiC:9.29±1.56 / Er:YAG laser:14.84±1.32 A/A A/A B/A Different capital letters mean statistically significant difference (p≤0.05) among study groups, reported on individual studies. SiC: silicon carbide sandpaper; PolyA: Polyacrilic Acid; PA: Phosphoric acid; TC: thermocycling; NR: Not Reported; Er:YAG laser: erbium:yttrium aluminum garnet laser. ΔVertise® Flow is marketede as Dyad™ Flow in some countries. https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow 13 Troconis et al. Table 4. Means, standard deviations and statistically significant differences on dentin bond strength between SAFRCs and CFRCs. Permanent teeth Author (year) Materials Dentin Bond Strength in MPa Mean ± Standard deviation Significant difference Juloski (2012)8 OptiBond™ XTR + Premise™ flowable. PA + OptiBond™ XTR + Premise™ flowable PA + OptiBond™ FL + Premise ™ flowable PA + Vertise Flow® Vertise Flow® 10.60±5.0 9.60±4.91 8.15±3.88 5.48±4.94 2.94±2.79 A A AB BC C Vichi A (2013)21 EasyBond + Filtek™ Supreme XT Flow AdheSE One + Tetric Evo Flow Xeno® V + X Flow G-Bond™ + Gradia® Direct LoFlo iBond® + Venus Flow® Vertise Flow® 12.2±3.6 11.3±5.7 10.7±4.7 6.9±3.2 5.8±1.2 3.4±1.6 A A A AB AB B Yazici (2013)23 PA+ Optibond™ Solo Plus + Premise™ Flow Vertise Flow® SiC:14.64±6.75 / Er:YAG laser:16.81±6.76 SiC:7.92±2.91 / Er:YAG laser:12.61±3.49 A/A B/A Bektas (2013)25 Optibond™ All-In-One/Vertise flow® Optibond™ All-in-one/ Revolution™ Formula2 Vertise Flow® 35.08±7.0 29.33±5.19 23.70±5.28 A B C Poitevin (2013)9 PA+Optibond™ FL + Premise™ Flowable Xeno® V + X-Flow® Adper™ Prompt L-Pop + Filtek™ Supreme XT Flowable iBond® + Venus Flow® PA + Vertise Flow® Fusio™ Liquid Dentin AdheSe One® + Tetric EvoFlow® Vertise Flow® Bur-cut:44.8±13.6/SiC-Ground:NR Bur-cut:29.4±11.7/SiC-Ground:NR Bur-cut:25.4±10.0/SiC- Ground:34.9±13.4 Bur-cut:23.9±10.3/SiC-Ground:NR Bur-cut:18.7±11.0/SiC-Ground:NR Bur-cut:17.7±8.6/SiC- Ground:17.19.5 Bur-cut:7.9±5.3/SiC-Ground:NR Bur-cut:1.8±2.7 /SiC-Ground:5.36.7 A/NR A/NR A/A B/NR B/NR B/B C/NR C/C Tuloglu (2014)26 Optibond™ All-In-One + Filtek™ Ultimate Flowable Optibond™ All-In-One + Vertise Flow® Vertise Flow® 35.7±2.9 25.6±3.0 19.3±2.3 A B C Russo (2014)27 Optibond™ XTR + Premise™ Flowable PA+ Optibond™ FL + Premise™ Flowable Smart Cem2® RelyX™ Unicem 2 SpeedCem® MaxCem Elite™ Vertise Flow® RelyX™ Unicem Ketac™ Fil Plus Aplicap 25.3±13.0 20.8±7.8 11.6±6.9 11.3±7.3 10.7±5.5 9.6±5.3 7.1±4.0 6.3±3.2 5.8±3.0 A A B BC BCD BCDE CDE DE E Yuan H (2015)28 PA+Prime & Bond NT®+ Filtek™ Z350 Flowable Clearfil™ SE Bond+ Filtek™ Z350 Flowable Adper™ Easy One+ Filtek™ Z350 Flowable Dyad™ FlowΔ 37.96±7.15 35.63±5.23 34.90±8.33 32.66±8.20 A B B C Almaz (2016)31 Clearfil™ SE Bond+Clearfil™ Majesty Flow Adper™ Easy One +Filtek™ Ultimate Flow All-Bond SE® +Aelite™ Flo Vertise Flow® 14.70±2.47 12.90±2.40 8.29±2.66 2.94±1.95 A B C D Continue... https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow 14 Troconis et al. Moslemi (2016)32 SiC + Er,Cr:YSGG laser+PA+Single-Bond®+ CFRC (NR) SiC + PA+Single Bond® + CFRC (NR) SiC+ Er,Cr:YSGG laser + Dyad™ FlowΔ SiC + Dyad™ FlowΔ 20.62±0.125 19.72±0.01 16.42±0.01 12.85±0.01 A A A B Bumrungruan (2016)33 PA+OptiBond™ FL+ Premise™ Flowable OptiBond™ All-In-One+ Premise™ Flowable Vertise Flow® 32.2±8.94 / TC: 31.8±6.80 24.4±6.21 / TC: 23.9±7.14 22.1±6.13 / TC: 21.1±5.39 A/A B/B B/B Peterson (2017)35 PA+Optibond™ FL + Venus Diamond Flow® Fusio™ Liquid Dentin Vertise Flow® Constic® 11.2±6.3 2.8±NR 1.0±NR 0.8±NR A B B B Brueckner (2017)36 Adper™ Prompt L-Pop + Filtek™ Supreme XT Flowable Fusio™ Liquid Dentin Vertise Flow® Self-adhesive experimental flowable 11.6±3.5 / TC:5.4±3.7 4.4±1.3 / TC:1.6±2.1 3.0±2.6 / TC:1.0±1.6 2.4±4.1 / TC:0.7±0.0 A/A B/B B/B B/B Rangappa A (2018)37 PA+ Tetric® N-Bond+ Tetric® N-Flow Dyad™ FlowΔ Constic® Carbide bur:23.0±3.1 /Diamond bur:18.2±2.6 Carbide bur:14.6±2.1 /Diamond bur:11.9±1.7 Carbide bur:12.2±3.1 /Diamond bur:10.2±2.7 A/A B/B C/C Abdelraouf (2019)39 PA+ Universal Single Bond®+ Filtek™ Z350-XT Dyad™ FlowΔ 6.7±1.7 4.3±1.6 A B Primary teeth Pacifici (2013)22 Optibond™ All-In-One + Premise™ Flowable PA + Optibond™ FL + Premise™ Flowable PolyA + Fuji IX® PolyA + Fuji II® Vertise Flow® 16.59±1.77 16.02±3.15 6.04±3.76 5.91±4.80 4.31±2.66 A A B B B Tuloglu (2014)26 Optibond™ All-In-One + Filtek™ Ultimate Flowable Optibond™ All-In-One + Vertise Flow® Vertise Flow® 15.6±2.6 8.7±1.7 4.1±2.3 A B C Sachdeva (2016)16 Adhesive system (NR) +G-aenial Universal Flo® Fusio™ Liquid Dentin Dyad™ FlowΔ 21.11±1.168 14.15±1.168 12.03±1.168 A B B Memarpour (2016)30 OptiBond™ All-In-One+Premise™ Flowable OptiBond™ All-In-One+Vertise Flow® Vertise Flow® SiC:17.41±1.20 / Er:YAG laser:17.65±1.25 SiC:16.89±1.05 / Er:YAG laser:13.93±0.97 SiC:12.17±1.31 / Er:YAG laser:12.09±1.26 A/A A/B B/C Durmuşlar S (2017)34 G-aenial Bond® + G-aenial Universal Flo® PA+ Tetric® N-Bond+ Tetric® N-Flow Vertise Flow® 15.5±10.06 13.0±6.99 2.3±2.93 A A B Poorzandpoush (2019)38 PA+ OptiBond™+ Premise™ Flowable Vertise Flow® 14.87±3.42 6.60±1.97 A B Different capital letters mean statistically significant difference (p≤0.05) among study groups, reported on individual studies. SiC: silicon carbide sandpaper; PolyA: Polyacrilic Acid; PA: Phosphoric acid; TC: thermocycling; NR: Not Reported; Er:YAG laser: erbium:yttrium aluminum garnet laser. Δ Vertise® Flow is marketed as Dyad™ Flow in some countries. Table 4. Continuation. https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow https://www.dentalbauer.de/praxis/fuellungen/composite-lichthaertend/112766/els-extra-low-shrinkage-flow 15 Troconis et al. Discussion According to our knowledge, this is the first systematic review that critically approaches the bonding performance of SAFRCs on permanent and primary teeth, comparing the outcomes with CFRCs associated to different adhesive systems. There were considerable variations in enamel bond strength values among included studies, probably due to methodological divergences such as type of teeth, specimen preparation technique, bonding test, enamel treatment, bonding area and load speed which made it impossible to conduct a meta-analysis. The results of this systematic review revealed low enamel bond strength of SAFRCs (Table 3), which was in agree- ment with previous studies testing the same SAFRCs40,41 or self-etching sealants exhibiting similar chemical composition42,43. These findings may be explained due to enamel is a very complex and mineralized dental structure44, which requires a surface treatment prior to composite resin restorations or resin-based sealant placement. Phosphoric acid etching is the most used strategy to promote micro morphological alterations on enamel surface, leading to an effective resin interlocking and enhanced bond strength45,46. Some included studies revealed that SAFRCs applied under etched enamel exhibited higher bond strength values compared to SAFRCs used in self-etch mode9,29. However, only two studies aimed to compare the findings between res- in-based sealants and SAFRCs24,29, highlighting the need for future research using this approach to confirm if SAFRCs applied on etched enamel could show the same bond- ing performance than resin-based sealants. Functional monomers such as GPDM and 4-META incorporated into Vertise® Flow and Fusio™ Liquid Dentin, respectively, are highly acidic but do not promote the same enamel demineralization pattern that phosphoric acid etching47. Therefore, the bonding effectiveness of these functional monomers relies largely on the chemical interaction with dental HAp, which is lower and less stable compared to that promoted by 10-MDP monomer48. These facts may explain why Vertise® Flow and Fusio™ Liquid Dentin used without prior phosphoric acid etching performed significantly worse than CFRCs8,9,20,21,30,36 Other strategies to improve the bonding effectiveness of adhesive restorations involve lasers such as erbium:yttrium aluminum garnet laser (Er:YAG) or neodymium-doped yttrium aluminum garnet (Nd:YAG)49,50. This was confirmed in one included study30 using Er:YAG laser (120 mJ, 10 Hz, 1.20 W) at 1 mm of distance from primary enamel. The  results demonstrated that the bond strength of Vertise® Flow increased up to 38% following laser irradiation compared to SiC treatment, being comparable to bond strength values in control group (OptiBond™ All-In-One and Premise™ Flowable). The authors argued that the ablation effect promoted by Er:YAG laser on enamel surface resulted in a more irregular and microretentive morphological pattern, increasing sur- face area for micromechanical interlocking of flowable resin composites30, as reported in other micromorphological studies51,52. Despite Er:YAG laser treatment increased the enamel bond strength of tested SAFRC, high cost and learning curve to manipulate the device makes it an unfeasible option compared to phosphoric acid etching. Regarding dentin bond strength of SAFRCs, considerable mean variations were also found among included studies, probably due to the same reasons explained for enamel bonding tests. SAFRCs exhibited statistically lower dentin bond strength in contrast to CFRCs (Table 4)8,9,16,21-23,25-28,30-32,34-39 as well as predominant adhesive fail- 16 Troconis et al. ures8,9,22,23,28,30,31,33,34-39. This indicates a deficient and non-stable chemical interaction between functional monomers incorporated into SAFRCs and dentin microstruc- ture. These hypotheses were also demonstrated by a chemical study48 as well as on Transmission Electron Microscopy (TEM)53 and Scanning Electron Microscopy (SEM) studies assessing Vertise® Flow54. This self-adhesive flowable resin composite fol- lowed by Fusio™ Liquid Dentin were the most evaluated materials, especially in pri- mary and permanent dentin, showing similar bond strength values16,35,36. In contrast to GPDM and 4-META monomers, 10-MDP monomer promotes a superficial demin- eralization of dentin collagen fibers and enables a stable ionic interaction between phosphate group and remaining calcium ions of HAp55, leading to satisfactory den- tin bonding performance as demonstrated in other dental materials56,57. Nonethe- less, two included articles35,37 tested Constic®, a 10-MDP containing SAFRCs which revealed deficient dentin bond strength values, being comparable35 or lower37 than other SAFRCs that do not incorporate this phosphate monomer. This raises the sug- gestion that 10-MDP monomer by itself did not guarantee acceptable bonding per- formance of this SAFRC. There are other material-dependent factors such as water content, purity and functional monomer concentration which may negatively impact the bond strength of self-adhesive dental materials58,59. Self-adhesive resin cements60 and SAFRCs are flowable materials that present similar chemical composition. Self-adhesive resin cements also incorporate silanized inor- ganic fillers, methacrylate monomers and an activator-initiator system. In addition, self-adhesive resin cements contain functional monomers such as 10-MDP, 4-META, Dipentaerythritol penta-acrylate monophosphate (Penta-P) or others60. One  study27 included in this systematic review additionally compared the bond strength of Ver- tise® Flow and some self-adhesive resin cements, showing similar bonding perfor- mance to dentin. However, it is not possible to indicate SAFRCs as alternatives for metallic crowns, posts, inlays, onlays, or ceramic crowns cementation because dual- cured luting materials are desired for these clinical applications60. SAFRCs are not even recommended as light-cured resin cements because film thickness is not suit- able for that purpose and limited color availability5. Besides bond strength of SAFRCs to hard dental tissues, other relevant aspects such as color stability61, water sorption, solubility13, nanoleakage14, microleakage16,62, polymerization stress, gap formation63 need further research. Main strengths of this systematic review were extensive searches on different data- bases, strict selection criteria, risk of bias assessment and data extraction. Con- versely, one limitation was that most included studies evaluated the immediate bond strength of SAFRCs to hard dental tissues. This is not clinically relevant due to mechanical loading, chemical and hydrolytic degradation of laboratorial samples are important issues to predict the possible mechanical performance of adhesive resto- rations. In addition, the findings should be carefully interpreted due to most included evidence showing medium risk of bias (table 2) which appears to be usual in sys- tematic reviews of in vitro studies on dental adhesion18,19. The lack of methodological homogeneity was another limitation that made it impossible to conduct a meta-anal- ysis. Based on the results of the current systematic review, it is possible to affirm that chemical changes on SAFRCs as well as additional studies are required to consider 17 Troconis et al. these dental materials as a possible alternative in restorative and preventive dentistry. For a while, the use of phosphoric acid on enamel is essential on resin-based seal- ants placement. Also, the acid etching, especially in enamel and adhesive systems in both hard dental tissues remains as mandatory steps for successful restorative treatments involving resin composites8,9,20-23,26,27,28,31,33,36,37. Self-adhesive flowable resin composites, such as Vertise® Flow and Fusio™ Liquid Dentin used in self-etch mode exhibited lower bond strength to enamel and den- tin from permanent teeth, compared to conventional flowable resin composites. The  bonding performance of Constic® on both hard dental tissues should be eval- uated on future studies. The evidence is still limited to support that self-adhesive flowable resin composites applied under etched enamel exhibit comparable bond strength to resin-based sealants. The number of studies assessing the bond strength of self-adhesive flowable resin composites to primary teeth are limited. Acknowledgments The authors would like to thank the University of Cartagena (Colombia) for the sup- port through the databases provided, which allowed us to search the articles included in this systematic review. References 1. Van Dijken JW, Pallesen U. A randomized controlled three year evaluation of “bulk-filled” posterior resin restorations based on stress decreasing resin technology. Dent Mater. 2014 Sep;30(9):e245-51. doi: 10.1016/j.dental.2014.05.028. 2. Lawson NC, Robles A, Fu CC, Lin CP, Sawlani K. Two-year clinical trial of a universal adhesive in total-etch and self-etch mode in non-carious cervical lesions. J Dent. 2015 Oct;43(10):1229-34. doi: 10.1016/j.jdent.2015.07.009. 3. Van Dijken JW, Pallesen U. Randomized 3-year clinical evaluation of Class I and II posterior resin restorations placed with a bulk-fill resin composite and a one-step self-etching adhesive. J Adhes Dent. 2015 Feb;17(1):81-8. doi: 10.3290/j.jad.a33502. 4. Vogl V, Hiller KA, Buchalla W Federlin M, Schmalz G .Controlled, prospective, randomized, clinical split-mouth evaluation of partial ceramic crowns luted with a new, universal adhesive system/resin cement: results after 18 months. Clin Oral Investig. 2016 Dec;20(9):2481-92. doi: 10.1007/s00784- 016-1779-2. 5. Kerrl Corporation. Home page. Brea, CA. ©2021. Available from: https://www.kerrdental.com. 6. Pentron Clinical. Home page. Brea, CA. ©2021. Available from: https://www.pentron.com. 7. DMG DMG Chemisch-Pharmazeutische Fabrik GmbH. Hamburg, Germany. Available from: https://de.dmg-dental.com. 8. Juloski J, Goracci C, Rengo C, Giovannetti A, Vichi A, Vulicevic ZR, et al. Enamel and dentin bond strength of new simplified adhesive materials with and without preliminary phosphoric acid-etching. Am J Dent. 2012 aug;25(4):239-43. 9. Poitevin A, De Munck J, Van Ende A, Suyama Y, Mine A, Peumans M, et al. Bonding effectiveness of selfadhesive composites to dentin and enamel. Dent Mater. 2013 Feb;29(2):221-30. doi: 10.1016/j.dental.2012.10.001. https://www.ncbi.nlm.nih.gov/pubmed/?term=Federlin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26971352 https://www.ncbi.nlm.nih.gov/pubmed/?term=Schmalz%20G%5BAuthor%5D&cauthor=true&cauthor_uid=26971352 https://www.kerrdental.com/ https://www.pentron.com https://www.ncbi.nlm.nih.gov/pubmed/?term=Giovannetti%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23082390 https://www.ncbi.nlm.nih.gov/pubmed/?term=Vichi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23082390 https://www.ncbi.nlm.nih.gov/pubmed/?term=Vulicevic%20ZR%5BAuthor%5D&cauthor=true&cauthor_uid=23082390 https://www.ncbi.nlm.nih.gov/pubmed/?term=Poitevin%2525252525252525252525252520A%252525252525252525252525255BAuthor%25 https://www.ncbi.nlm.nih.gov/pubmed/?term=Suyama%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23107191 https://www.ncbi.nlm.nih.gov/pubmed/?term=Mine%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23107191 https://www.ncbi.nlm.nih.gov/pubmed/?term=Peumans%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23107191 https://www.ncbi.nlm.nih.gov/pubmed/?term=Bonding+effectiveness+of+self-adhesive+composites+to+dentin+and+enamel 18 Troconis et al. 10. Sabbagh J, Dagher S, El Osta N, Souhaid P. Randomized clinical trial of a self-adhering flowable composite for Class I restorations: 2-Year results. Int J Dent. 2017;2017:5041529. doi: 10.1155/2017/5041529. 11. Çelik EU, Aka B, Yilmaz F. Six-month clinical evaluation of a self-adhesive flowable composite in noncarious cervical lesions. J Adhes Dent. 2015 Aug;17(4):361-8. doi: 10.3290/j.jad.a34556. 12. Kucukyilmaz E, Savas S. Evaluation of different fissure sealant materials and flowable composites used as pit-and-fissure sealants: a 24-month clinical trial. Pediatr Dent. 2015;37(5):468-73. 13. Wei YJ, Silikas N, Zhang ZT, Watts DC. Diffusion and concurrent solubility of self-adhering and new resin-matrix composites during water sorption/desorption cycles. Dent Mater. 2011 Feb;27(2):197- 205. doi: 10.1016/j.dental.2010.10.014. 14. Naga AA, Yousef M, Ramadan R, Fayez Bahgat S, Alshawwa L. Does the use of a novel self-adhesive flowable composite reduce nanoleakage? Clin Cosmet Investig Dent. 2015 Mar;7:55-64. doi: 10.2147/CCIDE.S80462. 15. Celik EU, Kucukyilmaz E, Savas S. Effect of different surface pre-treatment methods on the microleakage of two different self-adhesive composites in Class V cavities. Eur J Paediatr Dent. 2015 Mar;16(1):33-8. 16. Sachdeva P, Goswami M, Singh D. Comparative evaluation of shear bond strength and nanoleakage of conventional and self-adhering flowable composites to primary teeth dentin. Contemp Clin Dent. 2016;7(3):326-31. doi: 10.4103/0976-237X.188549. 17. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009 Oct;62(10):1006-12. doi: 10.1016/j.jclinepi.2009.06.005. 18. Soares FZ, Follak A, da Rosa LS, Montagner AF, Lenzi TL, Rocha RO. Bovine tooth is a substitute for human tooth on bond strength studies: a systematic review and meta-analysis of in vitro studies. Dent Mater. 2016 Nov;32(11):1385-93. doi: 10.1016/j.dental.2016.09.019. 19. Madrid Troconis CC, Santos-Silva AR, Brandão TB, Lopes MA, de Goes MF. Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: a systematic review. Dent Mater. 2017 Nov;33(11):1229-43. doi: 10.1016/j.dental.2017.07.014. 20. Wajdowicz MN, Vandewalle KS, Means MT. Shear bond strength of new self-adhesive flowable composite resins. Gen Dent. 2012;60(2):e104-8. 21. Vichi A, Margvelashvili M, Goracci C, Papacchini F, Ferrari M. Bonding and sealing ability of a new self-adhering flowable composite resin in class I restorations. Clin Oral Investig. 2013 Jul;17(6):1497-506. doi: 10.1007/s00784-012-0846-6. 22. Pacifici E, Chazine M, Vichi A, Grandini S, Goracci C, Ferrari M. Shear-bond strength of a new self-adhering flowable restorative material to dentin of primary molars. J Clin Pediatr Dent. 2013;38(2):149-54. doi: 10.17796/jcpd.38.2.l3q5l3128k2870j7. 23. Yazici AR, Agarwal I, Campillo-Funollet M, Munoz-Viveros C, Antonson SA, Antonson DE, et al. Effect of laser preparation on bond strength of a self-adhesive flowable resin. Lasers Med Sci. 2013 Jan;28(1):343-7. doi: 10.1007/s10103-012-1158-4. 24. Margvelashvili M, Vichi A, Carrabba M, Goracci C, Ferrari M. Bond strength to unground enamel and sealing ability in pits and fissures of a new self-adhering flowable resin composite. J Clin Pediatr Dent. 2013;37(4):397-402. doi: 10.17796/jcpd.37.4.q4753m663808652w. 25. Bektas OO, Eren D, Akin EG, Akin H. Evaluation of a self-adhering flowable composite in terms of micro-shear bond strength and microleakage. Acta Odontol Scand. 2013;71(3-4):541-6. doi: 10.3109/00016357.2012.696697. https://www.ncbi.nlm.nih.gov/pubmed/?term=%2525252525252525252525252525C3%2525252525252525252525252525A7elik%25 https://www.ncbi.nlm.nih.gov/pubmed/?term=aka%2525252525252525252525252520b%25252525252525252525252525255bauthor%25252525252525252525252525255d&cauthor=true&cauthor_uid=26258177 https://www.ncbi.nlm.nih.gov/pubmed/?term=y https://www.ncbi.nlm.nih.gov/pubmed/?term=Fayez%20Bahgat%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25848318 https://www.ncbi.nlm.nih.gov/pubmed/?term=Alshawwa%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25848318 http://www.ncbi.nlm.nih.gov/pubmed/?term=Moher%252525252525252525252525252520D%25252525252525252525252525255BAuthor%25252525252525252525252525255D&cauthor=true&cauthor_uid=19631508 http://www.ncbi.nlm.nih.gov/pubmed/?term=Liberati%252525252525252525252525252520A%25252525252525252525252525255BAuthor%25252525252525252525252525255D&cauthor=true&cauthor_uid=19631508 http://www.ncbi.nlm.nih.gov/pubm https://www.ncbi.nlm.nih.gov/pubmed/?term=Altman%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=19631508 https://www.ncbi.nlm.nih.gov/pubmed/?term=PRISMA%20Group%5BCorporate%20Author%5D https://www.ncbi.nlm.nih.gov/pubmed/?term=Montagner%20AF%5BAuthor%5D&cauthor=true&cauthor_uid=27692438 https://www.ncbi.nlm.nih.gov/pubmed/?term=Lenzi%20TL%5BAuthor%5D&cauthor=true&cauthor_uid=27692438 https://www.ncbi.nlm.nih.gov/pubmed/?term=Rocha%20RO%5BAuthor%5D&cauthor=true&cauthor_uid=27692438 https://www.ncbi.nlm.nih.gov/pubmed/?term=Lopes%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=28801178 https://www.ncbi.nlm.nih.gov/pubmed/?term=de%20Goes%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=28801178 http://www.ncbi.nlm.nih.gov/pub http://www.ncbi.nlm.nih.gov/pubmed/?term=margvelashvili%25252525252525252525252525252520m%2525252525252525252525252525255bauthor%2525252525252525252525252525255d&cauthor=true&cauthor_uid=23086332 http://www.ncb https://www.ncbi.nlm.nih.gov/pubmed/?term=Grandini%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24683779 https://www.ncbi.nlm.nih.gov/pubmed/?term=Goracci%20C%5BAuthor%5D&cauthor=true&cauthor_uid=24683779 https://www.ncbi.nlm.nih.gov/pubmed/?term=Ferrari%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24683779 http://www.ncbi.nlm.nih.gov/pubmed/?term=yazici%25252525252525252525252525252520ar%2525252525252525252525252525255bauthor%2525252525252525252525252525255d&cauthor=true&cauthor_uid=22821150 http://www.ncbi.nlm.nih.gov/pubmed/?term=agarwal%25252525252525252525252525252520i%2525252525252525252525252525255bauthor%2525252525252525252525252525255d&cauthor=true&cauthor_uid=22821150 http://www.ncbi.nlm.nih.gov/pubmed/?term=campillo-funollet%25252525252525252525252525252520m%2525252525252525252525252525255bauthor%2525252525252525252525252525255d&cauthor=true&cauthor_uid=22821150 https://www.ncbi.nlm.nih.gov/pubmed/?term=Munoz-Viveros%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22821150 https://www.ncbi.nlm.nih.gov/pubmed/?term=Antonson%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=22821150 https://www.ncbi.nlm.nih.gov/pubmed/?term=Antonson%20DE%5BAuthor%5D&cauthor=true&cauthor_uid=22821150 https://www.ncbi.nlm.nih.gov/pubmed/?term=Mang%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22821150 https://www.ncbi.nlm.nih.gov/pubmed/?term=Goracci%20C%5BAuthor%5D&cauthor=true&cauthor_uid=24046989 https://www.ncbi.nlm.nih.gov/pubmed/?term=Ferrari%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24046989 19 Troconis et al. 26. Tuloglu N, Sen Tunc E, Ozer S, Bayrak S. Shear bond strength of self-adhering flowable composite on dentin with and without application of an adhesive system. J Appl Biomater Funct Mater. 2014 Sep;12(2):97-101. doi: 10.5301/jabfm.5000166. 27. Scaminaci Russo D, Pierleoni F, Buti J, Ferrari M, Giachetti L. In vitro comparison of bonding effectiveness of different adhesive strategies. Am J Dent. 2014 Dec;27(6):323-9. 28. Yuan H, Li M, Guo B, Gao Y, Liu H, Li J. Evaluation of microtensile bond strength and microleakage of a self-adhering flowable composite. J Adhes Dent. 2015 Dec;17(6):535-43. doi: 10.3290/j.jad.a35253. 29. Schuldt C, Birlbauer S, Pitchika V, Crispin A, Hickel R, Ilie N, et al. Shear bond strength and microleakage of a new self-etching/self-adhesive pit and fissure sealant. J Adhes Dent. 2015 Dec;17(6):491-7. doi: 10.3290/j.jad.a35255. 30. Memarpour M, Shafiei F, Razmjoei F, Kianimanesh N. Effect of laser preparation on adhesion of a self-adhesive flowable composite resin to primary teeth. Microsc Res Tech. 2016 Apr;79(4):334-41. doi: 10.1002/jemt.22635. 31. Almaz ME, Oba AA, Sönmez IŞ, Sönmez D. Comparison of shear bond strength of self-adhering flowable composite with different flowable composites to dentin. Eur J Gen Dent 2016;5(1):6-10. doi: 10.4103/2278-9626.172735. 32. Moslemi M, Fotouhi Ardakani F, Javadi F, Khalili Sadrabad Z, Shadkar Z, Shadkar MS. Evaluation of Er,Cr:YSGG Laser effect on microshear bond strength of a self-adhesive flowable composite in the dentin of permanent molar: an in vitro study. Scientifica (Cairo). 2016;2016:4856285. doi: 10.1155/2016/4856285. 33. Bumrungruan C, Sakoolnamarka R. Microshear bond strength to dentin of self-adhesive flowable composite compared with total-etch and all-in-one adhesives. J Dent Sci. 2016 Dec;11(4):449-56. doi: 10.1016/j.jds.2016.08.003. 34. Durmuşlar S, Ölmez A. Microtensile Bond strength and failure modes of flowable composites on primary dentin with application of different adhesive strategies. Contemp Clin Dent. 2017;8(3):373-9. doi: 10.4103/ccd.ccd_310_17. 35. Peterson J, Rizk M, Hoch M, Wiegand A. Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite. Odontology. 2018 Apr;106(2):171-80. doi: 10.1007/ s10266-017-0324-3. 36. Brueckner C, Schneider H, Haak R. Shear bond strength and tooth-composite interaction with self- adhering flowable composites. Oper Dent. 2017;42(1):90-100. doi: 10.2341/15-365-L. 37. Rangappa A, Srinivasulu J, Rangaswamy V, Eregowda S, Lakshminarasimhaiah V, Lingareddy U. Comparative evaluation of bond strength of self-adhering flowable composites to the dentin prepared with different burs: An in vitro study. J Conserv Dent. 2018;21(6):618-21. doi: 10.4103/JCD. JCD_71_18. 38. Poorzandpoush K, Shahrabi M, Heidari A, Hosseinipour ZS. Shear bond strength of self-adhesive flowable composite, conventional flowable composite and resin-modified glass ionomer cement to primary dentin. Front Dent. 2019;16(1):62-8. doi: 10.18502/fid.v16i1.1111. 39. Abdelraouf RM, Mohammed M, Abdelgawad F. Evaluation of shear-bond-strength of dental self-adhering flowable resin-composite versus total-etch one to enamel and dentin surfaces: an in-vitro study. Open Access Maced J Med Sci. 2019 Jul;7(13):2162-6. doi: 10.3889/ oamjms.2019.579. 40. Xu YX, Han JM, Lin H. Study on the properties of self-adhering flowable composite. Beijing Da Xue Xue Bao. 2012 Apr;44(2):303-6. http://www.ncbi.nlm.nih.gov/pubmed/?term=tuloglu%25252525252525252525252525252520n%2525252525252525252525252525255bauthor%2525252525252525252525252525255d&cauthor=true&cauthor_uid=24127036 http://www.nc http://www.ncbi.nlm.nih.gov/pubmed/?term=bayrak%252525252 https://www.ncbi.nlm.nih.gov/pubmed/?term=Ferrari%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25707087 https://www.ncbi.nlm.nih.gov/pubmed/?term=Giachetti%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25707087 https://www.ncbi.nlm.nih.gov/pubmed/?term=Gao%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=26734678 https://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20H%5BAuthor%5D&cauthor=true&cauthor_uid=26734678 https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26734678 https://www.ncbi.nlm.nih.gov/pubmed/?term=Crispin%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26734672 https://www.ncbi.nlm.nih.gov/pubmed/?term=Hickel%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26734672 https://www.ncbi.nlm.nih.gov/pubmed/?term=Ilie%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26734672 https://www.ncbi.nlm.nih.gov/pubmed/?term=K%C3%BChnisch%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26734672 https://www.ncbi.nlm.nih.gov/pubmed/?term=Khalili%20Sadrabad%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=27493829 https://www.ncbi.nlm.nih.gov/pubmed/?term=Shadkar%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=27493829 https://www.ncbi.nlm.nih.gov/pubmed/?term=Shadkar%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=27493829 20 Troconis et al. 41. Veli I, Akin M, Kucukyilmaz E, Uysal T. Shear bond strength of a self-adhering flowable composite when used for lingual retainer bonding. J Orofac Orthop. 2014 Sep;75(5):374-83. doi: 10.1007/ s00056-014-0231-y. 42. Wadenya RO, Yego C, Blatz MB, Mante F. Bond strength and microleakage of a new self-etch sealant. Quintessence Int. 2009 Jul-Aug;40(7):559-6. 43. Biria M, Ghasemi A, Torabzadeh H, Shisheeian A, Baghban AA. Assessment of microshear bond strength: self-etching sealant versus conventional sealant. J Dent (Tehran). 2014 Mar;11(2):137-42. 44. Nanci A. Ten Cate’s oral histology. 8th ed. Quebec; 2012. 45. Wang WN, Yeh CL, Fang BD, Sun KT, Arvystas MG. Effect of H3PO4 concentration on bond strength. Angle Orthod. 1994;64(5):377-82. doi: 10.1043/0003-3219(1994)064<0377:EOHCOB>2.0.CO;2. 46. Erhardt MC, Cavalcante LM, Pimenta LA. Influence of phosphoric acid pretreatment on self-etching bond strengths. J Esthet Restor Dent. 2004;16(1):33-40; discussion 41. doi: 10.1111/j.1708- 8240.2004.tb00448.x. 47. Nikaido T, Ichikawa C, Li N, Takagaki T, Sadr A, Yoshida Y, et al. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone. Dent Mater J. 2011;30(5):576-82. doi: 10.4012/dmj.2010-214. 48. Yoshihara K, Nagaoka N, Hayakawa S, Okihara T, Yoshida Y, Van Meerbeek B. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin. Dent Mater. 2018 Jul;34(7):1072-81. doi: 10.1016/j.dental.2018.04.003. 49. Gan J, Liu S, Zhou L, Wang Y, Guo J, Huang C. Effect of Nd:YAG Laser irradiation pretreatment on the long-term bond strength of etch-and-rinse adhesive to dentin. Oper Dent. 2017;42(1):62-72. doi: 10.2341/15-268-L. 50. Dahiya A, Gandhi P, Baba NZ. Comparative evaluation of the effect of laser etching on the shear bond strength of crowns cemented with two different luting agents: an in vitro study. Int J Prosthodont. Int J Prosthodont. 2017 Sep/Oct;30(5):485-6. doi: 10.11607/ijp.5358. 51. Hess JA. Subsurface morphologic changes of ND:YAG laser-etched enamel. Lasers Surg Med. 1997;21(2):193-7. doi: 10.1002/(sici)1096-9101(1997)21:2<193::aid-lsm11>3.0.co;2-g. 52. Suhaimi FM, Zainol Alam NZ, Mat Ariffin S, Abd Razak NA, Razab MKAA. Surface modifications of human tooth using Nd:YAG laser for dental applications. Conf Proc IEEE Eng Med Biol Soc. 2017 Jul;2017:4537-40. doi: 10.1109/EMBC.2017.8037865. 53. Mine A, De Munck J, Van Ende A, Poitevin A, Matsumoto M, Yoshida Y, et al. Limited interaction of a self-adhesive flowable composite with dentin/enamel characterized by TEM. Dent Mater. 2017 Feb;33(2):209-17. doi: 10.1016/j.dental.2016.11.010. 54. Hamdy TM. Interfacial microscopic examination and chemical analysis of resin-dentin interface of self-adhering flowable resin composite. Version 4. F1000Res. 2017 Sep;6:1688. doi: 10.12688/ f1000research.12306.4. 55. Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL. State of the art of self-etch adhesives. Dent Mater. 2011 Jan;27(1):17-28. doi: 10.1016/j.dental.2010.10.023. 56. Wang R, Shi Y, Li T, Pan Y, Cui Y, Xia W. Adhesive interfacial characteristics and the related bonding performance of four self-etching adhesives with different functional monomers applied to dentin. J Dent. 2017 Jul;62:72-80. doi: 10.1016/j.jdent.2017.05.010. 57. Oliveira B, Ulbaldini A, Sato F, Baesso ML, Bento AC, Andrade L, et al. Chemical interaction analysis of an adhesive containing 10-Methacryloyloxydecyl Dihydrogen Phosphate (10-MDP) with the dentin in noncarious cervical lesions. Oper Dent. 2017 Jul/Aug;42(4):357-366. doi: 10.2341/16-062-L. http://www.ncbi.nlm.nih.gov/pubmed/?term=wadenya%252525252525252525252525252520ro%25252525252525252525252525255bauthor%25252525252525252525252525255d&cauthor=true&cauthor_uid=19626230 http://www.ncbi.nlm.nih.gov/pubm http://www.ncbi.nlm.nih.gov/pubmed/?term=blatz%2525252525252525252525252520mb%25 http://www.ncbi.nlm.nih.gov/pubmed/?term=mante%2525252525252525252525252520f%252525252525252525252525255bauthor%25252525252525 https://www.ncbi.nlm.nih.gov/pubmed/?term=Shisheeian%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24910688 https://www.ncbi.nlm.nih.gov/pubmed/?term=Baghban%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=24910688 https://www.ncbi.nlm.nih.gov/pubmed/?term=Sun%20KT%5BAuthor%5D&cauthor=true&cauthor_uid=7802332 https://www.ncbi.nlm.nih.gov/pubmed/?term=Arvystas%20MG%5BAuthor%5D&cauthor=true&cauthor_uid=7802332 https://www.ncbi.nlm.nih.gov/pubmed/?term=Takagaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=21946477 https://www.ncbi.nlm.nih.gov/pubmed/?term=Sadr%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21946477 https://www.ncbi.nlm.nih.gov/pubmed/?term=Yoshida%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=21946477 https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=27689772 https://www.ncbi.nlm.nih.gov/pubmed/?term=Guo%20J%5BAuthor%5D&cauthor=true&cauthor_uid=27689772 https://www.ncbi.nlm.nih.gov/pubmed/?term=Huang%20C%5BAuthor%5D&cauthor=true&cauthor_uid=27689772 https://www.ncbi.nlm.nih.gov/pubmed/?term=Abd%20Razak%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=29060906 https://www.ncbi.nlm.nih.gov/pubmed/?term=Razab%20MKAA%5BAuthor%5D&cauthor=true&cauthor_uid=29060906 21 Troconis et al. 58. Yoshihara K, Yoshida Y, Hayakawa S, Nagaoka N, Irie M, Ogawa T, et al. Nanolayering of phosphoric acid ester monomer on enamel and dentin. Acta Biomater. 2011 Aug;7(8):3187-95. doi: 10.1016/j. actbio.2011.04.026. 59. Yoshihara K, Nagaoka N, Okihara T, Kuroboshi M, Hayakawa S, Maruo Y, et al. Functional monomer impurity affects adhesive performance. Dent Mater. 2015 Dec;31(12):1493-501. doi: 10.1016/j. dental.2015.09.019. 60. Manso AP, Carvalho RM. Dental cements for luting and bonding restorations: self-adhesive resin cements. Dent Clin North Am. 2017 Oct;61(4):821-34. doi: 10.1016/j.cden.2017.06.006. 61. Sanal FA, Kilinc H. Evaluating ceramic repair materials in terms of bond strength and color stability. Int J Prosthodont. 2020;33(5):536-45. doi: 10.11607/ijp.6760. 62. Hosseinipour ZS, Heidari A, Shahrabi M, Poorzandpoush K. Microleakage of a self-adhesive flowable composite, a self-adhesive fissure sealant and a conventional fissure sealant in permanent teeth with/without saliva contamination. Front Dent. 2019;16(4):239-47. doi: 10.18502/fid.v16i4.2082. 63. Nakano EL, de Souza A, Boaro L, Catalani LH, Braga RR, Gonçalves F. Polymerization stress and gap formation of self-adhesive, bulk-fill and flowable composite resins. Oper Dent. 2020 Nov;45(6):E308-16. doi: 10.2341/19-166-L.