Paper Title (use style: paper title) ISSN : 2715-2448 | E-ISSN : 2715-7199 Vol.2 No.1 January 2021 Buana Information Technology and Computer Sciences (BIT and CS) 1 | Vol.2 No.1, January 2021 Buana Information Technology and Computer Sciences (BIT and CS) Implementation of Simple Additive Weighting (SAW) Method To Determine Exemplary PKH Social Worker (Case Study: PPKH Garut Regency) Topan Setiawan Information Systems Study Program Faculty of Computer Science Universitas Ma’soem Bandung, Indonesia topansetiawan@masoemuniversity.ac.id Bayu Priyatna Information System, Faculty of Engineering and Computer Science Universitas Buana Perjuangan Karawang, Indonesia bayu.priyatna@ubpkarawang.ac.id ‹β› Abstract—One measure of the success of an employee in carrying out his job is his election as an exemplary employee in the agency where he works. The selection must of course be based on standard measurement and objective assessment, the goal is that the predetermined results can be justified. A decision support system using the Simple Additive Weighting (SAW) method can help PPKH Garut regency in determining exemplary PKH social worker in each sub-district PPKH unit, this method will look for weight values for each predetermined criterion consisting of quantity, integrity, dedication, reliability, initiative, diligence, attitude, motivation and presence. The data sample taken in this research was PPKH X Sub-distric, where the results of the research are in the form of a ranking that can support the decision to choose an exemplary PKH social worker in PPKH Garut Regency. Keywords: Decision Support System, PKH Social Worker, PPKH Garut Regency. Abstrak —Salah satu ukuran keberhasilan seorang pegawai dalam menjalankan pekerjaannya adalah terpilihnya sebagai pegawai teladan di instansi tempatnya bekerja. Pemilihan tersebut tentunya harus didasarkan pada standar ukuran dan penilaian yang objektif, tujuannya agar hasil yang telah ditentukan dapat dipertanggung jawabkan. Sistem pendukung keputusan dengan menggunakan metode Simple Additive Weighting (SAW) dapat membantu PPKH Kab. Garut dalam menentukan pendamping sosial PKH teladan di setiap unit PPKH kecamatan, metode ini akan mencari nilai bobot untuk setiap kriteria yang telah ditentukan yang terdiri dari kuantitas, integritas, dedikasi, kehandalan, inisiatif, kerajinan, sikap, motivasi dan kehadiran. Sampel data yang diambil pada penelitian ini adalah PPKH Kec. X, dimana hasil penelitian berupa pemeringkatan yang dapat mendukung keputusan pemilihan pendamping sosial PKH teladan di PPKH Kab. Garut. Kata Kunci: Sistem Pendukung Keputusan, Pendamping Sosial PKH, PPKH Kab. I. INTRODUCTION Program Keluarga Harapan (PKH) is a program that provides conditional social assistance to Keluarga Penerima Manfaat (KPM) that has been established by the Ministry of Social Affairs or Kementerian Sosial (Kemensos), as an effort to accelerate poverty reduction and has been launched by the Government of Indonesia since 2007 [1]. PKH implementers or Pelaksana PKH (PPKH) are agencies scattered in every region starting from the central level (PPKH Pusat), provincial level (PPKH Provinsi), regency or city level (PPKH Kabupaten / Kota) and sub- district level (PPKH Kecamatan). PKH social worker at the sub-district level are employees or people who have direct contact with KPMs to ensure that KPMs get their rights and carry out their obligations in accordance with the terms and conditions. In an uncertain period of time, PPKH Garut regency in collaboration with the Garut regency Social Service has twice selected exemplary PKH social workers to give appreciation to workers who have shown achievements in carrying out their work. The selection was carried out on a bottom-up basis starting at the sub-district level where workers selected from the sub-district level were submitted to the regency level to take further tests. In its implementation the standards for measuring and assessing work performance are less clear and not transparent, so that dissatisfaction for those who feel that their performance has been maximized but are not selected. This in turn creates a negative stigma that the selection is subjective and the reward received is not based on work performance, but on other factors outside of work assignments. To overcome this problem, it is necessary to implement a decision support system with standardized measures so that the results can be accounted for [1]. Decision support system (DSS) is a system that is used to assist and determine decisions to information users to be more precise in solving problems that exist within a company, agency, or organization by data and certain methods [2]. One method that can be applied is the Simple Additive Weighting (SAW) method where the result is a ranking of exemplary employees [3]. By using the DSS in decision making, the standard for measuring and evaluating the performance of each worker will be determined properly, so that all parties involved can accept the decision [2]. mailto:topansetiawan@masoemuniversity.ac.id mailto:bayu.priyatna@ubpkarawang.ac.id 2 | Vol.2 No.1, January 2021 II. METHOD A. Research Framework Input Output Study of Literature Data Collection Data Processing Reporting Understanding Theories & Concepts Data and Information Required List of Worker Ratings Research Report Fig. 1. Research Framework B. SAW Method SAW is a simple multi-criteria decision-making method [4]. The steps in this method include: 1. Assessment criteria (Cj, j = 1, 2, 3,…, m), which are used as a reference in making this decision are shown in Table I. TABLE I. ASSESSMENT CRITERIA Kode Criteria (Cj) C1 Quantity C2 Integrity C3 Dedication C4 Realibility C5 Initiative C6 Diligence C7 Attitude C8 Motivation C9 Presence Information: Quantity : How quickly the worker gets the job done Integrity : How committed the worker is to the job Dedication : How much dedication is devoted by worker to realize the ideals and success of the PKH program Realibility : Relates to whether or not worker can be relied on on certain issues Initiative : How often worker take corrective action, make suggestions for job improvement and accept responsibility for completing work Diligence : Willingness to carry out tasks without coercion and also of a routine nature Attitude : Worker's behavior towards the organization or boss or coworkers Motivation : How successful are worker in motivating KPM to leave PKH program participation. Presence : How often are worker present at the workplace to work or attend internal organization meetings 2. Determine the weight of each criterion with (Wj, j = 1, 2, 3, …, m) where ∑Wj = 1. 3. Determine a decision matrix using Equation (1). if j is benefit criteria (1) if j is cost criteria Information: rij : normalized performance rating value xij : the attribute value that each criterion has Max xij : the largest value of each criterion Min xij : the smallest value of each criterion Benefit : if the largest value is the best Cost : if the smallest value is the best 4. Calculating the preference value for each alternative using Equation (2). (2) Information: Vi : ranking for each alternative Wj : the weighted value of each criterion rij : normalized performance rating value The biggest Vi value indicates that the alternative Ai is an alternative choice. III. RESULTS AND DISCUSSION A. Determination of the Scale and Weight of the Criteria Determination of alternative values for each criterion using a Likert scale of 9-1 [5], with the following formulations: TABLE II. CRITERIA LIKERT SCALE Value Quality 9 A 8 A- 7 B+ 6 B 5 B- 4 C+ 3 C 2 C- 1 D The weight for each criterion based on the value of importance is addressed as in Table III. TABEL III. CRITERIA WEIGHT 3 | Vol.2 No.1, January 2021 Kode Criteria (Cj) Weight (Wj) C1 Quantity 0.05 C2 Integrity 0.20 C3 Dedication 0.10 C4 Realibility 0.03 C5 Initiative 0.09 C6 Diligence 0.15 C7 Attitude 0.17 C8 Motivation 0.08 C9 Presence 0.13 Summary 1.00 B. Implementation This study used a sample of 21 PKH Social Workers in X Sub-district, with the following steps: 1. Value tabulation for each of the alternative criteria obtained from interviews with informants and supporting data is shown in Table IV. TABEL IV. WORKER DATA AND VALUE TABULATION Alternative C1 C2 C3 C4 C5 C6 C7 C8 C9 Worker 1 A A A A A B+ A B+ A Worker 2 A C+ B B+ B B+ B+ B B Worker 3 B+ B B B B+ C+ C B C Worker 4 B B+ B+ B B+ B B+ B B+ Worker 5 B B+ C C B C+ B+ B C+ Worker 6 B C+ B C+ B B B B B Worker 7 A C+ B B A A B+ A B+ Worker 8 A B+ A A B A B+ A A Worker 9 A B+ B+ B+ B B A B B Worker 10 B A C A D B B B B Worker 11 A B A B+ B A B B+ A Worker 12 A B B+ B+ B B+ B A B Worker 13 A B A A B B B+ B+ B+ Worker 14 B D D C D D C D D Worker 15 C+ B+ B C+ B C B C+ C+ Worker 16 B A A B B B B B A Worker 17 A A A A A A A B+ A Worker 18 A B B B B B B B B Worker 19 C+ B+ B B C+ B B C+ C+ Worker 20 B C B B B B+ C+ B B+ Worker 21 B B C+ B B+ C+ B+ B C+ 2. The data value for each of the alternative criteria is then converted according to the Likert scale of 9-1. So that you get the following results: TABEL V. CRITERIA VALUE CONVERSION TABLE Alternative C1 C2 C3 C4 C5 C6 C7 C8 C9 Worker 1 9 9 9 9 9 7 9 7 9 Worker 2 9 4 6 7 6 7 7 6 6 Worker 3 7 6 6 6 7 4 3 6 3 Worker 4 6 7 7 6 7 6 7 6 7 Worker 5 6 7 3 3 6 4 7 6 4 Worker 6 6 4 6 4 6 6 6 6 6 Worker 7 9 4 6 6 9 9 7 9 7 Worker 8 9 7 9 9 6 9 7 9 9 Worker 9 9 7 7 7 6 6 9 6 6 Worker 10 6 9 3 9 1 6 6 6 6 Worker 11 9 6 9 7 6 9 6 7 9 Worker 12 9 6 7 7 6 7 6 9 6 Worker 13 9 6 9 9 6 6 7 7 7 Worker 14 6 1 1 3 1 1 3 1 1 Worker 15 4 7 6 4 6 3 6 4 4 Worker 16 6 9 9 6 6 6 6 6 9 Worker 17 9 9 9 9 9 9 9 7 9 Worker 18 9 6 6 6 6 6 6 6 6 Worker 19 4 7 6 6 4 6 6 4 4 Worker 20 6 3 6 6 6 7 4 6 7 Worker 21 6 6 4 6 7 4 7 6 4 3. Normalizing the decision matrix using Equation (1). If a criterion is included in the profit criteria type, the greater the value the better. Meanwhile, if the criteria are included in the type of cost criteria, the smaller the value the better. TABLE VI. TYPES OF CRITERIA Kode Criteria (Cj) Type C1 Quantity Benefit C2 Integrity Benefit C3 Dedication Benefit C4 Realibility Benefit C5 Initiative Benefit C6 Diligence Benefit C7 Attitude Benefit C8 Motivation Benefit C9 Presence Benefit 1) Quantity r11 = = r21 = = 1 … r211 = = 2) Integrity r12 = = r22 = = … r212 = = 3) Dedication r13 = = r23 = = … r213 = = … 4 | Vol.2 No.1, January 2021 9) Presence r19 = = r29 = = … r219 = = TABLE VII. NORMALIZATION RESULTS Alternative R1 R2 R3 … R9 Worker 1 1.00 1.00 1.00 … 1.00 Worker 2 1.00 0.44 0.67 … 0.67 Worker 3 0.78 0.67 0.67 … 0.33 Worker 4 0.67 0.78 0.78 … 0.78 Worker 5 0.67 0.78 0.33 … 0.44 Worker 6 0.67 0.44 0.67 … 0.67 Worker 7 1.00 0.44 0.67 … 0.78 Worker 8 1.00 0.78 1.00 … 1.00 Worker 9 1.00 0.78 0.78 … 0.67 Worker 10 0.67 1.00 0.33 … 0.67 Worker 11 1.00 0.67 1.00 … 1.00 Worker 12 1.00 0.67 0.78 … 0.67 Worker 13 1.00 0.67 1.00 … 0.78 Worker 14 0.67 0.11 0.11 … 0.11 Worker 15 0.44 0.78 0.67 … 0.44 Worker 16 0.67 1.00 1.00 … 1.00 Worker 17 1.00 1.00 1.00 … 1.00 Worker 18 1.00 0.67 0.67 … 0.67 Worker 19 0.44 0.78 0.67 … 0.44 Worker 20 0.67 0.33 0.67 … 0.78 Worker 21 0.67 0.67 0.44 … 0.44 4. Calculating the preference value of each worker using Equation (2). VWorker1 = (0.05*1.00) + (0.20*1.00) + (0.10*1.00) + (0.03*1.00) + (0.09*1.00) + (0.15*0.78) + (0.17*1.00) + (0.08*0.78) + (0.13*1.00) = 0.95 VWorker2 = (0.05*1.00) + (0.20*0.44) + (0.10*0.67) + (0.03*0.78) + (0.09*0.67) + (0.15*0.78) + (0.17*0.78) + (0.08*0.67) + (0.13*0.67) = 0.68 VWorker3 = (0.05*0.78) + (0.20*0.67) + (0.10*0.67) + (0.03*0.67) + (0.09*0.78) + (0.15*0.44) + (0.17*0.33) + (0.08*0.67) + (0.13*0.33) = 0.55 VWorker4 = (0.05*0.67) + (0.20*0.78) + (0.10*0.78) + (0.03*0.67) + (0.09*0.78) + (0.15*0.67) + (0.17*0.78) + (0.08*0.67) + (0.13*0.78) = 0.74 VWorker5 = (0.05*0.67) + (0.20*0.78) + (0.10*0.33) + (0.03*0.33) + (0.09*0.67) + (0.15*0.44) + (0.17*0.78) + (0.08*0.67) + (0.13*0.44) = 0.60 VWorker6 = (0.05*0.67) + (0.20*0.44) + (0.10*0.67) + (0.03*0.44) + (0.09*0.67) + (0.15*0.67) + (0.17*0.67) + (0.08*0.67) + (0.13*0.67) = 0.61 VWorker7 = (0.05*1.00) + (0.20*0.44) + (0.10*0.67) + (0.03*0.67) + (0.09*1.00) + (0.15*1.00) + (0.17*0.78) + (0.08*1.00) + (0.13*0.78) = 0.78 VWorker8 = (0.05*1.00) + (0.20*0.78) + (0.10*1.00) + (0.03*1.00) + (0.09*0.67) + (0.15*1.00) + (0.17*0.78) + (0.08*1.00) + (0.13*1.00) = 0.89 VWorker9 = (0.05*1.00) + (0.20*0.78) + (0.10*0.78) + (0.03*0.78) + (0.09*0.67) + (0.15*0.67) + (0.17*1.00) + (0.08*0.67) + (0.13*0.67) = 0.78 VWorker10 = (0.05*0.67) + (0.20*1.00) + (0.10*0.33) + (0.03*1.00) + (0.09*0.11) + (0.15*0.67) + (0.17*0.67) + (0.08*0.67) + (0.13*0.67) = 0.65 VWorker11 = (0.05*1.00) + (0.20*0.67) + (0.10*1.00) + (0.03*0.78) + (0.09*0.67) + (0.15*1.00) + (0.17*0.67) + (0.08*0.78) + (0.13*1.00) = 0.81 VWorker12 = (0.05*1.00) + (0.20*0.67) + (0.10*0.78) + (0.03*0.78) + (0.09*0.67) + (0.15*0.78) + (0.17*0.67) + (0.08*1.00) + (0.13*0.67) = 0.74 VWorker13 = (0.05*1.00) + (0.20*0.67) + (0.10*1.00) + (0.03*1.00) + (0.09*0.67) + (0.15*0.67) + (0.17*0.78) + (0.08*0.78) + (0.13*0.78) = 0.76 VWorker14 = (0.05*0.67) + (0.20*0.11) + (0.10*0.11) + (0.03*0.33) + (0.09*0.11) + (0.15*0.11) + (0.17*0.33) + (0.08*0.11) + (0.13*0.11) = 0.18 VWorker15 = (0.05*0.44) + (0.20*0.78) + (0.10*0.67) + (0.03*0.44) + (0.09*0.67) + (0.15*0.33) + (0.17*0.67) + (0.08*0.44) + (0.13*0.44) = 0.58 VWorker16 = (0.05*0.67) + (0.20*1.00) + (0.10*1.00) + (0.03*0.67) + (0.09*0.67) + (0.15*0.67) + (0.17*0.67) + (0.08*0.67) + (0.13*1.00) = 0.80 VWorker17 = (0.05*1.00) + (0.20*1.00) + (0.10*1.00) + (0.03*1.00) + (0.09*1.00) + (0.15*1.00) + (0.17*1.00) + (0.08*0.78) + (0.13*1.00) = 0.98 VWorker18 = (0.05*1.00) + (0.20*0.67) + (0.10*0.67) + (0.03*0.67) + (0.09*0.67) + (0.15*0.67) + (0.17*0.67) + (0.08*0.67) + (0.13*0.67) = 0.68 VWorker19 = (0.05*0.44) + (0.20*0.78) + (0.10*0.67) + (0.03*0.67) + (0.09*0.44) + (0.15*0.67) + (0.17*0.67) + (0.08*0.44) + (0.13*0.44) = 0.62 VWorker20 = (0.05*0.67) + (0.20*0.33) + (0.10*0.67) + (0.03*0.67) + (0.09*0.67) + (0.15*0.78) + (0.17*0.44) + (0.08*0.67) + (0.13*0.78) = 0.59 5 | Vol.2 No.1, January 2021 VWorker21 = (0.05*0.67) + (0.20*0.67) + (0.10*0.44) + (0.03*0.67) + (0.09*0.78) + (0.15*0.44) + (0.17*0.78) + (0.08*0.67) + (0.13*0.44) = 0.60 TABLE VIII. PREFERENCE VALUE OF EACH WORKER Alternative V1 V2 V3 … V9 Vi Worker 1 0.05 0.20 0.10 … 0.13 0.95 Worker 2 0.05 0.09 0.07 … 0.09 0.68 Worker 3 0.04 0.13 0.07 … 0.04 0.55 Worker 4 0.03 0.16 0.08 … 0.10 0.74 Worker 5 0.03 0.16 0.03 … 0.06 0.60 Worker 6 0.03 0.09 0.07 … 0.09 0.61 Worker 7 0.05 0.09 0.07 … 0.10 0.78 Worker 8 0.05 0.16 0.10 … 0.13 0.89 Worker 9 0.05 0.16 0.08 … 0.09 0.78 Worker 10 0.03 0.20 0.03 … 0.09 0.65 Worker 11 0.05 0.13 0.10 … 0.13 0.81 Worker 12 0.05 0.13 0.08 … 0.09 0.74 Worker 13 0.05 0.13 0.10 … 0.10 0.76 Worker 14 0.03 0.02 0.01 … 0.01 0.18 Worker 15 0.02 0.16 0.07 … 0.06 0.58 Worker 16 0.03 0.20 0.10 … 0.13 0.80 Worker 17 0.05 0.20 0.10 … 0.13 0.98 Worker 18 0.05 0.13 0.07 … 0.09 0.68 Worker 19 0.02 0.16 0.07 … 0.06 0.62 Worker 20 0.03 0.07 0.07 … 0.10 0.59 Worker 21 0.03 0.13 0.04 … 0.06 0.60 The Vi with the largest preference value is the chosen worker, so that worker 17 is the recommended worker to become an exemplary PKH Social Worker in PPKH X Sub- district. CONCLUSION Based on the results described, it is concluded that the implementation of the SAW method is effective as a decision support system in determining exemplary PKH social workers in PPKH Garut Regency. The results of research conducted on 21 PKH Social Workers in X Sub- district showed that exemplary PKH social worker in the region received a preference value of 0.98. REFERENCES [1] A. M. Siregar, S. Faisal, Y. Cahyana, and B. Priyatna, “Perbandingan Algoritme Klasifikasi Untuk Prediksi Cuaca,” J. Account. Inf. Syst., vol. 3, no. 1, pp. 15–24, 2020. [2] F. I. Manek, S. Faisal, and B. Priyatna, “Penerapan K- Means Clustering untuk Mengelompokkan Pelanggan Berdasarkan Data Penjualan Ayam,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 88–93, 2018. [3] Kementerian Sosial RI. 2019. Pedoman Pelaksanaan Program Keluarga Harapan Tahun 2019. Direktorat Jaminan Sosial Keluarga. Direktorat Jenderal Perlindungan dan Jaminan Sosial. [4] Penta, Mega Fidia, dkk. 2019. Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik Menggunakan Metode SAW Pada PT. Kujang Sakti Anugrah. JSAI (Journal Scientific and Applied Informatics), 2(3), 185-192. [5] Malau, Yesni, dkk. 2018. Sistem Pendukung Keputusan Pemilihan Pegawai Berprestasi di Komisi Pemilihan Umum Kabupaten Bogor. Jurnal Teknik Komputer, 4(1), 66-73. [6] Diana. 2018. Metode & Aplikasi Sistem Pendukung Keputusan. Yogyakarta: Deepublish. [7] Budiaji, Weksi. 2013. Skala Pengukuran dan Jumlah Respon Skala Likert. JIPP (Jurnal Ilmu Pertanian dan Perikanan), 2(2), 127-133.