This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2023 The Author(s). Published by Vilnius Gediminas Technical University ISSN 2669-2481 / eISSN 2669-249X BUSINESS, MANAGEMENT AND ECONOMICS ENGINEERING 2023 Volume 21 Issue 1 Pages 63–83 https://doi.org/10.3846/bmee.2023.18676 IDENTIFYING THE EFFECTS OF CORRUPTION PERCEPTION ON THE RELATIONSHIP BETWEEN INTERNATIONAL TRADE AND LOGISTICS PERFORMANCE IN DEVELOPING COUNTRIES Avni Zafer ACAR 1, Karahan KARA 2 1Faculty of Applied Sciences, Istanbul Bilgi University, Istanbul, Türkiye 2Logistics Program, Artvin Çoruh University, Artvin, Türkiye Article History: Abstract. Purpose – logistics creates a strategic effect by playing a facilitating role in interna- tional trade, which has a significant impact on the economic performance of countries. Logis- tics performance and corruption play an influential role  in determining the trade efficiency  levels of developing countries. There are two purposes in this research. First purpose is to determine the international trade efficiency level of developing countries based on logistics  performance. The second purpose is to determine the efficiency level of trade based on both  logistics performance and corruption levels. Research methodology – output-oriented data envelopment analysis (DEA) has been applied in the research. The research covers the years 2012–2020. The sample area is developing countries. Findings – countries with full efficiency levels in 2012–2020 have been determined according  to both logistics performance and corruption scores. Research limitations – the research covers the years 2012–2020. The sample area is develop- ing countries. Practical implications – the reduction of corruption levels in some developing countries is an important factor in increasing the level of international trade efficiency.  Originality/Value – this research highlights the role of corruption in the relationship between trade and logistics performance. ■ received 21 February 2023 ■ accepted 22 April 2023 Keywords: logistics performance, corruption, international trade, developing countries, data envelopment analysis. JEL Classification: D73, O11, C30.       Corresponding author. E-mail: karahan.kara@artvin.edu.tr Introduction The literature agues that international trade has significant effects on the growth and compet- itiveness of national economies (Acar & Yurdakul, 2015), and these relationships have been supported by the studies performed in different economies (e.g. Elbeydi et al., 2010; Akhter  et al., 2022; Dragusha et al., 2023). Thus, most of the developing countries aim to increase  their national income by pursuing outward-oriented development policies. In this context countries undersigned many bilateral and multilateral trade agreements and participating global and/or regional trade unions. This highlights the importance of promoting foreign trade, particularly exporting, to economic prosperity. Along with this widely supported concept regarding globalization and increasing competi- tion, research studies show that improvements in logistics performance facilitate international http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/ https://doi.org/10.3846/bmee.2023.18676 https://orcid.org/0000-0003-4538-4944 https://orcid.org/0000-0002-1359-0244 mailto:karahan.kara@artvin.edu.tr mailto:karahan.kara@artvin.edu.tr 64 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... trade in different ways (Gani, 2017), such as reducing the impact of distance and transport  costs, providing better infrastructure and so on (Çelebi, 2019). This will result in reducing the overall international trade costs, while increasing the level of competition and economic growth. In this respect, logistics has been considered as one of the main determinants of the international trade performance of countries. Basically, it is easy to say improvements in logistics have reduced transportation costs. However, the development of logistics activities not only reduces transportation costs, but also it has a positive effect in reducing the production costs via supporting the supply chains  (Lapinskaitė & Kuckailytė, 2014). Moreover, logistics services ensure the mobility of products  in a safe, reliable, quick, and efficient manner which means reducing costs in international  trade. Thus, it is considered that logistics is one of the key elements in international trade together with globalization and increasing competitiveness (Martí et al., 2014). In this framework literature is full of conceptual and empiric studies articulating the mutu- al relationship between foreign trade and international logistic performance of the countries. Especially the logistics performance of developing countries has been considered as vital for them to increase their share in global trade and to benefit from the revenues of globalization  (Ofluoğlu et al., 2018). Logistics industry, particularly transportation, as a facilitator in international trade grew significantly while logistics became a significant part of the business economic system and  major global economic activity in recent years (Yurdakul & Acar, 2015). Moreover, a recent  study shows that countries with greater capability in logistics are taking the lead over their competitors regarding the World Economic Forum’s Global Competitiveness Index (GCI). This  and other related studies indicate that there is a strong relationship between logistics perfor- mance and the general competitiveness of a country (Erkan, 2014; Kabak et al., 2020). However, global logistics business is full of challenges. Thus, logistics managers must deal with many non-tariff barriers as well as problems such as costs, exchange rate differences,  and different customs regimes to ensure the effective and efficient flow of goods. One of  the important problems which can be considered a non-tariff barrier in developing countries  is corruption. Since this problem negatively affects international logistics networks, there is  a vast literature about the negative effects of corruption on economic development, foreign  direct investment, international trade, and international logistics performance. The fact that corruption trends are higher in developing countries causes these coun- tries to be more affected by the negative effects of corruption in their international trade  activities and performances. In addition, considering the close relationship between logistics performance and international trade, it is expected that corruption will weaken the effect of  both logistics performance and logistics performance on trade. At this point, there are two main motivations for this research. These motivations also address research questions. The research questions are as follows: ■ Research Question 1: Can trade efficiency levels be determined according to the logistics  performance of developing countries? ■ Research Question 2: Can trade efficiency levels be determined according to both logis- tics performance and corruption of developing countries? What are the differences  according to the first research question? Business, Management and Economics Engineering, 2023, 21(1): 63–83 65 In accordance with these two research questions, this empirical study has two aims. One of the two aims is to determine the international trade efficiency level of developing countries  based on logistics performance. The other aim is to determine the efficiency level of trade  based on both logistics performance and corruption levels. In the literature, it is seen that data envelopment analysis is commonly preferred to de- termine the efficiency levels (Rashidi & Cullinane, 2019; Polat et al., 2022; Kara, 2022; Kara  & Çetinkaya, 2022). Thus, DEA analysis was preferred to achieve the research objectives. With this analysis, efficiency levels based on input and output variables can be determined.  In addition, it is aimed to provide suggestions to countries by detecting changes in activity levels by considering corruption based on the comparison of these two results. In this context, data envelopment analysis has been applied to determine the international Trade (% of GDP)  efficiency levels of developing countries. The fact that trade efficiency has been determined  by considering the effect of corruption on trade as well as logistics performance with this  empirical research makes the study different from the other research. However, the limitations  of the current research can be considered as the fact that a model was created in which only logistics performance and corruption variables were used to determine the international trade efficiency levels of countries, the research period was limited to the 2012–2020 period, and  the data set was obtained from secondary reports. The second part of the article is dedicated to establishing a conceptual framework based on a literature review. In the third part, the methodology of the research is explained. In the fourth part, the findings of the empirical research are given. In the last part, conclusions  based on the findings and implications and suggestions for countries have been developed. 1. Conceptual framework and literature review The interrelationships between international trade and international logistics regarding the effect of corruption will be conceptually examined in the following sub-sections. This review  provides a framework based on the building blocks of the main concepts of the research and examining their relationships. 1.1. Importance of foreign trade in economic prosperity It can be considered that Adam Smith was the first to highlight the positive effect of Inter- national Trade on Economic Growth (Smith, 2010). The thesis that foreign trade is the engine  of growth was discussed in the context of Adam Smith’s theory of specialization. According to Adam Smith’s theory, a country should produce and specialize in whatever goods it can produce more cheaply than others, and so which provide an “Absolute Advantage”. Therefore, it should export these goods that it can produce at low cost and import the goods that it can produce at a high cost from foreign countries. Ricardo expanded the theory within the framework of the theory of comparative ad- vantage and carried it to new horizons. Later, the relationship between foreign trade and economic growth has been confirmed by Michaely (1977) and Feder (1983). Since then, the  relationship between import, export and economic growth has been one of the important 66 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... issues discussed in the economics literature. The increase in the number of imports and exports, that is, in the volume of foreign trade, can increase economic growth by increasing employment and labor productivity by creating technological innovations and the transition to economies of scale. In foreign trade, on the one hand, economic growth is achieved due to economies of scale and increased productivity by selling products to wider markets, on the other hand, imports of intermediate and capital goods and basic raw materials from abroad help countries to easily access the inputs they need and thus increase their economic growth. In studies on the relationship between foreign trade and growth, most of the researchers on economics argue that exports affect growth more, particularly in developing or less-de- veloped countries (Vohra, 2001) such as Libya (Elbeydi et al., 2010), Jordan (Shihab et al., 2014), Pakistan (Saleem & Sial, 2015), India (Mishra, 2011; Kumari & Malhotra, 2014), Turkey  (Bahramian & Saliminezhad, 2020) and China (Mah, 2005; Kumari & Malhotra, 2014). On the  other hand, those who argue that imports are also effective on economic growth are not  to be underestimated. According to this approach, imports provide the intermediate goods and capital goods needed by the country in production in the most appropriate variety and positively affect the country’s economy with the effect of the decreasing cost of capital (Şahin  & Durmuş, 2018). However, the increase in international trade numbers also contains many question marks. That is, the ratio of imports to exports or the added value created by the exported goods are the data that should always be questioned. In this context, in general, the necessity of evaluating the international trade of a country emerges not only in terms of numbers but also in terms of efficiency. 1.2. Relationship between International Trade and International Logistics The demand of the manufacturers to transport their products to the consumers with min- imum time loss and low cost but reliably creates the necessity of working in connection with various industries in domestic economies. These links have been strengthened through effective transport and logistics systems. In this context, logistics services not only provide  industrial connections within the domestic economy, but also connect the domestic economy to the international economy (Gani, 2017). Moreover, logistics, particularly transportation-re- lated activities, determines the amount of trade and goods exchange (Hesse & Rodrigue, 2004) by facilitating international trade as it enables companies to effectively complete the  import, export and related transactions of goods and services. Therefore, logistics services, which ensure the mobility of the products in a safe, reliable, quick, and efficient manner while  reducing costs, have become one of the key elements in international trade during globali- zation and increasing competitiveness (Martí et al., 2014). International trade broadly refers to transferring the finished goods of a company to the  other company in the importing country by exporting it with the aim of making a profit. In- ternational trade increases national income and reduces poverty under favorable conditions. Thus, as it is argued in one of the OECD/WTO reports that international trade contributes to both economic and social development (OECD/WTO, 2013). Therefore, factors which disturb the smooth and cost-effective flow of trading commodities such as bureaucratic procedures  to be done in the process of exchanging produced goods between countries, documents Business, Management and Economics Engineering, 2023, 21(1): 63–83 67 to be arranged, legal regulations to be complied with, transportation and insurance costs incurred, and expenses arising from delays cause significant trade costs. For this reason,  simplifying the procedures to be followed in international trade, reducing the number of documents, using common documents and legislation, establishing an effective  logistics  system, and increasing the quality of logistics services have become the priority objectives for increasing the world trade volume. In this context, especially high logistics costs and inadequacy of logistics services are considered as barriers to international trade. Therefore, countries are expected to increase their logistics performance to minimize these obstacles (Ofluoğlu et al., 2018). There are many studies in literature that evaluate the relationship between international trade and logistics, both conceptually and empirically. Puertas et al. (2014) argued that an  efficient supply chain system in international trade requires logistics as the enabler of organ- ization and synchronization of trade flows. Meanwhile, based on their findings in developing  countries, the same authors claimed that the underdevelopment of logistics can cause an increase in trade costs and impede the efficient movement of goods (Martí et al., 2014). Shep- herd (2016) pointed out that improved logistics performance can positively affect export and  facilitate trade by increasing the efficiency of trade in goods, reducing the cost, providing the  simplicity of the procedures, and more efficiently processing the necessary documentation  accompanying trade. Bensassi and colleagues examined the bilateral exports from 19 Spanish regions to 64 destinations by using an augmented gravity model of trade. Their findings proved the  positive correlation between logistics performance based on the number, size and quality of logistics facilities and the trade (export) flows in goods (Bensassi et al., 2015). A more recent  study conveys the findings of Bensassi and colleagues’ study to new frontiers and proved  that logistics performance is more critical for exporting countries than for importers (Host et al., 2019). As a global study, the World Bank’s LPI report findings showed that among  countries with similar income levels, those with better logistics performance stood out with an additional 1% GDP growth and 2% trade growth (Arvis et al., 2016). More recently, Bugarčić et al. performed an empirical study considering the logistics per- formance and the trade volume of the Central and Eastern European (CEECs) and Western Balkans countries. Their analysis based on the gravity model statistically proved the com- mon assumption about the improved logistics performance and logistics services lead to a positive impact on the international trade volume. Thus, they claimed that better logistics performance of the countries will lead to increased bilateral trade while reducing trade costs (Bugarčić et al., 2020). Korkut et al. (2021) have used it to analyze the relationship between international trade and logistics by considering different modes of transport function of logistics and related  infrastructural investments. They used panel co-integration and panel causality analyzes to compare the current account balance data of the G20 countries in international trade with the  infrastructure expenditures of the countries on the highways, railways, airlines, and seaways. As they expected, data analyses revealed that there is a co-integration between international trade and logistics infrastructure investments. 68 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... As can be clearly seen from these studies in the literature, there is a strong relationship between logistics and trade. So, as is repeatedly argued in the literature, researchers of the current study assumed that logistics is one of the determinants of the efficiency of trade, and  it is a cost item for the companies as well as the value it creates. 1.3. Logistics performance of the countries Logistics should not be considered as a mere transportation activity. Logistics, which is one of the basic elements of international trade and international supply chains, covers a set of core activities associated with various public and private sector institutions ranging from transportation, warehousing, cargo consolidation, customs clearances to domestic distribu- tion and payment systems to the transformation and circulation of goods (Arvis et al., 2012;  Hesse & Rodrigue, 2004). Thus, to improve the effectiveness and the efficiency of a logistics  system all these basic activities should be considered and evaluated in a competitive manner. In a competitive business environment, logistics performance has a significant impact on  many strategic decisions such as which countries the companies will be in, which suppliers they will buy from, and which markets they will enter. High logistics costs and low level of logistics service constitute an obstacle to trade, foreign direct investments, and thus economic growth. For these reasons, improving a country’s logistics performance has become an im- portant development policy goal. To improve a system or a process, first, it should be measured by a valid criterion. Howev- er, there is not any logistics performance criteria list which has been agreed upon. However, studies dealing with the relationship between international trade and international logistics performance empirically took into account the LPI values developed by the World Bank in  order to measure the logistics performances of countries (e.g. Nguyen & Tongzon, 2010;  Martí et al., 2014; Puertas et al., 2014; Bensassi et al., 2015; Gani, 2017; Jiang & Wu, 2017;  Wang et al., 2018; Ofluoğlu et al., 2018; Bugarčić et al., 2020). At the macro level, logistics performance is among the main indicators pointing to the logistics competencies of countries (international transportation, customs services, interna- tional transportation legislation, import and export transactions, etc.) (Halaszovich & Kinra, 2020). Logistics Performance Index (LPI) was developed by the World Bank (WB). It provides  feedback, based on a global survey, to help countries develop logistics reform programs to increase their trade capability and competitiveness. With this index study, the WB aims to create a competitive environment between countries and tries to determine the situation for countries to improve their logistics performance. The LPI provides detailed information about  the logistics environments of countries, their basic logistics processes and organizations, and their time and cost performances. So, countries can find the opportunity to compare them- selves with other countries in terms of international logistics activities, and they can see the opportunities and obstacles in front of them. The WB’s LPI has been calculated every two years since 2007 and measures the interna- tional logistics performance of approximately 160 countries. However, there are also many criticisms about the research methodology and calculation algorithm of this index. Despite all the criticisms written about its subjective aspects, it is possible to say that LPI is an appropriate  Business, Management and Economics Engineering, 2023, 21(1): 63–83 69 measurement to compare countries regarding logistics performance (Acar et al., 2015; Polat  et al., 2022). Besides the WB, also a worldwide logistics company (Agility) has measured the international logistics performance of the emerging economies and release the annual AEMLI  (Agility Emerging Markets Logistics Index) report since 2011. AEMLI reports in 2011–2018 are based on three key components. These components are  Market size and attractiveness (50%), Market compatibility (25%), and Connectedness (25%).  In determining the market size and attractiveness score, the economic outputs, growth rates, financial stability and population sizes of the countries are considered. Market compatibility  score determines the market accessibility of countries, the size of foreign investments and the level of economic development based on logistics services. Connectedness, on the other hand, is determined based on the national and international transport connections of the countries. As of 2019, AEMLI reports are calculated based on Domestic opportunities (33%),  International opportunities (33%) and Business fundamentals (33%). The Domestic Oppor- tunities score is determined according to the economic and population sizes of the coun- tries, income equality, urbanization levels and the development status of business clusters. International opportunities are determined based on countries’ international logistics market sizes, logistics-based trade sizes, infrastructure, and success in customs processes. Business fundamentals, on the other hand, are calculated depending on the legal regulations in the countries, the amount of credit and debt, the success of the fight against corruption, inflation,  financial expenditures caused by crime and violence, and local stability. The impact of the logistics performances of developing countries on the commercial activities of the countries is inevitable. As stated in AEMLI reports, logistics activities directly  affect market efficiency. As a result, international trade efficiency is directly affected. At this  point, the first hypothesis of testing international trade efficiency based on the logistics per- formance of developing countries is as follows: H1: International trade efficiency of developing countries based on logistics performance can be ascertained, and the efficiency levels of countries can be determined. 1.4. Effects of corruption Corruption is a concept that has existed since ancient times and was defined by Kaufmann  (1997) as the misuse of public goods by public servants for their own benefit. Meanwhile,  Tanzi (1998), referring to the fact that it is not that easy to define corruption, supported a  definition as the malicious use of public power for personal gain. When current studies are  examined, it is understood that the view of “abuse of public power for personal benefit” is  generally accepted (e.g. Dong, 2011; Larson, 2020). In addition, Bahoo et al. (2020) drew  attention to seven main streams in their research to determine the corruption agenda in the concept of international business. Among them, the fight against corruption, the determi- nants of corruption, the effect of corruption on companies, the relationship between the po- litical environment and corruption, the anti-corruption management, the effect of corruption  on foreign investors and trade. Thus, it is clearly understood that the relationship between corruption and trade is on the agenda of international literature. 70 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... According to the existing literature, studies examined the effects and the relationship of  the corruption regarding different aspects and the factors such as trade, economic growth,  foreign direct investment, political regime, CO2 emissions and so on. Although there are few studies claiming to the contrary (e.g. Egger & Winner, 2005; Méndez & Sepúlveda, 2006; Aidt  et al., 2008; Dong, 2011) it is stated that there is no evidence that corruption has positive  effects in the majority of the studies in the literature. Also, corruption researchers paid too  much attention to less developed and developing countries. There is extensive literature on the relationship between corruption and international trade (e.g. Trefler, 1995; Eaton & Kortum, 2002; De Jong & Bogmans, 2011; Leitão, 2021). One  of the most outstanding works, among others, is the work of Trefler (1995), who calls corrup- tion the “mystery of missing trade”. De Jong and Bogmans (2011) claimed that corruption would reduce the volume of international trade. Accordingly, Eaton and Kortum (2002) gave a ratio, assertively argued that international trade would be five times larger than its current  state if there were no frictions such as corruption. However, de Jong and Borgmans (2011) have argued that corruption can facilitate international trade if the related systems and/or institutions are not well developed or of low quality. Meanwhile, the literature regarding the relationship between corruption and logistics is  relatively smaller than the corruption and international trade relationship. Although it has not been proven statistically, it is an expected finding that most of the related publications  originate from developing countries (e.g. Stefanovskiy et al., 2012; Omran, 2012; Seabra et al.,  2016; Uca et al., 2016). Also, some researchers have used panel data of the countries (world,  EU28 etc.) to examine econometric models (e.g. Larson, 2020; Goel et al. 2021). Following  these opposing views,  identifying the effects of corruption on trade efficiency based on  logistics performance is one of the main objectives of this research. There are also studies on research aimed at reducing corruption in international transportation activities (Sarker et al., 2021). Considering the level of corruption, which plays an important role in the impact of logistics performance on international trade, the second hypothesis for determining the level of international trade efficiency is as follows. H2: Based on both logistics performance and corruption, the international trade efficiency of developing countries can be ascertained, and the efficiency levels of the countries can be determined. 2. Methodology There are many studies in the literature dealing with the relationships between the logistics performance levels of countries and their trade-based economic indicators (Martí et al., 2014;  Faria et al., 2015; Danaci & Nacar, 2017; Gani, 2017; Çelebi, 2019; Bugarčić et al., 2020; Song  & Lee, 2022). However, there are a limited number of studies dealing with the relationship between logistics performance and corruption (Seabra et al., 2016; Larson 2020). In addition,  there are rare articles dealing with the relationship between logistics performance, corruption, and trade-based economic indicators (Uca et al., 2016). There are regression models (Larson,  2020; Shikur, 2022), panel data models (Tang & Abosedra, 2019), structural equation models  (Sénquiz-Díaz, 2021) that try to explain the relationship between logistics performance, trade,  Business, Management and Economics Engineering, 2023, 21(1): 63–83 71 and corruption variables. In this research, the relationships between logistics performance, corruption, and international trade are examined by data envelopment analysis considering the developing countries, and the trade efficiency levels of the countries based on both  logistics performance and corruption scores have been revealed. In this context, the research was carried out in three stages. In the first stage, Trade (%  of GDP) efficiency levels were determined based on the logistics performance of developing  countries by DEA. In the second stage, the efficiency levels of Trade (% of GDP) based on  logistics performance were determined by considering the effect of corruption by DEA. In the  third stage, the efficiency level findings obtained in Model 1 and the efficiency level findings  obtained in Model 2 were compared. The empirical analysis flowchart is shown in Figure 1. 2.1. Variables and sampling The role of corruption is examined in this empirical research, which is expected to affect the  relationship between the logistics performance of developing countries and the share of trade in gross domestic product (Trade (% of GDP)). Data envelopment analysis has been applied in  the research. At this point, two data envelopment models were created. In the first data envel- opment model (Model 1), “sub-dimensions of logistics performance” of developing countries  were determined as input variables, and “share of trade in gross domestic product” as output variables. In the second data envelopment model (Model 2), “Sub-dimensions of logistics per- formances” and “Corruption perceptions” of developing countries were determined as input variables, and “The share of trade in gross domestic product” as output variables. The purpose of Model 1 is to determine the efficiency level of the share of trade in gross domestic product  of developing countries based solely on logistics performance. The purpose of Model 2 is to  determine the efficiency level of the share of trade in gross domestic product of developing  countries based on both logistics performance and corruption. Determining the “Trade (% of GDP)” efficiency levels based on the “logistics performance indicators” of the developing countries by data envelopment analysis (Model 1) Determining the “Trade (% of GDP)” efficiency levels based on the “logistics performance indicators” and “corruption perceptions” of the developing countries by data envelopment analysis (Model 2) Comparison of “Trade (% of GDP)” efficiency levels obtained in Model 1 and Model 2 Determining the sampling and variables Figure 1. Empirical analysis flow chart 72 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... The current empirical research considers developing countries as sampling which takes place in the “Agility Emerging Markets Logistics Index (AEMLI)” report. It should be noted that  this report has been chosen because it is appropriate to the main assumption of this study and considers emergent economies which have the potential to suffer from corruption. In this  context, it is aimed to determine the efficiency values of the developing countries in each year  between the years 2012–2018. The logistics performance scores of developing countries were  obtained from the AEMLI reports. Corruption perceptions scores were obtained from reports  published by the “Transparency International” organization (Corruption scores have been tak- en as “1/corruption” score in the analyses, since the negative impact of corruption scores was considered). The share of trade in gross domestic product is obtained from the “World Bank” reports. When the reports are examined, it has been determined that there are deficiencies  in the data announced by the countries. For this reason, countries were determined for each year. The variables, periods and number of countries used in this study are shown in Table 1. Table 1. Variables and sampling Models Period Input Variable Output Variable Sampling Model 1 2012 Market size & attractiveness,  Market compatibility,  Connectedness Trade (% of GDP) 41 countries 2013, 2014, 2015, 2016 45 countries 2017, 2018 49 countries 2019 Domestic opportunities, International opportunities, Business Fundamentals Trade (% of GDP) 48 countries 2020 49 countries Model 2 2012 Market size & attractiveness,  Market compatibility,  Connectedness, Corruption Trade (% of GDP) 41 countries 2013, 2014, 2015, 2016 45 countries 2017, 2018 49 countries 2019 Domestic opportunities, International opportunities, Business Fundamentals, Corruption Trade (% of GDP) 48 countries 2020 49 countries 2.2. Data envelopment analysis Charnes et al. (1978) introduced the data envelopment analysis method, which enables the  determination of efficiency levels based on inputs and outputs, to the literature. DEA is useful  in determining the efficiency levels of the variables, considering the relationships between the  data in different measurement units. It is also a commonly used non-parametric mathematical  modeling method in operation research and economics. DEA makes measurements based on total factor productivity. It’s also useful for benchmarking. Mathematical expression of total  factor load is seen in Eq. (1) (Zionts, 1968): = = = ∑ ∑ 1 1       s rk rkr m rk rkr u Y Total Factor Efficiency v X . (1) Business, Management and Economics Engineering, 2023, 21(1): 63–83 73 ( )=  1,...,rkY r s It is the amount of output produced by the decision unit. ( )=  1,...,ikX i m It is the amount of input used by the decision unit. ( )=  1,...,rku r s  It is the weight coefficient that the decision unit gives to the outputs. ( )=  1,...,ikv i m  It is the weight coefficient that the decision unit gives to the inputs. In this study, the output-oriented CCR-O (Charnes et al., 1978) model, one of the DEA  methods, was applied. The reason for choosing this model is to achieve the maximum output level. Charnes et al. (1989) points out that the main goal of the CCR model is to bring the  sum of the weighted inputs to the minimum level while maximizing the output level. In this study, two CCR models were developed and applied to all years. Therefore, the CCR model constructs are common. However, there are differences in the Indices and Parameters used in  the models. The objective function (Eq. (2)) of the CCR model, Constraints (Eq. (3)) objective function (Eq. (4)) of the dual model, Constraints (Eq. (5)) are as follows: Objective Function: = =∑ 1 min   m k i ik i e v x . (2) Constraints: = = − ≥ = …∑ ∑ 1 1     0      1, ,  m s i ij r rj i r v x u y j n ; = =∑ 1 0 s r rk r u y ; ≥ = … = …,  0;   1,   ,  ;   1,   , r iu v r s i m . (3) Objective Function (Dual model):   kMax Z . (4) Constraints (Dual model): = ϕ − ≤∑ 1     0 n jk ij ik j x x ; = − ϕ − ≤∑ 1     0 s k rk jk rj ik r z y y x ; ϕ ≥ = … = … = …0;   1,  ,  ;   1,  ,  ; 1,  , jk r s i m j n . (5) The indices of Model 1 are as follows: Indices (for Model 1): i AEMLI indicators  i = 1,2…, m (m = 3) r Trade (% of GDP) r = 1,2…, s (s = 1) j Countries j = 1,2…, n (n = 41 for 2012; n = 45 for 2013, 2014, 2015 ,2016; n = 49 for 2017, 2018, 2020; n = 48 for 2019). 74 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... The indices of Model 2 are as follows: Indices (for Model 2): i AELPI indicators and CPI i = 1,2…, m (m = 4) r Trade (% of GDP) r = 1,2…, s (s = 1) j Countries j = 1,2…, n (n = 41 for 2012; n = 45 for 2013, 2014, 2015, 2016; n = 49 for 2017, 2018, 2020; n = 48 for 2019). The parameters of Model 1 and Model 2 are as follows: Parameters:  :iv  “i” weight given to logistic performance input (with CPI for model 2).  ru  : “r” weight given to trade (% of GDP) output.  :ikx  “k” score of the “i” logistics performance input (with CPI for model 2) of the decision  unit.  :rky  “k” score of the “r” trade (% of GDP) output of the decision unit.   :i ijv x “j” country’s weighted input score. r rju y : “j” country’s weighted output score. 2.3. Findings In this empirical research, first of all, the trade (% of GDP) efficiency levels of developing  countries between 2012 and 2020 were determined by DEA analysis. At this stage, the find- ings of the Trade (% of GDP) efficiency levels based on the logistics performances of the  countries have been obtained. As seen in the Table 2, two countries (Bahrain, Vietnam) for 2012, three countries (Bahrain, Cambodia, Vietnam) for 2013 and 2014, three countries (Libya, Cambodia, Venezuela) for 2015, two countries (Vietnam, Cambodia) for 2016, three countries Table 2. Countries with 100% Trade (% of GDP) efficiency with and without corruption 2012 2013 2014 Country (Without CPI) (With CPI) Country (Without CPI) (With CPI) Country (Without CPI) (With CPI) Bahrain 1 1 Bahrain 1 1 Bahrain 1 1 Vietnam 1 1 Cambodia 1 1 Cambodia 1 1 Vietnam 1 1 Vietnam 1 1 2015 2016 2017 Libya 1 1 Vietnam 1 1 Libya 1 1 Cambodia 1 1 Cambodia 1 1 Vietnam 1 1 Venezuela 1 1 Bahrain 0.85 1 Cambodia 1 1 Ukraine 0.79 1 Bahrain 0.93 1 Ukraine 0.75 1 2018 2019 2020 Vietnam 1 1 Angola 1 1 Libya 1 1 Libya 1 1 Vietnam 1 1 Vietnam 1 1 Mozambique 1 1 Mozambique 1 1 Bahrain 0.96 1 Ukraine 0.63 1 Business, Management and Economics Engineering, 2023, 21(1): 63–83 75 (Libya, Vietnam, Cambodia) for 2017, three countries (Libya, Vietnam, Mozambique) for 2018,  three countries (Angola, Vietnam, Mozambique) for 2019, and two countries (Libya, Vietnam)  for 2020 stand out as countries with full efficiency level. This finding supported the assump- tion of Hypothesis1 in the context of the countries mentioned above. According to the Trade (% of GDP) activities of countries based on both logistics per- formance and corruption levels (Table 2), it is seen that Bahrain and Ukraine have been  added among the countries with full efficiency levels for 2016, 2017 and 2018 regarding  the logistics performance. This finding indicates that Bahrain and Ukraine are the countries  which increase their trade (% of GDP) activities to full efficiency level because of their suc- cessful implementation of anti-corruption policies. This finding supported the assumption  of Hypothesis 2. The other main finding of the empirical research is that when the corruption levels of the  countries are considered, the Trade (% of GDP) efficiency levels of some countries increase.  Countries with increased efficiency levels are presented in the Appendix. These countries with  the highest increase in efficiency levels over the years are: ■ Qatar (22%), Malaysia (9%) and Ukraine (8%) in 2012, ■ Qatar (23%), Ukraine (14%) and Uruguay (11%) in 2013, ■ Qatar (28%), Chile (24%) and Ukraine (17%) in 2014, ■ Qatar (38%), Malaysia (25%) and Chile (24%) in 2015, ■ Qatar (35%), Malaysia (33%) and Chile (27%) in 2016, ■ Qatar (31%), Malaysia (28%) and Chile (27%) in 2017, ■ Qatar (38%), Ukraine (37%) and Malaysia (35%) in 2018, ■ Ukraine (29%), Malaysia (20%) and Chile (17%) in 2019, ■ Ukraine (26%), Qatar (21%) and Malaysia (20%) in 2020. This finding reveals that Qatar, Ukraine, Malaysia, and Chile are the top countries which  increase the efficiency in trade within time frame of the current research. Thus, both of our  hypotheses were accepted. Figure 2 shows the efficiency levels. However, the supplementary aim of this study is to provide suggestions to countries by detecting changes in activity levels by considering corruption based on the comparison of the findings of hypothesis 1 and 2. In this sense, considering the corruption perception  index data between 2012 and 2020, it is seen that the countries that have reached the level of full efficiency in international trade are Bahrain (2017, 2018) and Ukraine (2016, 2017,  2018). Besides, it has been observed that there are countries whose efficiency levels have  increased even though they have not reached the full efficiency level in international trade  between 2012 and 2020 such as Qatar, Malaysia, and Chile (see Appendix). In addition to  the years of full efficiency, Ukraine has increased its efficiency level in 2012, 2013, 2014,  2019 and 2020. 3. Results and discussion The mutual relationship between international trade and logistics, and the effects of the cor- ruption -mostly negative- on these concepts are generally known and accepted by experts and practitioners. Also, in literature, there are a vast number of scientific studies exposing the  relationships between and among these concepts mentioned above. Even though different  76 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... Figure 2. Trade efficiency levels of developing countries Business, Management and Economics Engineering, 2023, 21(1): 63–83 77 methodologies are used, many scientific studies have verified the mutual relationship be- tween logistics and international trade (e.g. Nguyen & Tongzon, 2010; Bensassi et al., 2015;  Gani, 2017; Wang et al., 2018; Korkut et al., 2021). Besides, because both international trade and logistics activities need coordination and collaboration of many shareholders, there is always a probability of encountering a weak point along the supply chain that is corrupt. However, the studies considering the variables of international trade, logistics performance and corruption together are very rare particularly with a macro approach (e.g. Uca et al., 2016). Gani (2017) claimed that complex business  administrative procedures can create more inefficiency as well as create an environment for  corruption to emerge, but he has not proven this empirically. Thus, the current study examines the interrelationships between the international trade and international logistics performance of the emerging economies under the consideration of the effect of corruption. An econometric model has been established to reveal the rela- tionships by considering the international trade efficiency, international logistics performance,  and the corruption assumption of sampling countries. Based on the findings, it has been determined that corruption level plays an active role  in international trade efficiency based on logistics performance. With the findings of this  research, it has been revealed that international trade efficiency and the international trade  efficiency based on logistics performance can be ascertained in developing countries by DEA.  According to the findings of the related hypothesis 1, between the years 2012–2020 which are  the time limits of our research, Bahrain (2012, 2013, 2014), Vietnam (all years except 2015), Cambodia (2013, 2014, 2015, 2016, 2017), Libya (2015, 2017, 2018, 2020), Venezuela (2015),  Mozambique (2018, 2019) and Angola (2019) were identified as countries with full efficiency.  These findings carry the retrospective perspective, which compares the obtained logistics  performance level as a result of investments in developed countries with the international trade data, to different horizons in respect of emergent economies. It can be interpreted that  logistics is not the sole factor determining international trade efficiency. The fact that this  relationship has been verified only in some of the developing countries can be interpreted  as logistics is not the only factor that determines the efficiency of international trade. This  inference, of course, reveals the question of what could be the missing point. To find an answer to this question, the corruption factor was added to the analysis in the  continuation of the study. According to the Hypothesis 2 test finding obtained by considering  the years 2012–2020, Bahrain (2012, 2013, 2014, 2017, 2018), Vietnam (all years except 2015),  Cambodia (2013, 2014, 2015, 2016, 2017), Libya (2015, 2017, 2018, 2020), Venezuela (2015),  Mozambique (2018, 2019), Angola (2019) and Ukraine (2016, 2017, 2018) are countries with  full activity. As can be seen from the findings, the analysis revealed the fact that the relations  that are predicted to be carried forward in this way will be proven to be valid in more coun- tries and for more years. Thus, it has been concluded that international trade efficiency levels  can be determined based on the logistics performance of countries, together with corruption, which is among the main problems of developing countries. Also, these findings represent  the novelty and the contribution of our study to literature. 78 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... Conclusions, implications, and limitations The findings of this study can be interpreted into two results in general. First, in line with the  general opinion, the results of this empirical research also revealed that corruption affects  the efficiency of international trade in most of the developing countries. In determining the  international trade efficiency of countries in the context of logistics performance, only look- ing at the LPI data may be biased as it does not reveal the individual or holistic behavior  models of people, which are the basic building blocks of the business philosophy. Therefore, current research findings show that considering logistics performance under the influence of  corruption perception in determining international trade efficiency provides more significant  results. In this context, it may even be considered to update the LPI calculation by incorpo- rating corruption perception data as a sub-dimension. This study also has a practical implication. The results of this research can be used to inform policymakers and supply chain managers to be aware of the effects of corruption on  international logistics performance at the country level. In addition, it is seen and recom- mended as remarkable studies in examining the relations between other macroeconomic indicators (such as income level, political stability, and institutional quality), logistics perfor- mance and corruption. It should be considered by researchers as the limitations of the current research that mod- els were established using only logistics performance and corruption variables in determining the international efficiency levels of countries, the research period was 2012–2020, the data  set was obtained from secondary reports, the DEA analysis was determined as output-orient- ed, and the sample area was only the developing countries. At this point, it is recommended that researchers examine logistics performance and trade efficiency levels based on corrup- tion with various DEA models. In addition, it is believed that the impact of corruption in the sample of developed and underdeveloped countries is considered and compared with these research findings, which is a valuable research topic. References Acar, A. Z., Bentyn, Z., & Kocaoğlu, B. (2015). Turkey as a regional logistic hub in promotion of revivaling  ancient Silk Route between Europe and Asia. Journal of Management, Marketing and Logistics, 2(2), 94–109. https://doi.org/10.17261/Pressacademia.2015211609 Acar, A. Z., & Yurdakul, H. (2015). Evaluation of competitive power of logistics industry in Turkey. Journal of Caspian Affairs, 1(1), 1–22. Aidt, T. S., Dutta, J., & Sena, V. (2008). Governance regimes, corruption and growth: Theory and evidence.  Journal of Comparative Economics, 36, 195–220. https://doi.org/10.1016/j.jce.2007.11.004 Akhter, S., Mir, M. A., & Megits, N. (2022). The linkage between international trade and economic growth  in Kazakhstan. Journal of Eastern European & Central Asian Research, 9(6), 1021–1033. https://doi.org/10.15549/jeecar.v9i6.1019 Arvis,  J.  F.,  Mustra,  M.  A.,  Ojala,  L.,  Shepherd,  B.,  &  Saslavsky,  D.  (2012).  Connecting to compete 2012: Trade logistics in the global economy, the logistics performance index and its indicators. The World Bank. https://documents.worldbank.org/en/publication/documents-reports/documentde- tail/567341468326992422/pdf Arvis, J. F., Saslavsky, D., Ojala, L., Shepherd, B., Busch, C., Raj, A., & Naula, T. (2016). Trade logistics in the global economy: The logistics performance index and its indicators. World Bank, Washington, DC. http://hdl.handle.net/11146/165 https://doi.org/10.17261/Pressacademia.2015211609 https://doi.org/10.1016/j.jce.2007.11.004 https://doi.org/10.15549/jeecar.v9i6.1019 https://documents.worldbank.org/en/publication/documents-reports/documentdetail/567341468326992422/pdf https://documents.worldbank.org/en/publication/documents-reports/documentdetail/567341468326992422/pdf http://hdl.handle.net/11146/165 Business, Management and Economics Engineering, 2023, 21(1): 63–83 79 Bahoo, S., Alon, I., & Paltrinieri, A. (2020). Corruption in international business: A review and research  agenda. International Business Review, 29(4), 101660. https://doi.org/10.1016/j.ibusrev.2019.101660 Bahramian, P., & Saliminezhad, A. (2020). On the relationship between export and economic growth:  A nonparametric causality-in-quantiles approach for Turkey. The Journal of International Trade & Economic Development, 29(1), 131–145. https://doi.org/10.1080/09638199.2019.1648537 Bensassi, S., Márquez-Ramos, L., Martínez-Zarzoso, I., & Suárez-Burguet, C. (2015). Relationship between  logistics infrastructure and trade: Evidence from Spanish regional exports. Transportation Research Part A: Policy and Practice, 72, 47–61. https://doi.org/10.1016/j.tra.2014.11.007 Bugarčić, F. Ž., Skvarciany, V., & Stanišić, N. (2020). Logistics performance index in international trade:  Case of Central and Eastern European and Western Balkans countries. Business: Theory and Prac- tice, 21(2), 452–459. https://doi.org/10.3846/btp.2020.12802 Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. Eu- ropean Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8 Charnes, A., Cooper, W. W., Wei, Q. L., & Huang, Z. M. (1989). Cone ratio data envelopment analysis and  multi-objective programming. International Journal of Systems Science, 20(7), 1099–1118.  https://doi.org/10.1080/00207728908910197 Çelebi, D. (2019). The role of logistics performance in promoting trade. Maritime Economics & Logistics, 21, 307–323. https://doi.org/10.1057/s41278-017-0094-4 Danaci, T., & Nacar, R. (2017). Comparing the foreign trade and logistic performance of Turkey and EU  members with cluster analysis. Press Academia Procedia, 3(1), 31–36. https://doi.org/10.17261/Pressacademia.2017.389 De Jong, E., & Bogmans, C. (2011). Does corruption discourage international trade? European Journal of Political Economy, 27(2), 385–398. https://doi.org/10.1016/j.ejpoleco.2010.11.005 Dong, B. (2011). The causes and consequences of corruption [Doctoral dissertation]. Queensland University  of Technology. Dragusha, B., Hasaj, B., Kruja, A., & Lulaj, E. (2023). The impact of foreign trade liberalization on Albania’s economic growth: An econometrical approach. Journal of Eastern European & Central Asian Research, 10(2), 189–200. https://doi.org/10.15549/jeecar.v10i2.1097 Eaton, J., & Kortum, S. (2002). Technology, geography, and trade. Econometrica, 70(5), 1741–1779. https://doi.org/10.1111/1468-0262.00352 Egger, P., & Winner, H. (2005). Evidence on corruption as an incentive for foreign direct investment.  European Journal of Political Economy, 21(4), 932–952. https://doi.org/10.1016/j.ejpoleco.2005.01.002 Elbeydi, K. R., Hamuda, A. M., & Gazda, V. (2010). The relationship between export and economic growth  in Libya Arab Jamahiriya. Theoretical and Applied Economics, 1(1), 69–76. Erkan, B. (2014). The importance and determinants of logistics performance of selected countries. Journal of Emerging Issues in Economics, Finance and Banking, 3(6), 1237–1254. Faria, R. N. D., Souza, C. S. D., & Vieira, J. G. V. (2015). Evaluation of logistic performance indexes of Brazil  in the international trade. RAM. Revista de Administração Mackenzie, 16, 213–235. https://doi.org/10.1590/1678-69712015/administracao.v16n1p213-235 Feder, G. (1983). On exports and economic growth. Journal of Development Economics, 12(1–2), 59–73. https://doi.org/10.1016/0304-3878(83)90031-7 Gani, A. (2017). The logistics performance effect in international trade. The Asian Journal of Shipping and Logistics, 33(4), 279–288. https://doi.org/10.1016/j.ajsl.2017.12.012 Goel, R. K., Mazhar, U., & Saunoris, J. W. (2021). Identifying the corrupt cog in the wheel: Dimensions  of supply chain logistics and cross-country corruption. Australian Economic Papers, 60(4), 693–709. https://doi.org/10.1111/1467-8454.12226 Halaszovich, T. F., & Kinra, A. (2020). The impact of distance, national transportation systems and logistics performance on FDI and international trade patterns: Results from Asian global value chains. Transport Policy, 98, 35–47. https://doi.org/10.1016/j.tranpol.2018.09.003 Hesse, M., & Rodrigue, J. P. (2004). The transport geography of logistics and freight distribution. Journal of Transport Geography, 12(3), 171–184. https://doi.org/10.1016/j.jtrangeo.2003.12.004 https://doi.org/10.1016/j.ibusrev.2019.101660 https://doi.org/10.1080/09638199.2019.1648537 https://doi.org/10.1016/j.tra.2014.11.007 https://doi.org/10.3846/btp.2020.12802 https://doi.org/10.1016/0377-2217(78)90138-8 https://doi.org/10.1080/00207728908910197 https://doi.org/10.1057/s41278-017-0094-4 https://doi.org/10.17261/Pressacademia.2017.389 https://doi.org/10.1016/j.ejpoleco.2010.11.005 https://doi.org/10.15549/jeecar.v10i2.1097 https://doi.org/10.1111/1468-0262.00352 https://doi.org/10.1016/j.ejpoleco.2005.01.002 https://doi.org/10.1590/1678-69712015/administracao.v16n1p213-235 https://doi.org/10.1016/0304-3878(83)90031-7 https://doi.org/10.1016/j.ajsl.2017.12.012 https://doi.org/10.1111/1467-8454.12226 https://doi.org/10.1016/j.tranpol.2018.09.003 https://doi.org/10.1016/j.jtrangeo.2003.12.004 80 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... Host, A., Skender, H. P., & Zaninović, P. A. (2019). Trade logistics–the gravity model approach. Zbornik Radova Ekonomski Fakultet u Rijeka, 37(1), 327–342. https://doi.org/10.18045/zbefri.2019.1.327 Jiang, Z., & Wu, Y. (2017). The impact of international logistics to international trade research based on an empirical analysis of the data in 1995–2014 in Shandong Province. MATEC Web of Conferences, 124, 05004. https://doi.org/10.1051/matecconf/201712405004 Kabak, Ö., Ekici, Ş. Ö., & Ülengin, F. (2020). Analyzing two-way interaction between the competitiveness  and logistics performance of countries. Transport Policy, 98, 238–246.  https://doi.org/10.1016/j.tranpol.2019.10.007 Kara, K. (2022). Relationship between domestic logistics opportunity efficiency and international logistics  opportunity efficiency based on market potential: Empirical research on developing countries. Journal of Management Marketing and Logistics, 9(2), 79–89.  https://doi.org/10.17261/Pressacademia.2022.1555 Kara, K., & Çetinkaya, A. (2022). Determination of financial performance efficiency with data envelopment  analysis: Evidence from BIST transportation and storage sector. Journal of Emerging Economies and Policy, 7(2), 274–283. Kaufmann, D. (1997). Corruption: The facts. Foreign Policy, 107, 114–131. https://doi.org/10.2307/1149337 Korkut, Y., Yavuz, S., & Zeren, F. (2021). Uluslararasi ticaret ve lojistik arasindaki ilişkinin incelenmesi: G20  ülkeleri örneği. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 30, 77–88.  https://doi.org/10.18092/ulikidince.764015 Kumari, D., & Malhotra, N. (2014). Trade-led growth in India and China: A comparative analysis. Journal of International and Global Economic Studies, 7(2), 68–88. Larson, P. D. (2020). Corruption, gender inequality and logistics performance. The International Journal of Logistics Management, 31(2), 381–397. https://doi.org/10.1108/IJLM-02-2019-0062 Lapinskaitė, I., & Kuckailytė, J. (2014). The impact of supply chain cost on the price of the final product.  Business, Management and Economics Engineering, 12(1), 109–126. https://doi.org/10.3846/bme.2014.08 Leitão, N. C.  (2021). The effects of corruption,  renewable energy,  trade and CO2 emissions.  Econo- mies, 9(2), 1–19. https://doi.org/10.3390/economies9020062 Mah, J. S. (2005). Export expansion, economic growth and causality in China. Applied Economics Let- ters, 12(2), 105–107. https://doi.org/10.1080/1350485042000314343 Martí, L., Puertas, R., & García, L. (2014). The importance of the Logistics Performance Index in interna- tional trade. Applied Economics, 46(24), 2982–2992. https://doi.org/10.1080/00036846.2014.916394 Méndez, F., & Sepúlveda, F. (2006). Corruption, growth and political regimes: Cross country evidence.  European Journal of Political Economy, 22(1), 82–98. https://doi.org/10.1016/j.ejpoleco.2005.04.005 Michaely, M. (1977). Exports and growth: An empirical investigation. Journal of Development Econom- ics, 4(1), 49–53. https://doi.org/10.1016/0304-3878(77)90006-2 Mishra, P. K. (2011). The dynamics of relationship between exports and economic growth in India. Inter- national Journal of Economic Sciences and Applied Research, 4(2), 53–70. Nguyen, H. O., & Tongzon, J. (2010). Causal nexus between the transport and logistics sector and trade: The case of Australia. Transport Policy, 17(3), 135–146. https://doi.org/10.1016/j.tranpol.2009.12.005 OECD/WTO. (2013). Aid for trade and value chains in transport and logistics. https://www.oecd.org/dac/ aft/AidforTrade_SectorStudy_Transport.pdf Ofluoğlu, N. Ö., Kalayci, C., Artan, S., & Bal, H. Ç. (2018). Lojistik performansındaki gelişmelerin ulusla- rarası ticaret üzerindeki etkileri: AB ve MENA ülkeleri örneği. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 9(24), 92–109. Omran, M. F. (2012). Uncovering the relationship between the degree of transparency and the level of  trade logistics in the Middle East and North Africa. African Journal of Economic and Sustainable De- velopment, 1(4), 377–388. https://doi.org/10.1504/AJESD.2012.051557 Polat, M., Kara, K., & Yalcin, G. C. (2022). Clustering countries on logistics performance and carbon diox- ide (CO2) emission efficiency: An empirical analysis. Business and Economics Research Journal, 13(2), 221–238. https://doi.org/10.20409/berj.2022.370 https://doi.org/10.18045/zbefri.2019.1.327 https://doi.org/10.1051/matecconf/201712405004 https://doi.org/10.1016/j.tranpol.2019.10.007 https://doi.org/10.17261/Pressacademia.2022.1555 https://doi.org/10.2307/1149337 https://doi.org/10.18092/ulikidince.764015 https://doi.org/10.1108/IJLM-02-2019-0062 https://doi.org/10.3846/bme.2014.08 https://doi.org/10.3390/economies9020062 https://doi.org/10.1080/1350485042000314343 https://doi.org/10.1080/00036846.2014.916394 https://doi.org/10.1016/j.ejpoleco.2005.04.005 https://doi.org/10.1016/0304-3878(77)90006-2 https://doi.org/10.1016/j.tranpol.2009.12.005 https://www.oecd.org/dac/aft/AidforTrade_SectorStudy_Transport.pdf https://www.oecd.org/dac/aft/AidforTrade_SectorStudy_Transport.pdf https://doi.org/10.1504/AJESD.2012.051557 https://doi.org/10.20409/berj.2022.370 Business, Management and Economics Engineering, 2023, 21(1): 63–83 81 Puertas, R., Martí, L., & García, L. (2014). Logistics performance and export competitiveness: European  experience. Empirica, 41, 467–480. https://doi.org/10.1007/s10663-013-9241-z Rashidi, K., & Cullinane, K. (2019). Evaluating the sustainability of national logistics performance using Data Envelopment Analysis. Transport Policy, 74, 35–46. https://doi.org/10.1016/j.tranpol.2018.11.014 Saleem, A., & Sial, M. H. (2015). Exports-growth nexus in Pakistan: Cointegration and causality analy- sis. Pakistan Economic and Social Review, 53(1), 17–46. https://www.jstor.org/stable/26153247 Sarker, S., Henningsson, S., Jensen, T., & Hedman, J. (2021). The use of blockchain as a resource for com- bating corruption in global shipping: an interpretive case study. Journal of Management Information Systems, 38(2), 338–373. https://doi.org/10.1080/07421222.2021.1912919 Seabra, F., Flores, G. P., & Gomes, K. C. (2016). Effects of corruption and logistics performance inef- ficiencies on container throughput: The Latin America case. International Journal of Economics and Management Engineering, 10(8), 3025–3031. Sénquiz-Díaz, C. (2021). the effect of transport and logistics on trade facilitation and trade: A PLS-SEM  approach. Economics, 9(2), 11–24. https://doi.org/10.2478/eoik-2021-0021 Shepherd, B. (2016). Infrastructure, trade facilitation, and network connectivity in Sub-Saharan Afri- ca. Journal of African Trade, 3(1–2), 1–22. https://doi.org/10.1016/j.joat.2017.05.001 Shihab, R. A., Soufan, T., & Abdul-Khaliq, S. (2014). The causal relationship between exports and economic growth in Jordan. International Journal of Business and Social Science, 5(3), 302–308.  Shikur, Z. H. (2022). The role of logistics performance in international trade: A developing country per- spective. World Review of Intermodal Transportation Research, 11(1), 53–69. https://doi.org/10.1504/WRITR.2022.123100 Smith, A. (2010). The wealth of nations: An inquiry into the nature and causes of the wealth of nations. Harriman House Limited. Song, M. J., & Lee, H. Y. (2022). The relationship between international trade and logistics performance:  A focus on the South Korean industrial sector. Research in Transportation Business & Management, 44, 100786. https://doi.org/10.1016/j.rtbm.2022.100786 Stefanovskiy, D., Maruev, S. & Tejada, X. (2012) Constructing decision tree based on questionnaires to  detect a possible corruption in logistics. Artificial Intelligence Driven Solutions to Business and Engi- neering Problems, 12. Şahin, D. & Durmuş, S. (2018). Türkiye’de diş ticaret ve ekonomik büyüme ilişkisinin analizi. Journal of International Social Research, 11(60). https://doi.org/10.17719/jisr.2018.2860 Tang, C. F., & Abosedra, S. (2019). Logistics performance, exports, and growth: Evidence from Asian econ- omies. Research in Transportation Economics, 78, 100743. https://doi.org/10.1016/j.retrec.2019.100743 Tanzi, V. (1998). Corruption around the world: Causes, consequences, scope, and cures. IMF Staff Paper, 45(4), 559–594. https://doi.org/10.2307/3867585 Trefler, D. (1995). The case of the missing trade and other mysteries. The American Economic Review, 85(5), 1029–1046. https://www.jstor.org/stable/2950973 Uca, N., Ince, H., & Sumen, H. (2016). The mediator effect of Logistics Performance Index on the relation  between Corruption Perception Index and foreign trade volume. European Scientific Journal, 12(25), 37–45. https://doi.org/10.19044/esj.2016.v12n25p37 Vohra, R. (2001). Export and economic growth: Further time series evidence from less-developed coun- tries. International Advances in Economic Research, 7(3), 345–350. https://doi.org/10.1007/BF02295403 Wang, D. F., Dong, Q. L., Peng, Z. M., Khan, S. A. R., & Tarasov, A. (2018). The green logistics impact on  international trade: Evidence from developed and developing countries. Sustainability, 10(7), 2235. https://doi.org/10.3390/su10072235 Yurdakul, H. & Acar, A. Z. (2015, June 8–11). Evaluating the contribution of transportation and logistics  industry to Turkey’s competitive power. In ATINER’S Conference Paper Series, No. TRA2015-1619. Athens Institute for Education and Research, Athens, Greece. Zionts, S. (1968). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 15(3), 449–451. https://doi.org/10.1002/nav.3800150308 https://doi.org/10.1007/s10663-013-9241-z https://doi.org/10.1016/j.tranpol.2018.11.014 https://www.jstor.org/stable/26153247 https://doi.org/10.1080/07421222.2021.1912919 https://doi.org/10.2478/eoik-2021-0021 https://doi.org/10.1016/j.rtbm.2022.100786 https://doi.org/10.17719/jisr.2018.2860 https://doi.org/10.1016/j.retrec.2019.100743 https://doi.org/10.2307/3867585 https://www.jstor.org/stable/2950973 https://doi.org/10.19044/esj.2016.v12n25p37 https://doi.org/10.1007/BF02295403 https://doi.org/10.3390/su10072235 https://doi.org/10.1002/nav.3800150308 82 A. Z. Acar, K. Kara. Identifying the effects of corruption perception on the relationship between international trade and... APPENDIX Countries with increased Trade (% of GDP) activity when corruption is included. Country (Without CPI) (%) (With CPI) (%) Country (Without CPI) (%) (With CPI) (%) Country (Without CPI) (%) (With CPI) (%) 2012 2013 2014 Chile 0.31 0.51 Turkey 0.30 0.33 Chile 0.31 0.55 China 0.19 0.23 Uruguay 0.28 0.39 Saudi Arabia 0.35 0.46 Saudi Arabia 0.36 0.40 Malaysia 0.67 0.77 Uruguay 0.29 0.42 South Africa 0.34 0.38 Kuwait 0.58 0.61 Malaysia 0.73 0.84 Turkey 0.30 0.35 Oman 0.53 0.57 Kuwait 0.61 0.67 Uruguay 0.34 0.41 Qatar 0.53 0.76 Qatar 0.51 0.79 Qatar 0.53 0.75 Saudi Arabia 0.36 0.41 Ukraine 0.65 0.82 Ukraine 0.65 0.73 Ukraine 0.56 0.70 Malaysia 0.73 0.82 Thailand 0.94 0.98 2015 2016 2017 Chile 0.28 0.52 Chile 0.26 0.53 Chile 0.27 0.54 Colombia 0.30 0.38 China 0.15 0.22 China 0.14 0.21 Egypt 0.29 0.36 Paraguay 0.48 0.55 Jordan 0.66 0.76 South Africa 0.30 0.37 Saudi Arabia 0.26 0.42 Morocco 0.46 0.53 Turkey 0.26 0.32 South Africa 0.32 0.39 Oman 0.48 0.60 Uruguay 0.26 0.42 Sri Lanka 0.30 0.36 Qatar 0.47 0.78 Kuwait 0.58 0.71 Turkey 0.24 0.31 Saudi Arabia 0.27 0.43 Oman 0.48 0.56 Uruguay 0.29 0.50 Turkey 0.26 0.31 Qatar 0.46 0.84 UAE 0.68 0.81 Ukraine 0.75 1.00 Saudi Arabia 0.30 0.47 Bahrain 0.85 1.00 Uruguay 0.30 0.45 Ukraine 0.66 0.96 Jordan 0.63 0.74 UAE 0.71 0.79 Bahrain 0.94 1.00 Kuwait 0.56 0.63 Bahrain 0.93 1.00 Malaysia 0.58 0.83 Malaysia 0.56 0.89 Malaysia 0.57 0.85 Thailand 0.71 0.82 Morocco 0.44 0.51 Oman 0.42 0.59 Qatar 0.43 0.78 Tunisia 0.66 0.72 Ukraine 0.79 1.00 2018 2019 2020 Chile 0.26 0.55 Chile 0.32 0.49 Chile 0.33 0.52 China 0.14 0.21 China 0.11 0.19 Myanmar 0.57 0.66 Saudi Arabia 0.28 0.47 Saudi Arabia 0.35 0.43 Oman 0.49 0.58 Sri Lanka 0.31 0.37 Uruguay 0.32 0.45 Qatar 0.55 0.76 Turkey 0.29 0.37 Malaysia 0.63 0.83 Saudi Arabia 0.27 0.36 Business, Management and Economics Engineering, 2023, 21(1): 63–83 83 Country (Without CPI) (%) (With CPI) (%) Country (Without CPI) (%) (With CPI) (%) Country (Without CPI) (%) (With CPI) (%) 2018 2019 2020 Uruguay 0.28 0.48 Qatar 0.54 0.71 Ukraine 0.49 0.75 Jordan 0.62 0.72 Ukraine 0.53 0.82 Uruguay 0.31 0.44 Malaysia 0.54 0.89 Malaysia 0.59 0.79 Morocco 0.45 0.57 Oman 0.47 0.67 Qatar 0.44 0.82 Tunisia 0.72 0.82 UAE 0.63 0.71 Ukraine 0.63 1.00 End of Appendix Bookmark 2