Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics 73(4): 111-120, 2020

Firenze University Press 
www.fupress.com/caryologia

ISSN 0008-7114 (print) | ISSN 2165-5391 (online) | DOI: 10.13128/caryologia-966

Caryologia
International Journal of Cytology,  

Cytosystematics and Cytogenetics

Citation: M. Husemann, D. Sadílek, 
L.-S. Dey, O. Hawlitschek, M. Seidel (2020) 
New genome size estimates for band-
winged and slant-faced grasshoppers 
(Orthoptera: Acrididae: Oedipodinae, 
Gomphocerinae) reveal the so far larg-
est measured insect genome. Caryolo-
gia 73(4): 111-120. doi: 10.13128/caryolo-
gia-966

Received: June 10, 2020

Accepted: September 24, 2020

Published: May 19, 2021

Copyright: © 2020 M. Husemann, D. 
Sadílek, L.-S. Dey, O. Hawlitschek, 
M. Seidel. This is an open access, 
peer-reviewed article published by 
Firenze University Press (http://www.
fupress.com/caryologia) and distributed 
under the terms of the Creative Com-
mons Attribution License, which per-
mits unrestricted use, distribution, and 
reproduction in any medium, provided 
the original author and source are 
credited.

Data Availability Statement: All rel-
evant data are within the paper and its 
Supporting Information files.

Competing Interests: The Author(s) 
declare(s) no conflict of interest.

New genome size estimates for band-winged 
and slant-faced grasshoppers (Orthoptera: 
Acrididae: Oedipodinae, Gomphocerinae) 
reveal the so far largest measured insect genome 

Martin Husemann1,*+, David Sadílek2+, Lara-Sophie Dey1, Oliver 
Hawlitschek1, Matthias Seidel1,3

1 Centrum für Naturkunde, Universität Hamburg, Martin-Luther-King-Platz 3, DE-20146 
Hamburg, Germany
2 Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12843 
Praha, Czech Republic
3 Department of Entomology, National Museum in Prague, Cirkusová 1740, CZ-19300 
Praha, Czech Republic
*Corresponding author. E-mail: martin.husemann@uni-hamburg.de
+MH and DS equally contributed 

Abstract. Grasshoppers, specifically those of the family Acrididae are known to have 
the largest genomes of all insects. However, less than 100 species of Orthoptera have 
their genome size estimated so far. In the present study, we measured the genome size 
of five acridid species belonging to the two subfamilies Oedipodinae and Gomphoceri-
nae. All of the genomes measured are large and range between 1C = 11.31 pg in the 
female of Chorthippus dorsatus and 1C = 18.48 pg in the female of Stethophyma gros-
sum. The latter represents the so far largest measured insect genome. We further pro-
vide a summary of genome size estimates available for Orthoptera.

Keywords: C-value, flow cytometry, Stethopyhma, Oedipoda, Sphingonotus, Chorthip-
pus.

INTRODUCTION 

The genome has become one of the most important targets of interest 
for biologists. In times of high throughput sequencing, projects like i5k 
generate data of entire genomes are at a daily base (Robinson et al. 2011; 
Li et al. 2019). However, we still have little data and a limited understand-
ing of the variance in genome size across organisms. Especially for insects, 
the most diverse group of organisms on earth, data of only about 1,300 of 
the expected diversity of several million species are available (Sadílek et al. 
2019a; Gregory 2020). Generating new data on genome sizes is important, 
e.g., for choosing the adequate NGS applications for genomic sequencing 
(Rodríguez et al. 2017). Yet, genome size can also be a taxonomic feature 



112 Martin Husemann et al.

and can be used for species determination (Sadílek et 
al. 2019b). For many applications taxa with specifically 
large genomes still remain a difficult target, especially 
if no complete genome sequence is available. Further, 
in order to understand why some species or species 
groups have specifically large genomes, whereas others 
are rather small requires comprehensive data across a 
large range of taxa.

While the so far largest genome of any organism 
was estimated in a plant, the monocot Paris japonica 
Franchet with 1C = 152.23 pg (Pellicer et al. 2010), the 
largest genome sizes in insects have been measured in 
Orthoptera, specifically Caelifera, with 1C values of 
16.93 pg in Podisma pedestris (Linnaeus, 1758) (Podis-
minae) and 16.34 pg in Stauroderus scalaris (Fischer 
von Waldheim, 1846) (Gomphocerinae) (Gregory 2020 
for a list). However, there is also a lot of variation with-
in Orthoptera with genome sizes as small as 1C = 1.55 
pg found in the cricket Hadenoecus subterraneus (Scud-
der, 1861) (Rasch and Rasch 1981). Nevertheless, a clear 
trend for larger genomes in the short-horned grasshop-
pers is observed, and specifically in the family Acridi-
dae. In the present study, we were able to locate only 85 
published genome size estimates from all Orthoptera 
(e.g. Gregory 2020). 

To better understand the evolution of genome size 
in Orthoptera, especially the huge genomes of grasshop-
pers of the Acrididae family, it is obligatory to generate 
additional information. Hence, we provide new genome 
size information for members of the Acrididae fam-
ily, i.e. three species of the subfamily Oedipodinae and 
two species of the Gomphocerinae. We present, to our 
knowledge, the so far largest genome size of any insect 
and summarize the knowledge on genome sizes in 
Orthoptera.

MATERIAL AND METHODS

Sampling

Eight specimens from five species (Table 1), all of 
the family Acrididae, were collected for our analyses 
in September 2019 in Hamburg, Georgswerder (Ger-
many, 53.5097°N 10.0301°E). Specimens were collected 
by hand and kept alive until further processing. We 
included two species of the subfamily Gomphocerinae: 
Chorthippus dorsatus (Zetterstedt, 1821) and a species 
of the Chorthippus biguttulus (Linnaeus, 1758) group (a 
group of three species C. biguttulus, C. brunneus (Thun-
berg, 1815), C.  mollis (Charpentier, 1825), which can 
only be identified with certainty by male song patterns; 
our specimen is a female, but according to morphologi-
cal traits most likely represents C. biguttulus), as well as 
three species of the subfamily Oedipodinae: Oedipoda 
caerulescens (Linnaeus, 1758), Sphingonotus caerulans 
(Linnaeus, 1767), and Stethophyma grossum (Linnaeus, 
1758) (Table 1, 2). 

Reference specimens are deposited in the Zoological 
Museum Hamburg (ZMH), part of the Center of Natural 
History (CeNak) under the accession ZMH 2019/21. 

Genome size analysis

Nuclear DNA content (2C) was measured by the 
f low cytometry method (FCM) as in Sadílek et al. 
(2019a, b) at the Department of botany of Charles Uni-
versity, Prague. The muscle tissue of one hind femur was 
used for FCM analysis against the plant-internal stand-
ard Pisum sativum L. “Ctirad” (Fabaceae) with 2C = 9.09 
pg (Doležel et al. 1998; Doležel and Greilhuber 2010). 
Fresh tissue was homogenized and mixed with a leaf of 

Table 1. Diploid chromosome number, 2C genome size, sample/standard ratio of both DAPI- and PI-stained samples and GC content of 
grasshopper species studied. Samples were measured against P. sativum standard with 2C = 9.09 pg. F = female, M = male, 2n = male dip-
loid chromosome number, 2C = nuclear DNA content for nuclei with diploid chromosome number, CV = average coefficient of variation 
for each stain used. 

Species 2n Sex 2C (pg)
Sample/

standard DAPI 
ratio

Sample/
standard PI 

ratio
GC content (%)

Sample CV 
DAPI - PI

Sphingonotus caerulans 22+XX F 26.63 2.424 2.930 42.14 2.70 - 2.95
Sphingonotus caerulans 22+X0 M 25.12 2.321 2.764 41.87 2.71 - 2.81
Oedipoda caerulescens 22+XX F 28.39 2.621 3.123 41.88 3.71 - 5.62
Chorthippus dorsatus 16+XX F 24.14 2.359 2.656 40.82 2.58 - 2.64
Chorthippus biguttulus 16+XX F 22.62 2.149 2.488 41.35 2.50 - 4.07
Stethophyma grossum 22+XX F 36.95 3.326 4.065 42.35 3.41 - 4.23
Stethophyma grossum 22+X0 M 34.72 3.172 3.820 42.08 2.19 - 2.84



113New genome size estimates for band-winged and slant-faced grasshoppers reveal the so far largest measured insect genome

Ta
bl

e 
2.

 G
en

om
e 

si
ze

s 
of

 O
rt

ho
pt

er
a 

so
 fa

r 
m

ea
su

re
d.

 Th
e 

te
m

pl
at

e 
of

 t
he

 t
ab

le
 w

as
 e

xt
ra

ct
ed

 fr
om

 G
re

go
ry

 (
20

20
); 

it 
w

as
 c

om
pl

em
en

te
d 

w
ith

 o
ri

gi
na

l r
ef

er
en

ce
s 

an
d 

ad
di

tio
na

l s
tu

d-
ie

s.
 R

ef
er

en
ce

s 
w

ith
 a

n 
* 

in
di

ca
te

 t
ha

t 
th

e 
or

ig
in

al
 r

ef
er

en
ce

 c
ou

ld
 n

ot
 b

e 
ac

ce
ss

ed
 a

nd
 d

at
a 

ar
e 

ex
tr

ac
te

d 
on

ly
 f

ro
m

 G
re

go
ry

 (
20

20
). 

1 r
el

at
iv

e 
ge

no
m

e 
si

ze
 -

 m
ea

su
re

d 
w

ith
 t

he
 D

A
PI

 
- 

fr
om

 M
or

ga
n-

R
ic

ha
rd

s 
(2

00
5)

. M
= 

m
al

e,
 F

 =
 fe

m
al

e,
 2

C
 =

 g
en

om
e 

si
ze

 o
f t

he
 d

ip
lo

id
 c

el
l, 

2n
 =

 d
ip

lo
id

 c
hr

om
os

om
e 

nu
m

be
r 

(i
f s

ex
 is

 n
ot

 d
et

er
m

in
ed

, k
ar

yo
ty

pe
 o

f t
he

 m
al

e 
is

 p
re

-
se

nt
ed

; i
n 

al
l s

pe
ci

es
 t

he
 s

ex
 d

et
er

m
in

in
g 

sy
st

em
 is

 X
X

/X
0,

 o
nl

y 
m

al
es

 o
f P

od
is

m
a 

pe
de

st
ri

s 
ca

n 
be

 v
ar

ia
bl

e 
w

ith
 X

Y
/X

0)
, n

.a
. =

 n
ot

 a
va

ila
bl

e;
 F

D
 =

 F
eu

lg
en

 d
en

si
to

m
et

ry
, F

C
M

 =
 fl

ow
 

cy
to

m
et

ry
 m

et
ho

d;
 A

N
 =

 a
nt

en
na

, B
R

 =
 b

ra
in

, H
E 

= 
ha

em
oc

yt
es

, M
S 

= 
m

us
cl

e,
 O

V
 =

 o
va

ri
es

, S
 =

 s
pe

rm
, T

S 
= 

te
st

es
; A

C
 =

 A
lli

um
 c

ep
a 

(1
C

 =
 1

6.
50

 p
g)

, B
O

 =
 B

os
 ta

ur
us

 (
1C

 =
 3

.7
0 

pg
), 

BP
 =

 B
el

lis
 p

er
en

ni
s 

(1
C

 =
 1

.7
6 

pg
), 

D
M

 =
 D

ro
so

ph
ila

 m
el

an
og

as
te

r 
(1

C
 =

 0
.1

8 
pg

), 
D

V
 =

 D
ro

so
ph

ila
 v

ir
ili

s 
(1

C
 =

 0
.3

4 
pg

), 
G

D
 =

 G
al

lu
s 

do
m

es
tic

us
 (

1C
 =

 1
.2

5 
pg

), 
H

S 
= 

H
om

o 
sa

pi
en

s 
(1

C
 =

 3
.5

0 
pg

), 
LM

 =
 L

oc
us

ta
 m

ig
ra

to
ri

a 
(1

C
 =

 5
.5

0 
pg

), 
M

D
 =

 M
us

ca
 d

om
es

tic
a 

(1
C

 =
 0

.9
0 

pg
), 

M
M

 =
 M

us
 m

us
cu

lu
s 

(1
C

 =
 3

.3
0 

pg
), 

O
M

 =
 O

nc
or

hy
nc

hu
s 

m
yk

is
s 

(1
C

 =
 2

.6
0 

pg
), 

PA
 =

 P
er

ip
la

ne
ta

 a
m

er
ic

an
a 

(1
C

 =
 3

.4
1 

pg
), 

PS
 =

 P
is

um
 s

at
iv

um
 (

1C
 =

 4
.5

5 
pg

), 
SG

 =
 S

ch
is

to
ce

rc
a 

gr
eg

ar
ia

 (
1C

 =
 8

.7
0 

pg
).

Fa
m

ily
Su

bf
am

ily
Sp

ec
ie

s
Se

x
1C

 [
pg

]
2n

M
et

ho
d

C
el

l T
yp

e
St

an
da

rd
 S

p.
R

ef
er

en
ce

s

Su
bo

rd
er

: C
ae

lif
er

a
A

cr
id

id
ae

A
cr

id
in

ae
A

cr
id

a 
co

ni
ca

n.
a.

12
.5

5
23

FD
H

E
G

D
, O

M
R

as
ch

 1
98

5*
A

cr
id

id
ae

A
cr

id
in

ae
A

cr
id

a 
co

ni
ca

M
10

.8
2

23
FD

T
S

G
D

R
ee

s 
et

 a
l. 

19
78

A
cr

id
id

ae
A

cr
id

in
ae

C
al

ed
ia

 c
ap

tiv
a

M
10

.9
23

FD
T

S
G

D
R

ee
s 

et
 a

l. 
19

78
A

cr
id

id
ae

A
cr

id
in

ae
C

ry
pt

ob
ot

hr
us

 c
hr

ys
op

ho
ru

s
M

9.
37

23
FD

T
S

G
D

R
ee

s 
et

 a
l. 

19
78

A
cr

id
id

ae
A

cr
id

in
ae

Sc
hi

zo
bo

th
ru

s 
fla

vo
vi

tt
at

us
M

7.
5

n.
a.

FD
T

S
G

D
R

ee
s 

et
 a

l. 
19

78
A

cr
id

id
ae

C
at

an
to

pi
na

e
M

ac
ro

to
na

 a
us

tr
al

is
M

8.
49

23
FD

T
S

G
D

R
ee

s 
et

 a
l. 

19
78

A
cr

id
id

ae
C

at
an

to
pi

na
e

Pe
ak

es
ia

 h
os

pi
ta

M
10

.4
7

23
FD

T
S

G
D

R
ee

s 
et

 a
l. 

19
78

A
cr

id
id

ae
C

at
an

to
pi

na
e

Ph
au

la
cr

id
iu

m
 v

itt
at

um
M

10
.7

3
23

FD
T

S
G

D
R

ee
s 

et
 a

l. 
19

78
A

cr
id

id
ae

C
yr

ta
ca

nt
ha

cr
id

in
ae

Sc
hi

st
oc

er
ca

 c
an

ce
lla

ta
M

9.
49

23
FD

T
S

LM
Jo

hn
 a

nd
 H

ew
itt

 1
96

6
A

cr
id

id
ae

C
yr

ta
ca

nt
ha

cr
id

in
ae

Sc
hi

st
oc

er
ca

 g
re

ga
ri

a
n.

a.
8.

96
23

FD
V

M
M

Fo
x 

19
70

*
A

cr
id

id
ae

C
yr

ta
ca

nt
ha

cr
id

in
ae

Sc
hi

st
oc

er
ca

 g
re

ga
ri

a
M

8.
71

23
FD

T
S

M
M

W
ilm

or
e 

an
d 

Br
ow

n 
19

75
A

cr
id

id
ae

C
yr

ta
ca

nt
ha

cr
id

in
ae

Sc
hi

st
oc

er
ca

 g
re

ga
ri

a
M

8.
55

23
FD

T
S

LM
Jo

hn
 a

nd
 H

ew
itt

 1
96

6
A

cr
id

id
ae

C
yr

ta
ca

nt
ha

cr
id

in
ae

Sc
hi

st
oc

er
ca

 g
re

ga
ri

a
M

8.
74

23
FD

S
n.

a.
C

am
ac

ho
 e

t a
l. 

20
15

A
cr

id
id

ae
C

yr
ta

ca
nt

ha
cr

id
in

ae
Sc

hi
st

oc
er

ca
 p

ar
an

en
si

s
M

8.
63

23
FD

T
S

LM
Jo

hn
 a

nd
 H

ew
itt

 1
96

6
A

cr
id

id
ae

C
yr

ta
ca

nt
ha

cr
id

in
ae

Va
la

ng
a 

ir
re

gu
la

ri
s

M
9.

44
23

FD
T

S
G

D
R

ee
s 

et
 a

l. 
19

78
A

cr
id

id
ae

Ey
pr

ep
oc

ne
m

id
in

ae
Ey

pr
ep

oc
ne

m
is

 p
lo

ra
ns

M
9.

7
23

FD
S

LM
R

ui
z-

R
ua

no
 e

t a
l. 

20
11

A
cr

id
id

ae
Ey

pr
ep

oc
ne

m
id

in
ae

H
et

er
ac

ri
s 

ad
sp

er
su

s
M

6.
34

23
FD

T
S

A
C

G
os

al
ve

z 
et

 a
l. 

19
80

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

G
om

ph
oc

er
us

 s
ib

ir
ic

us
M

8.
95

17
FD

T
S

A
C

G
os

al
ve

z 
et

 a
l. 

19
80

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 a
pi

ca
lis

n.
a.

12
.6

1
17

FD
T

S
G

D
B

el
da

 e
t a

l. 
19

91
*

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 b
ig

ut
tu

lu
s 

F
11

.3
1

18
FC

M
M

S
PS

th
is

 s
tu

dy
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
C

ho
rt

hi
pp

us
 b

in
ot

at
us

 
n.

a.
10

.9
1

17
FD

T
S

G
D

B
el

da
 e

t a
l. 

19
91

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 c
f. 

bi
no

ta
tu

s
n.

a.
10

.3
5

17
FD

T
S

G
D

B
el

da
 e

t a
l. 

19
91

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 b
ru

nn
eu

s
M

10
.1

5
17

FD
T

S
A

C
G

os
al

ve
z 

et
 a

l. 
19

80
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
C

ho
rt

hi
pp

us
 b

ru
nn

eu
s

M
9.

46
17

FD
T

S
M

M
W

ilm
or

e 
an

d 
Br

ow
n 

19
75

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 b
ru

nn
eu

s
M

8.
55

17
FD

T
S

LM
Jo

hn
 a

nd
 H

ew
itt

 1
96

6
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
C

ho
rt

hi
pp

us
 d

or
sa

tu
s

n.
a.

8.
34

17
FD

T
S

G
D

B
el

da
 e

t a
l. 

19
91

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 d
or

sa
tu

s
F

12
.0

7
18

FC
M

M
S

PS
th

is
 s

tu
dy

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 ja
co

bs
i

n.
a.

10
.8

4
17

FD
T

S
G

D
B

el
da

 e
t a

l. 
19

91
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
C

ho
rt

hi
pp

us
 ju

cu
nd

us
n.

a.
11

.8
8

17
FD

T
S

G
D

B
el

da
 e

t a
l. 

19
91

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 lo
ng

ic
or

ni
s

M
8.

58
17

FD
T

S
A

C
G

os
al

ve
z 

et
 a

l. 
19

80
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
C

ho
rt

hi
pp

us
 n

ev
ad

en
si

s
n.

a.
11

.5
3

17
FD

T
S

G
D

B
el

da
 e

t a
l. 

19
91



114 Martin Husemann et al.

Fa
m

ily
Su

bf
am

ily
Sp

ec
ie

s
Se

x
1C

 [
pg

]
2n

M
et

ho
d

C
el

l T
yp

e
St

an
da

rd
 S

p.
R

ef
er

en
ce

s

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

Ps
eu

do
ch

or
th

ip
pu

s 
pa

ra
lle

lu
s

n.
a.

14
.7

2
17

FD
T

S
G

D
B

el
da

 e
t a

l. 
19

91
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
Ps

eu
do

ch
or

th
ip

pu
s 

pa
ra

lle
lu

s
n.

a.
13

.8
3

17
n.

a.
n.

a.
n.

a.
Pe

tit
pi

er
re

 1
99

6
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
Ps

eu
do

ch
or

th
ip

pu
s 

pa
ra

lle
lu

s
M

13
.3

6
17

FD
T

S
M

M
W

ilm
or

e 
an

d 
Br

ow
n 

19
75

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

Ps
eu

do
ch

or
th

ip
pu

s 
pa

ra
lle

lu
s

M
12

.3
1

17
FD

T
S

LM
Jo

hn
 a

nd
 H

ew
itt

 1
96

6
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
C

ho
rt

hi
pp

us
 s

ca
la

ri
s

n.
a.

14
.7

2
17

FD
T

S
G

D
B

el
da

 e
t a

l. 
19

91
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
C

ho
rt

hi
pp

us
 v

ag
an

s
M

8.
68

17
FD

T
S

A
C

G
os

al
ve

z 
et

 a
l. 

19
80

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

C
ho

rt
hi

pp
us

 v
ag

an
s

n.
a.

8.
64

17
FD

T
S

G
D

B
el

da
 e

t a
l. 

19
91

A
cr

id
id

ae
G

om
ph

oc
er

in
ae

M
yr

m
el

eo
te

tt
ix

 m
ac

ul
at

us
n.

a.
13

.3
8

17
n.

a.
n.

a.
n.

a.
Pe

tit
pi

er
re

 1
99

6
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
M

yr
m

el
eo

te
tt

ix
 m

ac
ul

at
us

M
12

.6
6

17
FD

T
S

M
M

W
ilm

or
e 

an
d 

Br
ow

n 
19

75
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
M

yr
m

el
eo

te
tt

ix
 m

ac
ul

at
us

M
12

.1
4

17
FD

T
S

LM
Jo

hn
 a

nd
 H

ew
itt

 1
96

6
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
O

m
oc

es
tu

s 
vi

ri
du

lu
s

M
13

.1
6

17
FD

T
S

LM
Jo

hn
 a

nd
 H

ew
itt

 1
96

6
A

cr
id

id
ae

G
om

ph
oc

er
in

ae
St

au
ro

de
ru

s 
sc

al
ar

is
n.

a.
16

.3
4

17
n.

a.
n.

a.
n.

a.
Pe

tit
pi

er
re

 1
99

6
A

cr
id

id
ae

M
el

an
op

lin
ae

C
am

py
la

ca
nt

ha
 o

liv
ac

ea
F

6.
98

n.
a.

FC
M

BR
G

D
H

an
ra

ha
n 

an
d 

Jo
hn

st
on

 2
01

1
A

cr
id

id
ae

M
el

an
op

lin
ae

C
am

py
la

ca
nt

ha
 o

liv
ac

ea
M

6.
15

n.
a.

FC
M

BR
G

D
H

an
ra

ha
n 

an
d 

Jo
hn

st
on

 2
01

1
A

cr
id

id
ae

M
el

an
op

lin
ae

M
el

an
op

lu
s 

di
ffe

re
nt

ia
lis

M
6.

79
23

FC
M

BR
PA

H
an

ra
ha

n 
an

d 
Jo

hn
st

on
 2

01
1

A
cr

id
id

ae
M

el
an

op
lin

ae
M

el
an

op
lu

s 
di

ffe
re

nt
ia

lis
n.

a.
6.

23
23

FD
H

E
G

D
, O

M
R

as
ch

 u
np

ub
l. 

*
A

cr
id

id
ae

M
el

an
op

lin
ae

M
el

an
op

lu
s 

di
ffe

re
nt

ia
lis

n.
a.

3.
84

23
FD

O
V,

 T
S

B
O

Sw
ift

 a
nd

 K
le

in
fe

ld
 1

95
3*

A
cr

id
id

ae
M

el
an

op
lin

ae
M

el
an

op
lu

s 
di

ffe
re

nt
ia

lis
F

7.
26

24
FC

M
BR

PA
H

an
ra

ha
n 

an
d 

Jo
hn

st
on

 2
01

1
A

cr
id

id
ae

M
el

an
op

lin
ae

M
el

an
op

lu
s 

sa
ng

ui
ni

pe
s

n.
a.

5.
83

23
FD

H
E

G
D

, O
M

R
as

ch
 u

np
ub

l. 
*

A
cr

id
id

ae
M

el
an

op
lin

ae
Po

di
sm

a 
pe

de
st

ri
s

M
16

.9
3

23
/2

4
FD

S
SG

W
es

te
rm

an
n 

et
 a

l. 
19

87
A

cr
id

id
ae

O
ed

ip
od

in
ae

A
ilo

pu
s 

th
al

as
si

nu
s

M
6.

68
23

FD
T

S
G

D
R

ee
s 

et
 a

l. 
19

78
A

cr
id

id
ae

O
ed

ip
od

in
ae

A
us

tr
oi

ce
te

s 
pu

si
lla

M
6.

29
23

FD
T

S
G

D
R

ee
s 

et
 a

l. 
19

78
A

cr
id

id
ae

O
ed

ip
od

in
ae

G
as

tr
im

ar
gu

s 
m

us
ic

us
M

9.
01

n.
a.

FD
T

S
G

D
R

ee
s 

et
 a

l. 
19

78
A

cr
id

id
ae

O
ed

ip
od

in
ae

H
um

be
 te

nu
ic

or
ni

s
M

8.
21

23
FD

T
S

LM
Jo

hn
 a

nd
 H

ew
itt

 1
96

6
A

cr
id

id
ae

O
ed

ip
od

in
ae

C
ho

rt
oi

ce
te

s 
te

rm
in

ife
ra

M
7.

22
23

FD
T

S
M

M
W

ilm
or

e 
an

d 
Br

ow
n 

19
75

A
cr

id
id

ae
O

ed
ip

od
in

ae
C

ho
rt

oi
ce

te
s 

te
rm

in
ife

ra
M

5.
99

23
FD

T
S

G
D

R
ee

s 
et

 a
l. 

19
78

A
cr

id
id

ae
O

ed
ip

od
in

ae
Lo

cu
st

a 
m

ig
ra

to
ri

a
F

6.
44

24
FC

M
n.

a.
M

M
W

an
g 

et
 a

l. 
20

14
A

cr
id

id
ae

O
ed

ip
od

in
ae

Lo
cu

st
a 

m
ig

ra
to

ri
a

n.
a.

6.
35

23
FD

H
E

G
D

, O
M

R
as

ch
 1

98
5

A
cr

id
id

ae
O

ed
ip

od
in

ae
Lo

cu
st

a 
m

ig
ra

to
ri

a
n.

a.
6.

27
23

FD
V

M
M

Fo
x 

19
70

A
cr

id
id

ae
O

ed
ip

od
in

ae
Lo

cu
st

a 
m

ig
ra

to
ri

a
M

6.
09

23
FD

T
S

M
M

W
ilm

or
e 

an
d 

Br
ow

n 
19

75
A

cr
id

id
ae

O
ed

ip
od

in
ae

Lo
cu

st
a 

m
ig

ra
to

ri
a

M
5.

47
23

FD
T

S
G

D
R

ee
s 

et
 a

l. 
19

78
A

cr
id

id
ae

O
ed

ip
od

in
ae

Lo
cu

st
a 

m
ig

ra
to

ri
a

n.
a.

5.
28

23
FD

S
M

D
Bi

er
 a

nd
 M

ül
le

r 
19

69
*

A
cr

id
id

ae
O

ed
ip

od
in

ae
O

ed
ip

od
a 

ca
er

ul
es

ce
ns

F
14

.2
24

FC
M

M
S

PS
th

is
 s

tu
dy

A
cr

id
id

ae
O

ed
ip

od
in

ae
Sp

hi
ng

on
ot

us
 c

ae
ru

la
ns

M
12

.5
6

23
FC

M
M

S
PS

th
is

 s
tu

dy
A

cr
id

id
ae

O
ed

ip
od

in
ae

Sp
hi

ng
on

ot
us

 c
ae

ru
la

ns
F

13
.3

2
24

FC
M

M
S

PS
th

is
 s

tu
dy

A
cr

id
id

ae
O

ed
ip

od
in

ae
St

et
ho

ph
ym

a 
gr

os
su

m
M

17
.3

6
23

FC
M

M
S

PS
th

is
 s

tu
dy

A
cr

id
id

ae
O

ed
ip

od
in

ae
St

et
ho

ph
ym

a 
gr

os
su

m
F

18
.4

8
24

FC
M

M
S

PS
th

is
 s

tu
dy

M
or

ab
id

ae
M

or
ab

in
ae

W
ar

ra
m

ab
a 

vi
rg

o
n.

a.
4

15
FD

BR
G

D
W

hi
te

 a
nd

 W
eb

b 
19

68



115New genome size estimates for band-winged and slant-faced grasshoppers reveal the so far largest measured insect genome

Fa
m

ily
Su

bf
am

ily
Sp

ec
ie

s
Se

x
1C

 [
pg

]
2n

M
et

ho
d

C
el

l T
yp

e
St

an
da

rd
 S

p.
R

ef
er

en
ce

s

M
or

ab
id

ae
M

or
ab

in
ae

W
ar

ra
m

ab
a 

vi
rg

o
n.

a.
3.

75
15

n.
a.

n.
a.

n.
a.

Pe
tit

pi
er

re
 1

99
6

Su
bo

rd
er

: E
ns

ife
ra

A
no

st
os

to
m

at
id

ae
D

ei
na

cr
id

in
ae

H
em

id
ei

na
 c

ra
ss

id
en

s 
1

M
5.

4
15

FC
M

A
N

BP
M

or
ga

n-
R

ic
ha

rd
s 

20
05

 
A

no
st

os
to

m
at

id
ae

D
ei

na
cr

id
in

ae
H

em
id

ei
na

 c
ra

ss
id

en
s 

1
F

6.
01

16
FC

M
A

N
BP

M
or

ga
n-

R
ic

ha
rd

s 
20

05
 

A
no

st
os

to
m

at
id

ae
D

ei
na

cr
id

in
ae

H
em

id
ei

na
 th

or
ac

ic
a 

1
M

5.
95

15
FC

M
A

N
BP

M
or

ga
n-

R
ic

ha
rd

s 
20

05
 

A
no

st
os

to
m

at
id

ae
D

ei
na

cr
id

in
ae

H
em

id
ei

na
 th

or
ac

ic
a 

1
F

6.
53

16
FC

M
A

N
BP

M
or

ga
n-

R
ic

ha
rd

s 
20

05
 

G
ry

lli
da

e
G

ry
lli

na
e

A
ch

et
a 

do
m

es
tic

us
n.

a.
2.

38
11

FI
A

H
E

D
M

K
os

hi
ka

w
a 

et
 a

l. 
20

08
G

ry
lli

da
e

G
ry

lli
na

e
A

ch
et

a 
do

m
es

tic
us

n.
a.

2
11

FD
H

E
G

D
, O

M
R

as
ch

 1
98

5
G

ry
lli

da
e

G
ry

lli
na

e
A

ch
et

a 
do

m
es

tic
us

n.
a.

2
11

FD
O

V,
 T

S
M

M
, H

S
Li

m
a-

de
-F

ar
ia

 e
t a

l. 
19

73
G

ry
lli

da
e

G
ry

lli
na

e
A

ch
et

a 
do

m
es

tic
us

n.
a.

2
11

FC
M

BR
D

M
G

re
go

ry
 u

np
ub

l. 
G

ry
lli

da
e

G
ry

lli
na

e
A

ch
et

a 
do

m
es

tic
us

n.
a.

2
11

FI
A

H
E

G
D

G
re

go
ry

 u
np

ub
l. 

G
ry

lli
da

e
G

ry
lli

na
e

G
ry

llu
s 

pe
nn

sy
lv

an
ic

us
n.

a.
2.

68
11

n.
a.

n.
a.

n.
a.

Pe
tit

pi
er

re
 1

99
6

G
ry

lli
da

e
G

ry
lli

na
e

G
ry

llu
s 

pe
nn

sy
lv

an
ic

us
n.

a.
2.

06
21

FD
S

M
D

Bi
er

 a
nd

 M
ül

le
r 

19
69

G
ry

lli
da

e
G

ry
lli

na
e

G
ry

llu
s 

pe
nn

sy
lv

an
ic

us
n.

a.
2

21
FD

H
E

G
D

, O
M

R
as

ch
 1

98
5

G
ry

lli
da

e
O

ec
an

th
in

ae
O

ec
an

th
us

 n
iv

eu
s

n.
a.

1.
71

n.
a.

FC
M

BR
D

V
H

an
ra

ha
n 

an
d 

Jo
hn

st
on

 2
01

1
G

ry
llo

ta
lp

id
ae

G
ry

llo
ta

lp
in

ae
N

eo
sc

ap
te

ri
sc

us
 b

or
el

lii
n.

a.
3.

41
n.

a.
FC

M
BR

G
D

H
an

ra
ha

n 
an

d 
Jo

hn
st

on
 2

01
1

R
ha

ph
id

op
ho

ri
da

e
C

eu
th

op
hi

lin
ae

C
eu

th
op

hi
lu

s 
st

yg
iu

s
n.

a.
9.

55
n.

a.
FD

H
E

G
D

, O
M

R
as

ch
 a

nd
 R

as
ch

 1
98

1
R

ha
ph

id
op

ho
ri

da
e

C
eu

th
op

hi
lin

ae
H

ad
en

oe
cu

s 
su

bt
er

ra
ne

us
n.

a.
1.

55
n.

a.
FD

H
E

G
D

, O
M

R
as

ch
 a

nd
 R

as
ch

 1
98

1
Te

tt
ig

on
iid

ae
C

on
oc

ep
ha

lin
ae

C
on

oc
ep

ha
lu

s 
sp

.
M

2.
65

33
FC

M
BR

G
D

H
an

ra
ha

n 
an

d 
Jo

hn
st

on
 2

01
1

Te
tt

ig
on

iid
ae

C
on

oc
ep

ha
lin

ae
C

on
oc

ep
ha

lu
s 

sp
.

F
3.

03
34

FC
M

BR
G

D
H

an
ra

ha
n 

an
d 

Jo
hn

st
on

 2
01

1
Te

tt
ig

on
iid

ae
C

on
oc

ep
ha

lin
ae

N
eo

co
no

ce
ph

al
us

 tr
io

ps
M

7.
29

n.
a.

FC
M

BR
G

D
H

an
ra

ha
n 

an
d 

Jo
hn

st
on

 2
01

1
Te

tt
ig

on
iid

ae
C

on
oc

ep
ha

lin
ae

N
eo

co
no

ce
ph

al
us

 tr
io

ps
F

7.
93

n.
a.

FC
M

BR
G

D
H

an
ra

ha
n 

an
d 

Jo
hn

st
on

 2
01

1
Tr

id
ac

ty
lid

ae
 n

.a
.

un
kn

ow
n 

sp
.

n.
a.

2.
63

n.
a.

FC
M

BR
D

V
H

an
ra

ha
n 

an
d 

Jo
hn

st
on

 2
01

1
Tr

ig
on

iid
ae

Tr
ig

on
id

iin
ae

La
up

al
a 

ce
ra

si
na

n.
a.

1.
93

n.
a.

FC
M

BR
G

D
Pe

tr
ov

 e
t a

l. 
20

00



116 Martin Husemann et al.

the standard in 500 μl of 4°C cold Otto buffer I. The sus-
pension of released cells was then filtered through a 42 
μm nylon mesh and divided in two parts. One part was 
stained with 1,000 μl DAPI solution (stock: 25 ml Otto 
buffer II, 1 ml DAPI (0.1 mg/ml), 25 μl 2-mercaptoetha-
nol (2 μl/ml)); the second part was stained with 1,000 μl 
propidium iodide (PI) solution (stock: 25 ml Otto buff-
er II, 1 ml RNase (1 mg/ml), 1 ml PI (1 mg/ml), 25 μl 
2-mercaptoethanol) (Doležel et al. 2007).

For DAPI analysis, the Partec CyFlow instrument 
(Partec GmbH, Münster, Germany) with UV LED chip 
and for PI analysis the Partec SL instrument with a 
green solid-state laser (Cobolt Samba, 532 nm, 100 mW) 
were used. Each sample was stained for several minutes 
before measurement, and 3,500 to 5,000 particles were 
recorded in each FCM analysis. FCM data were analysed 
with the Partec FloMax v. 2.52 software (Partec GmbH, 
Münster, Germany).

Combined DAPI and PI measurement results of the 
same sample express the AT/GC ratio of the genome 
of the species, the GC content (e.g. Šmarda et al. 2008; 
Sadílek et al. 2019a, b). The GC content of P. sativum 
is 38.50% (e.g. Barrow and Meister 2002; Šmarda et al. 
2008) and the GC content of the analysed samples was 
calculated with the Microsoft Excel macro from Šmarda 
et al. (2008).

RESULTS

DAPI-stained samples yielded a lower coefficient of 
variation (CV) than PI-stained samples, on average CV 
= 2.83% and 3.59% respectively. All the analysed spe-
cies of Oedipodinae reached higher genome size values 
than the analysed species of Gomphocerinae. We were 
able to measure the genome size of both sexes only in 
two species (S. caerulans and S. grossum). There, the 
female/male genome size values clearly reflected the XX/
X0 sex determination system differences. Due to this sex 
determination system it is generally preferred to report 
genome size in 2C values rather than the commonly 
used 1C value. However, to allow for better comparabil-
ity, we here report both values. 

All analysed species of Oedipodinae had distinct 
genome size (Table 1). The male of S.  caerulans had 2C 
= 25.12 pg (1C = 12.56 pg); the female had 2C = 26.63 pg 
(1C = 13.32 pg). The female specimen of O. caerulescens 
exhibited a 2C value of 28.39 pg (1C = 14.20 pg). The 
largest genome size was recorded in S. grossum, where 
the male reached 2C = 34.72 pg (1C = 17.36 pg) and the 
female 2C = 36.95 pg (18.48 pg). Both closely related 
Gomphocerinae species showed very similar genome siz-

es (Table 1): 2C = 22.62 pg (1C = 11.31 pg) in the C. cf. 
biguttulus female and 2C = 24.14 pg (1C = 12.07) in the 
female of C. dorsatus.

The sample/standard ratio of samples stained with 
PI was always higher than in DAPI-stained samples of 
the same specimen, ranging from 11% difference in the 
female of C. dorsatus to 18% difference in the female of S. 
grossum. This trend is observable also in the GC content, 
where C. dorsatus had only 40.82% and the female of S. 
grossum had 42.35% (Table 1). However, the GC content 
differences among all species analysed were minimal.

DISCUSSION

We present new genome size estimates for five spe-
cies of Acrididae, one of which represents the largest 
genome of all insects measured so far, the genome of 
the female of Stethophyma grossum with 2C = 36.95 pg 
(1C = 18.48 pg). We also measured a female of C. dorsa-
tus with 2C = 24.14 pg (1C = 12.07 pg). This species was 
measured before using the Feulgen densitometry method 
with 1C = 8.34 pg (Belda et al. 1991). However, the more 
recent method of flow cytometry we used is considered 
more accurate for genome size estimations (e.g. Doležel 
and Greilhuber 2010). Furthermore, we collected all 
previous estimates from Gregory (2020) and added few 
additional resources to provide some basic visualization 
of the genome size variation in the different subfamilies 
of Orthoptera (Fig. 1). 

In total, we gathered 92 (our new data included) 
estimates of genome sizes belonging to 54 species (Table 
2, Fig. 1). These data included 68 estimates for Caelif-
era (43 species) and 17 for Ensifera (11 species). They 
ranged from 1C = 3.75 pg for Warramaba virgo (Key, 
1963) (Morabidae) (Petitpierre 1996) to 1C = 18.48 pg for 
Stethophyma grossum (Oedipodinae, present study) in 
Caelifera and from 1C = 1.55 pg for Hadenoecus subter-
raneus to 1C = 9.55 pg for Ceuthophilus stygius (Scudder, 
1861) (both cave Rhaphidophoridae) in Ensifera (Rasch 
and Rasch 1981). Average 1C values in Ensifera and 
Caelifera are 3.16 pg (± 2.18 pg) and 9.83 pg (± 3.32 pg) 
respectively. Further analyses at the family and subfam-
ily level are difficult, as most data comes from Acrididae 
with 66 measurements (78%). The average genome size 
in Acrididae is 10.01 pg (± 3.19 pg). Within Acrididae, 
most estimates came from 26 measurements of Gom-
phocerinae and 17 of Oedipodinae with average genome 
sizes of 1C = 11.52 pg (± 2.17 pg) and 9.13 pg (± 4.20 pg) 
respectively (Table 2, Fig. 1). 

Generally, the short-horned grasshoppers (Caelifera) 
appear to have larger genomes compared to the long-



117New genome size estimates for band-winged and slant-faced grasshoppers reveal the so far largest measured insect genome

horned grasshoppers (Ensifera). However, this is not cor-
related with the number of chromosomes. Despite their 
relatively low male number of chromosomes of 2n = 
17 (most of other Acrididae have 2n = 23; e.g. Sylvest-
er et al. 2019), Gomphocerinae have some of the largest 
genome sizes. Their average genome size is 1C = 11.52 
pg ranging from 1C = 8.34 pg in C.  dorsatus (Belda 
et al. 1991) to 16.34 pg in Stauroderus scalaris (Petit-
pierre 1996; Gregory 2020). Moreover, they show large 
intraspecific variation in genome size evident from dif-
ferent studies (Table 2), for example: 1C = 12.31 pg to 
14.72 pg for Pseudochorthippus parallelus (Zetterstedt, 
1821) (John and Hewitt 1966; Wilmore and Brown 1975; 
Belda et al. 1991; Petitpierre 1996) or 1C = 8.55 to 10.15 
pg for C. brunneus (John and Hewitt 1966; Wilmore and 
Brown 1975; Gosalvez et al. 1980). All studies of the two 
species mentioned above share the method of Feulgen 
densitometry and used testes to measure genome size. 
Hence it remains unclear whether this variation is natu-
ral or the result of methodological differences. However, 
it is more likely that the large intraspecific differences 
are a result of a combination of multiple factors: differ-
ent populations analysed, lack of chromosome observa-
tions, various standards used and also different instru-
mentation could play some role. 

The variation in genome size is even higher in Oedi-
podinae with a minimum of 1C = 5.28 pg for Locusta 
migratoria (Linnaeus, 1758) (Bier and Müller 1969) and 
a maximum of 1C = 18.48 pg in Stethophyma grossum. 
Hence, S. grossum represents the so far largest meas-
ured confirmed insect genome. A study by Schielzeth 
et al. (2014) measured much larger genome sizes for 
the Gomphocerinae species C. biguttulus with 1C up to 
236.05 pg. Due to the enormous variation of the esti-
mates in the study and critical methodological issues, 
Camacho (2016) suggested that these estimates cannot 
be considered reliable. Hence, we consider our estimate 
of the S. grossum genome size as the current upper size 
of insect genomes. Since only very few species have been 
measured so far, it is expected that this is not the upper 
bound for genome sizes in grasshoppers or for insects in 
general. 

The reasons for the large size of Caelifera genom-
es remain largely unknown. However, a recent paper 
by Shah et al. (2020) suggests that repetitive DNA and 
especially the expansion of satellite DNA may be a main 
reason for the large genomes in Orthoptera. The most 
likely causes are genome duplications at the basis of the 
Acrididae, which would also explain their specifically 
high rates in nuclear mitochondrial pseudogenes (numts, 

Figure 1. Relative fluorescence histograms for samples stained with PI. 2C peaks represent diploid cells and 4C peaks represent cells in the 
G2 phase of the cell cycle. with replicated DNA. Standard used: P. sativum 2C = 9.09 pg. (A) S. grossum  female with 2C = 36.95 pg. (B) C. 
biguttulus female with 2C = 22.62 pg. 



118 Martin Husemann et al.

Bensasson et al. 2000; Song et al. 2008) posing difficul-
ties to species identification using DNA barcoding and 
to phylogenetic reconstruction (Hawlitschek et al. 2017, 
Song et al. 2018). It may also explain why only a sin-
gle incomplete genome is available to date (Wang et al. 
2014). Grasshopper genome sizes remain a major obsta-
cle to genomic research, and many further studies will 
be required to understand genome size variation and 
evolution in Orthoptera. 

ACKNOWLEDGEMENT

We thank Torsten Demuth for providing locality 
access and help with sampling. We also thank Martin 
Fikáček (Charles University, Prague, Czech Republic) 
for financial support for processing the samples in FCM 
laboratory of Tomáš Urfus (Charles University, Prague, 
Czech Republic) from the botany department. 

DATA AVAILABILITY STATEMENT

All data generated and used in this article is includ-
ed as tables and figures. 

GEOLOCATION INFORMATION

All sampling for this study was performed 2019 
in Hamburg, Georgswerder (Germany, 53.5097°N 
10.0301°E).

REFERENCES

Barrow M, Meister A. 2002. Lack of correlation between 
AT frequency and genome size in higher plants and 
the effect of non-randomness of base sequences on 
dye binding. Cytometry 47:1–7.

Belda JE, Cabrero J, Camacho JPM, Rufas JS. 1991. Role 
of C-heterochromatin in variation of nuclear DNA 
amount in the genus Chorthippus (Orthoptera, 
Acrididae). Cytobios 67:13–21.

Bensasson D, Zhang D-X, Hewitt GM. 2000. Frequent 
assimilation of mitochondrial DANN by grasshopper 
nuclear genomes. Mol Biol Evol 17:406-415.

Bier K, Müller W. 1969. DNA-Messungen bei Insekten 
und eine Hypothese über retardierte Evolution und 
besonderen DNA-Reichtum in Tierreich. Biol Zen-
tralblatt 88:425–449.

Camacho JPM, Ruiz-Ruano FJ, Martin-Blázquez R, 
Cabrero J, Lorite P, Cabral-de-Mello DC, Bakkali M. 
2015. A step to the gigantic genome of the desert 

Figure 2. Genome Size variation in the different subfamilies of Orthoptera visualized as a boxplot. Provided is the number of measure-
ments (N) and the number of species (sp) these measurements were derived of (some of the species were measured repeatedly by differ-
ent authors). Most of the data excerpted from database Gregory (2020) completed with another original data comprehended in Table 2. 
*unknown species genome size was analysed, determined only on family level.



119New genome size estimates for band-winged and slant-faced grasshoppers reveal the so far largest measured insect genome

locust: chromosome sizes and repeated DNAs. Chro-
mosoma 124:263–275.

Camacho JPM. 2016. Comment on Schielzeth et al. 
(2014): “Genome size variation affects song attrac-
tiveness in grasshoppers: Evidence for sexual selec-
tion against large genomes“. Evolution 70:1428–1430.

Doležel J, Geilhuber J. 2010. Nuclear genome size: are we 
getting closer? Cytometry Part A 77A:635–642.

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, 
Nardi L, Obermayer R. 1998. Plant genome size esti-
mation by flow cytometry: Inter-laboratory compari-
son. Ann Bot 82:17–26.

Doležel J, Greilhuber J, Suda J. 2007. Estimation of nucle-
ar DNA content in plants using flow cytometry. Nat 
Prot 2:2233–2244.

Fox DP. 1970. A non-doubling DNA series in somatic tis-
sues of the locusts Schistocerca gregaria (Forskål) and 
Locusta migratoria (Linn.). Chromosoma 29:446–461.

Gosalvez J, López-Fernandez C, Esponda P. 1980. Varia-
bility of the DNA content in five orthopteran species. 
Caryologia 33:275–281.

Gregory TR. 2020. Animal genome size. Database 2020. 
http://www.genomesize.com Accessed 19 April 2020.

Hanrahan SJ, Johnston JS 2011. New genome size esti-
mates of 134 species of arthropods. Chrom Res 
19:809–823.

Hawlitschek O, Morinère J, Lehmann GUC, Lehmann 
AW, Kropf M, Dunz A, Glaw F, Detcharoen M, 
Schmidt S, Hausmann A, Szucsich NU, Caetano-
Wyler SA, Haszprunar G. 2017. DNA barcoding of 
crickets, katydids and grasshoppers (Orthoptera) 
from Central Europe with focus in Austria, Germany 
and Switzerland. Mol Ecol Res 17:1037–1053. 

John B, Hewitt GM. 1966. Karyotype stability and DNA 
variability in the Acrididae. Chromosoma 20:155–172.

Koshikawa S, Miyazaki S, Cornette R, Matsumoto T, 
Miura T. 2008. Genome size of termites (Insecta, 
Dictyoptera, Isoptera) and wood roaches (Insecta, 
Dictyoptera, Cryptocercidae). Naturwissenschaften 
95:859–867.

Li F, Zhao X, Li M, He K, Huang C, Zhou Y, Li Z, Wal-
ters JR. 2019. Insect genomes: Progress and challeng-
es. Insect Mol Biol 28:739-758.

Lima-de-Faria A, Gustafsson T, Jaworska H. 1973. Ampli-
fication of ribosomal DNA in Acheta. II. The num-
ber of nucleotide pairs of the chromosomes and 
chromomeres involved in amplification. Hereditas 
73:119–142.

Morgan-Richards M. 2005. Chromosome rearrangements 
are not accompanied by expected genome size chang-
es in tree weta Hemideina thoracica (Orthoptera, 
Anostostomatidae) J Orthop Res 14:143-148.

Pellicer J, Fay MF, Leitch IJ. 2010. The largest eukaryotic 
genome of them all? Bot J Linn Soc 164:10-15.

Petitpierre E. 1996. Molecular cytogenetics and taxonomy 
of insects, with particular reference to the Coleop-
tera. Int J Insect Morph Embry 25:115–133.

Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw 
KL. 2000. Evidence for DNA loss as a determinant of 
genome size. Science 287:1060–1062

Rasch EM. 1985. DNA “standards” and the range of accu-
rate DNA estimates by Feulgen absorption micro-
spectrophotometry In: Advances in Microscopy. 
Cowden RR, Harrison SH (Eds.). Alan R. Liss, New 
York. 137–166.

Rasch EM, Rasch RW. 1981. Cytophotometric determina-
tion of genome size for two species of cave crickets 
(Orthoptera, Rhaphidophoridae). J Histochem Cyto-
chem 29:885.

Rees H, Shaw DD, Wilkinson P. 1978. Nuclear DNA 
variation among acridid grasshoppers. Proc Roy Soc 
London B 202:517–525.

Robinson GE, Hackett KJ, Purcell-Miramontes M, Brown 
SJ, Evans JD, Goldsmith MR, Lawson D, Okamuro J, 
Robertson HM, Schneider DJ. 2011. Creating a buzz 
about insect genomes. Science 331:1386.

Rodríguez A, Burgon JD, Lyra M, Irisarri I, Baurain D, 
Blaustein L, Göcmen B, Künzel S, Mable BK, Nolte 
AW, Veith M, Steinfartz S, Elmer KR, Philippe H, 
Vences M. 2017. Inferring the shallow phylogeny of 
true salamanders (Salamandra) by multiple phylog-
enomic approaches. Mol Phyl Evol 115:16–26. 

Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, 
López-Pino JL, Cabrero J, Camacho JPM. 2011. DNA 
Amount of X and B Chromosomes in the Grasshop-
pers Eyprepocnemis plorans and Locusta migratoria. 
Cytogenet Genome Res 134:120–126.

Sadílek D, Urfus T, Hadrava J, Vilímová J, Suda J. 2019a. 
Nuclear genome size in contrast to sex chromosome 
number variability in the human bed bug, Cimex 
lectularius (Heteroptera: Cimicidae). Cytometry Part 
A 95A:746–756. 

Sadílek D, Urfus T, Vilímová J. 2019b. Genome size and 
sex chromosome variability of bed bugs feeding on 
animal hosts compared to Cimex lectularius parasitiz-
ing human (Heteroptera: Cimicidae). Cytometry Part 
A 95A:1158–1166. 

Schielzeth H, Streitner C, Lampe U, Franzke A, Reinhold 
K. 2014. Genome size variation affects song attrac-
tiveness in grasshoppers: Evidence for sexual selec-
tion against large genomes. Evolution 68:3629–3635. 

Shah A, Hoffman JI, Schielzeth H. 2020. Comparative 
analysis of genomic repeat content in Gomphocerine 
grasshoppers reveals expansions of satellite DNA and 



120 Martin Husemann et al.

helitrons in species with unusually large genomes. 
Genome Biol Evol 12:1180-1193.

Šmarda P, Bureš P, Horová L, Foggi B, Rossi G. 2008. 
Genome size and GC content evolution of Festuca: 
ancestral expansion and subsequent reduction. Ann 
Bot 101:421–433.

Song H, Mariño-Pérez R, Woller DA, Cigliano MM. 
2018. Evolution, diversification, and biogeography of 
grasshoppers (Orthoptera: Acrididae). Insect Syst Div 
2:3;1-25.

Swift H, Kleinfeld R. 1953. DNA in grasshopper spermat-
ogenesis, oögenesis, and cleavage. Phys Zool 26:301–
311.

Sylvester T, Blackmon H. 2019. Idiosycratic patterns of 
chromosome evolution are the rule not the excep-
tion. https://evobir.shinyapps.io/PolyneopteraDB/ 
Current version of the database is 0.1 last updated 12 
August 2019.

Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, 
Cui F, Wei J, Ma C, Wang Y, He J, Luo Y, Wang Z, 
Guo X, Guo W, Wang X, Zhang Y, Yang M, Hao S, 
Chen B, Ma Z, Yu D, Xiong Z, Zhu Y, Fan D, Han L, 
Wang B, Chen Y, Wang J. 2014. The locust genome 
provides insight into swarm formation and long-dis-
tance flight. Nat Comm 5:2957.

Westerman M, Barton NH, Hewitt GM. 1987. Differences 
in DNA content between two chromosomal races of 
the grasshopper Podisma pedestris. Heredity 58:221–
228.

White MJD, Webb GC. 1968. Origin and evolution of 
parthenogenetic reproduction in the grasshopper 
Moraba virgo (Eumastacidae: Morabinae). Aust J 
Zool 16:647–671.

Wilmore PJ, Brown AK. 1975. Molecular properties of 
Orthopteran DNA. Chromosoma 51:337–345.