issn 2086-0382 e-issn 2477-3344 cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 cauchy vol. 7 no. 2 pages: 152 โ€“ 331 malang may 2022 issn 2086-0382 e-issn 2477-3344 ๐œ’ cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 cauchy is a mathematical journal published twice a year on may and november by the mathematics department, faculty of science and technology, universitas islam negeri maulana malik ibrahim malang. this journal includes research papers, literature studies, analysis, and problem solving in mathematics (algebra, analysis, statistics, computing and applied mathematics). editorial board editor in chief : dr. sri harini, m.si, maulana malik ibrahim state islamic university of malang, indonesia. managing editor : mohammad jamhuri, m.si, maulana malik ibrahim state islamic university of malang, indonesia. juhari, m.si, maulana malik ibrahim state islamic university of malang, indonesia. 1. editorial board : prof hadi susanto, department of mathematical sciences, university of 2. essex and department of mathematics of khalifa university, united kingdom mario rosario guarracino, computational and data science laboratory high performance computing and networking institute national research council of italy, italy kartick chandra mondal, jadavpur university, salt lake campus, india rowena alma l. betty, university of the philippines diliman, philippines muhammad fakhruddin, department of mathematics, faculty of military mathematics and natural sciences, the republic of indonesia defense university, bogor, indonesia alfi yusrotis zakiyyah, universitas bina nusantara, indonesia bety hayat susanti, politeknik siber dan sandi negara, indonesia dian savitri, universitas negeri surabaya, indonesia meta kallista, universitas telkom, indonesia dani suandi, universitas bina nusantara, bandung, indonesia anwar fitrianto, department of statistics, ipb university, indonesia sri harini, universitas islam negeri maulana malik ibrahim malang, indonesia dr heni widayani, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia corina karim, brawijaya uiversity javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/272712') cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 editorial board subanar seno, gadjah mada university, indonesia toto nusantara, state university of malang, indonesia edy tri baskoro, institut teknologi bandung, indonesia eridani eridani, airlangga university, indonesia abdul halim abdullah, university of technology malaysia, malaysia kusno, university of jember, indonesia slamin, university of jember, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia abdussakir, maulana malik ibrahim state islamic university of malang, indonesia ari kusumastuti, maulana malik ibrahim state islamic university of malang, indonesia fachrur rozi, maulana malik ibrahim state islamic university of malang, indonesia elly susanti, universitas islam negeri maulana malik ibrahim malang, indonesia assistant editor : mohammad nafie jauhari, m.si, maulana malik ibrahim state islamic university of malang, indonesia. editorial office mathematics department, maulana malik ibrahim state islamic university of malang gajayana st. 50 malang, east java, indonesia 65144 phone (+62) 81336397956, faximile (+62) 341 558933 e-mail: cauchy@uin-malang.ac.id cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 focus and scope cauchy-jurnal matematika murni dan aplikasi is a mathematical journal published twice a year in may and november by the mathematics department, faculty of science and technology, maulana malik ibrahim state islamic university of malang. we we lc om e a u t h or s for original articles (research), review articles, interesting case reports, special articles illustrations that focus on the mathematics pure and applied. subjects suitable for publication include, but are not limited to the following fields of: 1. actuaria 2. algebra 3. analysis 4. applied 5. computing 6. econometry 7. statistics cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 indexing and abstracting cauchy-jurnal matematika murni dan aplikasi has been covered (indexed and abstracted) by following services: 1. doaj 2. d i m e n s i o n s 3. moraref (2015-,)-(http://moraref.or.id/index.php/browse/index/36) 4. onesearch indonesia (2015-,)-(http://onesearch.id/search/results?filter[]=repoid:ios2732) 5. mendeley (2013-,)-(https://www.mendeley.com/groups/5034091/cauchy/papers/) 6. indonesian scientific journal database (isjd) (2013-,)-(http://isjd.pdii.lipi.go.id/index.php/direktorijurnal.html) 7. google scholar (2009-,)-(https://scholar.google.co.id/citations?hl=en&view_op=list_works&gmla=ajsn f6omofbk7q0o2q-9 xuimca1zi8oz9lp2ehctubhl9dcisxnyh9saieau0g0udt8tym6jk3z666zu46vrsbyz6vjc2a_w&user=dr k-5hkaaaaj) 8. ipi (2009-,)-(http://id.portalgaruda.org/?ref=browse&mod=viewjournal&journal=5272) http://moraref.or.id/index.php/ http://onesearch.id/search/results http://www.mendeley.com/groups/5034091/cauchy/papers/ http://isjd.pdii.lipi.go.id/index.php/ http://id.portalgaruda.org/ cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 table of contents a note on generalized strongly p-convex functions of higher order ....................... 152 โ€“ 157 the generalized star modeling with heteroscedastic effects ..................................... 158 โ€“ 172 optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention ......................................................................... 173 โ€“ 185 an application of geographically weighted regression for assessing water polution in pontianak, indonesia ........................................................................................ 186 โ€“ 194 richards curve implementation for prediction of covid-19 spread in maluku province ........................................................................................................................................ 195 โ€“ 206 the properties of intuitionistic anti fuzzy module t-norm and t-conorm ............... 207 โ€“ 219 analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 220 โ€“ 230 average based-fts markov chain based on a modified frequency density partitioning to predict covid-19 in central java ......................................................... 231 โ€“ 239 spatial autoregressive model of tuberculosis cases in central java province 2019 ................................................................................................................................................ 240 โ€“ 248 goodwin model with clustering workers' skills in indonesian economic cycle ... 249 โ€“ 266 a left-symmetric structure on the semi-direct sum real frobenius lie algebra of dimension 8 ............................................................................................................................ 267 โ€“ 280 forecasting rice paddy production in aceh using arima and exponential smoothing models ..................................................................................................................... 281 โ€“ 292 multipolar intuitionistic fuzzy ideal in b-algebras ........................................................... 293 โ€“ 301 hybrid model of singular spectrum analysis and arima for seasonal time series data ................................................................................................................................................. 302 โ€“ 315 elliptical orbits mode application for approximation of fuel volume change ...... 316 โ€“ 331 inclusion properties of herz-morrey spaces with variable exponent cauchy โ€“jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 22-27 p-issn: 2086-0382; e-issn: 2477-3344 submitted: may 02, 2021 reviewed: august 24, 2021 accepted: october 06, 2021 doi: https://doi.org/10.18860/ca.v7i1.12141 inclusion properties of herz-morrey spaces with variable exponent hairur rahman departement of mathematics, islamic state university of maulana malik ibrahim malang email: hairur@mat.uin-malang.ac.id abstract the inclusion properties in herz-morrey spaces has proved by rahman in 2020. this paper aims to discuss the inclusion of the homogeneous herz-morrey spaces and homogeneous weak herzmorrey spaces with variable exponent. we also investigated the inclusion between both spaces. this result will be useful to prove fractional integral on the homogeneous herz-morrey spaces with variable exponent. keywords: herz-morrey spaces; inclusion properties; variable exponent. introduction inclusion properties or inclusion relation between spaces has received a lot of attention from researchers. it seems that many authors have studied this issue in some spaces (see [1]-[5]). thus, this lead the author for discussing the inclusion properties especially in herz-morrey spaces. herz spaces can be traced back to the work of beurling. beurling [6] introduced a space ๐’œ๐‘, which is the original version of non homogeneous herz spaces. lu et al [7] has given the inclusion properties in homogeneous herz spaces, as a proposition below. proposition 1.1. let ๐›ผ โˆˆ โ„, ๐‘ > 0, and ๐‘ž โ‰ค โˆž. the following inclusions are valid. a. if ๐‘1 โ‰ค ๐‘2, then ๐พ๐‘ž ๐›ผ,๐‘1 (โ„๐‘›) โŠ‚ ๐พ๐‘ž ๐›ผ,๐‘2 (โ„๐‘›) b. if ๐‘ž2 โ‰ค ๐‘ž1, then ๐พ๐‘ž1 ๐›ผ,๐‘ (โ„๐‘›) โŠ‚ ๐พ๐‘ž2 ๐›ผโˆ’๐‘›( 1 ๐‘ž1 โˆ’ 1 ๐‘ž2 ),๐‘ (โ„๐‘›). this proposition can be proved by simply computation. in fact, if 0 < ๐‘Ÿ < 1, (a) is a consequence of the inequality (โˆ‘|๐‘Ž๐‘˜ | โˆž ๐‘˜=1 ) ๐‘Ÿ โ‰ค โˆ‘|๐‘Ž๐‘˜ | ๐‘Ÿ โˆž ๐‘˜=1 . while, (b) can be deduced directly from the hรถlder inequality. in 2016, gunawan et al. (see [1] [2]) have proved the inclusion of morrey spaces and generalized morrey spaces. recently, rahman [8] also has proved the inclusion properties in herz-morrey spaces. these result have been motivated the author to study more about inclusion in homogenous herz-morrey spaces, but in this case the author uses variable exponent. since 1991, the research of kovacik and rakosnik [9] motivated many researchers to study about function spaces with variable exponent in several discussion. suppose that ฯ‰ โŠ‚ โ„๐‘› is an open set, ๐‘(โ‹…): ฯ‰ โ†’ [1, โˆž) is a measurable https://doi.org/10.18860/ca.v7i1.12141 mailto:hairur@mat.uin-malang.ac.id inclusion properties of herz-morrey spaces with variable exponent hairur rahman 23 function and ๐ฟ๐‘(โ‹…)(ฯ‰) is denoted the set of measurable functions ๐‘“ on ฯ‰, such that for some positive ๐œ† satisfied โˆซ ( | ๐‘“(๐‘ฅ) | ๐œ† ) ๐‘( ๐‘ฅ ) ๐‘‘๐‘ฅ ฯ‰ < โˆž. if ๐ฟ๐‘(โ‹…)(ฯ‰) equipped by the luxemburg-nakano norm โ€– ๐‘“ โ€– ๐ฟ ๐‘(โ‹…)(ฯ‰) = inf { ๐œ† > 0 โˆถ โˆซ ( | ๐‘“(๐‘ฅ) | ๐œ† ) ๐‘(๐‘ฅ) ๐‘‘๐‘ฅ ฯ‰ โ‰ค 1}, then ๐ฟ๐‘(โ‹…)(ฯ‰) becomes a banach function spaces. since these spaces generalize the standard ๐ฟ๐‘ spaces, they are also referred to as variable ๐ฟ๐‘ spaces. ๐ฟ๐‘(โ‹…)(ฯ‰) is isometrically isomorphic to ๐ฟ๐‘(ฯ‰), when ๐‘(๐‘ฅ) = ๐‘ is a constant. in 2010, the boundedness of sublinear operators on herz-morrey space with variable exponent โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘(โ‹…) ๐›ผ,๐‘ž and โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘(โ‹…) ๏ฟฝฬ…๏ฟฝ,๐‘ž was proved by izuki [10]. then, xu and yang [11] developed the definition of herz-morrey spaces with variabel exponents. let ๐‘(โ‹…) โˆˆ ๐’ซ(โ„๐‘›), 0 < ๐‘ž < โˆž, 0 โ‰ค ๐œ† < โˆž, and ๐›ผ(โ‹…) is a bounded real-valued measurable function on โ„๐‘› , the homogeneous herz-morrey spaces with variable exponent โ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) consists all functions ๐‘“ โˆˆ ๐ฟ๐‘™๐‘œ๐‘ ๐‘ž ( โ„๐‘› /{0} ) such that โ€–๐‘“โ€– โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) = sup ๐ฟโˆˆโ„ค 1 2๐ฟ๐œ† (โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘โ€– ๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž (โ„๐‘›) ๐‘๐ฟ ๐‘˜=โˆ’โˆž ) 1 ๐‘(โ‹…) < โˆž, , where ๐ต๐‘˜ = { ๐‘ฅ โˆˆ โ„ ๐‘› : |๐‘ฅ| โ‰ค 2๐‘˜ }, ๐ด๐‘˜ = ๐ต๐‘˜ /๐ต๐‘˜โˆ’1 and ๐œ’๐‘˜ = ๐œ’๐ด๐‘˜ is the characteristic function of the set ๐ด๐‘˜ for ๐‘˜ โˆˆ โ„ค. as another spaces which have their weak type spaces, herz-morrey spaces also have their weak type spaces. for ๐›ผ(โ‹…) โˆˆ โ„๐‘› , ๐‘(โ‹…) โˆˆ ๐’ซ(โ„๐‘›), 0 โ‰ค ๐œ† โ‰ค โˆž and 0 < ๐‘ž โ‰ค โˆž, the homogeneous weak herz-morrey spaces with variabel exponent ( ๐‘Š โ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›)) is a set of measurable ๐‘“ โˆˆ ๐ฟ๐‘™๐‘œ๐‘ ๐‘ž (โ„๐‘› /{0}) which is equipped with norm such that โ€– ๐‘“ โ€– ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) = sup ๐›พ>0 ๐›พ sup ๐ฟโˆˆโ„ค 1 2๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘(โ‹…)๐‘š๐‘˜ (๐›พ, ๐‘“) ๐‘(โ‹…) ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž ) 1 ๐‘(โ‹…) < โˆž, where ๐‘š๐‘˜ ( ๐›พ, ๐‘“ ) = |{ ๐‘ฅ โˆˆ ๐ด๐‘˜ : |๐‘“(๐‘ฅ)| > ๐›พ }|. some authors have investigated those spaces in various terms of discussion (see [12] [15]). meanwhile, this article aims to discuss in terms inclusion properties and inclusion relation of the homogeneous herz-morrey spaces and homogeneous weak herz-morrey spaces with variable exponent. result and discussion our main results are the following: theorem 2.1. let 1 โ‰ค ๐‘1(โ‹…) โ‰ค ๐‘2(โ‹…) < ๐‘ž < โˆž, and ๐›ผ(โ‹…) is a bounded real-valued measurable fuction on โ„๐‘› . then, the inclusion โ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›), is valid. inclusion properties of herz-morrey spaces with variable exponent hairur rahman 24 proof. we may take any ๐‘“ โˆˆ โ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›). then, by using hรถlder inequality and ๐‘1 โ‰ค ๐‘2 we have โ€–๐‘“โ€– โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) = sup ๐ฟโˆˆ๐‘ 1 2๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘1(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘1(โ‹…) ) 1 ๐‘1(โ‹…) โ‰ค sup ๐ฟโˆˆ๐‘ 1 2๐ฟ๐œ† (( โˆ‘ (2๐‘˜๐›ผ(โ‹…)๐‘1(โ‹…)) ๐‘2(โ‹…) ๐‘1(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž ) ๐‘1(โ‹…) ๐‘2(โ‹…) ( โˆ‘ (โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘1(โ‹…) ) ๐‘2(โ‹…) ๐‘2(โ‹…)โˆ’๐‘1(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž ) 1โˆ’ ๐‘1(โ‹…) ๐‘2(โ‹…) ) 1 ๐‘1(โ‹…) โ‰ค sup ๐ฟโˆˆ๐‘ 1 2๐ฟ๐œ† (( โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘2(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž ) ๐‘1(โ‹…) ๐‘2(โ‹…) ( โˆ‘ โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘1(โ‹…)๐‘2(โ‹…) ๐‘2(โ‹…)โˆ’๐‘1(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž ) 1โˆ’ ๐‘1(โ‹…) ๐‘2(โ‹…) ) 1 ๐‘1(โ‹…) โ‰ค sup ๐ฟโˆˆ๐‘ 1 2๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘2(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž ( โˆ‘ โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘1(โ‹…)๐‘2(โ‹…) ๐‘2(โ‹…)โˆ’๐‘1(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž ) ๐‘2(โ‹…)โˆ’๐‘1(โ‹…) ๐‘1(โ‹…) ) 1 ๐‘2(โ‹…) โ‰ค sup ๐ฟโˆˆ๐‘ 1 2๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘2(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘2(โ‹…) ) 1 ๐‘2(โ‹…) โ‰ค โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) . it is easy to know that ๐‘“ โˆˆ โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›), where ๐›ผ(โ‹…) โˆˆ (โ„๐‘›) and ๐‘(โ‹…) โˆˆ ๐’ซ(โ„๐‘›). then, we have โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โŠ† โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† ( โ„๐‘›). by the previous theorem, the author established the following inclusions. theorem 2.2. let 1 โ‰ค ๐‘1(โ‹…) โ‰ค ๐‘2(โ‹…) < ๐‘ž < โˆž, and ๐›ผ(โ‹…) is a bounded real-valued measurable fuction on โ„๐‘› , then the following inclusion is valid. ๐ฟ๐‘ž ( ๐‘…๐‘›) = โ„ณ ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† ( โ„๐‘› ) โŠ† โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† ( โ„๐‘› ) โŠ† โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† ( โ„๐‘›). proof. theorem 2.1 has stated that โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โŠ† โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›). then, we only prove that ๐ฟ๐‘ž (โ„๐‘›) = โ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โŠ† โ„ณ๐พ ฬ‡ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›). let ๐‘“ โˆˆ ๐‘€๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘› ), by using similar method as before, we get โ€– ๐‘“ โ€– ๐‘€๏ฟฝฬ‡๏ฟฝ ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โ‰ค sup ๐ฟโˆˆ๐‘ 1 2๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž ((โˆซ |๐‘“(๐‘ฅ)|๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž (โˆซ |๐œ’๐‘˜ | ๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž ) ๐‘ž ) 1 ๐‘ž โ‰ค sup ๐ฟโˆˆ๐‘ 1 2๐ฟ๐œ† โˆ‘ 2 ๐‘˜๐›ผ(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž (โˆซ |๐‘“(๐‘ฅ)|๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž ( 2 ๐‘˜๐‘‘ ) 1 ๐‘ž โ‰ค ๐ถ (โˆซ |๐‘“(๐‘ฅ)|๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž inclusion properties of herz-morrey spaces with variable exponent hairur rahman 25 โ‰ค โ€– ๐’‡ โ€– ๐‘ณ๐’’(โ„๐’). hence, ๐‘“ โˆˆ ๐ฟ๐‘ž (โ„๐‘›) and ๐ฟ๐‘ž (โ„๐‘›) โŠ† โ„ณ ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘› ). in the other hand, for any ๐‘“ โˆˆ ๐ฟ๐‘ž (โ„๐‘›), there exist any constant ๐ถ such that ๐ถ = sup ๐ฟโˆˆ๐‘ 1 2๐ฟ๐œ† โˆ‘ 2 ๐‘˜๐›ผ(โ‹…) + ๐‘˜๐‘‘ ๐‘ž๐ฟ ๐‘˜=โˆ’โˆž . consequently, we have ๐‘“ โˆˆ โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) and โ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โŠ† ๐ฟ๐‘ž (โ„๐‘› ). it gives conclusion that ๐ฟ๐‘ž (โ„๐‘›) = โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘› ), where ๐›ผ(โ‹…) โˆˆ (โ„๐‘› ). furthermore, we will prove that โ„ณ ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โŠ† โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›). by using similar method as the proof of theorem 2.1, we have โ€– ๐‘“ โ€– โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โ‰ค โ€– ๐‘“ โ€– โ„ณ ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) , where ๐›ผ(โ‹…) โˆˆ (โ„๐‘› ). the author also added the inclusion of the homogeneous weak herz-morrey spaces with variable exponent by the following theorem. theorem 2.3. let 1 โ‰ค ๐‘1(โ‹…) โ‰ค ๐‘2(โ‹…) โ‰ค ๐‘ž < โˆž, and ๐›ผ(โ‹…) is a bounded real-valued measurable fuction on โ„๐‘› , the following inclusion holds: ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โŠ† ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›). proof. let ๐‘“ โˆˆ โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) , we have โ€– ๐‘“ โ€– ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) = sup ๐›พ>0 ๐›พ sup ๐ฟโˆˆโ„ค 1 2๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘1(โ‹…)๐‘š๐‘˜ (๐›พ, ๐‘“) ๐‘1(โ‹…) ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž ) 1 ๐‘1(โ‹…) โ‰ค sup ๐›พ>0 ๐›พ sup ๐ฟโˆˆโ„ค 1 2๐ฟ๐œ† (โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘2(โ‹…)๐‘š๐‘˜ (๐›พ, ๐‘“) ๐‘2(โ‹…) ๐‘ž๐ฟ ๐‘˜=โˆ’โˆž ) 1 ๐‘2(โ‹…) โ‰ค โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) . the above inequality has shown that ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘2(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โŠ† ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘1(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›). now, we state the inclusion relation between both spaces. theorem 2.4. let 1 โ‰ค ๐‘(โ‹…) โ‰ค ๐‘ž, and ๐›ผ(โ‹…) is a bounded real-valued measurable function on โ„๐‘› . then, the inclusion โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘› ) โŠ† ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) is proper. proof. we use similar idea as before to prove this theorem. let ๐‘“ โˆˆ โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘› ), ๐‘Ž(โ‹…) โˆˆ โ„๐‘› , ๐‘(โ‹…) โˆˆ ๐’ซ(โ„๐‘›) and ๐›พ > 0. we have observed that | {๐‘ฅ โˆˆ ๐ด๐‘˜ : |๐‘“(๐‘ฅ)| > ๐›พ} | ๐‘(โ‹…) ๐‘ž โ‰ค (โˆซ |๐‘“(๐‘ฅ)๐œ’๐‘˜ | ๐‘ž ๐‘‘๐‘ฅ ๐ต(0,2๐‘˜) ) ๐‘(โ‹…) ๐‘ž = โ€– ๐‘“๐œ’๐‘˜ โ€– ๐ฟ๐‘ž(โ„๐‘›) ๐‘(โ‹…) . multiplying both sides by โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘(โ‹…)๐ฟ๐‘˜=โˆ’โˆž , we get inclusion properties of herz-morrey spaces with variable exponent hairur rahman 26 โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘(โ‹…)|{ ๐‘ฅ โˆˆ ๐ด๐‘˜ : |๐‘“(๐‘ฅ)| > ๐›พ }| ๐‘(โ‹…) ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž โ‰ค โˆ‘ 2๐‘˜๐›ผ(โ‹…)๐‘(โ‹…) โ€– ๐‘“๐œ’๐‘˜ โ€– ๐ฟ๐‘ž(โ„๐‘›) ๐‘(โ‹…) ๐ฟ ๐‘˜=โˆ’โˆž . clearly, we see that โ€– ๐‘“ โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) โ‰ค โ€– ๐‘“ โ€– โ„ณ๐พ ฬ‡ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›) and ๐‘“ โˆˆ ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›), which implies that โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘› ) โŠ† ๐‘Š โ„ณ ๏ฟฝฬ‡๏ฟฝ ๐‘(โ‹…),๐‘ž ๐›ผ(โ‹…),๐œ† (โ„๐‘›). conclusion by this result, the author can conclude that the homogeneous herz-morrey spaces with variable exponent have inclusion properties ... . this result will be useful to be used in proving fractional integral on the homogeneous herz-morrey spaces with variable exponent. acknowledgment this paper is partially supported by uin maulana malik ibrahim malang research and innovation program 2020. references [1] h. gunawan, d. i. hakim, k. m. limanta and a. a. masta, "inclusion property of generalized morrey spaces," math. nachr., pp. 1-9, 2016. [2] h. gunawan, d. i. hakim and m. idris, "proper inclusions of morrey spaces," glasnik matematicki, vol. 53, no. 1, 2017. [3] h. gunawan, d. i. hakim, e. nakai and y. sawano, "on inclusion relation between weak morrey spaces and morrey spaces," nonlineae analysis, vol. 168, pp. 27-31, 2018. [4] h. gunawan, e. kikianty and c. schwanke, "discrete morrey spaces and their inclusion properties," math. nachr., pp. 1-14, 2017. [5] a. a. masta, h. gunawan and w. setya-budhi, "an inclusion property of orliczmorrey spaces," j. phys.: conf. ser, vol. 893, pp. 1-7, 2017. [6] a. beurling, "construction and analysis of some convolution algebras," annales de l'institut fourier grenoble, vol. 14, pp. 1-32, 1964. [7] s. lu, d. yang and h. guoen, herz type spaces and their applications, beijing: science press, 2008. [8] h. rahman, "inclusion properties of the homogeneous herz-morrey," cauchy, vol. 6, no. 3, pp. 117-121, 2020. [9] o. kovacik and j. rakosnik, "on space and," czchoslovak math. j., vol. 41, pp. 592618, 1991. [10] m. izuki, "boundedness of sublinear operators on herz spaces with variable exponent and application to wavelet characterization," vol. 36 (1), no. analysis mathematics, pp. 33-50, 2010. [11] j. yang and j. xu, "herz-morrey-hardy spaces with variable exponents and their applications," no. journal of function spaces, pp. 1-19, 2015. [12] s. lu and l. xu, "boundedness of rough singular integral operators on the homogeneous morrey-herz spaces," hokkaido math. journal, vol. 34, pp. 299-314, inclusion properties of herz-morrey spaces with variable exponent hairur rahman 27 2005. [13] m. izuki, "fractional integral on herz-morrey spaces with variable exponent," hiroshima math. j., vol. 40, pp. 343-355, 2010. [14] y. mizuta and t. ohno, "herz-morrey spaces of variable exponent, riesz potential operator and duality," complex variable and elliptic equations, vol. 60, no. 2, pp. 211-240, 2015. [15] y. shi, x. tao and t. zheng, "multilinier riesz potential on morrey-herz spaces with non-doubling measure," journal of inequality and applications, vol. 10, 2010. issn 2086-0382 e-issn 2477-3344 cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 cauchy vol. 6 no. 3 pages: 100 โ€“ 161 malang november 2020 issn 2086-0382 e-issn 2477-3344 ๐œ’ cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 cauchy is a mathematical journal published twice a year on may and november by the mathematics department, faculty of science and technology, universitas islam negeri maulana malik ibrahim malang. this journal includes research papers, literature studies, analysis, and problem solving in mathematics (algebra, analysis, statistics, computing and applied mathematics). editorial board editor in chief : dr. sri harini, m.si, maulana malik ibrahim state islamic university of malang, indonesia. managing editor : mohammad jamhuri, m.si, maulana malik ibrahim state islamic university of malang, indonesia. juhari, m.si, maulana malik ibrahim state islamic university of malang, indonesia. 1. editorial board : prof hadi susanto, department of mathematical sciences, university of 2. essex and department of mathematics of khalifa university, united kingdom mario rosario guarracino, computational and data science laboratory high performance computing and networking institute national research council of italy, italy kartick chandra mondal, jadavpur university, salt lake campus, india rowena alma l. betty, university of the philippines diliman, philippines subanar seno, gadjah mada university, indonesia toto nusantara, state university of malang, indonesia edy tri baskoro, institut teknologi bandung, indonesia eridani eridani, airlangga university, indonesia abdul halim abdullah, university of technology malaysia, malaysia kusno, university of jember, indonesia slamin, university of jember, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia abdussakir, maulana malik ibrahim state islamic university of malang, indonesia javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/272712') cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 editorial board ari kusumastuti, maulana malik ibrahim state islamic university of malang, indonesia fachrur rozi, maulana malik ibrahim state islamic university of malang, indonesia elly susanti, universitas islam negeri maulana malik ibrahim malang, indonesia assistant editor : mohammad nafie jauhari, m.si, maulana malik ibrahim state islamic university of malang, indonesia. editorial office mathematics department, maulana malik ibrahim state islamic university of malang gajayana st. 50 malang, east java, indonesia 65144 phone (+62) 81336397956, faximile (+62) 341 558933 e-mail: cauchy@uin-malang.ac.id cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 focus and scope cauchy-jurnal matematika murni dan aplikasi is a mathematical journal published twice a year in may and november by the mathematics department, faculty of science and technology, maulana malik ibrahim state islamic university of malang. we we lc om e a u t h or s for original articles (research), review articles, interesting case reports, special articles illustrations that focus on the mathematics pure and applied. subjects suitable for publication include, but are not limited to the following fields of: 1. actuaria 2. algebra 3. analysis 4. applied 5. computing 6. econometry 7. statistics cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 indexing and abstracting cauchy-jurnal matematika murni dan aplikasi has been covered (indexed and abstracted) by following services: 1. doaj (2016-,)(https://doaj.org/toc/2477-3344) 2. d i m e n s i o n s 3. moraref (2015-,)-(http://moraref.or.id/index.php/browse/index/36) 4. onesearch indonesia (2015-,)-(http://onesearch.id/search/results?filter[]=repoid:ios2732) 5. mendeley (2013-,)-(https://www.mendeley.com/groups/5034091/cauchy/papers/) 6. indonesian scientific journal database (isjd) (2013-,)-(http://isjd.pdii.lipi.go.id/index.php/direktorijurnal.html) 7. google scholar (2009-,)-(https://scholar.google.co.id/citations?hl=en&view_op=list_works&gmla=ajsn f6omofbk7q0o2q-9 xuimca1zi8oz9lp2ehctubhl9dcisxnyh9saieau0g0udt8tym6jk3z666zu46vrsbyz6vjc2a_w&user=dr k-5hkaaaaj) 8. ipi (2009-,)-(http://id.portalgaruda.org/?ref=browse&mod=viewjournal&journal=5272) http://moraref.or.id/index.php/ http://onesearch.id/search/results http://www.mendeley.com/groups/5034091/cauchy/papers/ http://isjd.pdii.lipi.go.id/index.php/ http://id.portalgaruda.org/ cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 table of contents matrix approach to the direct computation method for the solution of fredholm integro-differential equations of the second kind with degenerate kernels .................................................................................................................. 100 โ€“ 108 forecasting financial system stability using vector error correction model approach ...................................................................................................................................... 109 โ€“ 116 inclusion properties of the homogeneous herz-morrey ............................................... 117 โ€“ 121 local dynamics of an svir epidemic model with logistic growth ............................ 122 โ€“ 132 super total labeling (a,d)edge antimagic on the firecracker graph ..................... 133 โ€“ 139 the rule of hessenberg matrix for computing determinant of centrosymmetric matrices ........................................................................................................................................ 140 โ€“ 148 the metric dimension and local metric dimension of relative prime graph ....... 149 โ€“ 161 cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 publication etics journal cauchy is a peer-reviewed electronic national journal. this statement clarifies ethical behaviour of all parties involved in the act of publishing an article in this journal, including the author, the chief editor, the editorial board, the peer-reviewer and the publisher (mathematics department of maulana malik ibrahim state islamic university of malang). this statement is based on copeโ€™s best practice guidelines for journal editors. ethical guideline for journal publication the publication of an article in a peer-reviewed cauchy is an essential building block in the development of a coherent and respected network of knowledge. it is a direct reflection of the quality of the work of the authors and the institutions that support them. peer-reviewed articles support and embody the scientific method. it is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer, the publisher and the society. as publisher of pure and applied mathematics journal, we take our duties to back up over all stages of publishing seriously and we recognize our ethical and other responsibilities. we are committed to ensuring that advertising, reprint or other commercial revenue has no impact or influence on editorial decisions. publication decisions the editor of cauchy is responsible for deciding which of the articles submitted to the journal should be published. the validation of the work in question and its importance to researchers and readers must always drive such decisions. the editors may be guided by the policies of the journal's editorial board and constrained by such legal requirements as shall then be in force regarding libel, copyright infringement and plagiarism. the editors may confer with other editors or reviewers in making this decision. fair play an editor at any time evaluates manuscripts for their intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the authors. confidentiality the editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher, as appropriate. any manuscripts received for review must be treated as confidential documents. they must not be shown to or discussed with others except as authorized by the editor. disclosure and conflicts of interest unpublished materials disclosed in a submitted manuscript must not be used in an editor's own research without the express written consent of the author. cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 publication etics contribution to editorial decisions peer review assists the editor in making editorial decisions and through the editorial communications with the author may also assist the author in improving the paper. promptness any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse himself from the review process. standards of objectivity reviews should be conducted objectively. personal criticism of the author is inappropriate. referees should express their views clearly with supporting arguments. acknowledgement of sources reviewers should identify relevant published work that has not been cited by the authors. any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. a reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge. disclosure and conflict of interest privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers. reporting standards authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance. underlying data should be represented accurately in the paper. a paper should contain sufficient detail and references to permit others to replicate the work. fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. data access and retention authors are asked to provide the raw data in connection with a paper for editorial review and should be prepared to provide public access to such data (consistent with the alpspstm statement on data and databases), if practicable, and should in any event be prepared to retain such data for a reasonable time after publication. originality and plagiarism the authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted. cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 publication etics multiple, redundant or concurrent publication an author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. acknowledgement of sources proper acknowledgment of the work of others must always be given. authors should cite publications that have been influential in determining the nature of the reported work. authorship of the paper authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. all those who have made significant contributions should be listed as co-authors. where there are others who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. the corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. hazards and human or animal subjects if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. disclosure and conflicts of interest all authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. all sources of financial support for the project should be disclosed. fundamental errors in published works when an author discovers a significant error or inaccuracy in his/her own published work, it is the authorโ€™s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 acknowledgment to reviewers in this issue contributions and valuable comments of the following reviewers in this issue was very appreciated arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia sri harini, universitas islam negeri maulana malik ibrahim malang, indonesia heni widayani, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia corina karim, brawijaya uiversity fachrur rozi, universitas islam negeri maulana malik ibrahim malang, indonesia issn 2086-0382 e-issn 2477-3344 cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 cauchy vol. 7 no. 1 pages: 1 โ€“ 151 malang november 2021 issn 2086-0382 e-issn 2477-3344 ๐œ’ cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 cauchy is a mathematical journal published twice a year on may and november by the mathematics department, faculty of science and technology, universitas islam negeri maulana malik ibrahim malang. this journal includes research papers, literature studies, analysis, and problem solving in mathematics (algebra, analysis, statistics, computing and applied mathematics). editorial board editor in chief : dr. sri harini, m.si, maulana malik ibrahim state islamic university of malang, indonesia. managing editor : mohammad jamhuri, m.si, maulana malik ibrahim state islamic university of malang, indonesia. juhari, m.si, maulana malik ibrahim state islamic university of malang, indonesia. 1. editorial board : prof hadi susanto, department of mathematical sciences, university of 2. essex and department of mathematics of khalifa university, united kingdom mario rosario guarracino, computational and data science laboratory high performance computing and networking institute national research council of italy, italy kartick chandra mondal, jadavpur university, salt lake campus, india rowena alma l. betty, university of the philippines diliman, philippines subanar seno, gadjah mada university, indonesia toto nusantara, state university of malang, indonesia edy tri baskoro, institut teknologi bandung, indonesia eridani eridani, airlangga university, indonesia abdul halim abdullah, university of technology malaysia, malaysia kusno, university of jember, indonesia slamin, university of jember, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia abdussakir, maulana malik ibrahim state islamic university of malang, indonesia javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/272712') cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 editorial board ari kusumastuti, maulana malik ibrahim state islamic university of malang, indonesia fachrur rozi, maulana malik ibrahim state islamic university of malang, indonesia elly susanti, universitas islam negeri maulana malik ibrahim malang, indonesia assistant editor : mohammad nafie jauhari, m.si, maulana malik ibrahim state islamic university of malang, indonesia. editorial office mathematics department, maulana malik ibrahim state islamic university of malang gajayana st. 50 malang, east java, indonesia 65144 phone (+62) 81336397956, faximile (+62) 341 558933 e-mail: cauchy@uin-malang.ac.id cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 focus and scope cauchy-jurnal matematika murni dan aplikasi is a mathematical journal published twice a year in may and november by the mathematics department, faculty of science and technology, maulana malik ibrahim state islamic university of malang. we we lc om e a u t h or s for original articles (research), review articles, interesting case reports, special articles illustrations that focus on the mathematics pure and applied. subjects suitable for publication include, but are not limited to the following fields of: 1. actuaria 2. algebra 3. analysis 4. applied 5. computing 6. econometry 7. statistics cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 indexing and abstracting cauchy-jurnal matematika murni dan aplikasi has been covered (indexed and abstracted) by following services: 1. doaj (2016-,)(https://doaj.org/toc/2477-3344) 2. d i m e n s i o n s 3. moraref (2015-,)-(http://moraref.or.id/index.php/browse/index/36) 4. onesearch indonesia (2015-,)-(http://onesearch.id/search/results?filter[]=repoid:ios2732) 5. mendeley (2013-,)-(https://www.mendeley.com/groups/5034091/cauchy/papers/) 6. indonesian scientific journal database (isjd) (2013-,)-(http://isjd.pdii.lipi.go.id/index.php/direktorijurnal.html) 7. google scholar (2009-,)-(https://scholar.google.co.id/citations?hl=en&view_op=list_works&gmla=ajsn f6omofbk7q0o2q-9 xuimca1zi8oz9lp2ehctubhl9dcisxnyh9saieau0g0udt8tym6jk3z666zu46vrsbyz6vjc2a_w&user=dr k-5hkaaaaj) 8. ipi (2009-,)-(http://id.portalgaruda.org/?ref=browse&mod=viewjournal&journal=5272) http://moraref.or.id/index.php/ http://onesearch.id/search/results http://www.mendeley.com/groups/5034091/cauchy/papers/ http://isjd.pdii.lipi.go.id/index.php/ http://id.portalgaruda.org/ cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 table of contents genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification ..................................... 1 โ€“ 12 a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units .................. 13 โ€“ 21 inclusion properties of the homogeneous herz-morrey spaces with variable exponent ....................................................................................................................................... 22 โ€“ 27 sentiment analysis on government performance in tourism during the covid19 pandemic period with lexicon based ........................................................................ 28 โ€“ 39 optimal prevention and treatment control on sveir type model spread of covid-19 ...................................................................................................................................... 40 โ€“ 48 analysis of landing airplane queue systems at juanda international airport surabaya ....................................................................................................................................... 49 โ€“ 63 on rainbow vertex antimagic coloring of graphs: a new notion .............................. 64 โ€“ 72 the confidence interval of the estimator of the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process .......................................................................................................................................................... 73 โ€“ 83 on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function ............................................................... 84 โ€“ 96 supplier selection analysis using minmax multi choice goal programming model .............................................................................................................................................. 97 โ€“ 104 spline nonparametric regression to analyze factors affecting gender empowerment measure (gem) in east java ................................................................... 105 โ€“ 117 modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression approach ................................................................................ 118 โ€“ 128 the ring homomorphisms of matrix rings over skew generalized power series rings ............................................................................................................................................... 129 โ€“ 135 cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 table of contents local hรถlder regularity of weak solutions for singular parabolic systems of plaplacian type ............................................................................................................................ 136 โ€“ 141 a study of count regression models for mortality rate .................................................. 142 โ€“ 151 multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 238-245 p-issn: 2086-0382; e-issn: 2477-3344 submitted: november 25, 2020 reviewed: february 19, 2021 accepted: april 11, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.10871 multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java ria dhea ln karisma1, juhari 2, ramadani a. rosa3 1,2,3 department of mathematics uin maulana malik ibrahim malang email: riadhea@uin-malang.ac.id, juhari@uin-malang.ac.id, ramadaniauiyanarosa@gmail.com abstract poverty population is one of the serious problems in indonesia. the percentage of population poverty used as a means for a statistical instrument to be guidelines to create standard policies and evaluations to reduce poverty. the aims of the research are to determine model population poverty using multivariate adaptive regression spline and bagging mars then to understand the most influence variable population poverty of central java province in 2018. the result of this research is the bagging mars model showed better accuracy than the mars model. since, gcv in the bagging mars model is 0,009798721 and gcv in the mars model is 6,985571. the most influence variable population poverty of central java province in 2018 based on mars model is the percentage of the old school expectation rate. then, the most influentce variable based on bagging mars model is the number of diarrhea disease. keywords: multivariate adaptive regression splines; bootstrap aggregating; generalized crossvalidation; poverty introduction poverty has concerned problem in the world even in indonesia. in indonesia, which is developing country, poverty has been affected in economics that itโ€™s showed level of welfare. therefore, it has become a serious problem that must be resolved. the growth of economics is the fundamental factor to reduce poverty. based on bps data, indonesia has been able to deal with some economics global problem and succeeded in increasing economic growth. some programs realized such as credit procurement programs, agricultural development, equitable development, infrastructure improvement, to the procurement program inpress lagging village (idt) to help improve the community's living standards. the efforts considered significant because it reduced the experiencing of gaps between the rich and the underprivileged people and as an effort to realize the strategy of human quality development [1]. according to bps (badan pusat statistik) or indonesian statistics institution, level of poverty in indonesia has been reduced in recently. the percentage of privileged people reduced up to 0, 58% (in year-on-year) and at 2017 was the lowest poverty level rate. the http://dx.doi.org/10.18860/ca.v6i4.10871 mailto:ramadaniauiyanarosa@gmail.com multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java ria dhea ln karisma 239 government succeeded in reducing poverty rate by 1.18 million people from an average. the government made a system for implement social protection based on a life cycle approach at 2018. however, in some areas poverty rate was slowed in reducing poverty [2]. mars were introduced assumption about the relationship between the dependent and independent variables to estimate general functions of high dimensional data. bagging mars is a method that improved performance of in mars method used bootstrap replicating. the past researches karisma & sri harini [3] used mars to find the classification of risk factors of ischemic and hemorrhagic patients by mars method, kilinc, b et al. [4] research to find models of metal concentrations to determine soil pollution by mars method, etc. mars model used combination from spline method and recursive partition. then, model in spline regression applied using a set of basis function to achieve q-order spline regression and estimated using least squares method. it has knot to find out the continuity basis function from one region in regression line to others. otherwise, bootstrap aggregating (bagging) used to minimize squared error value. the aimed of the research was the influenced poverty factor using mars and bagging mars then it can be used for guidelines standard policies and evaluation to reduce poverty. methods poverty is resident who have an average monthly expenditure per capita below the poverty line [5]. poverty influenced by some factors such as human resources, employment, inflation, unemployment, population density, health facilities, income, scarcity, transportation, education, business capital [6] . mars method used multivariate nonparametric approaches. it has recursive partition formed, high dimensional data, and discontinuity data. bagging mars is a method that used for improve performance on mars method with bootstrap replicating. mars developed by recursive partitioning regression (rpr) to estimate sub-region in each region continuous model in knots [7]. the advantage mars is unrequired standardization, produced accurate results, used in big data, and used for regression analysis and classification simultaneously. bagging mars recursive partitioning regression (rpr) unable to overcome the discontinuous data in knots. therefore, the rpr algorithm used to estimate and correlate data in subregions [8]. the basis function explained the relationship between the dependent and independent variables [9] . the regression model used basis functions (bf) as follows: ๐‘ฆ = ๐›ฝ0 โˆ‘ ๐›ฝ๐‘šโ„Ž๐‘š(๐‘ฅ) ๐‘€ ๐‘š=1 (1) where โ„Ž๐‘š is a set of basis function, and ๐›ฝ๐‘š is a coefficient of โ„Ž๐‘š in splines basis function defined as: โ„Ž๐‘š = โˆ [๐‘†๐‘˜๐‘š(๐‘ฅ๐‘ฃ(๐‘˜,๐‘š) โˆ’ ๐‘ก๐‘˜๐‘š)] + ๐พ๐‘š ๐‘˜=1 (2) after modified bf with the rpr model, the mars model obtained as follows: ๐‘“(๐‘ฅ) = ๐‘Ž0 + โˆ‘ ๐‘Ž๐‘š ๐‘€ ๐‘š=1 โˆ [๐‘†๐‘˜๐‘š(๐‘ฅ๐‘ฃ(๐‘˜,๐‘š) โˆ’ ๐‘ก๐‘˜๐‘š)]+ ๐พ๐‘š ๐‘˜=1 (3) where ๐‘Ž0 is a coefficient, ๐‘Ž๐‘š is a coeefficient function basis-m m is a maximum basis, ๐พ๐‘š is an interction degree, ๐‘ฅ๐‘ฃ(๐‘˜,๐‘š) is label of predictor variables, ๐‘ก๐‘˜๐‘š is knot of predictor variables ๐‘ฅ๐‘ฃ(๐‘˜,๐‘š), and ๐‘†๐‘˜๐‘š are variables that take values ยฑ 1 [7]. multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java ria dhea ln karisma 240 in matrix formed, mars model defined by (4) ๐‘Œ = ๐ต๐‘Ž + ๐œ€ , ๐‘Œ = (๐‘Œ1, โ€ฆ , ๐‘Œ๐‘›) ๐‘‡, ๐‘Ž = (๐‘Ž0, โ€ฆ , ๐‘Ž๐‘€) ๐‘‡, ๐œ€ = (๐œ€0, โ€ฆ , ๐œ€๐‘›) ๐‘‡ (4) ๐ต = [ 1 โˆ [๐‘†1๐‘š. (๐‘ฅ๐‘ฃ(1,๐‘š) โˆ’ ๐‘ก1๐‘š)] ๐พ๐‘š ๐‘˜=1 โ€ฆ โˆ [๐‘†๐‘€๐‘š. (๐‘ฅ๐‘ฃ(๐‘€,๐‘š) โˆ’ ๐‘ก1๐‘š)] ๐พ๐‘š ๐‘˜=1 1 โˆ [๐‘†2๐‘š. (๐‘ฅ๐‘ฃ(1,๐‘š) โˆ’ ๐‘ก1๐‘š)] ๐พ๐‘š ๐‘˜=1 โ‹ฎ 1 โˆ [๐‘†๐‘›๐‘š. (๐‘ฅ๐‘ฃ(1,๐‘š) โˆ’ ๐‘ก1๐‘š)] ๐พ๐‘š ๐‘˜=1 โ€ฆโ€ฆ โ€ฆ โˆ [๐‘†๐‘€๐‘š. (๐‘ฅ๐‘ฃ(๐‘€,๐‘š) โˆ’ ๐‘ก1๐‘š)] ๐พ๐‘š ๐‘˜=1 โ‹ฎ โˆ [๐‘†๐‘€๐‘š. (๐‘ฅ๐‘ฃ(๐‘€,๐‘š) โˆ’ ๐‘ก1๐‘š)] ๐พ๐‘š ๐‘˜=1 ] (5) the gcv used to find the best model from mars method, which used smaller is better. it is determined value by trial and error combining the number of basis functions (bf), maximum interaction (mi), and minimum observation (mo) [4]. the gcv defined as: ๐บ๐ถ๐‘‰ = ๐‘€๐‘†๐ธ [1โˆ’ ๐ถ(๏ฟฝฬ‚๏ฟฝ) ๐‘› ] 2 (6) where ๐‘€๐‘†๐ธ value defined as 1 ๐‘› โˆ‘ [๐‘ฆ๐‘– โˆ’ ๐‘“๐‘€(๐‘ฅ๐‘–)] 2๐‘› ๐‘–=1 , and c(mฬ‚) defined as c(mฬ‚) = c(m) + dm (7) where, c(m) is matrix trace [b(btb)โˆ’1bt] + 1 that is the number of parameters being fit and d represents a cost for each basis function optimization [7]. the research used data from sosial ekonomi nasional (susenas), bps (badan pusat statistik) or indonesian statistics institution for java province, and bps semarang regional. total data that used in this research was 350. it used mars and bagging mars to analyze, then the steps that employed are divided data into training and testing data. then, mars method resolved by determined data used mars method with a combination basis function (bf), maximum interaction (mi), and minimal observations (mo)[10]. besides, obtained minimum gcv value to determine the best model in mars and interpreted mars model. bagging mars method completed by determined bagging mars model using 50 replications. then, the best model in bagging mars method achieved. the last is determined variable that the most influenced of poverty in central java province in 2018. results and discussion statistics descriptive the descriptive analysis used to determine characteristic poverty in central java at 2018 (badan pusat statistik, 2019) multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java ria dhea ln karisma 241 figure 1. descriptive analysis poverty population figure 1 showed the percentage of population poverty in central java at 2018. the histogram illustrated regency areas and the percentage of poverty population in those areas. the highest poverty in those areas was kabupaten wonosobo with 17,58%. the total of poverty population was almost fifth percent. the percentage of population poverty occurred by some factors such as social economic, technology, health care and others. then, the lowest population poverty was kota semarang from total population. it was under one in twenty percent. modeling poverty population mars and bagging mars methods the mars model showed in matrix pattern (see figure 3.2). the matrix plot discovered relationship between response variable, which is variable the percentage of population poverty (๐‘Œ), and predictor variables, which is the number of diarrhea disease (๐‘‹1), the number of life expectancy (๐‘‹2), the percentage of human development index (hdi) (๐‘‹3), the percentage of expenditure per capita by non-food commodities (๐‘‹4), the percentage of open unemployement (๐‘‹5), the number of infant malnutrition (๐‘‹6), the percentage of family planning and birth control (๐‘‹7), the percentage of labor force participation rate (๐‘‹8), the percentage of expectation old school (๐‘‹9), the number of bpjs participants (๐‘‹10). 0 2 4 6 8 10 12 14 16 18 20 percentage of poverty population in central java province in 2018 multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java ria dhea ln karisma 242 figure 2. matrix plot pattern of poverty population figure 2 illustrated that indicated unclear and difficult patterns of the relationship between variables. then, in each variable has different characteristics on those areas and predictor variable was not able to be explained. in addition, nonparametric method used in this research which is mars and bagging mars methods. the best model even in mars and bagging mars methods indicated by the gcv. the gcv in mars model was 6.985571 and the r-sq value was 75,7 %. then, it was five predictor variables that significant and affected population poverty. it was ๐‘‹1, ๐‘‹6, ๐‘‹9, ๐‘‹8, ๐‘‹10 using training data 85% and testing data 15%. the mars model obtained: f(x) = 12.8 โˆ’ 0.000235 โˆ— max(0, ๐‘‹1 โˆ’ 19574) + 0.0107 โˆ— max(0, 249 โˆ’ ๐‘‹6) โ€“ 0.514 โˆ— max(0, ๐‘‹8 โˆ’ 67.5) + 7.35 โˆ— max(0, 124 โˆ’ ๐‘‹9) โˆ’ 1.34e โˆ’ 05 โˆ— max(0, 597322 โˆ’ ๐‘‹10) then, the interpretation of mars model is โˆ’ 0.000235 โˆ— max (0, ๐‘‹1 โˆ’ 19574) when, the value of ๐‘‹1 was greater than 19574, for every increased number of diarrhea, it increased the percentage of the population poverty at 0.000235 in the central java province with an average number of cases of diarrhea less than 19574 people. 0. 0107 โˆ— max (0, 249 โˆ’๐‘‹6) when, the value of ๐‘‹6 was smaller than 249, for every increased number of infant malnutrition, it increased the percentage of the population poverty at 0.0107 in the central java province with an average number of infant malnutrition less than 249 people. โˆ’0.514 โˆ— max (0, ๐‘‹8 โˆ’ 68) when, the value of ๐‘‹8 greater than 68, for every, increased in the percentage of labor force participation rate, it decreased the percentage of the population poverty by 0.514 in the central java province with an average percentage participation rate of a labor force more than 68 people. multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java ria dhea ln karisma 243 7. 35 โˆ— max (0, 12.4 โˆ’๐‘‹9) when, the value of ๐‘‹9 is smaller than 12.4, for every increased the percentage of old school expectancy, it decreased the percentage of the population poverty at 7.35 in the central java province with an average percentage of the old school expectancy is less than 12.4%. โˆ’1, 34๐‘’โˆ’05โˆ— max (0, 597322 โˆ’๐‘‹10) when, the value of ๐‘‹10 was smaller than 597322, for every increased number of participants bpjs, it decreased the percentage of the population poverty of 0.0000134 in the central java province with an average number of participants bpjs less than 597322 people. in bagging mars method that used 50 times replicate the best model obtained at the 49th replication using minimum gcv. then, it was six predictor variables that have significant value affected population of poverty. it was ๐‘‹1, ๐‘‹4, ๐‘‹6, ๐‘‹7, ๐‘‹8, ๐‘‹10. the gcv was 0.009431298 and r-sq value 0.7955023. the model was: fฬ‚(x) = 11.17643 โ€“ 0.0001232638 โˆ— max(0, 13503 โˆ’ ๐‘‹1) + 0.0001346581 โˆ— max (0, ๐‘‹1 โˆ’ 13503) + 1.637211 โˆ— max(0, 48.96 โˆ’ ๐‘‹4) โ€“ 0.6424541 โˆ— max(0, ๐‘‹4 โˆ’48.96) โ€“ 0.0250127 โˆ— max(0, ๐‘‹6 โˆ’ 52) + 8.251765e โˆ’ 05 โˆ— max(0, 33664 โˆ’๐‘‹7) โ€“ 0.0001611239 โˆ— max(0, ๐‘‹7 โˆ’ 33664) โ€“ 0.07994066 โˆ— max(0, 67.03 ๐‘‹8) โˆ’ 0,1345248 โˆ— max(0, ๐‘‹8 โˆ’ 67.03) + 1.335112e โˆ’ 05 โˆ— max(0, ๐‘‹10 โˆ’763837) (5) table 1. comparison mars and bagging mars model significance variables gcv mars ๐‘‹1, ๐‘‹6, ๐‘‹8, ๐‘‹9, ๐‘‹10 6.985571 bagging mars ๐‘‹1, ๐‘‹4, ๐‘‹6, ๐‘‹7, ๐‘‹8, ๐‘‹10 0.009798721 table 1 showed that the gcv of the bagging mars model was 0.009798721. then, mars model was 6.985571. gcv in the bagging mars model indicated a better accuracy than the mars model. since, bagging mars model has gcv minimum than mars model. best variable in mars and bagging mars methods the population poverty of central java using mars model affected by the number of diarrhea disease (๐‘‹1), the number of infant malnutrition (๐‘‹6), the percentage of labor force participation rate (๐‘‹8), the percentage of expectation old school (๐‘‹9), and the number of participants bpjs (๐‘‹10). table 2 is affected population poverty based on importance variables from mars method. table 2. importance variables mars model variable importance variables (%) ๐‘‹1 40.9 ๐‘‹6 22.9 ๐‘‹8 31.7 ๐‘‹9 100 ๐‘‹10 50.8 multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java ria dhea ln karisma 244 moreover, bagging mars affected variable by importance variables that showed in table 3. the variables were the number of diarrhea disease (๐‘‹1), the percentage of expenditure per capita by non-food commodities (๐‘‹4), the percentage of family planning and birth control (๐‘‹7), the percentage of labor force participation rate (๐‘‹8), the percentage of old school expectancy (๐‘‹9), and the number of participants bpjs (๐‘‹10). table 3. importance variables bagging mars model variable importance variables ๐‘‹1 95.32921 ๐‘‹4 0.000000 ๐‘‹7 60.80385 ๐‘‹8 0.000000 ๐‘‹10 0.000000 mars and bagging mars method have distinction in importance variables. in mars method the best level of importance variable was 100% which is the percentage of old school expectancy (๐‘‹9) then in bagging mars method was 95.33% which is number of cases of diarrhea disease (๐‘‹1). conclusions bagging mars methods obtained better accuracy than the mars model. the most influenced variable population of poverty in central java at 2018 using mars method was the percentage of old school expectancy(๐‘‹9), then the bagging mars method is the variable number of cases of diarrhea disease(๐‘‹1). references [1] [2] [3] [4] [5] [6] [7] tjiptoherijanto, p. (1997). prospek perekonomian indonesia dalam rangka globalisasi. rineka cipta. badan pusat statistik. (2017). perhitungan dan analisis kemiskinan makro di indonesia. karisma & sri harini. (2019). multivariate adaptive regression spline in ishemic and hemorrhagic. journal aip converence proceedings of symposium on biomathematics, 1โ€“8. kilinc, b. k., malkoc, s., koparal, a. s., & yazici, b. (2017). using multivariate adaptive regression splines to estimate pollution in soil. international journal of advanced and applied sciences. https://doi.org/10.21833/ijaas.2017.02.002 badan pusat statistik. (2019). kemiskinan dan ketimpangan. badan pusat statistik kemiskinan dan ketimpangan. https://www.bps.go.id/subject/23/kemiskinandan-ketimpangan.html kurniawan, m. d. (2017). analisis faktor-faktor penyebab kemiskinan di kabupaten musi banyuasin (studikasus di kecamatan sungai lilin). jurnal ilmiah ekonomi global masa kini. friedman, j. h. (1991). rejoinder: multivariate adaptive regression splines. the annals of statistics. https://doi.org/10.1214/aos/1176347973 rahmaniah, m. nanda dkk, (2016). bootstrap aggregating multivariate adaptive multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines of poverty in central java ria dhea ln karisma 245 [8] [9] [10] [11[ regression spline. jurnal eksponensial, 7(2), 163โ€“170. jurnal eksponensial, 7(2), 163โ€“170. breiman, l. (1996). bagging predictors. machine learning. https://doi.org/10.1007/bf00058655 shofa, b. & i. n. &. (2012). analisis survival dengan pendekatan multivariate adaptive regression spline pada kasus demam berdarah dengue (dbd). jurnal sains dan seni its, 1(1), 318โ€“323. badan pusat statistik. (2019). https://semarangkab.bps.go.id. retrieved from https://semarangkab.bps.go.id/indicator/23/78/1/persentase-penduduk-miskinkabupaten-kota-di-jawa-tengah.html actuarial modeling of covid-19 insurance cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 362-369 p-issn: 2086-0382; e-issn: 2477-3344 submitted: january 04, 2022 reviewed: july 23, 2022 accepted: august 20, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.14999 actuarial modeling of covid-19 insurance mila kurniawaty*, maulana muhamad arifin, bagus kurniawan, sadam laksamana sukarno, muhammad teguh prayoga department of mathematics, faculty of mathematics and natural sciences, universitas brawijaya, malang, indonesia email: mila_n12@ub.ac.id abstract the coronavirus disease (covid-19) has spread to almost all countries in the world causing economic and financial crisis. many researchers are interested in studying infectious diseases especially in dynamical models of covid-19. peng et al in 2020 studied the generalized seir (susceptible-exposed-infected-recovered) of covid-19. we interested to develop their results to make financial arrangement. in this article, we provide an actuarial model of the covid-19 insurance based on the generalized seir model. we construct the dynamical models of premium and benefit based on generalized seir. based on its dynamical model, we formulate the premium and the premium reserves on hospitalization and death benefits of the covid-19 insurance by using equivalence principle. this actuarial model is expected to able to help financial arrangements to cover losses due to the outbreak of covid-19. keywords: premium; premium reserves; generalized seir; hospitalization benefit; death benefit introduction the novel coronavirus-caused pneumonia 2019 (covid-19) previously called 2019-ncov or sars-cov-2 (severe acute respiratory syndrome coronavirus 2) first appeared in wuhan in december 2019 and then spread rapidly throughout china [1]. based on data on woldometer (2021), this covid-19 case has spread to almost all countries in the world [2]. this condition had a huge impact on the world economy, financial institutions in crisis [3]. arfah et al. [4] studied a new strategy to solve the problem of the global financial crisis in the sharia aspect. from a financial point of view, a well-designed health care system that can reduce the financial impact of sudden outbreaks of a pandemic, such as soaring medical costs, hospital infrastructure, medical equipment, vaccination and quarantine. then the insurance program is expected to cover financial losses arising from disruptions in operation of regular businesses. by applying mathematical and actuarial techniques to model and measure financial risk, actuaries are expected to expand their expertise and tackle epidemics in the health care system. the mathematical modeling has been widely developed and analyzed as a consideration to determine the insurance premium (see [5], [6], [7]). feng and garrido [8] used the epidemic model to make financial arrangements. they used the sir (susceptible-infected-removed) model to study the infectious diseases. the class s http://dx.doi.org/10.18860/ca.v7i3.14999 mailto:mila_n12@ub.ac.id* actuarial modeling of covid-19 insurance mila kurniawaty 363 denoted a group of susceptible individuals to the certain diseases or virus. the class i denoted a group of individuals who are infected and capable of transmitting the disease. the individuals were excluded from the epidemic due to death or recovery through medical treatment are classified in class r. the dynamic model compartments as in [8] are given in figure 1 below. figure 1. dynamical model of the sir premium and benefit payment [8] the outbreak of covid-19 has attracted researchersโ€™ interest in studying infectious diseases. there are several research which studied the sir model of the covid-19 epidemic (see [9] and [10]). however, in the development of the case, there is another factor influencing the spread of disease in covid-19 cases, namely exposed individuals as in [11] and [12]. peng et al. [13] and aldila et al. [14] added some classes influencing the covid-19 epidemic model. to characterize the outbreak of covid-19 in wuhan, peng et al. [13] generalized the classical seir (susceptible-exposed-infected-removed) model by introducing seven classes, that is {๐‘†(๐‘ก), ๐‘ƒ(๐‘ก), ๐ธ(๐‘ก), ๐ผ(๐‘ก), ๐‘„(๐‘ก), ๐‘…(๐‘ก), ๐ท(๐‘ก)} which represent the number of the susceptible cases, insusceptible cases, exposed cases, infective cases, quarantined cases, recovered cases and death case, respectively, at time ๐‘ก. the epidemic model for covid-19 of [13] is given in figure 2. figure 2. dynamical model of the generalized seir for covid-19 [13] the total population is assumed constant, that is the summation of all classes, and the coefficient ๐›ผ, ๐›ฝ, ๐›พ โˆ’1, ๐œƒโˆ’1, ๐œ†(๐‘ก), ๐œ…(๐‘ก) represent the respective protection rate, infection rate, average latent time, average quarantine time, cure rate, and mortality rate. in this paper, the dynamical model of peng et al. [13] will be generalized to determine actuarial calculation of covid-19 insurance. in particular, our result improves the previous work due to feng and garrido [8]. the first one we construct the dynamical model of premium and benefit payment, and then we use the classical actuarial calculation actuarial modeling of covid-19 insurance mila kurniawaty 364 to determine actual present value of benefit payment and premium payment, and also the premium reserves (see [15]-[20]). methods in this research, we develop the research methods into some steps. the first one, the figure 2 is modified into actuarial concept, by adding the premium payment and benefit payment. the premium payment must be done by the population in class ๐‘†, ๐ธ, ๐ผ, ๐‘…, and ๐‘ƒ. the population in class ๐‘„ have to get the hospitalization benefit, whereas the population in class ๐ท have to get the death benefit. from the new figure will be construct the ordinary differential equation of dynamical model. based on the dynamical model will be constructed the premium rate and the premium reserve. the equivalence principle will be used to construct it. results and discussion dynamical model of premium and benefits in this section, the compartment model in peng et al. [13] will be generalized to dynamical model of premium payments for the covid-19 policyholders and benefit payments by insurance companies. the compartments of the dynamical model are given in figure 3. figure 3. the dynamical model of premium dan benefit payments on generalized seir in this case the policyholder is assumed to be out of insurance after recovery. by [13], the compartment of the generalized seir model is denoted by following system of ordinary differential equations: infective (i) ๐›พ ๐›ฝ premium payment ๐œ†(๐‘ก) ๐œ…(๐‘ก) premium payment ๐›ผ recovered (r) susceptible (s) exposed (e) insusceptible (p) quarantined (q) insurance death (d) ๐œƒ premium payment hospitalization benefit premium payment death benefit actuarial modeling of covid-19 insurance mila kurniawaty 365 ๐‘‘๐‘†(๐‘ก) ๐‘‘๐‘ก = โˆ’๐›ผ๐‘†(๐‘ก) โˆ’ ๐›ฝ ๐‘†(๐‘ก)๐ผ(๐‘ก) ๐‘ (1) ๐‘‘๐ธ(๐‘ก) ๐‘‘๐‘ก = โˆ’๐›พ๐ธ(๐‘ก) + ๐›ฝ ๐‘†(๐‘ก)๐ผ(๐‘ก) ๐‘ (2) ๐‘‘๐ผ(๐‘ก) ๐‘‘๐‘ก = ๐›พ๐ธ(๐‘ก) โˆ’ ๐œƒ๐ผ(๐‘ก) (3) ๐‘‘๐‘„(๐‘ก) ๐‘‘๐‘ก = ๐œƒ๐ผ(๐‘ก) โˆ’ ๐œ†(๐‘ก)๐‘„(๐‘ก) โˆ’ ๐œ…(๐‘ก)๐‘„(๐‘ก) (4) ๐‘‘๐‘…(๐‘ก) ๐‘‘๐‘ก = ๐œ†(๐‘ก)๐‘„(๐‘ก) (5) ๐‘‘๐ท(๐‘ก) ๐‘‘๐‘ก = ๐œ…(๐‘ก)๐‘„(๐‘ก) (6) ๐‘‘๐‘ƒ(๐‘ก) ๐‘‘๐‘ก = ๐›ผ๐‘†(๐‘ก) (7) with given initial value ๐‘†(0) = ๐‘†0, ๐ธ(0) = ๐ธ0, ๐ผ(0) = ๐ผ0, ๐‘„(0) = ๐‘„0, ๐‘…(0) = ๐‘…0, ๐ท(0) = ๐ท0, ๐‘ƒ(0) = ๐‘ƒ0, and ๐‘†0 + ๐ธ0 + ๐ผ0 + ๐‘„0 + ๐‘…0 + ๐ท0 + ๐‘ƒ0 = ๐‘. in actuarial approach, the probability of each class is defined by rasio of each class to the total population, then we now introduce the deterministic functions ๐‘ (๐‘ก), ๐‘’(๐‘ก), ๐‘–(๐‘ก), ๐‘ž(๐‘ก), ๐‘Ÿ(๐‘ก), ๐‘‘(๐‘ก), and ๐‘(๐‘ก), represented as the fractions of the population in each of class ๐‘†, ๐ธ, ๐ผ, ๐‘„, ๐‘…, ๐ท, and ๐‘ƒ, respectively. by dividing equations (1)-(7) by the constant total population size ๐‘, we have ๐‘ โ€ฒ(๐‘ก) = โˆ’๐›ผ๐‘ (๐‘ก) โˆ’ ๐›ฝ๐‘ (๐‘ก)๐‘–(๐‘ก), ๐‘ก โ‰ฅ 0 (8) ๐‘’โ€ฒ(๐‘ก) = โˆ’๐›พ๐‘’(๐‘ก) + ๐›ฝ๐‘ (๐‘ก)๐‘–(๐‘ก), ๐‘ก โ‰ฅ 0 (9) ๐‘–โ€ฒ(๐‘ก) = ๐›พ๐‘’(๐‘ก) โˆ’ ๐œƒ๐‘–(๐‘ก), ๐‘ก โ‰ฅ 0 (10) ๐‘žโ€ฒ(๐‘ก) = ๐œƒ๐‘–(๐‘ก) โˆ’ ๐œ†(๐‘ก)๐‘ž(๐‘ก) โˆ’ ๐œ…(๐‘ก)๐‘ž(๐‘ก), ๐‘ก โ‰ฅ 0 (11) ๐‘Ÿโ€ฒ(๐‘ก) = ๐œ†(๐‘ก)๐‘ž(๐‘ก), ๐‘ก โ‰ฅ 0 (12) ๐‘‘โ€ฒ(๐‘ก) = ๐œ…(๐‘ก)๐‘ž(๐‘ก), ๐‘ก โ‰ฅ 0 (13) ๐‘โ€ฒ(๐‘ก) = ๐›ผ๐‘ (๐‘ก), ๐‘ก โ‰ฅ 0 (14) ๐‘ (๐‘ก) + ๐‘’(๐‘ก) + ๐‘–(๐‘ก) + ๐‘ž(๐‘ก) + ๐‘Ÿ(๐‘ก) + ๐‘‘(๐‘ก) + ๐‘(๐‘ก) = 1, ๐‘ก โ‰ฅ 0 (15) with initial given value ๐‘ (0) = ๐‘ 0, ๐‘’(0) = ๐‘’0, ๐‘–(0) = ๐‘–0, ๐‘ž(0) = ๐‘ž0, ๐‘Ÿ(0) = ๐‘Ÿ0, ๐‘‘(0) = ๐‘‘0, ๐‘(0) = ๐‘0, dan ๐‘ 0 + ๐‘’0 + ๐‘–0 + ๐‘0 = 1. premium and benefit payments we assume that the premium payment of an infectious disease insurance plan in the form of continuous annuities from the susceptibles, insuspectible, infected, and exposed. it means the policyholder are commited to pay the premiums continuously as long as they remain in susceptibles, insuspectible, infected, and exposed classes. otherwise, the insurance company will give the benefit if the policyholder are quarantined and death. once the individual dies or recovery after quarantined process in hospital, the plan terminates immediately. by using the principles of international actuarial notation as mention in [8], the actuarial present value (apv) of each class for a ๐‘ก-year period is denoted by ๏ฟฝฬ…๏ฟฝ๏ฟฝฬ…๏ฟฝ| ๐‘  , ๏ฟฝฬ…๏ฟฝ๏ฟฝฬ…๏ฟฝ| ๐‘’ , ๏ฟฝฬ…๏ฟฝ๏ฟฝฬ…๏ฟฝ| ๐‘– , ๏ฟฝฬ…๏ฟฝ ๏ฟฝฬ…๏ฟฝ| ๐‘ž , ๏ฟฝฬ…๏ฟฝ๏ฟฝฬ…๏ฟฝ| ๐‘Ÿ , ๏ฟฝฬ…๏ฟฝ๏ฟฝฬ…๏ฟฝ| ๐‘‘ , and ๏ฟฝฬ…๏ฟฝ ๏ฟฝฬ…๏ฟฝ| ๐‘ . to evaluate the annuity, we use the present value of payments due at time ๐‘ก, which is the discounted value of one monetary unit for a basic annuity. then it is multiplied by the probability of making those payments and then integrate these apv for all payment times ๐‘ก. the detailed evaluations of annuities can be found in ([17] and 18]). actuarial modeling of covid-19 insurance mila kurniawaty 366 by figure 3, there are 2 benefits, i.e, hospitalization benefit and death benefit. the hospitalization benefit will be given to quarantined individual and death benefit will be given to death individual. the medical and hospitalization expenses are continuously reimbursed for each quarantined policyholder during the whole period of treatment. hence, the total discounted value of a ๐‘ก-year annuity of hospitalization payments is can be descibed as follows ๏ฟฝฬ…๏ฟฝ ๏ฟฝฬ…๏ฟฝ| ๐‘ž = โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ ๐‘ก 0 . ๐‘ž(๐‘ฅ) ๐‘‘๐‘ฅ, ๐›ฟ > 0 (16) where ๐›ฟ is the discounting force of interest. when the policyholder is diagnosed with the infectious disease and hospitalized immediately, the medical expenses are to be paid immediately in a lump sum. since its obligation is fulfilled, the insurance plan terminates. in actuarial mathematics, the payment of a lump sum compensation can be analogized as whole life insurance. the apv of hospitalization benefit with lumpsum payment, denoted by ๏ฟฝฬ…๏ฟฝ ๏ฟฝฬ…๏ฟฝ| ๐‘ž , is defined by ๏ฟฝฬ…๏ฟฝ ๏ฟฝฬ…๏ฟฝ| ๐‘ž = โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ ๐‘ก 0 . ๐œƒ๐‘–(๐‘ฅ) ๐‘‘๐‘ฅ = ๐œƒ๏ฟฝฬ…๏ฟฝ๏ฟฝฬ…๏ฟฝ| ๐‘– (17) since ๐œƒ๐‘–(๐‘ก) denotes the probability of being newly quarantined at time ๐‘ก. by the same concept of lumpsum payment of hospitalization benefit, the apv of death benefit is given by ๏ฟฝฬ…๏ฟฝ๏ฟฝฬ…๏ฟฝ| ๐‘‘ = โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ ๐‘ก 0 . ๐œ…(๐‘ฅ)๐‘ž(๐‘ฅ) ๐‘‘๐‘ฅ (18) since the probability of being newly death at time ๐‘ก is ๐œ…(๐‘ก)๐‘ž(๐‘ก). as in the previous section, there are 4 classes must pay the premium, then the total discounted value of a ๐‘ก-year annuity premium of payments is given by ๏ฟฝฬ…๏ฟฝ๏ฟฝฬ…๏ฟฝ| ๐‘  + ๏ฟฝฬ…๏ฟฝ๐‘ก| ๐‘’ + ๏ฟฝฬ…๏ฟฝ๐‘กฬ…| ๐‘– + ๏ฟฝฬ…๏ฟฝ ๏ฟฝฬ…๏ฟฝ| ๐‘ = โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ ๐‘ก 0 . (๐‘ (๐‘ฅ) + ๐‘’(๐‘ฅ) + ๐‘–(๐‘ฅ) + ๐‘(๐‘ฅ)) ๐‘‘๐‘ฅ (19) in this section, the compartment model in peng et al. [13] is generalized to dynamical model of premium payments for the covid-19 policyholders and benefit payments by insurance companies. premium rate and premium reserves the policy shall be analized with an infinite term for mathematical convenience. the premium based on an infinite term can be used to estimate the cost of insurance for relatively long policy. then the equation in the previous section must be applied for ๐‘ก tend to infinity. proposition 1 in the generalized seir model (8)-(11), and (14), the following inequality holds ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘  + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘’ + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž = 1 ๐›ฟ (1 โˆ’ โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ (๐œ†(๐‘ฅ) + ๐œ…(๐‘ฅ))๐‘ž(๐‘ฅ)๐‘‘๐‘ฅ โˆž 0 ) (20) our study is based on one of three principles in [17] and almost used in ([15] [20]), i.e., the equivalence principle for determination of level premium is given by ๐ธ[present value of benefits] = ๐ธ[present value of benefit premium] (21) actuarial modeling of covid-19 insurance mila kurniawaty 367 therefore, by using the equations (16), (19), and equivalence principle with an infinite term, the level premium for a unit annuity claim payment plan of hospitalization benefit is given by ๏ฟฝฬ…๏ฟฝ(๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž ) = ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘  + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘’ + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– + ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ by equation (20) we then have the following ๏ฟฝฬ…๏ฟฝ(๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž ) = ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž 1 ๐›ฟ (1 โˆ’ โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ (๐œ†(๐‘ฅ) + ๐œ…(๐‘ฅ))๐‘ž(๐‘ฅ)๐‘‘๐‘ฅ โˆž 0 ) โˆ’ ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ž the net level premium of hospitalization benefit with lumpsum payment for the infinite term insurance plan is denoted by ๏ฟฝฬ…๏ฟฝ(๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž ). by equations (17), and (19)-(21) for infinite term we then have ๏ฟฝฬ…๏ฟฝ(๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž ) = ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘  + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘’ + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– + ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ = ๐œƒ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– 1 ๐›ฟ (1 โˆ’ โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ (๐œ†(๐‘ฅ) + ๐œ…(๐‘ฅ))๐‘ž(๐‘ฅ)๐‘‘๐‘ฅ โˆž 0 ) โˆ’ ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ž in fact, the covid-19 insurance is a combination of the hospitalization and death insurances due to covid-19. then the net level premium of death benefit and hospitalization claim for the infinite term insurance plan is denoted by ๏ฟฝฬ…๏ฟฝ(๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘‘ ) = ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘‘ ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘  + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘’ + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– + ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ = ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž + โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ โˆž 0 . ๐œ…(๐‘ฅ)๐‘ž(๐‘ฅ) ๐‘‘๐‘ฅ 1 ๐›ฟ (1 โˆ’ โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ (๐œ†(๐‘ฅ) + ๐œ…(๐‘ฅ))๐‘ž(๐‘ฅ)๐‘‘๐‘ฅ โˆž 0 ) โˆ’ ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ž meanwhile, the net level premium of death benefit and hospitalization claim with lumpsum payment for the plan of an infinite term insurance is given by ๏ฟฝฬ…๏ฟฝ(๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘‘ ) = ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘‘ ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘  + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘’ + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– + ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ = ๐œƒ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– + + โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ โˆž 0 . ๐œ…(๐‘ฅ)๐‘ž(๐‘ฅ) ๐‘‘๐‘ฅ 1 ๐›ฟ (1 โˆ’ โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ (๐œ†(๐‘ฅ) + ๐œ…(๐‘ฅ))๐‘ž(๐‘ฅ)๐‘‘๐‘ฅ โˆž 0 ) โˆ’ ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ž (22) we consider the net level premium, the total premium and the total benefit in order to obtained the premium reserves. in actuarial sciences, the premium reserve is very important to determine the ability of the insurance company to pay the claim of policyholders. there are some methods to determine the premium reserves. one of them is retrospective method, the detail of this method can be found in [19]. by ordinary differential equations in [4], where ๏ฟฝฬ…๏ฟฝ(๐‘ก) denotes accumulated premium reserves at time ๐‘ก with lumpsum payment, we thus have ๏ฟฝฬ…๏ฟฝโ€ฒ(๐‘ก) = ๏ฟฝฬ…๏ฟฝ(๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘‘ )(๐‘ (๐‘ก) + ๐‘’(๐‘ก) + ๐‘(๐‘ก) + ๐‘–(๐‘ก)) โˆ’ (๐œƒ๐‘–(๐‘ก) + ๐œ…(๐‘ก)๐‘ž(๐‘ก)) + ๐›ฟ๏ฟฝฬ…๏ฟฝ(๐‘ก) = ( ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘‘ ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘  + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘’ + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– + ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ ) (๐‘ (๐‘ก) + ๐‘’(๐‘ก) + ๐‘(๐‘ก) + ๐‘–(๐‘ก)) โˆ’ (๐œƒ๐‘–(๐‘ก) + ๐œ…(๐‘ก)๐‘ž(๐‘ก)) + ๐›ฟ๏ฟฝฬ…๏ฟฝ(๐‘ก) let us define ๐‘“(๐‘ก) = ( ๏ฟฝฬ…๏ฟฝโˆžฬ…ฬ…ฬ…| ๐‘ž +๏ฟฝฬ…๏ฟฝโˆžฬ…ฬ…ฬ…| ๐‘‘ ๏ฟฝฬ…๏ฟฝโˆžฬ…ฬ…ฬ…| ๐‘  +๏ฟฝฬ…๏ฟฝโˆžฬ…ฬ…ฬ…| ๐‘’ +๏ฟฝฬ…๏ฟฝโˆžฬ…ฬ…ฬ…| ๐‘– +๏ฟฝฬ…๏ฟฝ โˆžฬ…ฬ…ฬ…| ๐‘ ) (๐‘ (๐‘ก) + ๐‘’(๐‘ก) + ๐‘(๐‘ก) + ๐‘–(๐‘ก)) โˆ’ (๐œƒ๐‘–(๐‘ก) + ๐œ…(๐‘ก)๐‘ž(๐‘ก)) we thus have ๏ฟฝฬ…๏ฟฝโ€ฒ(๐‘ก) โˆ’ ๐›ฟ๏ฟฝฬ…๏ฟฝ(๐‘ก) = ๐‘“(๐‘ก) by multiplying both sides by ๐‘’โˆ’๐›ฟ๐‘ก , yields ๏ฟฝฬ…๏ฟฝ(๐‘ก) = (โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ ๐‘“(๐‘ฅ) ๐‘ก 0 ๐‘‘๐‘ฅ) . ๐‘’๐›ฟ๐‘ก + ๏ฟฝฬ…๏ฟฝ(0). ๐‘’๐›ฟ๐‘ก or equivalently, actuarial modeling of covid-19 insurance mila kurniawaty 368 ๏ฟฝฬ…๏ฟฝ(๐‘ก) = (โˆซ ๐‘’โˆ’๐›ฟ๐‘ฅ ( ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘ž + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘‘ ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘  + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘’ + ๏ฟฝฬ…๏ฟฝโˆžฬ…| ๐‘– + ๏ฟฝฬ…๏ฟฝ โˆžฬ…| ๐‘ ) (๐‘ (๐‘ฅ) + ๐‘’(๐‘ฅ) + ๐‘(๐‘ฅ) + ๐‘–(๐‘ฅ)) ๐‘ก 0 โˆ’ (๐œƒ๐‘–(๐‘ฅ) + ๐œ…(๐‘ฅ)๐‘ž(๐‘ฅ)) ๐‘‘๐‘ฅ) . ๐‘’๐›ฟ๐‘ก + ๏ฟฝฬ…๏ฟฝ(0). ๐‘’๐›ฟ๐‘ก (23) from equation (23), the amount of the premium reserve at time ๐‘ก depends on the total premium, the death benefit and quarantined benefit, and also the initial value of the premium reserve. conclusions the covid-19 insurance by considering the generalized seir model was assumed that the recovery individuals not involved in premium payment since the policyholder who has been quarantined in the hospital and claims the benefit payment then the insurance plan terminates. therefore, the total premium of payment are depend on class ๐‘†(๐‘ก), ๐ธ(๐‘ก), ๐ผ(๐‘ก), and ๐‘ƒ(๐‘ก). meanwhile, the total benefit of payment are depend on class ๐‘„(๐‘ก) and ๐ท(๐‘ก). by using equivalence principle, the net level premium is the ratio of actuarial present value of benefits to actuarial present value of premiums. hence we get the premium reserve by restrocpective approach. acknowledgments this research is supported by the doctoral grant no. 1631/un10.f09/pn/2021 at mathematics and natural sciences faculty, universitas brawijaya. references [1] c. huang, y. wang, x. li, l. ren, j. zhao, y. hu, li. zhang, g. fan, j. xu, x. gu, z. cheng, t. yu, j. xia, y. wei, w. wu, x. xie, w. yin, h. li, m. liu, y. xiao, h. gao, l. guo, j. xie, g. wang, r. jiang, z. gao, q. jin, j. wang, and b. cao. clinical features of patients infected with 2019 novel coronavirus in wuhan, china. the lancet, vol.395, issue 10223, pp. 497-506, 2020. [2] woldometer. report coronavirus cases. retrieved march 17, 2021, from https://www.worldometers.info/coronavirus/#countries, 2021. [3] m. f. sattar, s. khanum, a. nawaz, m. m. ashfaq, m. a. khan, m. jawad, and w. ullah. covid-19 global, pandemic impact on world economy. technium social sciences journal. vol. 11, pp.165-179, 2020. [4] a. arfah, f. z. olilingo, f. zain, s. syaifuddin, d. dahliah, n. nurmiati, and a. h. k. p.putra. economics during global recession: sharia-economics as a post covid-19 agenda. journal of asian finance, economic and business, vol.7, no. 11, pp.1077-1085, 2020. [5] b. l. jones. actuarial calculations using a markov model. transactions of the society of actuaries, vol. 46, pp.227โ€“250, 1994. [6] n. jia and l. tsui. epidemic modelling using sars as a case study. north american actuarial journal, vol. 9, no.4, pp. 28 โ€“ 42, 2005. https://www.worldometers.info/coronavirus/#countries actuarial modeling of covid-19 insurance mila kurniawaty 369 [7] canadian institute of actuaries, โ€œconsiderations for the development of a pandemic scenarioโ€. canadian institute of actuaries, committee on risk management and capital requirements. research paper 209095, 2009. [8] r. feng and j. garrido. actuarial applications of epidemiological models. north american actuarial journal, vol. 15, no.1, pp. 112-136, 2012. [9] m. batista. estimation of the final size of the coronavirus epidemic by the sir model, preprint, 2020. [10] i. cooper, a. mondal, and c. g. antonopoulos. a sir model assumption for the spread of covid-19 in different communities. chaos, solitons and fractals, vol. 139, 2020. [11] b. tang, n.l. bragazzi, q. li, s. tang, y. xiao, and j. wu, j. an updated estimation of the risk of transmission of the novel coronavirus (2019-ncov). infectious disease modelling. vol. 5, pp. 248-255, 2020. [12] t. zhou, q. liu, z. yang, j. liao, k. yang, w. bai, x. lu, and w. zhang. preliminary predistion of the basic reproduction number of the wuhan novel coronavirus 2019ncov. journal of evidence-based medicine, vol. 13, no.1, 2020. [13] l. peng, w. yang, d. zhang, c. zhuge, and l. hong. epidemic analysis of covid19 in china by dynamical modeling. arxiv preprint arxiv:2002.06563, 2020. [14] d. aldila, s. h. a. khoshnaw, e. safitri, y. r. anwar, a. r. q. bakry, b. m. samiadji, d. a. anugerah, m. f. alfarizi, i. d. ayulani, and s. n. salim. a mathematical study on the spread of covid-19 considering social distancing and rapid assessment: the case of jakarta, indonesia. chaos, solitons and fractals, vol.139, 2020. [15] h. u. gerber. life insurance mathematics. springer, berlin, heidelberg, 1997. [16] n. l. bowers, h. u. gerber, j. c. hickman, d a. jones, and c. j. nesbitt. actuarial mathematics. the society of actuaries, 1997. [17] r. j. cunningham, t. n. herzog, and r. l. london. model fo quantifying risk, 2nd ed, actex publication inc., winsted, 2006. [18] d. c. m. dickson, m. r. hardy, and h. r. waters. actuarial mathematics for life contingent risks, 2nd ed, cambridge university press, united kingdom, 2003. [19] r. k. sembiring. buku materi pokok asuransi i. karunika universitas terbuka. jakarta, 1986. [20] i. catarya. buku materi pokok asuransi ii. karunika universitas terbuka. jakarta, 1988. modeling plant stems using the deterministic lindenmayer system cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 286-295 p-issn: 2086-0382; e-issn: 2477-3344 submitted: february 03, 2021 reviewed: march 16, 2021 accepted: april 17, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.11591 modeling plant stems using the deterministic lindenmayer system juhari1, muhammad zia alghar2 1,2 department of mathematics, faculty of science and technology universitas islam negeri maulana malik ibrahim email: juhari@uin-malang.ac.id, muhammadzia1904@gmail.com abstract plant morphology modeling can be done mathematically which includes roots, stems, leaves, to flower. modeling of plant stems using the lindenmayer system (l-system) method is a writing returns that are repeated to form a visualization of an object. deterministic l-system method is carried out by predicting the possible shape of a plant stem using its iterative writing rules based on the original object photo. the purpose of this study is to find a model of the plant stem with deterministic lindenmayer system method which will later be divided into two dimensional space three. the research was conducted by identifying objects in the form of pine tree trunks measured by the angle, thickness, and length of the stem. then a deterministic and parametric model is built with l-system components . the stage is continued by visualizing the model in two dimensions and three dimensions. the result of this research is a visualization of a plant stem model that is close to the original. addition color, thickness of the stem, as well as the parametric writing is done to get the results resembles the original. the iteration is limited to less than 20 iterations so that the simulation runs optimal. keywords: modeling; deterministic l-system; plant stems; visualization introduction growth is the process of increasing the size, volume and number of cells irrevisible (cannot return to original). on the stem of a plant, its growth includes the increase in size and volume on the trunk, branches, and branches. when the plant is still young its growth is fast and will slow down when have started to mature to age [1]. while the branching of the stem is a sign the growth of a plant. almost all plants branch. only monocot plants that do little branching on the stem. branching pattern the stem is generally divided into three, namely monopodial, sympodial, and dichotomous [2] [3] [4]. (a) (b) (c) http://dx.doi.org/10.18860/ca.v6i4.11591 mailto:juhari@uin-malang.ac.id mailto:muhammadzia1904@gmail.com modeling plant stems using the deterministic lindenmayer system juhari 287 figure 1. the branches of (a) monopodial, (b) sympodial, and (c) dichotomus the lindenmayer system or what is commonly referred to as the l-system is one the method used in mathematical studies developed by astrid lindenmayer. the lsystem uses a geometric aspect as its basis which is assisted in a manner computerization to produce a particular shape and model [5]. generally the lindenmayer system is a rewriting system with certain rules [6]. l-system is a branch of science in dynamic systems science that is applied to plant morphology, architectural design, to augmented reality (ar) components from video games and three-dimensional film. as of writing with the lindenmayer system used several main components, namely axioms, production, and letters [7]. the deterministic model is a mathematical model in which symptoms can be measured with certain certainty. in the deterministic model, the odds of each the incidence of subsequent events was not counted [6]. the l-system deterministic model can be formed in two dimensions or three dimensions. how to interpret the l-system basis a graphic in two dimensions is just a 2 x 2 dimensional matrix. however, in three dimensions using a rotation matrix measuring 3 x 3 [8]. the l-system also deals with the postulates of leonardo da vinci, namely on his notes at no. 394, which reads โ€œall tree branches at any height if put together to have the same thickness as the stem belowโ€ [9]. an explanation of da vinci describes the condition of the diameter before and after branching, that is symbolized by d , d1 , and d2 . where d is the diameter of the stem, d1 and d2 are child stem diameter [10]. figure 2. measurement of stem thickness ratio from the da vinci postulate, the area in the parent stem (blue circle) will be obtained equals the area in the child stem (green circle). the implication of this is if the ratio of the two child stems add up to the thickness of the parent stem [10]. if the comparison of the parent stem to the stem of the child is done in the previously equation, the value of 0.707106 was obtained as the ratio of the thickness of the stems in the plant. the da vinci postulate ratio is used as a parameter in determining the thickness of the stem at l-system [6]. methods research data the research data used are some photos of the evergreen plant, results measurement of the angle, thickness of the trunk, and the length of the trunk on the pine tree to be modeled. these data are used as the basis for forming the l-system pattern that will be created. the data can be seen in the following table modeling plant stems using the deterministic lindenmayer system juhari 288 table 1. the results of the angle measurement in the xz plane angle measured (ฮฑ) angle size first branch 0 o second branch 90 o third branch 180 o fourth branch 270 o table 2. the results of the angle measurement in the yz plane angle measured (ฮฒ) left right first section 5o 5,2 o second section 6o 6,8 o third section 5,4o 5,2 o fourth section 5o 5,2 o table 3. the results of the angle measurement in the xy plane angle measured (ฮธ) left right first branch 65o 62 o son of first branch 52o 54 o second branch 62o 63 o son of second branch 66o 64 o third branch 60o 62 o son of third branch 64o 61 o table 4. measurement results of plant stem length type of stem stem length mother stem (a) 17,20 cm daughter stem (b) 15,50 cm branching daughter stem (c) 9,30 cm modeling plant stems using the deterministic lindenmayer system juhari 289 table 5. results of measurements of plant stem thickness type of stem thickness trunk parent stem 9,20 cm right fork 6,40 cm left fork 6,20 cm daughter of the right fork 4,50 cm daughter of the right fork 4,60 cm daughter of the left fork 4,40 cm daughter of the left fork 4,50 cm research steps the steps taken to model plants using deterministic l-system are: (1) take picture of the object being modeled, namely in the form of an image photographed from various sides. (2) measurement of the angle, length and thickness of the stem for each branch on the object stem. (3) finding the average value and ratio of measurement results. (4) identify the various components of the l-system that build it, such as rules production, letters, axioms and other components. (5) performing a simulation by evaluating the results. research data the research data used are some photos of the evergreen plant, results measurement of the angle, thickness of the trunk, and the length of the trunk on the pine tree to be modeled. these data are used as the basis for forming the l-system pattern that will be created. result and discussion modeling results research modeling plants using the deterministic l-system method was carried out against three plants in a three-dimensional plane. as for the definition of the symbols used in this study can be observed in the following table table 6. definitions of symbols in the l-system f(l) : draw forward by l units, for l > 0 +(a) : rotates counterclockwise with rotation matrix r(ฮฑ) of ฮฑ degree -(a) : rotates clockwise with rotation matrix r(ฮฑ) of a degree &(ฮฑ) &(a) : rotates counterclockwise with rotation matrix r(ฮฒ) of a degree modeling plant stems using the deterministic lindenmayer system juhari 290 ^(a) : rotates clockwise with rotation matrix r (ฮฒ) of a degree /(a) : rotates counterclockwise with rotation matrix r (ฮด) of a degree \(a) : rotates counterclockwise with rotation matrix r (ฮด) of a degree |(a) : rotates with a rotation matrix r ( ฮด ) of 180o degree [ : saves the current location then moves according to the next command ] : returns to the original position stored in the symbol โ€œ[โ€œ wr : specifies the thickness of the stem !(x) : determine the line thickness x the following are all production rules created for the three crop objects (pine plant) w = a(1,15) r1 = 0.9; r2 = 0.6; wr = 0,691 generation : 15 a0 = 61.25; a1 = 5.47; a2 = 90 p1 : a(l,w) --> !(w*wr)f(l)[e(l*r1,w*wr)] p2 : b(l,w):(l>=0.1) --> !(w*wr)f(l)[+(a0)^(a1)c(l*r2,w*wr)]f(wr) [-(a0)^(a1)c(l*r1,w*wr)] [^(a1)b(l*r2,w*wr2)f(l*r2,w*wr)] p3 : c(l,w):(l>=0.0) --> !(w*wr)f(l)[^(a1)d(l*r2,w*wr)] p4 : d(l,w):(l>=0.0) --> ! (w*wr)f(l)[^(a1)c(l*r2,w*wr)] p5 : e(l,w) --> !(w*wr)f(l)[[/(a2)&(l*a2)b(l*r1,w*wr)] [\(a2)&(l*a2)b(l*r1,w*wr)][/(2*a2)&(l*a2)b(l*r1,w*wr)] [\(0*a2)&(l*a2)b(l*r1,w*wr)]][[/(0.5*a2)&(l*a2)b(l*r1,w*wr)] [/(0.666*a2)fe(l*r1,w*wr)] p6 : s(l,w) --> tf p7 : t(l,w) --> f (ketapang kencana plant) v = {r1, r2, r3, wr, l, w, a, y, z, s, f, !, -, +, &, ^, /, \, (, ), [, ], *} modeling plant stems using the deterministic lindenmayer system juhari 291 axiom w = a(12,20) a(8,20) a(4,20) a(1,20) generations : 5 r1 = 0.8 r2 = 0.5 r3 = 0.3 wr = 0.707 p1 : a(l,w) --> !(w*0.5)sf(l)[-(70)y(l*r1,w*wr)][+(70)z(l*r1,w*wr)] [-(60)^(45)/(15)y(l*r1,w*wr)][+(60)&(45)/(15)z(l*r1,w*wr)] [+(120)&(135)\(15)y(l*r1,w*wr)][(120)&(225)\(15)z(l*r1,w*wr)] [/(90)-(70)y(l*r1,w*wr)][/(90)+(70)z(l*r1,w*wr)] p2 : y(l,w) --> !(w*0.3)sf(l)[[^(37.5)y(l*r3,w*wr)][&(37.5)y(l*r3,w*wr)]] sf(l)[[^(20)y(l*r3,w*wr)][&(20)y(l*r3,w*wr)]]sf(l) p3 : z(l,w) --> !(w*0.3)sf(l)[[^(37.5)z(l*r3,w*wr)][&(37.5)z(l*r3,w*wr)]] sf(l)[[^(20)z(l*r3,w*wr)][&(20)z(l*r3,w*wr)]]sf(l) p4 : s --> ssf (trembesi plant) v = {a0, a1, r1, r2, wr, l, w, a, b, c, s, f, !, -, +, ^, /, \, (, ), [, ], *} axiom w = a(1,90) generation : 10 r1 = 0.9 r2 = 0.6 a0 = 25 a1 = 10 wr = 0.707 p1 : a(l,w) --> !(w*0.4)-(10)sf(l*0.5)[+(a0)/(90)c(l*r2,w*wr)] [-(a1)\(90)a(l*r1,w*wr)][^(a0)\(90)c(l*r1,w*wr)] p2 : b(l,w) --> !(w*0.4)sf(l)[-(a0)c(l*r2,w*wr)][+(a1)c(l*r1,w*wr)] p3 : c(l,w) --> !(w*0.4)sf(l)[+(a0)a(l*r2,w*wr)][-(a0)a(l*r1,w*wr)] p4 : s --> sf modeling plant stems using the deterministic lindenmayer system juhari 292 visualization result the results of the visualization of the modeling of plant stems using the deterministic method system is done based on the measurement results of stem thickness, angle, and length stem of the object being modeled, which is then written in the lindenmayer rule system. furthermore, the l-system writing is visualized using computational applications namely l-studio. this application is specially designed for modeling plant growth developed at the university of cagliari [11]. the visualization results will be in a dimensional form three, so that the output can be viewed from various points of view. visual display on l-studio supports in visualization magnification, so that the output can be seen in form the details. the following is the output of the lindenmayer system program for three indoor plants three dimension. (pine plant) figure 3. visualization of pine trees from various iterations (trembesi plant) figure 4. visualization of trembesi from various perspectives modeling plant stems using the deterministic lindenmayer system juhari 293 ( ketapang kencana plant) figure 5. visualization of ketapang kencana plants from various perspectives after visualizing the l-studio program, it is followed by evaluating the results of the visualization. every detail of the visualization is enlarged and rotated in all directions. this is to ensure that there are no defects in the visualization. if there is defects, then changes are made to the components of the production rules. the iteration use on each plant is less than 20 iterations. it is intended to prevent programs that are not responding or errors when running on l-studio. the following is the comparison result of the visualization with the original object. (pine plant) figure 6. comparison of several visualization results of the l-system program on pine plant with the original object modeling plant stems using the deterministic lindenmayer system juhari 294 (ketapang kencana plant) figure 7. comparison of several visualization results of the l-system program on ketapang kencana plant with its original object (trembesi plant) figure 8. comparison of several visualization results of the l-system program on tamarind trees with the original object conclusion modeling plant stems using the deterministic lindenmayer system method, is a modeling that is more concise in level than using a method stochastic lindenmayer system , in the absence of a probability factor. the initial stages important in modeling modeling plant stems using the deterministic lindenmayer system juhari 295 plant stems is to determine the main component of l-system . in this modeling, researchers use three-dimensional visualization on the result. therefore, the visualization results are displayed from the front side, the side (round 90o x axis ), the top side (90o rotation of the z axis ), and the side slightly down (round 45o z axis ). the use of the l-studio application is very helpful in the process of visualizing the model plants, both in the iteration process, determine production rules, to deep loops do the visualization. the use of iterations needs to be considered in order for the running program to run smooth. the researcher uses less than 20 iterations so that it running optimally. references [1] a. shipunov, introduction of botany, usa: university of minot state, 2011. [2] r. mcgarry, "monopodial and sympodial branching architecture in cotton is differentially regulated by the gossypium hirsutum single flower truss and selfpruning orthologs," new phytologist, pp. 1-2, 26 april 2016. [3] j. power, "interactive arrangement of botanical l-system models," proceedings of the 1999 symposium on interactive 3d graphics si3d '99, pp. 175-182, 1999. [4] c. jacob, "genetic l-system programming: breeding and evolving artificial flowers with mathematica," in proceedings of the first international mathematica symposium, vol. 33976, pp. 215-222, 1995. [5] p. prusinkiewicz, "developmental models of herbaceous plants for computer imagery purposes," computer graphics, vol. 22, no. 0097-8930, pp. 141-150, 1988. [6] a. lindenmayer, the algorithmic beauty of plants, new york: spinger-verlag, 1990. [7] juhari, "pemodelan pertumbuhan tanaman zea mays l. menggunakan stochastic lsystem," jurnal cauchy, vol. 3, no. 2477-3344, p. 2, 2013. [8] c. h. iswanto, "penerapan stochastic l-systems pada pemodelan pertumbuhan batang tanaman," pp. 1-18, 1 janurary 2014. [9] j. ritcher, the notebooks of leonardo da vinci, new york: dover publications, 1970. [10] b. mandelbrot, the fractal geometry of nature, san fransisco: w.h. freeman, 1982. [11] suhartono, "pemodelan pertumbuhan tanaman zinnia menggunakan lindenmayer system dengan mathematica," jurnal cauchy, vol. 3, no. 2086-0382, pp. 33-37, 2013. [12] juhari, "pemodelan pertumbuhan batang tanaman menggunakan deterministic lsystems," p. 3, 25 november 2013. [13] m. kahfi, geometri transformasi, malang: ikip malang, 1997. ummu habibah kajian model longand shortterm runoff _5_ kajian model longand shortterm runoff (lst) dan implementasinya untuk menghitung debit banjir ummu habibah1 dan suharmadi2 1jurusan matematika, universitas brawijaya, malang email: ummu915@gmail.com 2jurusan matematika, institut teknologi sepuluh nopember, surabaya abstrak air hujan merupakan salah satu aspek dari siklus hidrologi yang berperan penting dalam ketersediaan air di dalam bumi. akan tetapi apabila terjadi hujan lebat dalam durasi waktu yang cukup lama maka air hujan tersebut dapat mengakibatkan terjadinya aliran permukaan (surface runoff) yang berpotensi menimbulkan banjir. untuk mengetahui jumlah potensi air yang ada pada suatu daerah pengaliran, diperlukan perhitungan hidrologi dari data-data curah hujan. untuk menghitung jumlah air atau debit sungai pada waktu banjir digunakan formulasi model longand short-term runoff (lst). formulasi model lst diperoleh dari model fisisnya. pada penelitian ini dikaji proses terbentuknya formulasi model lst dari perilaku sistem berdasarkan fenomena siklus hidrologi. selanjutnya formulasi model lst tersebut akan diimplementasikan untuk menghitung debit banjir pada suatu daerah pengaliran. hasil penelitian menunjukkan bahwa formulasi model lst dapat digunakan untuk menghitung debit banjir dan merupakan model yang baik karena pada saat implementasi, error yang dihasikan antara debit banjir pengamatan dan debit banjir perhitungan adalah kecil. kata kunci: siklus hidrologi, surface runoff , model lst pendahuluan air hujan merupakan salah satu aspek dari siklus hidrologi yang berperan penting dalam ketersediaan air di dalam bumi. akan tetapi apabila terjadi hujan lebat dalam durasi waktu yang cukup lama maka air hujan tersebut dapat mengakibatkan terjadinya aliran permukaan (surface runoff) yang berpotensi banjir. untuk mengetahui jumlah potensi air yang ada pada suatu daerah pengaliran diperlukan perhitungan hidrologi dari data-data curah hujan. untuk menghitung jumlah air atau debit sungai pada waktu banjir digunakan model longand short-term runoff (lst). model ini digunakan untuk menganalisa aliran long-term dan shortterm (banjir) dan dapat juga digunakan untuk meramalkan banjir real time. berdasarkan uraian di atas, maka permasalahan yang akan dibahas pada penelitian ini adalah bagaimana kajian formulasi model lst dan implementasinya untuk menghitung debit sungai pada waktu banjir. sedangkan batasan masalah adalah data yang digunakan untuk mengimplementasikan model lst adalah data sekunder yang didapatkan dari perum jasa tirta yaitu berupa data curah hujan di stasiun dampit dan data tinggi muka air di sungai lesti, sedangkan untuk nilai parameterparameter dan data lainnya menggunakan data artifisial. kajian teori siklus hidrologi air di bumi ini mengulangi terus menerus sirkulasi yang berupa penguapan, presipitasi dan pengaliran keluar (outflow). air menguap ke udara dari permukaan tanah dan laut, berubah menjadi awan sesudah melalui beberapa proses dan kemudian jatuh sebagai hujan atau salju ke permukaan laut atau daratan. sebelum tiba ke permukaan bumi sebagian langsung menguap ke udara dan sebagian tiba ke permukaan tanah. sebagian akan tertahan oleh tumbuh-tumbuhan di mana sebagian akan menguap dan sebagian lagi akan jatuh atau mengalir melalui dahandahan ke permukaan tanah. air hujan yang tiba ke permukaan tanah akan masuk ke dalam tanah (infiltrasi). bagian lain yang merupakan kelebihan akan mengisi lekuk-lekuk permukaan tanah, kemudian mengalir ke daerah-daerah yang rendah, masuk ke sungai-sungai dan akhirnya ke laut. tidak semua butir air yang mengalir akan tiba ke laut. dalam perjalanan ke laut sebagian akan menguap dan kembali ke udara. sebagian air yang masuk ke dalam tanah, keluar kembali segera ke sungaisungai (disebut aliran intra = interflow). tetapi sebagian besar akan tersimpan sebagai air tanah (groundwater) yang akan keluar sedikit demi sedikit dalam jangka waktu yang lama ke permukaan tanah di daerah-daerah yang rendah ummu habibah dan suharmadi 188 volume 1 no. 4 mei 2011 (disebut groundwater runoff = limpasan air tanah). sirkulasi yang kontinu antara air laut dan air daratan berlangsung terus. sirkulasi air ini disebut siklus hidrologi (hydrological cycle). infiltrasi horton konsep infiltrasi horton adalah limpasan permukaan dimulai pada tempat dan saat intensitas curah hujan melampaui suatu tingkat di mana air dapat memasuki tanah. persamaan infiltrasi horton adalah sebagai berikut: ( ) ( )0 expc cf f f f kt= + โˆ’ โˆ’ (1) dimana : f : kapasitas infiltrasi / daya serap 0f : kapasitas infiltrasi maksimum (pada awal hujan) cf : kapasitas infiltrasi rendah k : parameter kapasitas infiltrasi t : waktu dari mulainya hujan aliran long-term dan short-term (banjir) model lst adalah model yang terdiri dari tangki-tangki penyimpanan. pada model lst terdapat dua aliran yaitu aliran long-term dan short-term. secara umum yang disebut aliran longterm adalah aliran yang mengalir di suatu daerah pengaliran atau sungai. dalam model lst, yang disebut aliran long-term adalah aliran yang keluar dari tangki penyimpanan dan mengalir menuju ke suatu daerah pengaliran atau sungai. banjir disebut juga dengan aliran shortterm karena aliran banjir terjadi secara langsung ketika hujan turun dan berlangsung dengan cepat. aliran short-term dapat juga mengakibatkan aliran long-term apabila banjir yang terjadi sangat besar sehingga air tersebut akan mengalir ke suatu daerah pengaliran. hukum manning hukum manning dapat digunakan untuk menghitung kecepatan aliran dalam saluran yang didefiniskan dengan : 2 1 3 2 1 = โ‹… โ‹… s v j i k (2) jadi, 2 1 3 2 1 = โ‹… = โ‹… โ‹… โ‹… s q v csa j i csa k 2 3= โ‹… โ‹…p j csa (3) dimana : sk : koefisien kekasaran v : kecepatan aliran rata-rata ( / )m s i : gradien/kemiringan permukaan air j : jari-jari hidrolisis ( )m q : debit csa : luas penampang melintang air 2( )m jari-jari hidrolisis (ketinggian sungai) dapat dihitung dengan membandingkan antara luas penampang melintang air ( )csa dengan keliling basah ( )wp . csa j wp = (4) persamaan kontinuitas persamaan kontinuitas pada fluida didefinisikan dengan ( ) ( ) ( ) 0 u v w t x y z ฯ ฯ ฯ ฯโˆ‚ โˆ‚ โˆ‚ โˆ‚ + + + = โˆ‚ โˆ‚ โˆ‚ โˆ‚ (5) dimana : ( , , , )x y z tฯ ฯ= : rapat massa (kg/m3) u : kecepatan pada arah sumbu x (m/s2) v : kecepatan pada arah sumbu y (m/s2) w : kecepatan pada arah sumbu z (m/s2) t : waktu (s) kajian formulasi model lst model lst terdiri dari 3 tangki penyimpanan. pada tangki paling atas dibagi menjadi 2 lapis sehingga jumlah tangki penyimpanan menjadi 4. bentuk model fisis dari model lst adalah seperti gambar di bawah ini: gambar 1. model lst 1q 2q 3q 4s 3s 2s 1s f 1b 1g 4q 2b 2g 3b 2a 3a 4a 5a ( )3z ( )1z 1a 5q ( )2z kajian model long-and short-term runoff (lst) dan implementasinyaโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 189 dimana : js : simpanan air dalam tangki penyimpanan r : rata-rata curah hujan f : kapasitas infiltrasi (daya serap) je : evapotranspirasi pada permukaan tangki penyimpanan 1q : aliran permukaan (surface runoff) jz : ketinggian batas aliran yang keluar tangki penyimpanan (height of runoff outlet) 2q dan 3q : aliran bawah permukaan (subsurface runoff) yang keluar tangki penyimpanan 4q dan 5q : aliran air tanah (groundwater runoff) yang keluar tangki penyimpanan ia dan jb : parameter-parameter aliran dengan memperhatikan perilaku sistem dan pengetahuan tentang siklus hidrologi maka diperoleh persamaan kontinuitas tiap tangki penyimpanan sebagai berikut : 1 2 1 1 2 3 1 3 4 1 1 4 2 2 3 5 , , ds ds r e f q q f q g dt dt ds ds g e q g g e q dt dt = โˆ’ โˆ’ โˆ’ โˆ’ = โˆ’ โˆ’ = โˆ’ โˆ’ โˆ’ = โˆ’ โˆ’ (6) aliran jq dan perembesan jg dihitung sebagai berikut : ( ) ( ) 1 1 1 1 2 2 1 3 3 2 3 1 2 2 4 4 3 5 5 4, 2 3 3 5 , 3 , , , m q a s z m q a s q a s z g b s q a s q a s g b s = โˆ’ = = = โˆ’ = = = = (7) dengan mengasumsikan bahwa hukum manning dapat diaplikasikan untuk aliran permukaan, maka 3 5=m dapat digunakan dalam persamaan 1 1 1 1( ) mq a s z= โˆ’ . tingkat infiltrasi f dari lapisan atas ke lapisan bawah pada tangki atas adalah: ( )1 2 3 2f b z z s= + โˆ’ (8) ketika terdapat cukup banyak air di lapisan atas, persamaan infiltrasi horton ditunjukkan dalam bentuk parameter-parameter model. dalam kasus 32 zs > , diperoleh hubungan-hubungan dibawah ini: ( ) ( ) ( ) 0 1 2 2 3 3 1 2 3 1 2 exp / = + โˆ’ โˆ’ ๏ฃฎ ๏ฃน= + + ๏ฃฐ ๏ฃป = + + c c c f f f f kt f b b z z a b z k k a b b (9) metode dan teknik analisis implementasi model lst untuk menghitung debit banjir langkah-langkah dalam implementasi model lst dapat dilakukan sebagai berikut : gambar 2. bagan alir implementasi formulasi model lst sedangkan langkah-langkah untuk menghitung debit banjir sq menggunakan model lst dapat dilakukan pada bagan alir sebagai berikut: mulai inisialisasi parameter-parameter menggunakan data artifisial menghitung debit banjir sq menggunakan model lst menghitung error 0q dengan sq selesai input: 1. data curah hujan (r) 2. data tinggi muka air ( 0q ) output: plot 0q , sq , 0q dengan sq , error : permukaan tangki penyimpanan mulai 1 simpanan 2 dan aliran 3q infiltrasi horton input: 1. data curah hujan (r) 2. data tinggi muka air ( 0q ) ummu habibah dan suharmadi 190 volume 1 no. 4 mei 2011 gambar 3. bagan alir perhitungan debit banjir menggunakan model lst pada model lst, debit banjir perhitungan sq diestimasi dari debit banjir aktual (pengamatan) yaitu )( 5430 qqqqqs ++โˆ’= (10) dimana : sq : debit banjir perhitungan menggunakan formulasi model lst 0q : debit banjir pengamatan (aktual) 3q : aliran bawah permukaan yang keluar dari tangki penyimpanan dua 4q : aliran air tanah yang keluar dari tangki penyimpanan tiga 5q : aliran air tanah yang keluar dari tangki penyimpanan empat hasil dan pembahasan berdasarkan bagan alir pada gambar 2., diperoleh hasil dari implementasi model lst untuk menghitung debit banjir menggunakan script m-file yang ditunjukkan pada tabel 1. dari tabel 1 diperoleh error antara data pengamatan dan perhitungan menggunakan formulasi model lst adalah kecil. tabel 1. perbandingan debit banjir pengamatan dan perhitungan beserta error tanggal debit banjir pengamatan )(m debit banjir dengan model lst )(m error perhitungan dan pengamatan 1 316.1700 316.2600 0.09000 2 316.1700 316.1780 0.01020 3 316.4500 316.4195 0.01988 4 316.0900 316.0944 0.00236 5 316.1200 316.1403 0.02190 6 316.1230 316.1260 0.00166 7 316.1100 316.1310 0.02217 8 316.0600 316.0627 0.00155 9 316.5030 316.5241 0.02221 10 316.4550 316.4576 0.00154 11 316.4300 316.4511 0.02222 12 316.4200 316.4226 0.00153 ... ... โ€ฆ โ€ฆ ... ... โ€ฆ โ€ฆ ... ... โ€ฆ โ€ฆ 31 316.7000 316.7211 0.02222 berikut ini adalah grafik yang menunjukkan debit banjir pengamatan pada bulan januari 2004. gambar 4. hidrograf debit banjir pengamatan untuk debit banjir perhitungan menggunakan formulasi model lst ditunjukkan pada grafik dibawah ini. gambar 5. hidrograf debit banjir perhitungan simpanan 1, aliran 1q dan 2q simpanan 3 dan aliran 4q simpanan 4 dan aliran 5q rembesan 1g rembesan 2g selesai output : sq 1 kajian model long-and short-term runoff (lst) dan implementasinyaโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 191 selanjutnya perbandingan debit banjir pengamatan dan perhitungan ditunjukkan pada grafik dibawah ini gambar 6. hidrograf debit banjir pengamatan dan perhitungan kemudian untuk error antara debit pengamatan dan debit banjir perhitungan ditunjukkan pada grafik berikut. gambar 7. grafik error antara pengamatan dan perhitungan dari perhitungan debit banjir menggunakan model lst pada tabel 1 dan gambar 7 di atas terlihat bahwa error antara data aktual dengan data perhitungan adalah kecil sehingga dapat disimpulkan bahwa model lst adalah model yang baik untuk menghitung debit banjir. penutup hasil penelitian menunjukkan bahwa formulasi model lst dapat digunakan untuk menghitung debit banjir dan merupakan model yang baik karena pada saat implementasi, error yang dihasikan antara debit banjir pengamatan dan debit banjir perhitungan adalah kecil yaitu antara 0.00153 sampai dengan 0.09000. daftar pustaka [1] bellomo, n. dan preziosi, l., (1994), modelling mathematical methods and scientific computation, politecnico di torino, torino. [2] de smedt, f., (1988), introduction to river water quality management, interuniversity post-graduate programme in hidrology, vrije universiteit brussel. [3] direktorat jenderal pengairan, (1974), analisa run-off dengan metode storage function, seminar pengairan rainfall & run off relation and design flood (dpma bandung), 27-30 agustus, 6, jilid i. [4] direktorat jenderal pengairan, (1974), analisa run-off dengan metode storage function, seminar pengairan rainfall & run off relation and design flood (dpma bandung), 27-30 agustus, 6, jilid ii. [5] hanselman, d., dan littlefield, b., (2001), โ€œmastering matlab 6 a comprehensive tutorial and referenceโ€, prentice hall, new jersey. [6] linsley, r., kohler, m., dan paulus, j., (1982), โ€ hydrologi for engineersโ€, in: hidrologi untuk insinyur, ed: sianipar, t. dan haryadi, e., penerbit erlangga, jakarta. [7] nagai, a, (2002), hydrologic modeling of rainfall-runoff process and its application to real-time flood forescating. [8] penny, j., lindfield, g., (2000), โ€œnumerical methods using matlabโ€, second edition, prentice hall, new jersey. [9] http://watercycle.gsfc.nasa.gov/images/ watergraphic_low.jpg cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 220-230 p-issn: 2086-0382; e-issn: 2477-3344 submitted: september 19, 2021 reviewed: december 10, 2021 accepted: january 07, 2022 doi: http://dx.doi.org/10.18860/ca.v7i1.13356 analysis of insurance customer factors to renewal using hybrid ahp-ftopsis kwardiniya andawaningtyas, evi ardiyani*, corina karim departement of mathemathics faculty of mathematics and natural science brawijaya university, 65145, malang, indonesia *corresponding author email: eviardiyani98@gmail.com* dina_math@ub.ac.id, corinaub@gmail.com abstract human life is full of uncertainties that have enormous risks. insurance is one way that can help humans reduce this risk. the human need for insurance causes competition among insurance companies in indonesia to be very competitive. competition between insurance companies is influenced by several factors, one of the factors is having customers who do insurance renewals. this study aims to determine the factors that influence customers to renew using the analytical hierarchy process (ahp) method and to rank customers' favorite insurance using the fuzzy technique for order preference by similarity to ideal solution (ftopsis) method. the results of the analysis using this method concluded that the main factors that influence customers in making renewals are features with sub-criteria for health protection needs. meanwhile, the customer's favorite insurance ratings for extending are takafullink salam cendikia with a closeness coefficient of 0.645, takaful al-khairat with a value of 0.563, takaful dana pendidikan with a value of 0.552, and takafullink salam with a value of 0.341. keywords: insurance; renewal; ahp; ftopsis introduction human life is full of elements of uncertainty that have enormous risks, such as accidents and death. humans need a guarantee or a method to reduce this risk which we usually call insurance. the human need for insurance causes the competition of insurance companies in indonesia to be very competitive. the biggest factor for an insurance company to be competitive is a customer who carries out a renewal. each customer has its own criteria which are the determining factors for a customer to renew. the decision support system (dss) is specific information that is intended to assist management in making decisions related to semi-structured issues. dss aims to assist decision makers in establishing an unstructured decision. unstructured decisions have vague problems, and it's difficult to find solutions. decision support systems are basically designed to support every stage of decision making, namely identifying problems, selecting relevant data, determining approaches, and evaluating alternative choices. in 2018, [1] conducted research on how to improve consumer satisfaction http://dx.doi.org/10.18860/ca.v7i1.13356 mailto:eviardiyani98@gmail.com* mailto:dina_math@ub.ac.id mailto:corinaub@gmail.com analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 221 learning (lbb) in malang using the danp-topsis method. identifying important human error factors in emergency departments in taiwan using hfacs, ahp, and ftopsis by [2]. [3] conducted research on the selection of favorite banks using the ahp and topsis methods. [4] discusses the selection of the best health applications and features that affect the ahp and ftopsis methods. comparasion on of anp and ahp methods studied by [5]. [6] conducted reseacrh comparison between topsis and saw. [7]discusses decision making using hybrid ahp-topsis. hybrid fuzzy ahp-topsis researched by [8]. [9] researched decision making using hybrid ahp-topsis. comparison beetwen saw, ahp, and topsis researched by [10]. [11] conducted research on the comparison between saw method and ahp method. integrated anp and topsis method for suplier performace assesment researched by [12]. [13] reasearched evaluation of smart and suistainable cities with anp and topsis method. [14] conducted research hybrid ahptopsis method under spherical fuzzy sets for system selection. hybrid ahp-topsis for selecting supplier in construction supply chain researched by [15]. this study aims to determine the factors that most influence insurance customers to renew and obtain favorite insurance alternatives by combining the ahp and ftopsis methods. the combination of the ahp and ftopsis methods is to obtain the criteria weights using the ahp method, then the ftopsis method uses the criteria weights that have been obtained by the ahp method to obtain the best alternative. methods analytical hierarchy process (ahp) method. ahp is a decision-making process with compilation of functional hierarchies with the main input being human [16]. ahp requires ideas from individuals and groups by obtaining their respective assumptions and obtaining the desired solutions. these ideas are used to determine criteria that can solve a problem. in this research, ahp method is used to determine criterion weight to be used in the ftopsis method. according [16] there are general measures of ahp method consists of seven steps. 1. defining the problem and determining the desired solution then arranging hierarchy of the problems by setting goals which are the overall system goals at the top level. 2. determine the priority of the elements. a. making pair comparasons by comparing elements in pairs according to given criteria. b. the pairwaise comparison matrix is filled using numbers to represent the relative importance of one element to another. the pairwise comparison matrix entry is the result of a questionnaire converted using table 1. 3. synthesis considerations for pairwise comparisons are synthesized to obtain overall priority. a. sum each column on the matrix. b. divide each value from the column by the total column obtain a normalized matrix. c. sum each row and divide by the number of elements to get the average value. 4. measure consistency. a. multiplies each value in the first column by the relative priority of the first element, the value in the second column by the relative priority if the second element, and so on. b. adding each row, the result divided by the corresponding relative priority element. analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 222 c. adding the results above for the elements that exist, called ฮปmaks 5. calculating the consistency index (ci) (1) = number of elements 6. calculating the consistency ratio (cr) (2) where is index random consistency contained in table 2 7. check hierarchy consistency, the consistency ratio must be less or equal to 0.1. the calculation result can be declared correct. table 1. ahp rating scale difference -8 -7 -6 -5 -4 -3 -2 -1 0 ahp scale 9 8 7 6 5 4 3 2 1 source : [16] table 2. index random consistency matrix size ir value 1,2 0.00 3 0.58 4 0.90 5 1.12 6 1.24 7 1.32 8 1.41 9 1.45 10 1.49 11 1.51 source : [16] fuzzy technique for order preferences by similarity to ideal solution (ftopsis) method. the ftopsis method is a development of the topsis (technique for order preference by similarity to ideal solution). topsis method first introduced by yoon and hwang in 1981. the topsis method has a weakness, when the decision maker has difficulty determining a value. therefore, it is necessary to provide an assessment in the form of intervals such as applying fuzzy logic. fuzzy numbers, linguistic values and membership function shown in the figure 1 and table 3. in this research, ftopsis method is used to rank the alternatives. analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 223 figure 1. fuzzy numbers and linguistic table 3. the membership function of linguistic value linguistic value fuzzy number very low (vl) ( 0 , 0 , 0.2 ) low (l) ( 0, 0.2, 0.4 ) medium (m) (0.2, 0.4, 0.6) high (h) (0.4, 0.6, 0.8) very high (vh) ( 0.6, 0.8, 1 ) excellent (e) ( 0.8, 1, 1 ) source : [3] general measurer of ftopsis method consists of 9 steps. 1. assesing criteria and alternatives assumed that there are alternatives that will be evaluated against criteria . the weight of each criterion is denoted by . the ranking of the fuzzy criteria value of each decision for each alternative against the criterion denoted by with the membership function . 2. calculate the comparison value of each criterion and alternatives the fuzzy values for each decision maker are presented as fuzzy triangle the value of the fuzzy ratio is given by , with (3) fuzzy number linguistic value analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 224 fuzzy weight ratio with : (4) 3. make a decision matrix creating a decision matrix (dk) that is appropriate for the alternatives to be evaluated based on the following defined criteria : with states the performance of the calculation for i alternatives against the j criterion. 4. normalize the fuzzy decision matrix normalize the data using a linear scale transformation, the normalized matrix is defined by (5) with (6) (7) (6) benefit criteria, (7) cost criteria 5. calculate the normalized matrix weights the normalized matrix weight is calculated by multiplying the weight of the evaluated criterion by the normalized decision matrix (8) with 6. calculate the value of fuzzy positive ideal solution (fpis) and fuzzy negative ideal solution (fnis) (9) (10) with and is the set of benefit criteria. and is the set of cost criteria. 7. calculate the distance for each alternatives from fpis and fnis if there is and is two fuzzy triangular numbers, defined as and then the distance between and can be calculated by analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 225 (11) distance of each weighted alternative (i = 1, 2, 3, โ€ฆ , m) from fpis and fnis can be calculated by (12) (13) 8. calculate the closeness coefficient value the closeness coefficient ( ) represents the distance between fpis(a+) and fnis (a) simultaneously for each alternative, the closeness coefficient ( ) can be calculated by (14) with 9. sort alternative each alternative is sorted according to the decreasing closeness coefficient ( ) value. the best alternatives is the closeness coefficient ( ) value is close to fpis and far from fnis. results and discussion analytical hierarchy process (ahp) method. the first step in the ahp method is arrangement the hierarchichal structure. the hierarchical structure in this study consists of 4 levels, the first level is the goal, namely to determine the favorite type of insurance. the second level is the elaboration of the main aspects that influence the objectives, namely the criteria. the third level is the aspects that influence the criteria, namely sub-criteria. the fourth level or the lowest level is the level that consists of alternatives. the structure of the hierarchical system in this study can be seen in figure 2. then, we determine the priority of the elements by create formation of pairwise comparison matrix between sub-criteria and create weight matrix between sub-criteria based on the results of the questionnaire. next step is calculate value. the five criteria have a , it can be concluded that the pairwise comparison matrix between these subcriteria is consistent. the most influential criterion in choosing the customerโ€™s favorite insurance for renewal in company a is the insurance feature with the subcriteria for the need for health protection having a weight value of 0.800. table 5 shows the evaluation result and final ranking of criterion. to determine the level of data consistency, we calculate the value. first, calculate the value of then calculate the using equation (1). is obtained by adding the results for the elements that exist and each number of subcriteria is the value of n used. table 5 shows the results. using the value that has been obtained, calculate the value using equation (2). if the the research can be continued. table 4 analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 226 shows the value. it is shown that the five criteria have a value of less than 0,1 which means that the data for the five criteria are consistent. so, research can be continued. table 4. value criteria value company image 0,068 agent 0,034 insurance features 0,064 claim 0,020 income 0,055 figure 2. hierarchical system table 5. ahp method result subcriteria (priority vector) honesty 0.639 achievment 0.087 tdp tls tlsc tak customer income (rp. 2,5 4,9 million /month) customer income (rp. 5,0 7,5 million /month) customer income (>rp. 7,5 million /month) goal favorite type of insurance and factors that influence customers to renew criterion sub-criterion alternative agent product mastery communication ease of contact honesty achievment track record insurance features health education investation claim ease of taking claims great claim company image time period for claiming income customer income (rp. 7,5 million/month) 0.244 afterward, we analyze the best alternative in ftopsis methods. the weights of criteria to be used in evalution process are calculated by using ahp method combined with the scores from the expert questionnaire. table 6 shows the data from the expert questionnaire. table 6. data from the expert questionnaire tdp tls tlsc tak honesty h vh m h achievment vh vh h m track record m h vh l product mastery l vh m m communication h l vh h ease of contact m l l m health h h vh e education e vh h h investation h vh e h ease of taking claims vh h h vh great claim m l vh h time period for claiming vh h vh h customer income (rp. 7,5 million/month) h h m h then the next step is calculating the weight of the alternative matrix. table 7 shown the multiplication results of the expert questionnaire values that have been converted based on table 3 with the priority vector value for example, criteria honesty on alternative tdp is h then convert the value to fuzzy number based on table 3 which is (0.4, 0.6, 0.8). then do fuzzy multiplication with the value of the priority vector which is 0.639. after we get the multipclication of the priority vectors and the expert quiestionner, we calculate the fpis and fnis values, then we use these values to calculate the fpis and fnis distances using equation (12) and (13). table 8 shows the value of the fpis and fnis distance. after calculating the distance between fpis and fnis, we calculate value using equation (14). table 9 shows the results of calculating the value. analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 228 depends of the value in table 9 the alternatives ranking in ftopsis method, the first order is the tlsc alternative, the second is the tak alternative, the third is the tdp alternative, and the last order is the tls alternative. table 7. multiplication of the priority vectors by the results of the expert questionnaire tdp tls tlsc tak honesty (0.256,0.384,0.511) (0.384,0.511,0.639) (0.128,0.256,0.384) (0.256,0.384,0.511) achievment (0.052,0.070,0.087) (0.052,0.070,0.087) (0.035,0.052,0.070) (0.017,0.035,0.052) track record (0.055,0.109,0.164) (0.109,0.164,0.219) (0.164,0.219,0.274) (0,0.055,0.109) product mastery (0,0.069,0.137) (0.206,0.274,0.343) (0.069,0.137,0.206) (0.069,0.137,0.206) communication (0.230,0.345,0.460) (0,0.115,0.230) (0.345,0.460,0.575) (0.230,0.345,0.460) ease of contact (0.016,0.033,0.049) (0,0.016,0.033) (0,0.016,0.033) (0.016,0.033,0.049) health (0.320,0.480,0.640) (0.320,0.480,0.640) (0.480,0.640,0.800) (0.640,0.800,0.800) education (0.099,0.124,0.124) (0.075,0.099,0.124) (0.050,0.075,0.099) (0.050,0.075,0.099) investation (0.030,0.045,0.060) (0.045,0.060,0.075) (0.060,0.075,0.075) (0.030,0.045,0.060) ease of taking claims (0.074,0.098,0.123) (0.049,0.074,0.098) (0.049,0.074,0.098) (0.074,0.098,0.123) great claim (0.446,0.557,0.557) (0,0.111,0.223) (0.334,0.446,0.557) (0.223,0.334,0.446) time perios for claiming (0.192,0.256,0.320) (0.128,0.192,0.256) (0.192,0.256,0.320) (0.128,0.192,0.256) customer income (rp. 7,5 million/month) (0.098,0.146,0.195) (0.098,0.146,0.195) (0.049,0.098,0.146) (0.098,0.146,0.195) table 8. fpis and fnis distances. tdp tls tlsc tak 0.982 1.445 0.787 0.958 1.207 0.748 1.429 1.234 table 9. value alternative tdp 0.552 tls 0.341 tlsc 0.645 tak 0.563 conclusion the results of data analysis that has been carried out from the combination of the two methods indicate that the most influencing factor for insurance customers to renew at pt asuransi takaful keluarga is the insurance feature, namely the customer's need for health protection with weight value of 0.800. all health insurance companies must have health protection features. so, we see the next order of sub-criteria, honesty with a weighted value of 0.639, agent communication with a weighted value of 0.575, and good claims with a weighted value of 0.557. the sub-criteria that have the highest value analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 229 weight are the criteria for company image, agent, and claims. the five criteria have a priority value that is quite close, indicating that the five criteria are mutually sustainable.the order of alternative choices for the customer's favorite insurance who renews at pt. family takaful insurance is takafulink salam scholar, takaful al-khairat, takaful fund education, and takafulink salam. references [1] k. andawaningtyas, e. w. handamari, and c. karim, โ€œimproving the guidance learning (lbb) consumer satisfaction in malang using danp topsis method,โ€ cauchy, vol. 5, no. 3, p. 117, 2018, doi: 10.18860/ca.v5i3.5541. [2] m. chih hsieh et al., โ€œapplication of hfacs, fuzzy topsis, and ahp for identifying important human error factors in emergency departments in taiwan,โ€ int. j. ind. ergon., vol. 67, pp. 171โ€“179, 2018, doi: 10.1016/j.ergon.2018.05.004. [3] h. i, โ€œanalisis keputusan pemilihan bank favorit menggunakan kombinasi metode ahp dan metode topsis,โ€ 2019. [4] m. rajak and k. shaw, โ€œevaluation and selection of mobile health (mhealth) applications using ahp and fuzzy topsis,โ€ technol. soc., vol. 59, 2019, doi: 10.1016/j.techsoc.2019.101186. [5] a. j. olanta, m. e. sianto, and i. gunawan, โ€œperbandingan metode anp dan ahp dalam pemilihan jasa kurir logistik oleh penjual gadget online,โ€ widya tek., vol. 18, no. 2, pp. 96โ€“101, 2019, doi: 10.33508/wt.v18i2.2275. [6] sunarti, โ€œcomparison beetwen topsis and saw method in the selection of tourist destinations in west java,โ€ techno com, vol. 18, 2019. [7] r. agusli, m. i. dzulhaq, and f. c. irawan, โ€œsistem pendukung keputusan penerimaan karyawan menggunakan metode ahp-topsis,โ€ acad. j. comput. sci. res., vol. 2, no. 2, 2020, doi: 10.38101/ajcsr.v2i2.286. [8] v. julianto, h. s. utomo, and h. herpendi, โ€œanalisis dan penerapan metode fuzzy ahp-topsis dalam penentuan mitra industri sebagai tempat praktek kerja lapangan,โ€ j. ilm. inform., vol. 5, no. 2, pp. 108โ€“121, 2020, doi: 10.35316/jimi.v5i2.942. [9] g. surya mahendra and i. p. y. indrawan, โ€œmetode ahp-topsis pada sistem pendukung keputusan penentuan penempatan automated teller machine,โ€ j. sains dan teknol., vol. 9, no. 2, pp. 130โ€“142, 2020. [10] wawan firgiawan, sugiarto cokrowibowo, and nuralamsah zulkarnaim, โ€œkomparasi algoritma saw, ahp, dan topsis dalam penentuan uang kuliah tunggal (ukt),โ€ j. comput. inf. syst. ( j-cis ), vol. 1, no. 2, pp. 1โ€“11, 2019, doi: 10.31605/jcis.v1i2.426. [11] qiyamullaily arista, nandasari silvia, and amrozi yusuf, โ€œperbandingan penggunaan metode saw dan ahp untuksistem pendukung keputusan penerimaan karyawan baru,โ€ tek. eng. sains j., vol. 4, 2020. [12] c. natalia, i. p. surbakti, and c. w. oktavia, โ€œintegrated anp and topsis method for supplier performance assessment,โ€ j. tek. ind., vol. 21, no. 1, pp. 34โ€“45, 2020, doi: 10.22219/jtiumm.vol21.no1.34-45. [13] g. ozkaya and c. erdin, โ€œevaluation of smart and sustainable cities through a hybrid mcdm approach based on anp and topsis technique,โ€ heliyon, vol. 6, no. 10, 2020, doi: 10.1016/j.heliyon.2020.e05052. [14] m. mathew, r. k. chakrabortty, and m. j. ryan, โ€œa novel approach integrating ahp and topsis under spherical fuzzy sets for advanced manufacturing system selection,โ€ eng. appl. artif. intell., vol. 96, 2020, doi: analysis of insurance customer factors to renewal using hybrid ahp-ftopsis 230 10.1016/j.engappai.2020.103988. [15] m. marzouk and m. sabbah, โ€œahp-topsis social sustainability approach for selecting supplier in construction supply chain,โ€ clean. environ. syst., vol. 2, p. 100034, 2021, doi: 10.1016/j.cesys.2021.100034. [16] kusrini, konsep dan aplikasi sistem pendukung keputusan. 2007. the first zagreb index, the wiener index, and the gutman index of the power of dihedral group cauchy โ€“jurnal matematika murni dan aplikasi volume 7(4) (2023), pages 513-520 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 07, 2022 reviewed: february 02, 2023 accepted: february 25, 2023 doi: http://dx.doi.org/10.18860/ca.v7i4.16991 the first zagreb index, the wiener index, and the gutman index of the power of dihedral group evi yuniartika asmarani1, sahin two lestari1, dara purnamasari1, abdul gazir syarifudin2, salwa1, i gede adhitya wisnu wardhana1* 1 department of mathematics, faculty of mathematics and natural sciences, university of mataram, indonesia 2department of magister mathematics, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia. email: adhitya.wardhana@unram.ac.id abstract research on graphs combined with groups is an interesting topic in the field of combinatoric algebra where graphs are used to represent a group. one type of graph representation of a group is a power graph. a power graph of the group ๐บ is defined as a graph whose vertex set is all elements of ๐บ and two distinct vertices ๐‘Ž and ๐‘ are adjacent if and only one vertice is the power of other vertice. in addition to mathematics, graph theory can be applied to various fields of science, one of which is chemistry, which is related to topological indices. in this study, the topological indexes will be discussed, namely the zagreb index, the wiener index, and the gutman index of the power graph of the dihedral group where ๐‘› is a prime power. the method used in this research is a literature review. for the main result, we gives the first zagreb index, wiener index, and gutman index of the power graph of the dihedral group. copyright ยฉ 2023 by authors, published by cauchy group. this is an open access article under the cc bysa license (https://creativecommons.org/licenses/by-sa/4.0/) keywords: first zagreb index; wiener index; gutman index; power graph; dihedral group introduction in mathematics, graph theory has many uses, especially in algebraic structures where graphs are used to represent a group. many types of graphs are developed from a group, one of which is a power graph. the first power graph introduced by kalarev in 2013 [1] is to define a directed power graph of a semigroup. and motivated by this, askin and buyukkose discuss the undirected power graph of semigroups and groups [2]. recently, there have been many studies discussing the power graph of a group, one of which is the study by asmarani et al. which deals with the power graph of a dihedral group when ๐‘› = ๐‘๐‘š where ๐‘ is a prime number and an ๐‘š is a natural number [3]โ€“[5]. besides mathematics, graph theory has benefits in other fields, one of which is chemistry, which is related to topological indices. topological indices represent chemical structures and are useful for predicting the chemical and physical properties of molecular structures. not only researching graphs related to chemical structures but over time research on topological indices has developed to examine graphs in general. several types http://dx.doi.org/10.18860/ca.v7i4.16991 mailto:adhitya.wardhana@unram.ac.id https://creativecommons.org/licenses/by-sa/4.0/ the first zagreb index, the wiener index, and the gutman index of the power of dihedral group evi yuniartika asmarani 514 of topological indexes are interesting to discuss. some of them are the first zagreb index, the wiener index, and the gutman index [6]. research on the topological index of a graph, especially graphs related to groups is interesting to do. several previous research results discuss the topological index of graphs related to groups, namely the topological index of the non-commuting graph of a dihedral group, the szeged and wiener indices for the coprime graph of the dihedral group [7], and connectivity indices of the coprime graph of generalized quaternion group [8]. for other graph representations of a group, see [8]โ€“[14]. recently, not many studies have investigated the topological indices of graphs associated with groups, especially the power graphs of dihedral groups. therefore, in this study, topological indices will be discussed, namely the first zagreb index, wiener index, and the gutman index of the power graph of a dihedral group when ๐‘› = ๐‘๐‘š where ๐‘ is a prime number and an ๐‘š is a natural number. methods this study uses a deductive proof method to find new knowledge from an algebraic structure from a previous study. we start by studying the algebraic structure for several cases looking for a pattern. and with the foundation of the pattern, we stated the conjecture for a general case, if the conjecture is proven by deductive proof, the conjecture is stated as a theorem. results and discussion preliminaries in this section, we present some definitions and theorems that are needed in this research. definition 1 [15] group ๐บ is said to be a dihedral group of order 2๐‘›, ๐‘› โ‰ฅ 3, and ๐‘› โˆˆ โ„•, is a group composed of two elements ๐‘Ž,๐‘ โˆˆ ๐บ with the property ๐บ = โŒฉ๐‘Ž,๐‘|๐‘Ž๐‘› = ๐‘’,๐‘2 = ๐‘’,๐‘๐‘Ž๐‘โˆ’1 = ๐‘Žโˆ’1โŒช the dihedral group of order 2n is denoted by ๐ท2๐‘›. definition 2 [5] power graph of group g denoted by ๐’ข(๐บ) is an undirected graph whose vertex set is g and two vertices ๐‘Ž,๐‘ โˆˆ ๐บ are adjacent if and only if ๐‘Ž โ‰  ๐‘ and ๐‘Ž๐‘š = ๐‘ or ๐‘๐‘š = ๐‘Ž for some positive integer ๐‘š. we will give some topological indices of the power graph such as the zagreb index, wiener index, and gutman index. the definitions are as follows definition 3 [16] let ๐’ข be a simple connected graph. the first zagreb index of ๐’ข, denoted by ๐‘€1(๐’ข), is defined as ๐‘€1(๐’ข) = โˆ‘ (deg(๐‘ฃ)) 2 ๐‘ฃโˆˆ๐‘‰(๐’ข) where ๐‘‘๐‘’๐‘”(๐‘ฃ) is the number of edges that incident to ๐‘ฃ. definition 4 [2] let ๐’ข be a simple connected graph. the wiener index of ๐’ข, denoted by ๐‘Š(๐’ข), is defined as the first zagreb index, the wiener index, and the gutman index of the power of dihedral group evi yuniartika asmarani 515 ๐‘Š(๐’ข) = โˆ‘ ๐‘‘(๐‘ข, ๐‘ฃ) ๐‘ข,๐‘ฃโˆˆ๐‘‰(๐’ข) where ๐‘‘(๐‘ข,๐‘ฃ) is the shortest distance between vertex ๐‘ข and ๐‘ฃ. definition 5 [17] let ๐’ข be a simple connected graph. the gutman index of ๐’ข, denoted by ๐บ๐‘ข๐‘ก(๐’ข), is defined as ๐บ๐‘ข๐‘ก(๐’ข) = โˆ‘ deg(๐‘ข)deg(๐‘ฃ)๐‘‘(๐‘ข,๐‘ฃ) ๐‘ข,๐‘ฃโˆˆ๐‘‰(๐’ข) where ๐‘‘๐‘’๐‘”(๐‘ข) and degโก(๐‘ฃ) are the number of edges that incident to ๐‘ข and ๐‘ฃ and ๐‘‘(๐‘ข,๐‘ฃ) are the shortest distance between vertex ๐‘ข and ๐‘ฃ. theorem 1 [3] if ๐‘› = ๐‘๐‘š with ๐‘ prime numbers and an ๐‘š natural numbers, then the power graph of a dihedral group is a graph that has two non-disjoint subgraphs, namely a complete subgraph and a star subgraph. example 1 power graph of the dihedral group ๐ท2.3 as shown in the following figure figure 1. power graph of the dihedral group ๐ท2.3 theorem 2 [3] the vertex degree of the power graph of a dihedral group when ๐‘› = ๐‘๐‘š where ๐‘ prime numbers and an ๐‘š natural numbers are a. deg(๐‘’) = 2๐‘› โˆ’ 1 b. deg(๐‘Ž๐‘–) = ๐‘› โˆ’ 1 for every ๐‘– โˆˆ โ„ค,1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 c. deg(๐‘Ž๐‘—๐‘) = 1 for every ๐‘— โˆˆ โ„ค, 0 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 1 main result if ๐‘› = ๐‘๐‘š where ๐‘ is prime and an ๐‘š natural number then the first zagreb index, wiener index, and gutman index of the power graph of a dihedral group, respectively is ๐‘›2(๐‘› + 1), 7๐‘›2 2 โˆ’ 5๐‘› 2 , 1 2 โก(๐‘›4 + ๐‘›) + 3 2 (๐‘›3 โˆ’ ๐‘›2) as shown in the following theorem. theorem 3 if ๐‘› = ๐‘๐‘š with ๐‘ prime numbers and an ๐‘š natural numbers, then the zagreb index of the power graph of the dihedral group ๐ท2๐‘› is ๐‘› 2(๐‘› โˆ’ 1). proof. ๐‘€1(๐’ข(๐ท2๐‘›))โกโกโกโกโกโกโกโก= โˆ‘ deg(๐‘ข) 2 ๐‘ขโˆˆ๐‘‰(๐’ข(๐ท2๐‘›)) the first zagreb index, the wiener index, and the gutman index of the power of dihedral group evi yuniartika asmarani 516 = deg(๐‘’)2 .1 + โˆ‘ deg(๐‘Ž๐‘–) 2 ๐‘›โˆ’1 ๐‘–=1 + โˆ‘ deg(๐‘Ž๐‘–๐‘) 2 ๐‘›โˆ’1 ๐‘–=0 = (2๐‘› โˆ’ 1)2. 1 + (๐‘› โˆ’ 1)2(๐‘› โˆ’ 1) + 12.๐‘› = 4๐‘›2 โˆ’ 4๐‘› + 1 + (๐‘› โˆ’ 1)3 + ๐‘› = 4๐‘›2 โˆ’ 4๐‘› + 1 + ๐‘›3 โˆ’ 3๐‘›2 + 3๐‘› โˆ’ 1 + ๐‘› = ๐‘›3 + ๐‘›2 = ๐‘›2(๐‘› + 1) theorem 4 if ๐‘› = ๐‘๐‘š with ๐‘ prime numbers and an ๐‘š natural numbers then the wiener index of the power graph of the dihedral group ๐ท2๐‘› is 7๐‘›2 2 โˆ’ 5๐‘› 2 . proof. let ๐ท2๐‘› = {๐‘’, ๐‘Ž,๐‘Ž 2,โ€ฆ,๐‘Ž๐‘›โˆ’1,๐‘,๐‘Ž๐‘,โ€ฆ,๐‘Ž๐‘›โˆ’1๐‘}, a dihedral group with ๐‘› = ๐‘๐‘š where ๐‘ is a number prime and ๐‘š natural number then the dihedral group can be partitioned into 3 partitions namely ๐‘‰1 = {๐‘’}, ๐‘‰2 = {๐‘Ž,๐‘Ž 2,โ€ฆ,๐‘Ž๐‘›โˆ’1โก} and ๐‘‰3 = {๐‘,๐‘Ž๐‘,๐‘Ž 2โก๐‘, โ€ฆ, ๐‘Ž๐‘›โˆ’1๐‘}. to prove the wiener index of the power graph of a dihedral group can be divided into 4 cases. case 1. for ๐‘’ โˆˆ ๐‘‰1 and ๐‘ฅ โˆˆ ๐‘‰(๐’ข(๐ท2๐‘›) where ๐‘’ โ‰  ๐‘ฃ, obtained โˆ‘ ๐‘‘(๐‘’,๐‘ฅ) ๐‘ฅโˆˆ๐ท2๐‘› โˆ— = (2๐‘› โˆ’ 1).1 = 2๐‘› โˆ’ 1 case 2 for ๐‘Ž๐‘–,๐‘Ž๐‘— โˆˆ ๐‘‰2 where 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, 1 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 1, and ๐‘– โ‰  ๐‘— obtained โˆ‘ ๐‘‘(๐‘Ž๐‘–,๐‘Ž๐‘—)โก= ( ๐‘› โˆ’ 1 2 ).1 1โ‰ค๐‘–โ‰ค๐‘›โˆ’1 โก1โ‰ค๐‘—โ‰ค๐‘›โˆ’1 ๐‘–โ‰ ๐‘— = (๐‘› โˆ’ 1)! 2!(๐‘› โˆ’ 3)! = (๐‘› โˆ’ 1)(๐‘› โˆ’ 2) 2 = ๐‘›2 2 โˆ’ 3๐‘› 2 + 1 case 3 for ๐‘Ž๐‘๐‘,๐‘Ž๐‘‘๐‘ โˆˆ ๐‘‰3 where 0 โ‰ค ๐‘ โ‰ค ๐‘› โˆ’ 1, 0 โ‰ค ๐‘‘ โ‰ค ๐‘› โˆ’ 1, and ๐‘ โ‰  ๐‘‘ obtained โˆ‘ ๐‘‘(๐‘Ž๐‘๐‘, ๐‘Ž๐‘‘๐‘) = ( ๐‘› 2 ).2 0โ‰ค๐‘โ‰ค๐‘›โˆ’1 0โ‰ค๐‘‘โ‰ค๐‘›โˆ’1 ๐‘โ‰ ๐‘‘ = ๐‘›! 2! (๐‘› โˆ’ 2)! .2 = ๐‘›(๐‘› โˆ’ 1) = ๐‘›2 โˆ’ ๐‘› case 4 for ๐‘Ž๐‘’ โˆˆ ๐‘‰2 and ๐‘Ž ๐‘“๐‘ โˆˆ ๐‘‰3 where 1 โ‰ค ๐‘’ โ‰ค ๐‘› โˆ’ 1, 0 โ‰ค ๐‘“ โ‰ค ๐‘› โˆ’ 1 obtained the first zagreb index, the wiener index, and the gutman index of the power of dihedral group evi yuniartika asmarani 517 โˆ‘ ๐‘‘(๐‘Ž๐‘’,๐‘Ž๐‘“๐‘)โกโกโกโกโกโก= (๐‘› โˆ’ 1)๐‘›.2 1โ‰ค๐‘’โ‰ค๐‘›โˆ’1 0โ‰ค๐‘“โ‰ค๐‘›โˆ’1 = 2๐‘›2 โˆ’ 2๐‘› based on definition 4 and the four cases, the wiener index of the power graph of the dihedral group ๐ท2๐‘› when ๐‘› = ๐‘ ๐‘š for a prime number ๐‘ and ๐‘š natural numbers is: ๐‘Š((๐’ข(๐ท2๐‘›) = โˆ‘ ๐‘‘(๐‘ข, ๐‘ฃ) ๐‘ข,๐‘ฃโˆˆ๐‘‰(๐’ข(๐ท2๐‘›) =โก โˆ‘ ๐‘‘(๐‘’,๐‘ฅ) ๐‘ฅโˆˆ๐ท2๐‘› โˆ— + โˆ‘ ๐‘‘(๐‘Ž๐‘–,๐‘Ž๐‘—) 1โ‰ค๐‘–โ‰ค๐‘›โˆ’1 โก1โ‰ค๐‘—โ‰ค๐‘›โˆ’1 ๐‘–โ‰ ๐‘— +โก โˆ‘ ๐‘‘(๐‘Ž๐‘๐‘,๐‘Ž๐‘‘๐‘) 0โ‰ค๐‘โ‰ค๐‘›โˆ’1 0โ‰ค๐‘‘โ‰ค๐‘›โˆ’1 ๐‘โ‰ ๐‘‘ โก + โˆ‘ ๐‘‘(๐‘Ž๐‘’,๐‘Ž๐‘“๐‘) 1โ‰ค๐‘’โ‰ค๐‘›โˆ’1 0โ‰ค๐‘“โ‰ค๐‘›โˆ’1 = (2๐‘› โˆ’ 1) + ( ๐‘›2 2 โˆ’ 3๐‘› 2 + 1) + (๐‘›2 โˆ’ ๐‘›) + (2๐‘›2 โˆ’ 2๐‘›) = 7๐‘›2 2 โˆ’ 5๐‘› 2 teorema 5 if ๐‘› = ๐‘๐‘š with ๐‘ prime numbers and an ๐‘š natural numbers then the gutman index of the power graph of the dihedral group ๐ท2๐‘› is 1 2 (๐‘›4 + ๐‘›) + 3 2 (๐‘›3 โˆ’ ๐‘›2). proof. let ๐ท2๐‘› = {๐‘’, ๐‘Ž,๐‘Ž 2,โ€ฆ,๐‘Ž๐‘›โˆ’1,๐‘,๐‘Ž๐‘,โ€ฆ,๐‘Ž๐‘›โˆ’1๐‘}, a dihedral group with ๐‘› = ๐‘๐‘š where ๐‘ is a number prime and an ๐‘š natural number then the dihedral group can be partitioned into 3 partitions namely ๐‘‰1 = {๐‘’}, ๐‘‰2 = {๐‘Ž,๐‘Ž 2,โ€ฆ,๐‘Ž๐‘›โˆ’1โก} and ๐‘‰3 = {๐‘,๐‘Ž๐‘,๐‘Ž 2โก๐‘, โ€ฆ, ๐‘Ž๐‘›โˆ’1๐‘}. to prove the gutman index of the power graph of a dihedral group can be divided into 5 cases. case 1 for ๐‘’ โˆˆ ๐‘‰1 and ๐‘Ž ๐‘– โˆˆ ๐‘‰2 where 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, obtained โˆ‘ (deg(๐‘’) .deg(๐‘Ž๐‘–)).๐‘‘(๐‘’,๐‘Ž๐‘–) = (((2๐‘› โˆ’ 1)(๐‘› โˆ’ 1))1)(๐‘› โˆ’ 1) 1โ‰ค๐‘–โ‰ค๐‘›โˆ’1 = 2๐‘›3 โˆ’ 5๐‘›2 + 4๐‘› โˆ’ 1 case 2 for ๐‘’ โˆˆ ๐‘‰1 and ๐‘Ž ๐‘—๐‘ โˆˆ ๐‘‰3 where 0 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 1, obtained โˆ‘ (deg(๐‘’).deg(๐‘Ž๐‘—๐‘)).๐‘‘(๐‘’,๐‘Ž๐‘—๐‘) = (((2๐‘› โˆ’ 1)1)1)๐‘› 0โ‰ค๐‘—โ‰ค๐‘›โˆ’1 = 2๐‘›2 โˆ’ ๐‘› case 3 for ๐‘Ž๐‘˜, ๐‘Ž๐‘™ โกโˆˆ ๐‘‰2 where 1 โ‰ค ๐‘˜ โ‰ค ๐‘› โˆ’ 1, 1 โ‰ค ๐‘™ โ‰ค ๐‘› โˆ’ 1, and ๐‘˜ โ‰  ๐‘™, obtained โˆ‘ (deg(๐‘Ž๐‘˜) .deg(๐‘Ž๐‘™)).๐‘‘(๐‘Ž๐‘˜,๐‘Ž๐‘™) = (((๐‘› โˆ’ 1)(๐‘› โˆ’ 1))1) 1โ‰ค๐‘˜โ‰ค๐‘›โˆ’1 1โ‰ค๐‘™โ‰ค๐‘›โˆ’1 ๐‘˜โ‰ ๐‘™ ( ๐‘› โˆ’ 1 2 ) = (๐‘› โˆ’ 1)(๐‘› โˆ’ 1) (๐‘› โˆ’ 1)! 2!(๐‘› โˆ’ 3)! = (๐‘› โˆ’ 1)3(๐‘› โˆ’ 2) 2 = ๐‘›4 2 โˆ’ 5๐‘›3 2 + 9๐‘›2 2 โˆ’ 7๐‘› 2 + 1 case 4 the first zagreb index, the wiener index, and the gutman index of the power of dihedral group evi yuniartika asmarani 518 for ๐‘Ž๐‘๐‘,๐‘Ž๐‘‘๐‘โก โˆˆ ๐‘‰3 where 0 โ‰ค ๐‘ โ‰ค ๐‘› โˆ’ 1,โก0 โ‰ค ๐‘‘ โ‰ค ๐‘› โˆ’ 1, and ๐‘ โ‰  ๐‘‘, obtained โˆ‘ (deg(๐‘Ž๐‘๐‘).deg(๐‘Ž๐‘‘๐‘)).๐‘‘(๐‘Ž๐‘๐‘,๐‘Ž๐‘‘๐‘) = (1.1.2) โก0โ‰ค๐‘โ‰ค๐‘›โˆ’1 0โ‰ค๐‘‘โ‰ค๐‘›โˆ’1 ๐‘โ‰ ๐‘‘ ( ๐‘› 2 ) = 2( ๐‘› 2 ) = 2 ๐‘›! 2! (๐‘› โˆ’ 2)! = ๐‘›(๐‘› โˆ’ 1) = ๐‘›2 โˆ’ ๐‘› case 5 for ๐‘Ž๐‘’ โˆˆ ๐‘‰2 and ๐‘Ž ๐‘“๐‘ โˆˆ ๐‘‰3 where 1 โ‰ค ๐‘’ โ‰ค ๐‘› โˆ’ 1,โก0 โ‰ค ๐‘“ โ‰ค ๐‘› โˆ’ 1, obtained โˆ‘ (deg(๐‘Ž๐‘’). deg(๐‘Ž๐‘“๐‘)).๐‘‘(๐‘Ž๐‘’,๐‘Ž๐‘“๐‘)โก= (((๐‘› โˆ’ 1)1)2) 1โ‰ค๐‘’โ‰ค๐‘›โˆ’1 0โ‰ค๐‘“โ‰ค๐‘›โˆ’1 (๐‘› โˆ’ 1)๐‘› = 2๐‘›(๐‘› โˆ’ 1)(๐‘› โˆ’ 1) = 2๐‘›(๐‘›2 โˆ’ 2๐‘› + 1) = 2๐‘›3 โˆ’ 4๐‘›2 + 2๐‘› based on definition 5 and the five cases, the gutman index of the power graph of the dihedral group ๐ท2๐‘› when ๐‘› = ๐‘ ๐‘š for a prime number p and m natural numbers is: ๐บ๐‘ข๐‘ก(๐’ข(๐ท2๐‘›)) = โˆ‘ (deg(๐‘ข).deg(๐‘ฃ)).๐‘‘(๐‘ข,๐‘ฃ) ๐‘ข,๐‘ฃโˆˆ๐‘‰(๐’ข(๐ท2๐‘›) = โˆ‘ (deg(๐‘’). deg(๐‘Ž๐‘–)).๐‘‘(๐‘’,๐‘Ž๐‘–) 1โ‰ค๐‘–โ‰ค๐‘›โˆ’1 + โˆ‘ (deg(๐‘’).deg(๐‘Ž๐‘—๐‘)).๐‘‘(๐‘’,๐‘Ž๐‘—๐‘)โก 0โ‰ค๐‘—โ‰ค๐‘›โˆ’1 + โˆ‘ (deg(๐‘Ž๐‘˜) .deg(๐‘Ž๐‘™)).๐‘‘(๐‘Ž๐‘˜,๐‘Ž๐‘™) 1โ‰ค๐‘˜โ‰ค๐‘›โˆ’1 1โ‰ค๐‘™โ‰ค๐‘›โˆ’1 ๐‘˜โ‰ ๐‘™ + โˆ‘ (deg(๐‘Ž๐‘๐‘). deg(๐‘Ž๐‘‘๐‘)).๐‘‘(๐‘Ž๐‘๐‘,๐‘Ž๐‘‘๐‘) โก0โ‰ค๐‘โ‰ค๐‘›โˆ’1 0โ‰ค๐‘‘โ‰ค๐‘›โˆ’1 ๐‘โ‰ ๐‘‘ + โˆ‘ (deg(๐‘Ž๐‘’) .deg(๐‘Ž๐‘“๐‘)).๐‘‘(๐‘Ž๐‘’,๐‘Ž๐‘“๐‘) 1โ‰ค๐‘’โ‰ค๐‘›โˆ’1 0โ‰ค๐‘“โ‰ค๐‘›โˆ’1 = (2๐‘›3 โˆ’ 5๐‘›2 + 4๐‘› โˆ’ 1) + (2๐‘›2 โˆ’ ๐‘›) + ( ๐‘›4 2 โˆ’ 5๐‘›3 2 + 9๐‘›2 2 โˆ’ 7๐‘› 2 + 1) + (๐‘›2 โˆ’ ๐‘›) + (2๐‘›3 โˆ’ 4๐‘›2 + 2๐‘›) = ๐‘›4 2 + 3๐‘›3 2 โˆ’ 3๐‘›2 2 + ๐‘› 2 = 1 2 (๐‘›4 + ๐‘›) + 3 2 (๐‘›3 โˆ’ ๐‘›2) the first zagreb index, the wiener index, and the gutman index of the power of dihedral group evi yuniartika asmarani 519 conclusions the results obtained from this study are the first zagreb index, wiener index, and gutman index of the power graph for the dihedral group ๐ท2๐‘› where ๐‘› = ๐‘ ๐‘š, ๐‘ is prime and ๐‘š a natural number respectively is ๐‘›2(๐‘› + 1), 7๐‘›2 2 โˆ’ 5๐‘› 2 , 1 2 (๐‘›4 + ๐‘›) + 3 2 (๐‘›3 โˆ’ ๐‘›2). references [1] j. abawajy, a. kelarev, and m. chowdhury, โ€œpower graphs: a survey,โ€ 2013. [online]. available: www.ejgta.org [2] v. aลŸkin and ลŸ. bรผyรผkkรถse, โ€œthe wiener index of an undirected power graph,โ€ advances in linear algebra & matrix theory, vol. 11, no. 01, pp. 21โ€“29, 2021, doi: 10.4236/alamt.2021.111003. [3] e. y. asmarani, a. g. syarifudin, g. adhitya, w. wardhana, and w. switrayni, โ€œeigen mathematics journal the power graph of a dihedral group,โ€ eigen mathematics journal, vol. 4, no. 2, pp. 80โ€“85, 2021, doi: 10.29303/emj.v4i2.117. [4] b. n. syechah, e. y. asmarani, a. g. syarifudin, d. p. anggraeni, and i. g. a. w. w. wardhana, โ€œrepresentasi graf pangkat pada grup bilangan bulat modulo berorde bilanganprima,โ€ evolusi: journal of mathematics and sciences, vol. 6, no. 2, pp. 99โ€“ 104, 2022. [5] t. chelvam and m. sattanathan, โ€œpower graph of finite abelian groups,โ€ algebra and discrete mathematics, vol. 16, no. 1, pp. 33โ€“41, 2013. [6] m. n. husni, h. syafitri, a. m. siboro, a. g. syarifudin, q. aini, and i. g. a. w. wardhana, โ€œthe harmonic index and the gutman index of coprime graph of integer group modulo with order of prime power,โ€ barekeng: jurnal ilmu matematika dan terapan, vol. 16, no. 3, pp. 961โ€“966, sep. 2022, doi: 10.30598/barekengvol16iss3pp961-966. [7] n. i. alimon, n. h. sarmin, and a. erfanian, โ€œthe szeged and wiener indices for coprime graph of dihedral groups,โ€ in aip conference proceedings, oct. 2020, vol. 2266. doi: 10.1063/5.0018270. [8] n. nurhabibah, a. g. syarifudin, and i. g. a. w. wardhana, โ€œsome results of the coprime graph of a generalized quaternion group q_4n,โ€ inprime: indonesian journal of pure and applied mathematics, vol. 3, no. 1, pp. 29โ€“33, 2021, doi: 10.15408/inprime.v3i1.19670. [9] a. g. syarifudin, nurhabibah, d. p. malik, and i. g. a. w. dan wardhana, โ€œsome characterizatsion of coprime graph of dihedral group d2n,โ€ j phys conf ser, vol. 1722, no. 1, 2021, doi: 10.1088/1742-6596/1722/1/012051. [10] n. nurhabibah, a. g. syarifudin, i. g. a. w. wardhana, and q. aini, โ€œthe intersection graph of a dihedral group,โ€ eigen mathematics journal, vol. 4, no. 2, pp. 68โ€“73, 2021, doi: 10.29303/emj.v4i2.119. [11] w. u. misuki, i. g. a. w. wardhana, n. w. switrayni, and irwansyah, โ€œsome results of non-coprime graph of the dihedral group d2n for n a prime power,โ€ aip conf proc, vol. 2329, no. february, 2021, doi: 10.1063/5.0042587. [12] a. g. syarifudin, i. g. a. w. wardhana, n. w. switrayni, and q. aini, โ€œthe clique numbers and chromatic numbers of the coprime graph of a dihedral group,โ€ iop conf ser mater sci eng, vol. 1115, no. 1, p. 012083, 2021, doi: 10.1088/1757899x/1115/1/012083. [13] d. s. ramdani, i. g. a. w. wardhana, and z. y. awanis, โ€œthe intersection graph representation of a dihedral group with prime order and its the first zagreb index, the wiener index, and the gutman index of the power of dihedral group evi yuniartika asmarani 520 numerical invariants,โ€ barekeng: jurnal ilmu matematika dan terapan, vol. 16, no. 3, pp. 1013โ€“1020, sep. 2022, doi: 10.30598/barekengvol16iss3pp10131020. [14] nurhabibah, d. p. malik, h. syafitri, and i. g. a. w. wardhana, โ€œsome results of the non-coprime graph of a generalized quaternion group for some n,โ€ aip conf proc, vol. 2641, no. december 2022, p. 020001, 2022, doi: 10.1063/5.0114975. [15] a. gazir and i. g. a. w. wardhana, โ€œsubgrup non trivial dari grup dihedral,โ€ eigen mathematics journal, vol. 1, no. 2, p. 73, dec. 2019, doi: 10.29303/emj.v1i2.26. [16] t. mansour, m. a. rostami, e. suresh, and g. b. a. xavier, โ€œon the bounds of the first reformulated zagreb index,โ€ turkish journal of analysis and number theory, vol. 4, no. 1, pp. 8โ€“15, jan. 2016, doi: 10.12691/tjant-4-1-2. [17] j. p. mazorodze, s. mukwembi, and t. vetrรญk, โ€œthe gutman index and the edgewiener index of graphs with given vertex-connectivity,โ€ discussiones mathematicae graph theory, vol. 36, no. 4, pp. 867โ€“876, 2016, doi: 10.7151/dmgt.1900. analysis of the rosenzweig-macarthur predator-prey model with anti-predator behavior cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 260-269 p-issn: 2086-0382; e-issn: 2477-3344 submitted: january 22, 2021 reviewed: march 17, 2021 accepted: april 14, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.11472 analysis of the rosenzweig-macarthur predator-prey model with anti-predator behavior ismail djakaria1, muhammad bachtiar gaib2 , resmawan3 1,2,3department of mathematics, universitas negeri gorontalo, indonesia email: iskar@ung.ac.id, m.tiargaib@gmail.com, resmawan@ung.ac.id abstract this paper discusses the analysis of the rosenzweig-macarthur predator-prey model with antipredator behavior. the analysis is started by determining the equilibrium points, existence, and conditions of the stability. identifying the type of hopf bifurcation by using the divergence criterion. it has shown that the model has three equilibrium points, i.e., the extinction of population equilibrium point (๐ธ0), the non-predatory equilibrium point (๐ธ1), and the co-existence equilibrium point (๐ธ2). the existence and stability of each equilibrium point can be shown by satisfying several conditions of parameters. the divergence criterion indicates the existence of the supercritical hopf-bifurcation around the equilibrium point ๐ธ2. finally, our model's dynamics population is confirmed by our numerical simulations by using the 4th-order runge-kutta methods. keywords: rosenzweig-macarthur; predator-prey model; anti-predator behaviour; hopf bifurcation; divergence criterion; equilibrium point. introduction population dynamics are the most interesting research in mathematical biology which discusses the interactions that occur between prey and predator in a particular ecosystem [1]. this interaction has implemented to a simple mathematical model known as the lotka-volterra predator-prey model [2]. in a mathematical model, the predation process (interaction between prey and predator) is expressed in some form that is known as a functional response. this functional response has classified three functions, i.e. holling-type i, holling-type ii, and holling-type iii where each type determine the characteristic of the predator [3]. on the progress, rosenzweig and macarthur modifying the lotka-volterra predator-prey model with the assumption the attack rate of predator increases at a decreasing rate with prey density until it becomes constant due to satiation which is affected by holling-type ii functional response [4]. further, some modified of lotka-volterra predator-prey model by considering the infectious disease [5]-[7]. several research has discussed the modification of the rosenzweig-macarthur predator-prey model [8][9] is introduced predator foraging facilitation into holling-type ii functional response. furthermore, the rosenzweig-macarthur model has modified with various factors, e.g. the stage-structure [10][11], the refuge effect [12][13], the harvesting to one or more population [14][15]. from several studies described above, no one http://dx.doi.org/10.18860/ca.v6i4.11472 mailto:iskar@ung.ac.id mailto:m.tiargaib@gmail.com mailto:resmawan@ung.ac.id analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 261 (1) considering anti-predator behavior factors. in this article, the rosenzweig-macarthur predator-prey model by [6] modified considering anti-predator behavior factors [16]. these factors can be considered in the model because the dynamics of the model will be very complex when the prey population prefers to defending and provide resistance when the predation process is occurring. the structure of this paper is as follows. in the next section, the methods in our work are described. then, the analysis of the model has been discussed. finally, a brief conclusion of our work is given. methods the dynamics of the model is analyzed by carrying out the following steps: 1. modifying the rosenzweig-macarthur predator-prey model considering antipredator behavior factors. 2. simplifying the model by using non-dimensional to reduce the number of parameters and solving the equilibrium points of the model. 3. identifying the existence, local stability, and global stability of the equilibrium points. 4. identifying the hopf-bifurcation type by using the divergence criterion. 5. demonstrated the numerical simulations of the model to describe the analysis results by using the 4th-order runge-kutta method. results and discussion mathematical model in this article, the mathematical model is formulated based on the following assumptions: 1. the prey population is assumed to grow logistically with an intrinsic growth rate of ๐‘Ÿ and carrying capacity of the environment of ๐พ and reduced due to the predation process. 2. the predator population is assumed to grow due to the predation process. ๐‘ is the conversion rate of the consumed prey into predator births. 3. the predation process follows holling-type ii functional response which is affected by the encounter rate function where there is foraging facilitation of predator (๐‘ค = 0), ๐‘Ž is the saturated rate of the predator, ๐‘ is coefficient interaction on both population and โ„Ž is the predator time handling. 4. ๐‘š is the mortality of predators. 5. ๐œ‚ is the anti-predator behavior. from the following assumptions above, the dynamics of the model can be represented by the following set of differential equations: ๐‘‘๐‘ฅ ๐‘‘๐‘ก = ๐‘Ÿ๐‘ฅ(1โˆ’ ๐‘ฅ ๐พ )โˆ’ (๐‘Ž โˆ’๐‘)๐‘ฅ๐‘ฆ ๐‘ฆ +โ„Ž(๐‘Ž โˆ’๐‘)๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ก = ๐‘(๐‘Ž โˆ’๐‘)๐‘ฅ๐‘ฆ ๐‘ฆ +โ„Ž(๐‘Ž โˆ’๐‘)๐‘ฅ โˆ’๐‘š๐‘ฆ โˆ’๐œ‚๐‘ฅ๐‘ฆ where ๐‘ฅ and ๐‘ฆ are respectively the densities of prey and predator population at time ๐‘ก and ๐‘ฅ(0),๐‘ฆ(0) > 0. analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 262 (2) (3) (4) to simplify our analysis, we reduce the number of parameters in system (1) by using the following parameter scales [17]: ๐‘ฅ โ†’ ๐‘ฅ๐พ, ๐‘ฆ โ†’ ๐‘ฆ(๐‘Ž โˆ’๐‘)๐พโ„Ž, ๐‘ก โ†’ ๐‘ก ๐‘Ÿ we obtain the following non-dimensional model ๐‘‘๐‘ฅ ๐‘‘๐‘ก = ๐‘ฅ(1โˆ’๐‘ฅ)โˆ’ ๐›ผ๐‘ฅ๐‘ฆ ๐‘ฅ +๐‘ฆ ๐‘‘๐‘ฆ ๐‘‘๐‘ก = ๐›ฝ๐‘ฅ๐‘ฆ ๐‘ฅ +๐‘ฆ โˆ’๐›พ๐‘ฆ โˆ’๐›ฟ๐‘ฅ๐‘ฆ where ๐›ผ = (๐‘Ž โˆ’๐‘) ๐‘Ÿ , ๐›ฝ = ๐‘ โ„Ž๐‘Ÿ , ๐›พ = ๐‘š ๐‘Ÿ , ๐›ฟ = ๐œ‚๐พ ๐‘Ÿ existence and stability analysis of equilibrium points in this section, the equilibrium point of model (2) is obtained by solving [18]: ๐‘ฅ(1โˆ’๐‘ฅ)โˆ’ ๐›ผ๐‘ฅ๐‘ฆ ๐‘ฅ +๐‘ฆ = 0 ๐›ฝ๐‘ฅ๐‘ฆ ๐‘ฅ +๐‘ฆ โˆ’๐›พ๐‘ฆ โˆ’๐›ฟ๐‘ฅ๐‘ฆ = 0 thus, from the system (3), we obtain the following equilibrium points, i.e.: 1. a trivial equilibrium point ๐ธ0 = (0,0), always exists. 2. a non-predator equilibrium point ๐ธ1 = (1,0), always exists too. 3. a co-existence equilibrium point ๐ธ2 = (๐‘ฅ โˆ—,๐‘ฆโˆ—), where ๐‘ฅโˆ— = ๐›ฝ โˆ’๐›ผ๐›ฝ +๐›ผ๐›พ ๐›ฝ โˆ’๐›ผ๐›ฟ , ๐‘ฆโˆ— = (๐›ฝ โˆ’๐›ผ๐›ฝ +๐›ผ๐›พ)(๐›ฝ โˆ’๐›พ โˆ’๐›ฟ) (๐›ฝ โˆ’๐›ผ๐›ฟ)(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ) which exists if ๐›ฝ > ๐›ผ(๐›ฝ โˆ’๐›พ), ๐›พ +๐›ฟ < ๐›ผ๐›ฟ < ๐›ฝ now, study the local stability of the dynamics of the system (3) around each of equilibrium point. the jacobian matrix from the system (3) is determined as [19]: ๐ฝ(๐‘ฅ,๐‘ฆ) = ( 1โˆ’2๐‘ฅ โˆ’ ๐›ผ๐‘ฆ ๐‘ฅ +๐‘ฆ + ๐›ผ๐‘ฅ๐‘ฆ (๐‘ฅ +๐‘ฆ)2 โˆ’ ๐›ผ๐‘ฅ ๐‘ฅ +๐‘ฆ + ๐›ผ๐‘ฅ๐‘ฆ (๐‘ฅ +๐‘ฆ)2 ๐›ฝ๐‘ฆ ๐‘ฅ +๐‘ฆ โˆ’ ๐›ฝ๐‘ฅ๐‘ฆ (๐‘ฅ +๐‘ฆ)2 โˆ’๐›ฟ๐‘ฆ ๐›ฝ๐‘ฅ ๐‘ฅ +๐‘ฆ โˆ’ ๐›ฝ๐‘ฅ๐‘ฆ (๐‘ฅ +๐‘ฆ)2 โˆ’๐›พ โˆ’๐›ฟ๐‘ฅ ) by evaluating this jacobian matrix (4) at each equilibrium point, we obtain the local stability properties of ๐ธ0, ๐ธ1, and ๐ธ2 as follows. analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 263 theorem 1. the trivial equilibrium point ๐ธ0 always unstable (saddle). proof: the jacobian matrix (4) evaluated in equilibrium point ๐ธ0 is given by ๐ฝ(๐ธ0) = ( 1 0 0 โˆ’๐›พ ) so, by solving the characteristic equation, we obtained the eigenvalues of ๐ฝ(๐ธ0) is ๐œ†1 = 1 and ๐œ†2 = โˆ’๐›พ. it means ๐œ†1 > 0 and ๐œ†2 < 0. therefore, stability of equilibrium point ๐ธ0 is unstable (saddle).โˆŽ theorem 2. if ๐›ฟ > ๐›ฝ โˆ’๐›พ, then the non-predatory equilibrium point ๐ธ1 of system (2) is locally asymptotically stable. proof: the jacobian matrix (4) evaluated in equilibrium point ๐ธ1 is given by ๐ฝ(๐ธ1) = ( โˆ’1 โˆ’๐›ผ 0 ๐›ฝ โˆ’๐›พ โˆ’๐›ฟ ) so, by solving the characteristic equation, we obtained the eigenvalues of ๐ฝ(๐ธ1) is ๐œ†1 = โˆ’1 and ๐œ†2 = ๐›ฝ โˆ’๐›พ โˆ’๐›ฟ. it means ๐œ†1 < 0. therefore, if ๐›ฟ > ๐›ฝ โˆ’๐›พ then each the eigenvalues of ๐ฝ(๐ธ1) are negatif, and ๐ธ1 is locally asymptotically stable.โˆŽ theorem 3. the co-existence equilibrium point ๐ธ2 is locally asymptotically stable if the conditions below are satisfied ๐›ฟ2 < ฮธ+ฯ… ฮถ proof: the jacobian matrix (4) evaluated in equilibrium point ๐ธ1 is given by ๐ฝ(๐ธ2) = ( ๐‘€11 ๐‘€12 ๐‘€21 ๐‘€22 ) where ๐‘€11 = โˆ’๐›ฝ2 +๐›ผ๐›ฝ2 โˆ’๐›ผ๐›พ2 โˆ’2๐›ผ๐›ฟ(๐›ผ โˆ’1)(๐›ฝ โˆ’๐›พ)โˆ’๐›ผ๐›ฟ2 +๐›ผ2๐›ฟ2 (๐›ฝ โˆ’๐›ผ๐›ฟ)2 ๐‘€12 = โˆ’ ๐›ผ(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ)2 (๐›ฝ โˆ’๐›ผ๐›ฟ)2 ๐‘€21 = (๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)(๐›ฝ2๐›พ +๐›ผ2๐›พ๐›ฟ2 โˆ’๐›ฝ(๐›พ2 +2๐›พ๐›ฟ +๐›ฟ2(๐›ผ โˆ’1)2)) (๐›ฝ โˆ’๐›ผ๐›ฟ)2 ๐‘€22 = โˆ’ ๐›ฝ(๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ) (๐›ฝ โˆ’๐›ผ๐›ฟ)2 by solving the characteristic equation, we obtained the eigenvalues of ๐ฝ(๐ธ2) is ๐œ†1,2 = 1 2 . 1 (๐›ฝ โˆ’๐›ผ๐›ฟ)2 (๐ดยฑ๐ต) analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 264 where ๐ด = ฮถ๐›ฟ2 โˆ’ฮธโˆ’ฯ… and ๐ต = ฯˆ2 โˆ’๐›ผฯ‰ with ฮถ = (๐›ผ2 โˆ’๐›ผ +๐›ฝ โˆ’๐›ผ๐›ฝ) ฮธ = ๐›ฟ(๐›ฝ(๐›ฝ โˆ’2๐›พ)+2๐›ผ2(๐›ฝ โˆ’๐›พ)โˆ’๐›ผ(๐›ฝ2 +2(๐›ฝ โˆ’๐›พ)โˆ’๐›ฝ๐›พ)) ฯ… = ๐›ฝ2(๐›พ โˆ’๐›ผ +1)+๐›พ2(๐›ผ +๐›ฝ) ฯˆ = (๐›ฝ2 โˆ’๐›ผ๐›ฝ2 +๐›ผ๐›พ2 +2๐›ผ๐›ฟ(๐›ผ โˆ’1)(๐›ฝ โˆ’๐›พ)โˆ’๐›ผ๐›ฟ2(๐›ผ โˆ’1)โˆ’๐›ฝ(๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ)) ฯ‰ = 4(๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ)(๐›ฝ2๐›พ +๐›ผ2๐›พ๐›ฟ2 โˆ’๐›ฝ((๐›ผ โˆ’1)2๐›ฟ2 +๐›พ2 +2๐›พ๐›ฟ)) according to (), the stability of equilibrium point ๐ธ2 depending on the value of ๐ด. if ๐ด < 0, we obtained: ฮถ๐›ฟ2 โˆ’ฮธ๐›ฟ โˆ’ฯ… < 0 ฮถ๐›ฟ2 < ฮธ๐›ฟ +ฯ… ๐›ฟ2 < ฮธ+ฯ… ฮถ by the conditions above, the stability of equilibrium point ๐ธ2 is locally asymptotically stable.โˆŽ next, study the global stability of the dynamics of the system (3) around equilibrium point ๐ธ2. we obtain the global stability properties of ๐ธ2 by using the lyapunov function [20] as follows. theorem 4. the co-existence equilibrium ๐ธ2 is globally asymptotically stable if the conditions below are satisfied: ๐‘ฅโˆ— < (๐›ผ โˆ’๐›ฝ +๐›พ +๐›ฟ)(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ) ๐›ผ(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ)โˆ’(๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)2 proof: define a lyapunov function as follows ๐‘‰(๐‘ฅ,๐‘ฆ) = [๐‘ฅ โˆ’๐‘ฅโˆ— โˆ’๐‘ฅโˆ— ln( ๐‘ฅ ๐‘ฅโˆ— )]+[๐‘ฆ โˆ’๐‘ฆโˆ— โˆ’๐‘ฆโˆ— ln( ๐‘ฆ ๐‘ฆโˆ— )] by using the function ๏ฟฝฬ‡๏ฟฝ < 0,โˆ€ (๐‘ฅ,๐‘ฆ) โˆˆ โ„2 +, we obtain: ๐œ•๐‘‰ ๐œ•๐‘ฅ . ๐œ•๐‘ฅ ๐œ•๐‘ก + ๐œ•๐‘‰ ๐œ•๐‘ฆ . ๐œ•๐‘ฆ ๐œ•๐‘ก โ‰ค 0 (1โˆ’ ๐‘ฅโˆ— ๐‘ฅ )(๐‘ฅ(1โˆ’๐‘ฅ)โˆ’ ๐›ผ๐‘ฅ๐‘ฆ ๐‘ฅ +๐‘ฆ )+(1โˆ’ ๐‘ฆโˆ— ๐‘ฆ )( ๐›ฝ๐‘ฅ๐‘ฆ ๐‘ฅ +๐‘ฆ โˆ’๐›พ๐‘ฆ โˆ’๐›ฟ๐‘ฅ๐‘ฆ) โ‰ค 0 ( (1โˆ’๐‘ฅ)(๐‘ฅ +๐‘ฆ)โˆ’๐›ผ๐‘ฆ ๐‘ฅ +๐‘ฆ )(๐‘ฅ โˆ’๐‘ฅโˆ—)+( ๐›ฝ๐‘ฅ โˆ’๐›พ(๐‘ฅ +๐‘ฆ)โˆ’๐›ฟ๐‘ฅ(๐‘ฅ +๐‘ฆ) ๐‘ฅ +๐‘ฆ )(๐‘ฆ โˆ’๐‘ฆโˆ—) โ‰ค 0 for (๐‘ฅ,๐‘ฆ) โˆˆ โ„2 +, we obtain: analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 265 (5) โˆ’๐›ผ +๐›ผ๐‘ฅโˆ— +๐›ฝ โˆ’๐›พ โˆ’๐›ฟ โˆ’(๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)๐‘ฆโˆ— < 0 โˆ’๐›ผ +๐›ผ๐‘ฅโˆ— +๐›ฝ โˆ’๐›พ โˆ’๐›ฟ โˆ’๐‘ฅโˆ— (๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)2 (๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ) < 0 ๐‘ฅโˆ— ( ๐›ผ(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ)โˆ’((๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)2) (๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ) ) < ๐›ผ โˆ’๐›ฝ +๐›พ +๐›ฟ ๐‘ฅโˆ— < (๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ)(๐›ผ โˆ’๐›ฝ +๐›พ +๐›ฟ) ๐›ผ(๐›พ +๐›ฟ โˆ’๐›ผ๐›ฟ)โˆ’((๐›ฝ โˆ’๐›พ โˆ’๐›ฟ)2) by the conditions above, the stability of equilibrium point ๐ธ2 is globally asymptotically stable.โˆŽ analysis of hopf bifurcation type in this section, weโ€™ll define the hopf-bifurcation type by using the divergence criterion [21]. system (3) underwent a hopf-bifurcation when it satisfies the following conditions: ๐›ฟ2 < ฮธ+ฯ… ฮถ and ๐›ผ > ฯˆ2 ฯ‰ to determine the hopf-bifurcation type of system (3) on equilibrium point ๐ธ2, then we formed a new system. let ๐œ™(๐‘ฅ,๐‘ฆ) is a divergence of (๐‘Ž๐‘“,๐‘Ž๐‘”). we obtain the coefficient value of ๐‘Ž(๐‘ฅ,๐‘ฆ) of the system (3) when the parameter value ๐›ผ = 2, ๐›ฝ = 0.79, ๐›พ = 0.5, and ๐›ฟ = 0.0186 with equilibrium point ๐ธ2 โˆ— = (0.279;0.157) as follows: ๐‘Ž(๐‘ฅ,๐‘ฆ) = 1+6.956๐‘ฅ +13,386๐‘ฆ โˆ’6.77๐‘ฅ2 +32.968๐‘ฅ๐‘ฆ +55.507๐‘ฆ2 so that a new system is obtained: ๐‘ง(๐‘ฅ,๐‘ฆ) = (1+6.956๐‘ฅ +13,386๐‘ฆ โˆ’6.77๐‘ฅ2 +32.968๐‘ฅ๐‘ฆ +55.507๐‘ฆ2) (๐‘ฅ(1โˆ’๐‘ฅ)โˆ’ ๐›ผ๐‘ฅ๐‘ฆ ๐‘ฅ +๐‘ฆ ) ๐‘ค(๐‘ฅ,๐‘ฆ) = (1+6.956๐‘ฅ +13,386๐‘ฆ โˆ’6.77๐‘ฅ2 +32.968๐‘ฅ๐‘ฆ +55.507๐‘ฆ2) ( ๐›ฝ๐‘ฅ๐‘ฆ ๐‘ฅ +๐‘ฆ โˆ’๐›พ๐‘ฆ โˆ’๐›ฟ๐‘ฅ๐‘ฆ) by linearizing system (4), we obtained: ๐ฝ(๐ธ2 โˆ—) = ( 1.337 โˆ’6.002 0.732 โˆ’1.337 ) by solving the characteristic equation, we obtained the eigenvalues of ๐ฝ(๐ธ2 โˆ—) is ๐œ†1,2 = ยฑ1.615๐‘– for a system (5) to obtain the eigenvalues of conjugate complex numbers, then we can analyze the hopf-bifurcation of system (3) type by looking at the divergence value of system (3). we obtained: ๐œ™๐‘ฅ๐‘ฅ(๐ธ2 โˆ—) = โˆ’21.109 analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 266 based on the divergence value above, a stable limit cycle appears in the system (3). therefore, system (3) underwent a supercritical hopf-bifurcation. numerical simulations in this section, the numerical simulation is solved using the 4th-order runge-kutta method [22] with initial conditions and some values of the parameters. we choose the following set of parameter values: ๐›ผ = 2, ๐›ฝ = 0.79, ๐›พ = 0.5 with different parameter control values as follows ๐›ฟ1 = 0.011, ๐›ฟ2 = 0.0186 and ๐›ฟ3 = 0.026. we using the initial condition is ๐‘ฅ(0) = 0.3 and ๐‘ฆ(0) = 0.3. (a) (b) figure 1. (a) phase portrait of case 1 and (b) time-series portrait (a) (b) figure 2. (a) phase portrait of case 2 and (b) time-series portrait in case 1, we obtained the dynamics of the solution on the system (3) with parameter control values ๐›ฟ1 = 0.011. based on figure 1(a), the trivial equilibrium point ๐ธ0 = (0,0) is unstable (saddle) with eigenvalues ๐œ†1 = 1 and ๐œ†2 = โˆ’0.5. this coincides with theorem 1. the non-predator equilibrium point ๐ธ1 = (1,0) is unstable (saddle) with eigenvalues ๐œ†1 = โˆ’1 and ๐œ†2 = 0.279. this coincides with theorem 2 on condition ๐›ฟ < ๐›ฝ โˆ’๐›พ. the co-existence equilibrium point ๐ธ2 = (0.273;0.156) is unstable (spiral) with eigenvalues ๐œ†1,2 = 0.003ยฑ0.220๐‘–. this analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 267 coincides with theorem 3 on condition ๐›ฟ2 < ฮธ+ฯ… ฮถ . based on figure 1(b), the prey population and predator population have increased and decreased of total populations. the case continuously oscillates with a greater deviation value. hence, both population is unstable to a specific point. (a) (b) figure 3. (a) phase portrait of case 3 and (b) time-series portrait in case 2, we obtained the dynamics of the solution on the system (3) with parameter control values ๐›ฟ1 = 0.0186. based on figure 2(a), the trivial equilibrium point ๐ธ0 = (0,0) is unstable (saddle) with eigenvalues ๐œ†1 = 1 and ๐œ†2 = โˆ’0.5. this coincides with theorem 1. the non-predator equilibrium point ๐ธ1 = (1,0) is unstable (saddle) with eigenvalues ๐œ†1 = โˆ’1 and ๐œ†2 = 0.271. this coincides with theorem 2 on condition ๐›ฟ < ๐›ฝ โˆ’๐›พ. the coexistence equilibrium point ๐ธ2 = (0.279;0.157) is center (spiral) with eigenvalues ๐œ†1,2 = ยฑ0.220๐‘–. this coincides with theorem 3 on condition ๐›ฟ2 = ฮธ+ฯ… ฮถ . based on figure 2(b), the oscillations that occur have a smaller deviation value. this condition explains that there is a stability transition from unstable to stable to a specific point. this stability transition has led to the appearance of hopf-bifurcation. in case 3, we obtained the dynamics of the solution on the system (3) with parameter control values ๐›ฟ1 = 0.026. based on figure 3(a), the trivial equilibrium point ๐ธ0 = (0,0) is unstable (saddle) with eigenvalues ๐œ†1 = 1 and ๐œ†2 = โˆ’0.5. this coincides with theorem 1. the non-predator equilibrium point ๐ธ1 = (1,0) is unstable (saddle) with eigenvalues ๐œ†1 = โˆ’1 and ๐œ†2 = 0.264. this coincides with theorem 2 on condition ๐›ฟ < ๐›ฝ โˆ’๐›พ. the coexistence equilibrium point ๐ธ2 = (0.285;0.159) is stable (spiral) with eigenvalues ๐œ†1,2 = โˆ’0.003ยฑ0.220๐‘–. this coincides with theorem 3 on condition ๐›ฟ2 > ฮธ+ฯ… ฮถ . based on figure 3(b), the dynamics between prey and predator begin to stabilize at 1500 days to a specific point. conclusions the rosenzweig-macarthur predator-prey model with anti-predator behavior has been studied. from the analysis of system (2), we obtain three equilibrium points, i.e., the trivial equilibrium point (๐ธ0), the non-predatory equilibrium point (๐ธ1), and the coexistence equilibrium point (๐ธ2). the local stability conditions of each equilibrium point have been appointed, and the global stability conditions of the co-existence equilibrium analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 268 point (๐ธ2) have been obtained. our analysis also showed that the model occurs a supercritical hopf-bifurcation by using the divergence criterion. numerical analytic has been simulated to verify the theoretical results. no one extinction matters in any population. references [1] p. b. turchin, complex population dynamics: a theoretical/empirical synthesis, priceton university press, 2003. [2] j. d. murray, mathematical biology: an introduction, 3rd edition, springer-verlag, 2002. [3] c. s. holling, "some characteristic of simple types of predation and parasitism", the canadian entomologist, vol. 91, no. 7, pp. 385-398, 1959. [4] m. l. rosenzweig and r. h. macarthur, "graphical representation and stability conditions of predator-prey interactions", the american naturalist, vol. 895, pp. 209-223, 1963. [5] n. hasan, r. resmawan, and e. rahmi, โ€œanalisis kestabilan model eko-epidemiologi dengan pemanenan konstan pada predator,โ€ j. mat. stat. dan komputasi, vol. 16, no. 2, pp. 121โ€“142, dec. 2020. [6] s. h. arsyad, r. resmawan, and n. achmad, โ€œanalisis model predator-prey lesliegower dengan pemberian racun pada predator,โ€ j. ris. dan apl. mat., vol. 4, no. 1, pp. 1โ€“16, 2020. [7] s. maisaroh, r. resmawan, and e. rahmi, โ€œanalisis kestabilan model predator-prey dengan infeksi penyakit pada prey dan pemanenan proporsional pada predator,โ€ jambura j. biomath, vol. 1, no. 1, pp. 8โ€“15, 2020. [8] l. berec, "impacts of foraging facilitation among predators on predator-prey dynamics", bulletin of mathematical biology, vol. 72, pp. 94-121, 2010. [9] l. pribylova and a. peniaskova, "foraging facilitation among predators and its impact on the stability of predator-prey dynamics", ecological complexity, vol. 29, pp. 30-39, 2017. [10] m. moustafa, m. h. mohd, a. i. ismail, and f. a. abdullah, "stage structure and refuge effects in the dynamical analysis of a fractional-order rosenzweig-macarthur prey-predator model", progress in fractional differentiation and application, vol. 5, no. 1, pp. 49-64, 2019. [11] l. k. beay and m. saija, "a stage-structure rosenzweig-macarthur model with effect of prey refuge", jambura journal of biomathematics, vol. 1, no. 1, pp. 1-7, 2020. [12] e. alamanza-vasquez, r. d. ortiz-ortiz, and a. m. marin-ramirez, "bifurcations in the dynamics of rosenzweig-macarthur predator-prey model considering saturated refuge for the preys", applied mathematical sciences, vol. 9, pp. 74757482, 2015. [13] m. moustafa, m. h. mohd, a. i. ismail, and f. a. abdullah, "dynamical analysis of a fractional-order rosenzweig-macarthur model incorporating a prey refuge", chaos, solitons and fractals, vol. 109, pp. 1-13, 2018. analysis of the rosenzweig-macarthur predator-prey model with anti-predator behaviour ismail djakaria 269 [14] a. suryanto, i. darti, h. s. panigoro, and a. kilicman, "a fractional-order predatorprey model with ratio-dependent functional response and linear harvesting", mathematics, vol. 7, no. 11, pp. 1-13, 2019. [15] h. s. panigoro, a. suryanto, w. m. kusumawinahyu, and i. darti, "a rosenzweigmacarthur model with continuous threshold harvesting in predator involving fractional derivatives with power law and mittag-leffler kernel", axioms, vol. 9, no. 122 pp. 1-23, 2020. [16] s. g. mortoja, p. panja, and s. k. mondal, "dynamics of a predator-prey model with stage-structure on both species and anti-predator behavior", informatics in medicine unlocked, vol. 10, pp. 50-57, 2018. [17] s. h. strogatz, nonlinear dynamics and chaos with application to physics, biology chemistry and engineering, west-view press, 2015. [18] l. perko, differential equations and dynamical systems, 3rd edition, springerverlag, 2001. [19] j. k. hale and h. kocak, dynamic and bifurcation, springer-verlaag, 1991. [20] r. sundari and e. apriliani, "konstruksi fungsi lyapunov untuk menentukan kestabilan", jurnal sains dan seni its, vol. 6, no. 1, pp. 28-32, 2017. [21] s. s. pilyugin and p. waltman, "divergence criterion for generic planar system", siam j appl. math., vol. 64, pp. 81-93, 2003. [22] a. suryanto, metode numerik untuk persamaan diferensial biasa dan aplikasinya dengan matlab, universitas negeri malang, 2017. optimal prevention and treatment control on sveir type model spread of covid-19 cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages pages 40-48 p-issn: 2086-0382; e-issn: 2477-3344 submitted: juni 21, 2021 reviewed: september 09, 2021 accepted: november 07, 2021 doi: https://doi.org/10.18860/ca.v7i1.12634 optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan department of mathematics, cenderawasih university jayapura indonesia email: jonner2766@gmail.com abstract covid-19 pandemic has disrupted the world's health and economy and has resulted in many deaths since the first case occurred in china at the end of 2019. moreover, the covid-19 disease spread throughout the world, including indonesia on march 2, 2020. coronavirus quickly spreads through droplets of phlegm through the throat to the lungs. researchers in the medical field and the exact science are jointly examined transmission, prevention, and optimal control of covid-19 disease. due to the prevention of covid-19, a vaccine has been found in early 2021, which at the time, the vaccination process was carried out worldwide against covid-19. this paper examines the spread model of sveir-type covid-19 by considering the vaccination subpopulation. in this study, control of prevention efforts (๐‘ข1 โˆ— and ๐‘ข2 โˆ— ) and healing efforts (๐‘ข3 โˆ— ) are given and being analyzed with the fourth-order runge-kutta approach. based on numerical simulations, it can be seen that using the controls ๐‘ข1 โˆ— , ๐‘ข2 โˆ— and ๐‘ข3 โˆ— can decrease the amount of infected people in the subpopulation compared to those without control. the ๐‘ข3 โˆ— control can increase the number of recovered individual subpopulations. keywords: covid-19; sveir model; optimal control; treatment; vaccination. introduction coronavirus is a virus that attacks the respiratory system. corona virus interferes with mild respiratory and lung infections and can result in death [1]. corona virus is rapidly spreading to almost all countries in the world, and indonesia on march 2, 2020. to prevent the spread of covid-19, the government recommends frequent hand washing with soap/hand sanitizer and practicing cough etiquette. corona virus spreads by sprinkling phlegm from the throat of an infected person, especially in closed air circulation areas. be aware of covid-19, improve your health with healthy lifestyle, includes: balanced nutrition consumption, exercises, adequate rest, and frequent handwashing with soap. exact science and medicine experts are working together to prevent the spread of covid-19. consequently, mathematical researchers are also take part in assessing transmission, streamlining, and optimizing control of the disease. the optimal control strategy for the control of pandemic avian influenza along with the quarantine subpopulation [2]. studying the model of the spread of the corona virus type seir in wuhan, by controlling people's travel history to and from the city of wuhan [3]. then, compared to the pattern of the spread of covid-19 in wuhan, china, and internationally in january and february 2020. examine the mathematical modeling of the epidemic of covid-19 cases in nigeria from 29 https://doi.org/10.18860/ca.v7i1.12634 mailto:jonner2766@gmail.com optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan 41 march to 12 june 2020 with the effect of public awareness programs in implementing health protocols according to government recommendations [4]. the model for the spread of covid19 by paying attention to symptomatically and asymptomatically infectious compartments [5]. studied the spread of the covid-19 outbreak by applying mathematical growth functions and analyzing cases caused by the disease [6]. examined a mathematical model on the sir type of covid-19 to predict its spread by considering the social distancing factors [7]. formulated a deterministic model on the spread of covid-19 by estimating the model parameters according to the pandemic data that occurred in india, then conducting a sensitivity analysis to identify the model parameters [8]. analyzed the covid-19 modeling based on morbidity data in anhui, china by taking into account increased morbidity and mitigation measures [9]. studied and analyzed corona virus disease spread system and the seir type cov-2 sar with the effectiveness of government intervention [10]. analyzed model and predicted the spread of covid-19, then examined the exposed subpopulation, with measurement to prevent and control the epidemic [11]. examined the growth of the logistic model of the covid-19 spread in china and compared with data globally, determined the parameter values with a least-squares approach [12]. studied a mathematical model for the covid-19 pandemic, type sir, with asymptomatic individual effects considered with the finite antibody duration and health policy [13]. studied the global dynamics of the seir type covid-19 under convex incidence rate, through a mathematical model [14]. other studies have been carried out to find the exponential growth rate of the epidemic and determine the basic reproduction number [15]. reviewed a nonlinear ordinary differential equation model for the spread of covid-19, the model studied predicts the total number of covid-19 cases in austria, france, and poland [16]. the model studied is based on the model studied by fang et al. (2020), figuring out the vaccinated subpopulation and providing optimal control of u1, u2, and u3. the objectives of this study includes: (1) to examine and analyze the sveir-type of covid-19 spread model, (2) determine the co-state function of the sveir-type of covid-19 spread model with control ๐‘ข1 โˆ— , ๐‘ข2 โˆ— and ๐‘ข3 โˆ— . (3) determine numerical solution of the optimal control for prevention and treatment of the sveir-type of covid-19 spread model. optimal control of prevention and treatment in the model of the spread of covid19 is important to study, since the covid-19 disease is still spreading and has not been completely the treatment until now. this study will examine the sveir type of covid-19 spread model by considering vaccination subpopulations and provide preventive control measures (๐‘ข1 โˆ— and ๐‘ข2 โˆ— ), healing efforts (๐‘ข3 โˆ— ) and analyzed simulation by numerical approach using runge-kutta fourth order. method the model used in this study comes from the development of the tian (2020) which contemplated the recruitment of suspected subpopulations denoted by s, namely individuals who have a history of travel to infected areas. vaccination subpopulation, namely susceptible individuals who are vaccinated to increase individual immunity to the covid-19 virus so as not to be infected with covid-19 disease. the exposed subpopulation, namely individuals who are positive for covid-19 from the results of the swab, but not severe, denoted e. infected subpopulations denoted by i, i.e. individuals who are positive for covid-19 from the swab results and experience severe illness due to covid-19. the recovered subpopulation is denoted by r, due to treatment in hospitals provided by the government or due to self-isolation at home by eating or taking vitamins to increase immunity so that they can recover from covid-19. the assumptions of the optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan 42 model studied are as follows: (i) individuals who travel to areas infected with covid-19 or have been in contact with individuals infected with covid-19 enter the susceptible subpopulation. (ii) does not consider the natural mortality of each subpopulation. (iii) most of the susceptible individuals who want to be vaccinated yet entering the vaccination subpopulation. (iv) individuals who were successfully vaccinated entered the recovered subpopulation, and those who failed to enter the exposed subpopulation. (v) if the maximum number of individuals in the subpopulation is exposed or the virus is multiplying in the lungs, then the individual will enter the infected subpopulation. (vi) pay attention to deaths due to covid-19. (vi) individuals may experience recovery due to treatment or by self-isolation. the models of the spread of covid-19 studied are as follows: ๐‘‘๐‘† ๐‘‘๐‘ก = ฮป โˆ’ ๐›ฝ๐‘†๐ผ ๐‘ โˆ’ ๐œƒ๐‘† (1) ๐‘‘๐‘‰ ๐‘‘๐‘ก = ๐œƒ๐‘† โˆ’ (๐œŽ + ๐‘Ÿ)๐‘‰ (2) ๐‘‘๐ธ ๐‘‘๐‘ก = ๐›ฝ๐‘†๐ผ ๐‘ + ๐œŽ๐‘‰ โˆ’ ๐›พ๐ธ (3) ๐‘‘๐ผ ๐‘‘๐‘ก = ๐›พ๐ธ โˆ’ (๐‘‘ + ๏ค + ๐œ)๐ผ (4) ๐‘‘๐‘… ๐‘‘๐‘ก = ๐‘Ÿ๐‘‰ + (๏ค + ๐œ)๐ผ (5) where n = s + v + e + i + r. description of the parameters as table 1 follows: table 1. parameter description and estimate value parameter description value reference ๏Œ= ๏จn recruitment rate entering the s subpopulation 0,047/day covid-19 go.id data ๏ข transmission rate from s to e 0,154/day assumed ๏ฑ vaccination rates from subpopulation s to v 0,04/day assumed ๏ณ the transfer rate from subpopulation v to e, due to vaccine failure 0,005/day assumed r vaccination success rate 0,05/day assumed ๏ง transmission rate from subpopulation e to i 0,036/day assumed d death rate due to covid-19 0,002/day covid-19 go.id data ๏ค healing rate 0,036/day covid-19 go.id data ๏ด speed of healing with covid-19 self-isolation 0,04/day assumed equilibrium point non-endemic fixed point, to analyze equation (1)-(5) it is enough to use equation (1)-(4) because equation (5) is redundant to equation (1)-(4). based on equation (1)-(4), the non-endemic fixed point is obtained, namely: ๐ธ0 = ( ฮป ๐œƒ , ฮป ๐‘Ÿ+๐œŽ , 0,0), and the endemic point of system (1)-(4) is ๐ธ1 = ( ฮป๐‘ ๐›ฝ๐ผ + ๐œƒ๐‘ , ๐œƒฮป๐‘ (๐‘Ÿ + ๐œŽ)(๐›ฝ๐ผ + ๐œƒ๐‘) , ๐›ฝฮป๐‘ ๐›พ(๐›ฝ๐ผ + ๐œƒ๐‘) + ๐œŽ๐œƒฮป๐‘ ๐›พ(๐‘Ÿ + ๐œŽ)(๐›ฝ๐ผ + ๐œƒ๐‘) , ๐ผโˆ—โˆ—) with ๐ผโˆ—โˆ— = โˆ’ 1 2 ๐‘๐œƒ๐‘๐‘‡ยฑโˆš(๐‘๐œƒ๐‘๐‘‡)2+4๐‘Ž๐›ฝ๐‘2๐‘‡+4๐‘๐›ฝ๐‘๐‘‡ ๐‘๐›ฝ๐‘‡ , ๐‘Ž = ๐›ฝฮป๐‘, ๐‘ = ๐œŽ๐œƒฮป๐‘, ๐‘‡ = ๐‘‘ + ๏ค + ๐œ, ๐‘ = ๐‘Ÿ + ๐œŽ. optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan 43 the reproduction number the reproduction number is a parameter that expresses the expectation of secondary infective individuals due to contracting primary infective individuals in the susceptible population. the standard parameters that need to be known to determine whether the disease is spreading or not are the basic reproduction number (r0), if r0 > 1 then the number of infected individuals increases, if r0 < 1 then the number of infected individuals does not increase or decrease. the basic reproduction number is calculated by using the next-generation method, the basic reproduction number of equations (1)โ€“ (5) are as follows: r0 = ๐œŒ(๐บ๐‘ˆ โˆ’1) with ๏ฒ is radius of the matrix built by gu-1. the rate of new infections denoted with g, and u is individuals out. the jacobian matrix of g(x) and u(x), and denote g = [๏‚ถgi /๏‚ถxj] and u = [๏‚ถui /๏‚ถxj], (i, j = 1, 2, 3, 4, 5). parameter the reproduction number, r0 as r0 = ๐‘Ÿ๐›ฝฮป ๐œƒ๐‘(๐‘‘+๐›ฟ+๐œ)(๐‘Ÿ+๐œŽ) . (6) result and discussion the handling of covid-19 carried out by the stakeholders are: control u1(t) for prevention with government appeals in government agencies, schools, and the general public by implementing physical distancing, namely maintaining a minimum distance of 1 meter from other people. then, implementing a mask when doing activities in public places or crowds. to continue, washing our hands regularly with soap and water or a hand sanitizer that contains at least 60% alcohol, especially after coming back from outdoor activities or in public places. the u2(t) control is vaccination counseling because many individuals are afraid to be vaccinated. this u2(t) control provides education to the public, how to prepare for vaccination, what to do after being vaccinated, and what are the effects after being vaccinated. because there is a lot of hoax information circulating, to scare people not to be vaccinated. u3(t) control is an effort to accelerate healing from covid-19 by individuals who are self-isolating in their own homes or places provided by the central government or local governments. the healing efforts given are: taking vitamins c, d, b, zinc, selenium, curcumin, echinacea. based on equations (1)-(5) after being given the control u1(t), u2(t) and u3(t) obtained a system of differential equations with optimal control as follows: ๐‘‘๐‘† ๐‘‘๐‘ก = ฮป โˆ’ ๐›ฝ(1โˆ’๐‘ข1(๐‘ก))๐‘†๐ผ ๐‘ โˆ’ ๐œƒ(1 + ๐‘ข2(๐‘ก))๐‘† (7) ๐‘‘๐‘‰ ๐‘‘๐‘ก = ๐œƒ(1 + ๐‘ข2(๐‘ก))๐‘† โˆ’ (๐œŽ + ๐‘Ÿ)๐‘‰ (8) ๐‘‘๐ธ ๐‘‘๐‘ก = ๐›ฝ(1โˆ’๐‘ข1(๐‘ก))๐‘†๐ผ ๐‘ + ๐œŽ๐‘‰ โˆ’ ๐›พ๐ธ (9) ๐‘‘๐ผ ๐‘‘๐‘ก = ๐›พ๐ธ โˆ’ (๐‘‘ + ๏ค + ๐œ(1 + ๐‘ข3(๐‘ก)))๐ผ (10) ๐‘‘๐‘… ๐‘‘๐‘ก = ๐‘Ÿ๐‘‰ + (๏ค + ๐œ(1 + ๐‘ข3(๐‘ก)))๐ผ (11) the functional objective of optimal control studied in this paper are: ๐ฝ(๐‘ข1, ๐‘ข2, ๐‘ข3) = โˆซ (๐ด๐ธ(๐‘ก) + ๐ต๐ผ(๐‘ก) + ๐ถ1๐‘ข1 2(๐‘ก) + ๐ถ2๐‘ข2 2(๐‘ก)+๐ถ3๐‘ข3 2(๐‘ก))๐‘‘๐‘ก ๐‘ก๐‘“ 0 , (12) where the coefficients a, b is the balance weights of the individual compartments exposed and actively infected with covid-19, respectively. while the coefficient c1 is a parameter weight that corresponds to the control u1(t), c2 is a parameter weight that corresponds to the control u2(t), and c3 is a parameter weight corresponding to the control u3(t), and tf is optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan 44 the end time of the period. let ๐‘ข1 โˆ— (๐‘ก), ๐‘ข2 โˆ— (๐‘ก), and ๐‘ข3 โˆ— (๐‘ก), be the optimal control of the system (7)-(11) and (12), such that it satisfies ๐ฝ(๐‘ข1 โˆ— , ๐‘ข2 โˆ— , ๐‘ข3 โˆ— ) = min๏ซ ๐ฝ(๐‘ข1, ๐‘ข2, ๐‘ข3), (13) where the control set ๐‘ˆ = {(๐‘ข1, ๐‘ข2, ๐‘ข3)|๐‘ข๐‘– : [0, ๐‘ก๐‘“ ] โ†’ [0,1], lebesgue measurable, ๐‘– = 1, 2, 3} . the objective function (12), the optimal control ๐‘ข1 โˆ— , ๐‘ข2 โˆ— , ๐‘ข3 โˆ— , obtained with provided that (13) with restriction system (7)-(11) by using matlab tools, the solution will be obtained [17]. by model (7)-(11), and minimum functional adjoint (12) obtained hamiltonian function h, that is ๐ป = ๐ด๐ธ + ๐ต๐ผ + ๐ถ1๐‘ข1 2 + ๐ถ2๐‘ข2 2 + ๐ถ3๐‘ข3 2 + ๐œ†1 ๐‘‘๐‘† ๐‘‘๐‘ก + ๐œ†2 ๐‘‘๐‘‰ ๐‘‘๐‘ก +๐œ†3 ๐‘‘๐ธ ๐‘‘๐‘ก +๐œ†4 ๐‘‘๐ผ ๐‘‘๐‘ก +๐œ†5 ๐‘‘๐‘… ๐‘‘๐‘ก (14) theorem 1 there exists a optimal control ๐‘ข1 โˆ— (๐‘ก), ๐‘ข2 โˆ— (๐‘ก) and ๐‘ข3 โˆ— (๐‘ก) and associated solution ๐‘†โˆ—(๐‘ก), ๐‘‰ โˆ—(๐‘ก), ๐ธโˆ—(๐‘ก), ๐ผโˆ—(๐‘ก) , ๐‘…โˆ—(๐‘ก) from models (7)-(11) and (14). then there exist costate functions ฮปi, i = 1, 2, 3, 4, 5 satisfying ๐‘‘๐œ†1 ๐‘‘๐‘ก = (๐œ†1 โˆ’ ๐œ†3) ๐›ฝ(1โˆ’๐‘ข1)๐ผ ๐‘ + (๐œ†1 โˆ’ ๐œ†2)(1 + ๐‘ข2)๐œƒ ๐‘‘๐œ†2 ๐‘‘๐‘ก = (๐œ†2 โˆ’ ๐œ†3)๐œŽ + (๐œ†2 โˆ’ ๐œ†5)๐‘Ÿ ๐‘‘๐œ†3 ๐‘‘๐‘ก = โˆ’๐ด + (๐œ†3 โˆ’ ๐œ†4)๐›พ ๐‘‘๐œ†4 ๐‘‘๐‘ก = โˆ’๐ต + (๐œ†1 โˆ’ ๐œ†3) ๐›ฝ(1โˆ’๐‘ข1)๐‘† ๐‘ + (๐œ†4 โˆ’ ๐œ†5)(๐›ฟ + ๐œ) + ๐œ†4๐‘‘ ๐‘‘๐œ†5 ๐‘‘๐‘ก = 0, the transversality conditions are given by ๐œ†๐‘– (๐‘ก๐‘“ ) = 0, ๐‘– = 1, 2, 3, 4, 5. finally, from the optimality condition, we obtain the following optimal controls: ๐‘ข1 โˆ— = min {๐‘š๐‘Ž๐‘ฅ {0, (๐œ†3โˆ’๐œ†1)๐›ฝ๐‘†๐ผ 2๐ถ1๐‘ } , 1} ๐‘ข2 โˆ— = min {๐‘š๐‘Ž๐‘ฅ {0, (๐œ†1โˆ’๐œ†2)๐œƒ๐‘† 2๐ถ2 } , 1}. ๐‘ข3 โˆ— = min {๐‘š๐‘Ž๐‘ฅ {0, (๐œ†4โˆ’๐œ†5)๐œ๐ผ 2๐ถ3 } , 1}. proof: we use pontrygainโ€™s maximum principle [17] on our model system (14), and the hamiltonian is given by, ๐ป = ๐ด๐ผ + ๐ต1๐‘ข1 2 + ๐ต2๐‘ข2 2 + ๐œ†1 (ฮป โˆ’ ๐›ฝ(1 โˆ’ ๐‘ข1(๐‘ก))๐‘†๐ผ ๐‘ โˆ’ ๐œƒ(1 + ๐‘ข2(๐‘ก))๐‘†) +๐œ†2(๐œƒ(1 + ๐‘ข2(๐‘ก))๐‘† โˆ’ (๐œŽ + ๐‘Ÿ)๐‘‰) + ๐œ†3 ( ๐›ฝ(1โˆ’๐‘ข1(๐‘ก))๐‘†๐ผ ๐‘ + ๐œŽ๐‘‰ โˆ’ ๐›พ๐ธ) + +๐œ†4(๐›พ๐ธ โˆ’ (๐‘‘ + ๏ค + ๐œ(1 + ๐‘ข3(๐‘ก)))๐ผ ) + ๐œ†5(๐‘Ÿ๐‘‰ + (๏ค + ๐œ(1 + ๐‘ข3(๐‘ก)))๐ผ ) ๐‘‘๐œ†1 ๐‘‘๐‘ก = โˆ’ ๐œ•๐ป ๐œ•๐‘† = (๐œ†1 โˆ’ ๐œ†3) ๐›ฝ(1โˆ’๐‘ข1)๐ผ ๐‘ + (๐œ†1 โˆ’ ๐œ†2)(1 + ๐‘ข2)๐œƒ ๐‘‘๐œ†2 ๐‘‘๐‘ก = โˆ’ ๐œ•๐ป ๐œ•๐‘‰ = (๐œ†2 โˆ’ ๐œ†3)๐œŽ + (๐œ†2 โˆ’ ๐œ†5)๐‘Ÿ ๐‘‘๐œ†3 ๐‘‘๐‘ก = โˆ’ ๐œ•๐ป ๐œ•๐ธ = โˆ’๐ด + (๐œ†3 โˆ’ ๐œ†4)๐›พ ๐‘‘๐œ†4 ๐‘‘๐‘ก = โˆ’ ๐œ•๐ป ๐œ•๐ผ optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan 45 = โˆ’๐ต + (๐œ†1 โˆ’ ๐œ†3) ๐›ฝ(1โˆ’๐‘ข1)๐‘† ๐‘ + (๐œ†4 โˆ’ ๐œ†5)(๐›ฟ + ๐œ) + ๐œ†4๐‘‘ ๐‘‘๐œ†5 ๐‘‘๐‘ก = โˆ’ ๐œ•๐ป ๐œ•๐‘… = 0. the optimality equations (14) and must satisfy transversality conditions ฮป(๐‘ก๐‘“ ) = 0 for values i = 1, 2, 3, 4, 5. there exist unique optimal controls ๐‘ข1 โˆ— (๐‘ก) and ๐‘ข2 โˆ— (๐‘ก) which minimize j over u: the optimality necessary conditions that ๐œ•๐ป ๐œ•๐‘ข1 = 0, ๐œ•๐ป ๐œ•๐‘ข2 = 0 and ๐œ•๐ป ๐œ•๐‘ข3 = 0, then, by the bounds on the controls, it is easy to obtain and in the form ๐‘ข1 โˆ— (๐‘ก) = (๐œ†3โˆ’๐œ†1)๐›ฝ๐‘†๐ผ 2๐ถ1๐‘ , ๐‘ข2 โˆ— (๐‘ก) = (๐œ†1โˆ’๐œ†2)๐œƒ๐‘† 2๐ถ2 , and ๐‘ข3 โˆ— (๐‘ก) = (๐œ†4โˆ’๐œ†5)๐œ๐ผ 2๐ถ3 . the optimal prevention control of disease, the reproduction numbers declared to be as follows: ๐‘…0๐‘ โˆ— = ๐‘Ÿ๐›ฝ(1โˆ’๐‘ข1)ฮป ๐œƒ๐‘(1+๐‘ข2)(๐‘‘+๐›ฟ+๐œ)(๐‘Ÿ+๐œŽ) . the optimal healing control of disease, the reproduction numbers declared to be as follows: ๐‘…0โ„Ž โˆ— = ๐‘Ÿ๐›ฝฮป ๐œƒ๐‘(๐‘‘+๐›ฟ+๐œ(1+๐‘ข3))(๐‘Ÿ+๐œŽ) . numerical method to solve the optimal control on the studied system of differential equations, it is solved by using a numerical method approach. the numerical solution used is the pontryagin maximum principle. completion of the optimal control system using the fourth-order rungeโ€“kutta procedure iterative method. the solution of the model (7)-(11) by guessing the initial and forward time from left to right with the same time co-state is solved from left to right by a forward rungeโ€“kutta fourth-order procedure in time with conditions of transversality [1]. suppose the initial number of subpopulations s0 = 61478 , v0 = 40000 (assumed), e0 = 20000 (assumed), i0 = 26940, r0 = 7637. figure 1. the dynamics of e with ๐‘ข1 โˆ— and ๐‘ข2 โˆ— controls figure 1, the optimal control on covid-19 prevention (๐‘ข1 โˆ— ) and on efforts to increase the effectiveness of vaccination (๐‘ข2 โˆ— ) are used equation (12). the results in figure 1 show that a significant difference in the e with the optimal control ๐‘ข1 โˆ— and ๐‘ข2 โˆ— compared to exposed subpopulation without control, using effective controls decreased the number of exposed covid-19 (e) than without control. optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan 46 figure 2. the dynamics of i with ๐‘ข1 โˆ— and ๐‘ข2 โˆ— controls figure 2, the optimal control (๐‘ข1 โˆ— ) and (๐‘ข2 โˆ— ) on covid-19 are used to equation (12). the results in figure 2 show that there is difference in the i with control than i without control ๐‘ข1 โˆ— and ๐‘ข2 โˆ— , using effective controls decreased the number of active covid-19 (i) compared to without control. figure 3. the dynamics of i with ๐‘ข1 โˆ— and ๐‘ข2 โˆ— controls figure 4. the dynamics of r with ๐‘ข1 โˆ— , ๐‘ข2 โˆ— and ๐‘ข3 โˆ— control figure 3, the optimal control on covid-19 prevention (๐‘ข1 โˆ— ), the optimal control (๐‘ข2 โˆ— ) and optimal control on covid-19 treatment (๐‘ข3 โˆ— ) are application equation (12). the results in figure 3 show that there is difference in the i with control than i without control ๐‘ข1 โˆ— , ๐‘ข2 โˆ— and ๐‘ข3 โˆ— compared to i without control, using effective controls decreased the number of active covid-19 (i) compared to with control strategy ๐‘ข1 โˆ— and ๐‘ข2 โˆ— and without control. optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan 47 figure 4, the results in figure 4 show that a significant difference in the r with the optimal control strategy ๐‘ข1 โˆ— , ๐‘ข2 โˆ— and ๐‘ข3 โˆ— compared to r without control. we see in figure 4 the number of recovered individuals in subpopulation of covid-19 increases rapidly with optimal control, while it is increase slowly without the control. figure 5. the profile of the optimal controls ๐‘ข1 โˆ— , ๐‘ข2 โˆ— and ๐‘ข3 โˆ— figure 5: in this scenario, we consider the covid-19 optimal prevention and treatment control of covid-19 simultaneously. the profile of the optimal prevention control ๐‘ข1 โˆ— , ๐‘ข2 โˆ— and optimal treatment control ๐‘ข3 โˆ— of this scenario in figure 5. conclusion until now, various efforts have been made by medical personnel in each country and who has been trying to find a cure and a vaccine for covid-19, but until now it has not been found so that the spread of covid-19 in the world has not been controlled. but in early 2021 a vaccine for covid-19 has been found and vaccinations have been carried out all over the world. having been vaccinated against covid-19 does not guarantee that you will not be infected with covid-19 again. the model studied in this paper discusses model covid-19 in indonesia concerning vaccinations. based on the numerical simulation obtained optimal control strategy ๐‘ข1 โˆ— and ๐‘ข2 โˆ— compared to e without control, using effective controls decreased the number of exposed covid-19 (e) compared to without control. optimal control strategy ๐‘ข1 โˆ— , ๐‘ข2 โˆ— and ๐‘ข3 โˆ— compared to i without control, using effective controls decreased the number of active covid-19 (i) compared to with control strategy ๐‘ข1 โˆ— and ๐‘ข2 โˆ— and without control. the control result in a further increase in the number who recovered of covid-19 (r) compared optimal control strategy ๐‘ข1 โˆ— and ๐‘ข2 โˆ— and without control. acknowledgments the authors would like to thank kemenristek dikti for providing higher education grants for fiscal year 2020, through lppm universitas cenderawasih who sponsored the research. optimal prevention and treatment control on sveir type model spread of covid-19 jonner nainggolan 48 references [1] kemenkes ri, โ€œdokumen resmi,โ€ pedoman kesiapan menghadapi covid-19, pp. 0โ€“ 115, 2020. [2] e. jung, s. iwami, y. takeuchi, and t. c. jo, โ€œoptimal control strategy for prevention of avian influenza pandemic,โ€ j. theor. biol., vol. 260, no. 2, pp. 220โ€“229, 2009. [3] m. veera krishna, โ€œmathematical modeling on diffusion and control of covidโ€“19,โ€ infect. dis. model., vol. 5, pp. 588โ€“597, 2020. [4] s. s. moses, s. qureshi, s. zhao, a. yusuf, u. t. mustapha, and d. he, โ€œmathematical modeling of covid-19 epidemic with effect of awareness programs,โ€ infect. dis. model., vol. 6, no. february, pp. 448โ€“460, 2021. [5] j. arino and s. portet, โ€œa simple model for covid-19,โ€ infect. dis. model., vol. 5, pp. 309โ€“315, 2020. [6] m. kamrujjaman, m. s. mahmud, and m. s. islam, โ€œcoronavirus outbreak and the mathematical growth map of covid-19,โ€ annu. res. rev. biol., no. march, pp. 72โ€“78, 2020. [7] m. imran, m. wu, y. zhao, e. beลŸe, and m. j. khan, โ€œmathematical modelling of sir for covid-19 forecasting,โ€ vol. xxx, no. february, pp. 218โ€“226, 2021. [8] s. k. biswas, j. k. ghosh, s. sarkar, and u. ghosh, โ€œcovid-19 pandemic in india: a mathematical model study,โ€ nonlinear dyn., vol. 102, no. 1, pp. 537โ€“553, 2020. [9] j. tian et al., โ€œmodeling analysis of covid-19 based on morbidity data in anhui, china,โ€ math. biosci. eng., vol. 17, no. 4, pp. 2842โ€“2852, 2020. [10] y. fang, y. nie, and m. penny, โ€œtransmission dynamics of the covid-19 outbreak and effectiveness of government interventions: a data-driven analysis,โ€ j. med. virol., vol. 92, no. 6, pp. 645โ€“659, 2020. [11] y. li et al., โ€œmathematical modeling and epidemic prediction of covid-19 and its significance to epidemic prevention and,โ€ ann. infect. dis. epidemiol., vol. 5, no. 1, p. 1052, 2020. [12] c. y. shen, โ€œlogistic growth modelling of covid-19 proliferation in china and its international implications,โ€ int. j. infect. dis., vol. 96, pp. 582โ€“589, 2020. [13] m. tomochi and m. kono, โ€œa mathematical model for covid-19 pandemicโ€”siir model: effects of asymptomatic individuals,โ€ j. gen. fam. med., vol. 22, no. 1, pp. 5โ€“ 14, 2021. [14] r. ud din, a. r. seadawy, k. shah, a. ullah, and d. baleanu, โ€œstudy of global dynamics of covid-19 via a new mathematical model,โ€ results phys., vol. 19, p. 103468, 2020. [15] j. ma, โ€œestimating epidemic exponential growth rate and basic reproduction number,โ€ infect. dis. model., vol. 5, pp. 129โ€“141, 2020. [16] r. cherniha and v. davydovych, โ€œa mathematical model for the covid-19 outbreak and its applications,โ€ symmetry, basel, vol. 12, no. 6, 2020. [17] s. lenhart and j. t. workman, optimal control applied to biological models, john chapman and hall, new york, 2007. c-type ops transformation cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 401-410 p-issn: 2086-0382; e-issn: 2477-3344 submitted: april 05, 2022 reviewed: june 29, 2022 accepted: july 07, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.15749 c-type ops transformation ahmad lazwardi*, iin ariyanti, soraya djamilah universitas muhammadiyah banjarmasin, indonesia email: lazwardiahmad@gmail.com abstract the scope of the ops transformation is limited to the mclaurin series only. while there are still many cases in mathematical modeling which are modeled in the form of a more general series. the purpose of this study is to generalize the ops transformation into a more general form that can be used for any taylor series. this study uses a literature study method, namely by reviewing the ops transformation and then observing aspects that can be generalized. next is to construct a more general definition of ops transformation which is referred to as c-type ops transformation. at the end of this research, the ops transformation will be applied to solve ordinary differential equations with variable coefficients very briefly. keywords: c-type ops transformation; ops transformation; power series introduction taylor series is accessible to all students and it is a useful mathematical tool to nonlinear equations [1]. power series is an essensial method for solving many problems in mathematics such as algebra and differential equations [2]. many cases also appear in algebra which is involving power series such as solving polynomial homotopies equations [3]. as we know on algebraic geometry topics we talk about rings, ring extensions and ideals which recently appears as series forms. for example, is on commutative ring topics. if r be a commutative ring with identity. let r[x] and r[[x]] be the collection of polynomials and, respectively, of power series with coefficients in r. their multiplications are from a class of sequences ๐œ† = {๐œ†๐‘›} of positive integers which is related one-one correspondence to its power series [4]. another branch of mathematics which also involved by power series recently is differential equations[5]. the problem of finding formal power series solutions of differential equations has a long history and it has been extensively studied in literature. using power series method however, is a more systematic way and standard basic method for approximating the solutions of such differential equations analytically and thus studying the method is of greater importance [6]. ordinary power series has also appear as solutions for fractional differential equations as told by angstmann and henry in their publication namely generalized series expansions involving integer powers and fractional powers in the independent variable have recently been shown to provide solutions to certain linear fractional order differential equations [7]. this incredible discovery is related to i. area and j. nieto who discover the solution for fractional logistics equation which is appeared as power series form [8]. http://dx.doi.org/10.18860/ca.v7i3.15749 c-type ops transformation ahmad lazwardi 402 this research discovers new theory of ordinary power series expecially the alternating method to analyze ordinary power series by considering ordinary power series as a transformation which called ops transformation. this transformation will simplify the counting process of some equations involving sigma notation. reducing the use of sigma algebra, alternating it by algebra of linear transformation. the aim of this research is to generalize the concept of ops transformation for power series of form (1). we will name it as c-type ops transformation. the letter c is indicated the center of the power series. methods we will proceed this reseach through the following procedures. first we will define the more general form of ops transforamtion. after that we will find some basic results of our new definition. we will use such results to extend the theory of ops transformation. next we will make sure that our previous definition of ops transformation to become special case for our new definition. next we will find some theorems regarding our new transformation properties. we also will make sure that our new definition is able to be applied much wider than our previous one. results and discussion first we shall define the c-type of ops transformation. recall that power series centered at c is defined to be the real valued function of the form [9] .)( 0 ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ญ n n n cxa the series has a value depending on what value of x we choose. some value of x will result the series tend to infinity. some other will result the series converges[10]. the set of x which result (1) converges is called convergence interval. the term โ€œintervalโ€ makes sense because such set always forms an interval. the half-length of such interval is called convergence radius. some smooth function f(x) at point c is able to be approximated by power series which on some value of x0 lies on its convergence interval centered at c, the result will be same, i.e f(x0) = โˆ‘ ๐‘Ž๐‘›(๐‘ฅ0 โˆ’ ๐‘) ๐‘›โˆž ๐‘›=0 . such functions are called โ€œreal analyticโ€ functions. the method of resulting such series was given by taylor which is called taylor series as below [11] .)( ! )( 0 )( ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ญ n n n cx n cf special case of taylor series is when the value of c = 0, the series is called mclaurin series. lazwardi (2021) has already able to reformulate such series into more simple form called ops transformation. the ops transformation is defined as below .)})(({ 0 ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ฝ n n nn xaxaops therefore, for some mclaurin series of the form . ! )0( 0 )( ๏ƒฅ ๏‚ฅ ๏€ฝn n n x n f (1) (2) (4) c-type ops transformation ahmad lazwardi 403 its enough to write the series simply as ๐‘‚๐‘๐‘ { ๐‘“(๐‘›)(0) ๐‘›! } . simplification of the form will make calculations and manipulations easier [12]. there are some properties regarding ops transformation as following: theorem 1. (shifting-entry) for each {๐‘Ž๐‘›} sequence, we have ๐‘‚๐‘๐‘ {0,๐‘Ž0,๐‘Ž1,โ€ฆ} = ๐‘ฅ๐‘‚๐‘๐‘ {๐‘Ž๐‘›}. theorem 2. for each {๐‘Ž๐‘›} sequence, we have ๐‘‚๐‘๐‘ ({๐‘Ž๐‘›})โˆ’ ๐‘Ž0 = ๐‘ฅ๐‘‚๐‘๐‘ ({๐‘Ž๐‘›+1}). beside two above theorems, ops transformation inherits linearity properties as well as sigma notations. theorem 3. for each {๐‘Ž๐‘›},{๐‘๐‘›} sequences and any real numbers ๐›ผ,๐›ฝ , we have ๐‘‚๐‘๐‘ (๐›ผ{๐‘Ž๐‘›} +๐›ฝ{๐‘๐‘›}) = ๐›ผ๐‘‚๐‘๐‘ {๐‘Ž๐‘›} + ๐›ฝ๐‘‚๐‘๐‘ {๐‘๐‘›}. the last theorem notices us that we can view ops transformation as linear transformation which mapping from the space of all real sequences to real numbers on its convergence radius. we shall use this necessary fact to simplify several calculations. besides that lazwardi was able to prove the formula regarding product of two ops transformations as following. theorem 4. for each {๐‘Ž๐‘›},{๐‘๐‘›} sequences, we have .}{}{ 0 ๏ƒพ ๏ƒฝ ๏ƒผ ๏ƒฎ ๏ƒญ ๏ƒฌ ๏€ฝ ๏ƒฅ ๏€ฝ ๏€ญ n k knknn baopsbopsaops this is just similiar with the product two power series but wihout involving double sigma notation. another important result of previous research is we can use the fact that the power series is always able to differentiate n-times, to construct the rule of differentiation for ops transformation. talking about differentiation of ops transformation meas we have to state the symbol for its derivative. we use ๐ท๐‘ฅ๐‘‚๐‘๐‘ {๐‘Ž๐‘›} to notate the derivative of ops transformation on its radius convergence. therefore we have the following theorems. theorem 5. for each {๐‘Ž๐‘›} sequence, we have ๐ท๐‘ฅ๐‘‚๐‘๐‘ ({๐‘Ž๐‘›}) = ๐‘‚๐‘๐‘ ({(๐‘› + 1)๐‘Ž๐‘›+1}). here is some nice modification formula theorem 6. for each {๐‘Ž๐‘›} sequence, we have ๐‘ฅ๐ท๐‘ฅ๐‘‚๐‘๐‘ ({๐‘Ž๐‘›}) = ๐‘‚๐‘๐‘ ({๐‘›๐‘Ž๐‘›}). if we pay more attention to the (1). there are some difference between (1) and (3) i.e the value of c will be varied and able to consider it as a variable. therefore we have at least 4 variable involved in calculations of (1) which is more complicated than (3) expecially special type of ordinary power series which called taylor series. as told by salwa in her research that many infinite series form are recently appear in sequence spaces expecially on ๐›ฝ โˆ’ ๐‘‘๐‘ข๐‘Ž๐‘™ sequence spaces which is defined as infinite series form [13] one of popular application from taylor series is the iterative method of the (5) (6) (7) (8) (9) (10) c-type ops transformation ahmad lazwardi 404 differential transform methor has already been used for a while, by the โ€˜โ€˜traditionalโ€™โ€™ taylor series method users which have even better developed the method. suppose that we have power series of form (1) centered at c. we define definition 1. let c be a real number and suppose power series โˆ‘๐‘Ž๐‘›(๐‘ฅ โˆ’ ๐‘) ๐‘› has positive convergence radius near c. define the c-type ops transformation as following ๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›}(๐‘ฅ) = โˆ‘๐‘Ž๐‘› โˆž ๐‘›=0 (๐‘ฅ โˆ’ ๐‘)๐‘›. it looks similiar to the previous form with additional superscript c. note that the additional superscript c on ops roles as index depending on value c on the right side. for some reason, we shall keep c to become upper index because we shall use lower index with another use on the next research. recall that one of the most suitable form which is similiar to our last definition is taylor series of analytic function on c. if ๐‘“(๐‘ฅ) is an analytic function near c, then we can write f as taylor series on some neighborhood c as below ๐‘“(๐‘ฅ) = โˆ‘ ๐‘“(๐‘›)(๐‘) ๐‘›! โˆž ๐‘›=0 (๐‘ฅ โˆ’ ๐‘)๐‘›. hence, taylor series of f can be written as c-type ops transformation as ๐‘“(๐‘ฅ) = ๐‘‚๐‘๐‘ ๐‘ { ๐‘“(๐‘›)(๐‘) ๐‘›! }(๐‘ฅ). for some reason, we just write ๐‘“ = ๐‘‚๐‘๐‘ ๐‘ { ๐‘“(๐‘›)(๐‘) ๐‘›! }. please pay more attention here. upper index c is viewed as variable (not necessary fixed). we can write ๐‘‚๐‘๐‘ ๐‘Ž { ๐‘“(๐‘›)(๐‘) ๐‘›! } = โˆ‘ ๐‘“(๐‘›)(๐‘) ๐‘›! โˆž ๐‘›=0 (๐‘ฅ โˆ’ ๐‘Ž)๐‘›. i.e when we change the value of upper index c by a, the value of ๐‘“(๐‘›)(๐‘) ๐‘›! doesnโ€™t change but the center of power series on the right side changes to a. its clear that ops transformation is a special case of c-type of ops transformation by taking value c = 0 [14], i.e ๐‘‚๐‘๐‘ 0{๐‘Ž๐‘›} = ๐‘‚๐‘๐‘ {๐‘Ž๐‘›}. for more brief information. we shall discuss some more examples as following. (11) (12) (13) (14) (15) c-type ops transformation ahmad lazwardi 405 example 1. ๐‘‚๐‘๐‘ ๐‘{1} = 1 1โˆ’(๐‘ฅโˆ’๐‘) . proof: observe that ๐‘‚๐‘๐‘ ๐‘{1} = โˆ‘(๐‘ฅ โˆ’ ๐‘)๐‘›. suppose that ๐‘ฆ = ๐‘ฅ โˆ’ ๐‘ then the right side of equation become โˆ‘๐‘ฆ๐‘› = 1 1โˆ’๐‘ฆ for |๐‘ฆ| < 1. hence we have for |๐‘ฅ โˆ’ ๐‘| < 1 or ๐‘ โˆ’ 1 < ๐‘ฅ < ๐‘ + 1 we will get the series โˆ‘(๐‘ฅ โˆ’ ๐‘)๐‘› will converge and we have ๐‘‚๐‘๐‘ ๐‘{1} = 1 1โˆ’(๐‘ฅโˆ’๐‘) . here is another example example 2. ๐‘‚๐‘๐‘ ๐‘ { 1 ๐‘›! } = ๐‘’๐‘ฅโˆ’๐‘. now we shall analyze more properties of c-type ops transformation. first we success to preserve the โ€œshifting indexโ€ properties as well as previous form [15] theorem 7. (shifting-entry) for each {๐‘Ž๐‘›} sequence, we have ๐‘‚๐‘๐‘ ๐‘{0,๐‘Ž0,๐‘Ž1,โ€ฆ} = (๐‘ฅ โˆ’ ๐‘)๐‘‚๐‘๐‘  ๐‘{๐‘Ž๐‘›}. proof: observe that ๐‘‚๐‘๐‘ ๐‘{0,๐‘Ž0,๐‘Ž1,โ€ฆ} = 0 + โˆ‘๐‘Ž๐‘›โˆ’1 โˆž ๐‘›=1 (๐‘ฅ โˆ’ ๐‘)๐‘› = โˆ‘๐‘Ž๐‘›(๐‘ฅ โˆ’ ๐‘) ๐‘›+1 โˆž ๐‘›=0 = (๐‘ฅ โˆ’ ๐‘)โˆ‘๐‘Ž๐‘› โˆž ๐‘›=0 (๐‘ฅ โˆ’ ๐‘)๐‘› = (๐‘ฅ โˆ’ ๐‘)๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›} hence by induction we can conclude as corollary below corollary 1. for each {๐‘Ž๐‘›} sequence, we have ๐‘‚๐‘๐‘ ๐‘ {0,0,0, . . ,0โŸ ๐‘˜โˆ’๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘’๐‘  ๐‘Ž0,๐‘Ž1,โ€ฆ} = (๐‘ฅ โˆ’ ๐‘) ๐‘˜๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›}. proof: for n = 1 the statement is true due to theorem 7. lets assume for n = k, the statement is also true, i.e (17) holds. for n = k+1, we have ๐‘‚๐‘๐‘ ๐‘ { 0,0,0, . . ,0โŸ ๐‘˜+1โˆ’๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘’๐‘  ๐‘Ž0,๐‘Ž1,โ€ฆ} = (๐‘ฅ โˆ’ ๐‘) ๐‘‚๐‘๐‘  ๐‘ {0,0,0, . . ,0โŸ ๐‘˜โˆ’๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘’๐‘  ๐‘Ž0,๐‘Ž1,โ€ฆ} = (๐‘ฅ โˆ’ ๐‘)((๐‘ฅ โˆ’ ๐‘)๐‘˜๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›}) = (๐‘ฅ โˆ’ ๐‘)๐‘˜+1๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›} theorem 8. for each {๐‘Ž๐‘›} sequence, we have (16) (17) (18) c-type ops transformation ahmad lazwardi 406 ๐‘‚๐‘๐‘ ๐‘({๐‘Ž๐‘›})โˆ’ ๐‘Ž0 = (๐‘ฅ โˆ’ ๐‘)๐‘‚๐‘๐‘  ๐‘{๐‘Ž๐‘›+1}. proof: observe that ๐‘‚๐‘๐‘ ๐‘({๐‘Ž๐‘›})โˆ’ ๐‘Ž0 = โˆ‘๐‘Ž๐‘›(๐‘ฅ โˆ’ ๐‘) ๐‘› โˆž ๐‘›=1 = โˆ‘๐‘Ž๐‘›+1 โˆž ๐‘›=0 (๐‘ฅ โˆ’ ๐‘)๐‘›+1 = (๐‘ฅ โˆ’ ๐‘)โˆ‘๐‘Ž๐‘›+1 โˆž ๐‘›=0 (๐‘ฅ โˆ’ ๐‘)๐‘› = (๐‘ฅ โˆ’ ๐‘)๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›+1} fortunately we also sucess to keep linearity properties of ops transformation[16]. theorem 9. for each {๐‘Ž๐‘›},{๐‘๐‘›} sequences and any real numbers ๐›ผ, ๐›ฝ, we have ๐‘‚๐‘๐‘ ๐‘(๐›ผ{๐‘Ž๐‘›} + ๐›ฝ{๐‘๐‘›}) = ๐›ผ๐‘‚๐‘๐‘  ๐‘{๐‘Ž๐‘›}+ ๐›ฝ๐‘‚๐‘๐‘  ๐‘{๐‘๐‘›}. proof: lets observe ๐‘‚๐‘๐‘ ๐‘(๐›ผ{๐‘Ž๐‘›}+ ๐›ฝ{๐‘๐‘›}) = โˆ‘(๐›ผ๐‘Ž๐‘› + ๐›ฝ๐‘๐‘›)(๐‘ฅ โˆ’ ๐‘) ๐‘› โˆž ๐‘›=0 = ๐›ผ โˆ‘๐‘Ž๐‘› โˆž ๐‘›=0 (๐‘ฅ โˆ’๐‘)๐‘› + ๐›ฝ โˆ‘๐‘Ž๐‘› โˆž ๐‘›=0 (๐‘ฅ โˆ’ ๐‘)๐‘› = ๐›ผ๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›}+ ๐›ฝ๐‘‚๐‘๐‘  ๐‘{๐‘๐‘›} although we success to prove linearity of ops transformation, but unfortunately that linearity of upper index, i.e ๐‘‚๐‘๐‘ ๐›ผ๐‘+๐›ฝ๐‘‘{๐‘Ž๐‘›} โ‰  ๐‘‚๐‘๐‘  ๐›ผ๐‘{๐‘Ž๐‘›} +๐‘‚๐‘๐‘  ๐›ฝ๐‘‘{๐‘๐‘›}. next we shall observe properties of c-type ops transformation for product of two power series. its still works similarily as previous result. theorem 10. for each {๐‘Ž๐‘›},{๐‘๐‘›} sequences, we have ๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›}๐‘‚๐‘๐‘  ๐‘{๐‘๐‘›} = ๐‘‚๐‘๐‘  ๐‘ {โˆ‘๐‘Ž๐‘˜๐‘๐‘›โˆ’๐‘˜ ๐‘› ๐‘˜=0 }. proof: let {๐‘Ž๐‘›},{๐‘๐‘›} any two sequences, we have (19) (20) c-type ops transformation ahmad lazwardi 407 }{}{ n c n c bopsaops = ...))()(...)()()(( 2 210 2 210 ๏€ซ๏€ญ๏€ซ๏€ญ๏€ซ๏€ซ๏€ญ๏€ซ๏€ญ๏€ซ cxbcxbbcxacxaa ......))()((...))((( 101100 ๏€ซ๏€ซ๏€ญ๏€ซ๏€ญ๏€ซ๏€ซ๏€ญ๏€ซ๏€ฝ cxbbcxacxbba ...)(.)()()( 2 11 2 20011000 cxbacxbacxbacxbaba ๏€ญ๏€ซ๏€ญ๏€ซ๏€ญ๏€ซ๏€ญ๏€ซ๏€ฝ ...))(())(( 2 021120011000 ๏€ซ๏€ญ๏€ซ๏€ซ๏€ซ๏€ญ๏€ซ๏€ซ๏€ฝ cxbababacxbababa n n n k knk cxba )( 0 0 ๏€ญ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ ๏ƒฅ ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ฝ ๏€ญ ๏ƒพ ๏ƒฝ ๏ƒผ ๏ƒฎ ๏ƒญ ๏ƒฌ ๏€ฝ ๏ƒฅ ๏€ฝ ๏€ญ n k knk c baops 0 from above theorem, we can conclude easily the following fact example 3. (๐‘‚๐‘๐‘ ๐‘{1})2 = ๐‘‚๐‘๐‘ ๐‘{๐‘› + 1}. translating the notation into sigma notation we get โˆ‘(๐‘› +1)(๐‘ฅ โˆ’ ๐‘)๐‘› โˆž ๐‘›=0 = ( 1 1 โˆ’(๐‘ฅ โˆ’ ๐‘) ) 2 from example 1 we can observe that how c-type ops transformations helps us to calculate, or manipulate some power series. here is another example example 4. (๐‘‚๐‘๐‘ ๐‘ { ๐Ÿ ๐’! }) ๐Ÿ = ๐‘‚๐‘๐‘ ๐’„ {โˆ‘ ๐Ÿ ๐’Œ!(๐’โˆ’๐’Œ)! ๐’ ๐’Œ=๐ŸŽ }. therefore we concluce that โˆ‘ โˆ‘( 1 ๐‘˜!(๐‘› โˆ’ ๐‘˜)! )(๐‘ฅ โˆ’ ๐‘)๐‘› ๐‘› ๐‘˜=0 โˆž ๐‘›=0 = ๐‘’2๐‘ฅโˆ’2๐‘ hence we can take another form of ๐‘’๐‘ฅ as following equation ๐‘’๐‘ฅ = (โˆ‘ โˆ‘( ๐‘’๐‘ ๐‘˜!(๐‘› โˆ’ ๐‘˜)! )(๐‘ฅ โˆ’ ๐‘)๐‘› ๐‘› ๐‘˜=0 โˆž ๐‘›=0 ) 1 2 as for last discussion we shall observe how c-type ops transformation properties when we take its derivatives. we still use ๐ท๐‘ฅ๐‘‚๐‘๐‘  ๐‘{๐‘Ž๐‘›} to notate the derivative of ops transformation on its radius convergence. consider the fact that the form ๐‘ฅ โˆ’ ๐‘ has the same derivative with x itself [17]. therefore we still able to adapt the formula for derivative of previous ops transformation as below c-type ops transformation ahmad lazwardi 408 theorem 11. for each {๐‘Ž๐‘›} sequence, we have ๐ท๐‘ฅ๐‘‚๐‘๐‘  ๐‘({๐‘Ž๐‘›}) = ๐‘‚๐‘๐‘  ๐‘({(๐‘› + 1)๐‘Ž๐‘›+1}). proof: observe that ๐ท๐‘ฅ๐‘‚๐‘๐‘  ๐‘({๐‘Ž๐‘›}) = ๐‘‘ ๐‘‘๐‘ฅ โˆ‘๐‘Ž๐‘›(๐‘ฅ โˆ’ ๐‘) ๐‘› โˆž ๐‘›=0 = โˆ‘๐‘›๐‘Ž๐‘›(๐‘ฅ โˆ’๐‘) ๐‘›โˆ’1 โˆž ๐‘›=1 = โˆ‘(๐‘› + 1)๐‘Ž๐‘›+1(๐‘ฅ โˆ’ ๐‘) ๐‘› โˆž ๐‘›=0 = ๐‘‚๐‘๐‘ ๐‘{(๐‘› + 1)๐‘Ž๐‘›+1} trivialy we also can conclude the next modification theorem theorem 12. for each {๐‘Ž๐‘›} sequence, we have (๐‘ฅ โˆ’ ๐‘)๐ท๐‘ฅ๐‘‚๐‘๐‘  ๐‘({๐‘Ž๐‘›}) = ๐‘‚๐‘๐‘  ๐‘{๐‘›๐‘Ž๐‘›}. proof: observe that (๐‘ฅ โˆ’ ๐‘)๐ท๐‘ฅ๐‘‚๐‘๐‘  ๐‘({๐‘Ž๐‘›}) })1{()( 1๏€ซ๏€ซ๏€ญ๏€ฝ n c anopscx ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ซ ๏€ญ๏€ซ๏€ญ๏€ฝ 0 1 )()1()( n n n cxancx ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ซ ๏€ซ ๏€ญ๏€ซ๏€ฝ 0 1 1 )()1( n n n cxan ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ญ๏€ฝ 0 )( n n n cxna }{ n c naops๏€ฝ from the last two theorems, we also can inductively conclude the following two corollaries. corollary 2. for each {๐‘Ž๐‘›} sequence, we have ๐ท๐‘ฅ ๐‘˜๐‘‚๐‘๐‘ ๐‘{๐‘Ž๐‘›} = ๐‘‚๐‘๐‘  ๐‘ { (๐‘› + ๐‘˜)! ๐‘›! ๐‘Ž๐‘›+๐‘˜}. where ๐ท๐‘ฅ ๐‘˜ is kth-derivative of ops transformation [15]. corollary 3. for each {๐‘Ž๐‘›} sequence, we have ๐‘‚๐‘๐‘ ๐‘{๐‘›๐‘˜๐‘Ž๐‘›} = (๐‘ฅ โˆ’ ๐‘)๐ท๐‘ฅ((๐‘ฅ โˆ’ ๐‘)๐ท๐‘ฅ(โ€ฆ))(๐‘ฅ โˆ’๐‘)๐ท๐‘ฅ๐‘‚๐‘๐‘  ๐‘{๐‘Ž๐‘›}.โŸ ๐‘˜โˆ’๐‘ก๐‘–๐‘š๐‘’๐‘  at the end of this research, we will try our transformation to solve some ordinary differential equation with variable coefficient. this solution must be exist due to [18] for example the equation (21) (22) (23) (24) c-type ops transformation ahmad lazwardi 409 02')1(2'' ๏€ฝ๏€ซ๏€ญ๏€ญ yyxy (25) we will find the solution of (25) near c = 1 as following: step 1: assume the solution has the form ๏ƒฅ ๏‚ฅ ๏€ฝ ๏€ญ๏€ฝ 0 )1( n n n xcy . step 2: transform (25) to ops transformation equation. }0{}{2}{)1(2}{ 11112 opscopscopsdxcopsd nnxnx ๏€ฝ๏€ซ๏€ญ๏€ญ step 3: solve the equation }{2}{)1(2}{ 2 nnxn c x copscopsdxcopsd ๏€ซ๏€ญ๏€ญ }2{})1)(2{( 1 2 1 nn ncopscnnops ๏€ญ๏€ซ๏€ซ๏€ฝ ๏€ซ }2{ 1 n cops๏€ซ }22)1)(2{( 2 1 nnn cnccnnops ๏€ซ๏€ญ๏€ซ๏€ซ๏€ฝ ๏€ซ }0{ 1 ops๏€ฝ step 4: remove ops transformation from the equation, we have (๐‘› + 2)(๐‘› + 1)๐ถ๐‘›+2 = (2๐‘› โˆ’ 2)๐ถ๐‘› for n = 0,1,2, ... step 5: by evaluating n one by one, we have the solution ๐‘ฆ = ๐ถ0 (1 โˆ’ (๐‘ฅ โˆ’1) 2 โˆ’ 1 6 (๐‘ฅ โˆ’1)4 + โ‹ฏ) +๐ถ1(๐‘ฅ โˆ’1) conclusions based on the discussion above, it can be concluded that c-type ops transformation is a generalization of the ordinary ops transformation with additional c as the upper index. all properties of ordinary ops transformations can still apply in c-type ops transformations. the c-type ops transformation can also be applied to solve ordinary differential equations for variable coefficients. references [1] h. ji he and f. yu ji, โ€œtaylor series solution for lane-emden equation,โ€ j. math. chem., vol. 57, no. 1, pp. 1932โ€“1934, 2019. [2] i. esuabana and e. j. okon, โ€œpower series solutions of second order ordinary differential equation using power series solutions of second order ordinary differential equation using frobenius method,โ€ j. res. appl. math., no. november, pp. 44โ€“50, 2021. [3] n. bliss and j. verschelde, โ€œthe method of gaussโ€“newton to compute power series solutions of polynomial homotopies,โ€ linear algebra appl., vol. 542, no. 1440534, pp. 569โ€“588, 2018, doi: 10.1016/j.laa.2017.10.022. [4] w. gyu chang and p. tan thoan, โ€œpolynomial and power series ring extensions from sequences,โ€ j. algebr. its appl., vol. 21, no. 3, pp. 78โ€“86, 2022. [5] s. falkensteiner and j. r. sendra, โ€œformal power series solutions of first order autonomous algebraic ordinary differential equations,โ€ pp. 1โ€“2, 2018. [6] m. field, t. michael, r. e. coren, a. masce, and m. iaeng, โ€œinternational journal for innovative research in solving ordinary differential equations,โ€ internatioal j. innov. res. multidiscip. f., vol. 2, no. 7, pp. 10โ€“19, 2016. [7] c. n. angstmann and b. i. henry, โ€œgeneralized fractional power series solutions for fractional differential equations,โ€ appl. math. lett., vol. 102, p. 106107, 2020, doi: 10.1016/j.aml.2019.106107. c-type ops transformation ahmad lazwardi 410 [8] i. area and j. j. nieto, โ€œpower series solution of the fractional logistic equation,โ€ phys. a stat. mech. its appl., vol. 573, p. 125947, 2021, doi: 10.1016/j.physa.2021.125947. [9] m. zabrocky, an introduction to ordinary generating functions. new york: york university, 2015. [10] u. al khawaja and q. m. al-mdallal, โ€œconvergent power series of sechโก(x) and solutions to nonlinear differential equations,โ€ int. j. differ. equations, vol. 2018, no. 1, pp. 1โ€“10, 2018, doi: 10.1155/2018/6043936. [11] a. aslam, e. machisi, a. h. syofra, r. permatasari, and l. a. nazara, โ€œthe frobenius method for solving ordinary differential equation with coefficient variable,โ€ int. j. sci. res., vol. 5, no. 7, pp. 2233โ€“2235, 2016, doi: 10.21275/v5i7.art2016719. [12] a. lazwardi, โ€œops transformation,โ€ j. math. probl. equations stat., vol. 2, no. 1, pp. 75โ€“81, 2021, doi: 10.22271/math.2021.v2.i1a.37. [13] s. salwa, q. aini, and n. w. switrayni, โ€œbeta-dual dari ruang barisan n-delta lamda infinity, n-delta lamda dan n-delta lamda 0,โ€ j. mat., vol. 11, no. 2, pp. 119โ€“124, 2021, doi: 10.24843/jmat.2021.v11.i02.p141. [14] h. s. wilf, generating functionology, vol. 31, no. 09. pensylvania: academic press, 1994. doi: 10.5860/choice.31-4969. [15] s. k. lando, lectures on generating functions, vol. 23. united states of america: american mathematica society, 2002. [16] y. bo, w. cai, and y. wang, โ€œa note on the generating function method,โ€ adv. appl. math. mech., vol. 13, no. 4, pp. 982โ€“1004, 2021, doi: 10.4208/aamm.oa-20200286. [17] n. u. khan, t. usman, and j. choi, โ€œcertain generating function of hermitebernoulli-laguerre polynomials,โ€ far east j. math. sci., vol. 101, no. 4, pp. 893โ€“ 908, 2017, doi: 10.17654/ms101040893. [18] s. falkensteiner, y. zhang, and n. thieou, โ€œon existence and uniqueness of formal power series solutions of algebraic ordinary differential equations,โ€ mediterranian j. math., vol. 19, no. 2, pp. 95โ€“114, 2022, doi: 10.3389/fphy.2021.795693. bayesian hurdle poisson regression for assumption violation cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 384-393 p-issn: 2086-0382; e-issn: 2477-3344 submitted: march 05, 2022 reviewed: april 23, 2022 accepted: april 26, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.15549 bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah*, ani budi astuti, maria bernadetha t. mitakda department of statistics, faculty of mathematics and natural science, brawijaya university, indonesia email: nurkamilahs@student.ub.ac.id abstract violation of the poisson regression assumption can cause the model formed will produce an unbiased estimator. there is a good method for estimating parameters on small sample sizes and on all distributions, namely the bayesian method. the number of death due to chronic filariasis data violates the poisson regression assumption (overdispersion and response variable did not follow poisson distribution), so it is modeled with the bayesian hurdle poisson regression. with the bayesian method, convergence is fullfilled when 300000 iterations and 7 thin are performed. in addition to presenting an alternative method for estimating the hurdle poisson regression parameter, the model obtained can be used by the government in efforts to mitigate disease disasters through efforts to prevent, control, and handle cases of filariasis. the results showed that in the logit model only the percentage of households that have access to proper sanitation in 34 provinces in indonesia had a significant effect on the number of death due to chronic filariasis cases in 34 provinces in indonesia (๐‘Œ). the truncated poisson model resulted in all predictor variables having a significant effect on the number of death due to chronic filariasis cases. keywords: bayesian; filariasis; hurdle; overdispersion; poisson introduction an important assumption in poisson regression analysis is that the response variable in the form of count distribute poisson, does not occur multicollinearity in the predictor variable, and occurs equidispersion (the mean of the data is equal to its variance). however, in certain cases, the assumption of conformity of poisson's distribution and equidispersion is not fullfilled. this can cause the model formed will produce an unbiased estimator [1]. equidispersion violations or often known as overdispersion (variance greater than the mean) can be overcome with zero inflated model and hurdle model. the handling of overdispersion in this study uses the hurdle poisson model because hurdle model better than the zero inflated model [2]. the parameter estimation method often used in the poisson hurdle model is maximum likelihood estimation (mle). however, mle cannot estimate parameters on small sample sizes and on certain distributions. there is a good method for estimating parameters on small sample sizes and on all distributions, namely the bayesian method. the advantage of the bayesian method is that it can estimate parameters for extremely small observations and can be used for all distributions [3]. the application of the bayesian method to overdispersion data has been carried out to analyze the number of filariasis sufferers in papua province, using the bayesian zero http://dx.doi.org/10.18860/ca.v7i3.15549 mailto:email1@gmail.com bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 385 inflated poisson model [4]. in this study will model data on the number of death from chronic filariasis cases in indonesia that violate the assumption of equidispersion and suitability of poisson distribution with bayesian hurdle poisson regression. filariasis or also known as elephant foot disease is believed to have existed since b.c. because in 1501-1480 bc found an ancient relief in a cemetery temple. queen hatshepsut in thebet, egypt who depicts the princess punt suffering from filariasis on her legs [5]. filariasis in indonesia is one of the endemic diseases (a disease that continues to infect certain regions) and was first reported by haga and van eecke in 1889 in jakarta caused by brugaria malayi [6]. acute clinical symptoms of filariasis disease include inflammation and swelling of the lymph canal accompanied by fever, headache, weak feeling and the onset of abscesses/ulcers while symptoms chronic clinical is the occurrence of enlargement that persists in the legs, arms, breasts and genitals of women and men [7]. one of the efforts to inhibit the transmission of filariasis disease is to mass preventive drug delivery (mpdd) filariasis implemented by endemic districts/cities of filariasis [5]. the success of the filariasis control program can be known by looking at the number of districts/cities that managed to reduce the number of microphilia to <1% [8]. this study discusses the influence of the number of chronic cases of filariasis in 34 provinces in indonesia (๐‘‹1), the number of districts/cities succeeded in reducing mikrophilia <1% in 34 provinces in indonesia (๐‘‹2), the number of districts/cities still carry out mass preventive drug delivery (mpdd) filariasis in 34 provinces in indonesia (๐‘‹3), population density in 34 provinces in indonesia (๐‘‹4), and the percentage of households that have access to proper sanitation in 34 provinces in indonesia (๐‘‹5) against the number of deaths from chronic filariasis in 34 provinces in indonesia (๐‘Œ). the results of this study can be utilized for many things, namely (1) through the bayesian hurdle poisson regression model that is built can be identified factors that affect the number of cases of chronic filariasis death in indonesia, so that this information can be utilized for appropriate policy making for the central and local governments and related agencies in order to mitigate the disaster of chronic filariasis disease in indonesia through prevention efforts, control, and handling of the case. (2) by using bayesian parameter estimation approach, it is very useful and superior in various data challenge cases, namely for various sample sizes (any sample) small or large and various distributions (any distribution) with a data driven concept. methods this study uses secondary data from the indonesian health profile in 2020, namely the number of cases of chronic filariasis in 2020 with five predictor variables and one response variable [9]. the first step that must be done is testing the poisson regression assumption (poisson distribution suitability, non-multicollinearity, and overdispersion testing). the variables used in this study are the number of chronic cases of filariasis in 34 provinces in indonesia (๐‘‹1), the number of districts/cities succeeded in reducing mikrophilia <1% in 34 provinces in indonesia (๐‘‹2), the number of districts/cities still carry out mass preventive drug delivery (mpdd) filariasis in 34 provinces in indonesia (๐‘‹3), population density in 34 provinces in indonesia (๐‘‹4), and the percentage of households that have access to proper sanitation in 34 provinces in indonesia (๐‘‹5) against the number of deaths from chronic filariasis in 34 provinces in indonesia (๐‘Œ). bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 386 poisson regression assumption poisson distribution suitability was tested with the kolmogorov-smirnov. kolmogorov-smirnov test statistics for testing the suitability of the poisson distribution are presented in equation (1)[10]. ๐ท = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š|๐น๐‘ (๐‘ฆ(๐‘–)) โˆ’ ๐‘ƒ(๐‘ฆ(๐‘–), ๐œ†)| (1) if ๐ท > ๐ท(๐‘›,๐›ผ) or ๐‘๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ < 0.05, so we can conclude that response variable does not follow a poisson distribution. assumption of non-multicollinierity was tested with the ๐‘‰๐ผ๐น criteria. if the ๐‘‰๐ผ๐น๐‘— exceeds 10, non-multicollinierity assumption is not fulfilled [11]. the third assumption test that must be done is the overdispersion test. the overdispersion test is carried out by calculating pearson chi square divided by the degrees of freedom of residual based on the formula (2). ๐œ’๐‘ƒ๐‘’๐‘Ž๐‘Ÿ๐‘ ๐‘œ๐‘› 2 = โˆ‘ (๐‘ฆ๐‘–โˆ’๏ฟฝฬ‚๏ฟฝ๐‘–) 2 ๏ฟฝฬ‚๏ฟฝ๐‘– ๐‘› ๐‘–=1 (2) where: ๏ฟฝฬ‚๏ฟฝ๐‘– = ๏ฟฝฬ‚๏ฟฝ๐‘– = ๐‘’๐‘ฅ๐‘(๏ฟฝฬ‚๏ฟฝ0 + ๏ฟฝฬ‚๏ฟฝ1๐‘‹๐‘–1 + ๏ฟฝฬ‚๏ฟฝ2๐‘‹๐‘–2 + โ‹ฏ + ๏ฟฝฬ‚๏ฟฝ๐‘˜ ๐‘‹๐‘–๐‘˜ ) ๐‘‘๐‘“ = ๐‘› โˆ’ ๐‘ ๐‘› : number of observations ๐‘ : number of parameters (๐‘˜ + 1) if (๐œ’๐‘ƒ๐‘’๐‘Ž๐‘Ÿ๐‘ ๐‘œ๐‘› 2 ๐‘‘๐‘“โ„ ) > 1 then it can be said that observations contain overdispersion [12]. bayesian method suppose there are parameters ๐œƒ to be estimated. in bayesian method, parameters ๐œƒ treated as variable will have value in the domain ๐‘“(๐œƒ). the prior distribution is the initial information to form the posterior. with prior information combined with data, calculating the posterior will be easier. based on the bayesian method, the posterior distribution is proportional (comparable) to the combination of the prior distribution and the likelihood function based on equation (3) [13]. ๐‘“(๐œƒ|๐‘ฆ) โˆ ๐‘“(๐‘ฆ|๐œƒ)๐‘“(๐œƒ) (3) where: ๐‘“(๐‘ฆ|๐œƒ) : likelihood function ๐‘“(๐œƒ) : prior distribution function ๐‘“(๐œƒ|๐‘ฆ) : posterior distribution function bayesian hurdle poisson regression there are three important components in bayesian method, namely (1) the likelihood function of the hpr model, (2) the prior distribution and (3) the posterior distribution. the likelihood function of the hpr model is as presented in equation (4). ๐‘“(๐‘Œ|๐›ฝ, ๐›ฟ) = โˆ 1 1+๐‘’๐‘ฅ๐‘(๐‘ฟ๐‘‡๐œน) ๐‘› ๐‘–=1 ๐‘ฆ๐‘–=0 ร— โˆ [๐‘’๐‘ฅ๐‘(โˆ’๐‘’๐‘ฅ๐‘(๐‘ฟ๐‘‡๐œท))][๐‘’๐‘ฅ๐‘(๐‘ฟ๐‘‡๐œท)] ๐‘ฆ๐‘– (1โˆ’[๐‘’๐‘ฅ๐‘(โˆ’๐‘’๐‘ฅ๐‘(๐‘ฟ๐‘‡๐œท))])๐‘ฆ๐‘–! ๐‘› ๐‘–=1 ๐‘ฆ๐‘–>0 (4) the prior distribution for ๐›ฝ and ๐›ฟ is assumed to be normally distributed with the mean and variance ๐œŽ2 with the form as shown in equation (5). ๐‘“(๐›ฝ, ๐›ฟ) = โˆ 1 ๐œŽ๐›ฝ โˆš2๐œ‹ ๐‘’๐‘ฅ๐‘ (โˆ’ (๐›ฝโˆ’๐œ‡๐›ฝ) 2 2๐œŽ๐›ฝ 2 ) ๐‘˜ ๐‘—=0 ร— โˆ 1 ๐œŽ๐›ฟโˆš2๐œ‹ ๐‘’๐‘ฅ๐‘ (โˆ’ (๐›ฟโˆ’๐œ‡๐›ฟ) 2 2๐œŽ๐›ฟ 2 ) ๐‘˜ ๐‘—=0 (5) the posterior distribution is obtained from the product of the likelihood function and the prior distribution in the form of an equation as presented in equation (6). bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 387 ๐‘“(๐›ฝ, ๐›ฟ|๐‘Œ) โˆ โˆ 1 1+๐‘’๐‘ฅ๐‘(๐‘ฟ๐‘‡๐œน) ๐‘› ๐‘–=1 ๐‘ฆ๐‘–=0 โˆ [๐‘’๐‘ฅ๐‘(โˆ’๐‘’๐‘ฅ๐‘(๐‘ฟ๐‘‡๐œท))][๐‘’๐‘ฅ๐‘(๐‘ฟ๐‘‡๐œท)] ๐‘ฆ๐‘– (1โˆ’[๐‘’๐‘ฅ๐‘(โˆ’๐‘’๐‘ฅ๐‘(๐‘ฟ๐‘‡๐œท))])๐‘ฆ๐‘–! ๐‘› ๐‘–=1 ๐‘ฆ๐‘–>0 ร— โˆ 1 ๐œŽ๐›ฝโˆš2๐œ‹ ๐‘’๐‘ฅ๐‘ (โˆ’ (๐›ฝโˆ’๐œ‡๐›ฝ) 2 2๐œŽ๐›ฝ 2 ) ๐‘˜ ๐‘—=0 โˆ 1 ๐œŽ๐›ฟโˆš2๐œ‹ ๐‘’๐‘ฅ๐‘ (โˆ’ (๐›ฟโˆ’๐œ‡๐›ฟ) 2 2๐œŽ๐›ฟ 2 ) ๐‘˜ ๐‘—=0 (6) the posterior distribution of the bayesian hurdle poisson regression model parameters has a complex function and requires a difficult integration process, so it is not easy to obtain analytically. therefore, a numerical approach is needed using the markov chain monte carlo (mcmc) simulation method [14]. bayesian model convergence test convergence test method consists of trace plot, autocorrelation plot, ergodic mean plot, and monte carlo error (mc error) [15]. convergence will be fullfilled if the trace plot does not form an ascending or descending pattern, the autocorrelation plot is close to one and the next lag is close to zero, after several iterations the ergodic mean plot is stable, or mc error is less than 5% of the standard deviation of each parameter. results and discussion the results of the analysis begin with testing the poisson regression assumption, then the parameter estimator of the bayesian hurdle poisson regression. result of poisson regression assumption test the first assumption in poisson regression is the response variable in the form of count with poisson distribution based on hypothesis. ๐ป0: the number of death due to chronic filariasis cases follows a poisson distribution versus ๐ป1: the number of death due to chronic filariasis cases does not follows a poisson distribution the results of the kolmogorov-smirnov test with software r showed that the ๐‘๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ less than 2.2 ร— 10โˆ’16. this suggests that the response variable did not follows a poisson distribution. then do fit distribution with easyfit software. poisson distribution ranked third after uniform and geometric distribution. since poisson regression is the most common regression model for modeling response variable in the form of count, then no one has researched related to uniform regression and geometric regression, the study still uses poisson's regression model, but uses the bayesian method to estimate the parameters because they have advantages that can be applied to all distribution. the next assumption is non-multocollinearity. the results of the multicollinearity test with the ๐‘‰๐ผ๐น๐‘— are presented in table 1. table 1. vif for all predictors variable ๐‘‰๐ผ๐น๐‘— ๐‘‹1 4.782 ๐‘‹2 1.530 ๐‘‹3 3.872 ๐‘‹4 1.173 ๐‘‹5 3.162 bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 388 table 1 shows that the ๐‘‰๐ผ๐น of all predictor variables is less than 10, so it can be concluded that the non-multicollinearity assumption is fullfilled. the last assumption in poisson regression is the occurrence of equidispersion. overdispersion testing was carried out with ๐œ’๐‘ƒ๐‘’๐‘Ž๐‘Ÿ๐‘ ๐‘œ๐‘› 2 ๐‘‘๐‘“โ„ . data is said to contain overdispersion if (๐œ’๐‘ƒ๐‘’๐‘Ž๐‘Ÿ๐‘ ๐‘œ๐‘› 2 ๐‘‘๐‘“โ„ ) > 1. the ๐œ’๐‘ƒ๐‘’๐‘Ž๐‘Ÿ๐‘ ๐‘œ๐‘› 2 ๐‘‘๐‘“โ„ = 212.549, it can be concluded that the data contains overdispersion. because the two poisson regression assumptions are not fullfilled, then estimate the parameters with the bayesian hurdle poisson regression model. result of bayesian model convergence test in bayesian method, parameters are generated using the gibbs sampling algorithm with 300000 iterations and 7 thin. it is important to check the convergence of the model parameters to check the accuracy of the parameter estimation using the bayesian method. there are four methods for checking the convergence of parameters, namely (1) trace plot, (2) autocorrelation plot, and (3) ergodic mean plot (4) mc error. trace plots for each parameter are presented in figure 1. trace plot of ๐›ฟ0 trace plot of ๐›ฟ1 trace plot of ๐›ฟ2 trace plot of ๐›ฟ3 trace plot of ๐›ฟ4 trace plot of ๐›ฟ5 trace plot of ๐›ฝ0 trace plot of ๐›ฝ1 trace plot of ๐›ฝ2 trace plot of ๐›ฝ3 trace plot of ๐›ฝ4 trace plot of ๐›ฝ5 figure 1. trace plot for bayesian hurdle poisson regression parameters the figure 1 shows that the trace plot is random when 300000 iterations are carried out and 7 thin. it can be concluded that the parameters are convergent, so the iteration is stopped. the second method used to check the convergence is the autocorrelation plot. the figure 2 shows the autocorrelation plot for each parameter. bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 389 autocorrelation plot of ๐›ฟ0 autocorrelation plot of ๐›ฟ1 autocorrelation plot of ๐›ฟ2 autocorrelation plot of ๐›ฟ3 autocorrelation plot of ๐›ฟ4 autocorrelation plot of ๐›ฟ5 autocorrelation plot of ๐›ฝ0 autocorrelation plot of ๐›ฝ1 autocorrelation plot of ๐›ฝ2 autocorrelation plot of ๐›ฝ3 autocorrelation plot of ๐›ฝ4 autocorrelation plot of ๐›ฝ5 figure 2. autocorrelation plot for bayesian hurdle poisson regression parameters the figure 2 shows that the first lag in the autocorrelation plot is close to one and the next lag is close to zero, so the convergence of parameters is fulfilled. the third method used to check convergence is the ergodic mean plot. convergence will be fullfilled if after several iterations the ergodic mean plot is stable. the figure 3 shows the ergodic mean plot for each parameter. ergodic mean plot of ๐›ฟ0 ergodic mean plot of ๐›ฟ1 ergodic mean plot of ๐›ฟ2 ergodic mean plot of ๐›ฟ3 ergodic mean plot of ๐›ฟ4 ergodic mean plot of ๐›ฟ5 ergodic mean plot of ๐›ฝ0 ergodic mean plot of ๐›ฝ1 ergodic mean plot of ๐›ฝ2 bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 390 ergodic mean plot of ๐›ฝ3 ergodic mean plot of ๐›ฝ4 ergodic mean plot of ๐›ฝ5 figure 3. ergodic mean plot for bayesian hurdle poisson regression parameters the figure 3 shows that after 300000 iterations and 7 thin the ergodic mean plot is stable. it can be concluded that the parameters are convergent. in addition to using plots, convergence checks can also be done by comparing the mc error with 5% standard deviation for each parameter. the mc error for each parameter of the bayesian hurdle poisson regression model are presented in the table 2. table 2. mc error for bayesian hurdle poisson regression parameters model parameter estimator standard deviation 5% standard deviation mc error decision logit ๏ฟฝฬ‚๏ฟฝ0 7.278704 0.363935 0.255295 convergence ๏ฟฝฬ‚๏ฟฝ1 0.001624 8.12 ร— 10 โˆ’5 2.17 ร— 10โˆ’5 convergence ๏ฟฝฬ‚๏ฟฝ2 0.175980 0.008799 0.003009 convergence ๏ฟฝฬ‚๏ฟฝ3 0.242849 0.012142 0.002269 convergence ๏ฟฝฬ‚๏ฟฝ4 0.000538 2.69 ร— 10 โˆ’5 3.59ร— 10โˆ’6 convergence ๏ฟฝฬ‚๏ฟฝ5 0.084389 0.004219 0.002958 convergence truncated poisson ๏ฟฝฬ‚๏ฟฝ0 0.918011 0.045901 0.040426 convergence ๏ฟฝฬ‚๏ฟฝ1 0.000272 1.36 ร— 10 โˆ’5 3.33 ร— 10โˆ’6 convergence ๏ฟฝฬ‚๏ฟฝ2 0.025134 0.001257 0.000488 convergence ๏ฟฝฬ‚๏ฟฝ3 0.026595 0.00133 0.000515 convergence ๏ฟฝฬ‚๏ฟฝ4 0.000131 6.54 ร— 10 โˆ’6 9.12ร— 10โˆ’7 convergence ๏ฟฝฬ‚๏ฟฝ5 0.010116 0.000506 0.000445 convergence based on table 2, mc error on all parameters is less than 5% standard deviation, then the convergence is met. based on the four methods of checking the convergence, the results are the same, namely the convergence is fulfilled when 300000 and 7 thin amere performed. parameter estimation results of bayesian hurdle poisson regression model after the convergence is fullfilled, we can calculate the parameter estimator obtained from the sample generation using gibbs sampling. the parameter estimator is the average of the sample generation results for each parameter which is shown in table 3. testing bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 391 the bayesian model parameters using a confidence interval by looking at the lower limit of the 2.5% percentile and the upper limit of the 97.5% percentile. if it contains zero in that range, the decision to accept ๐ป0 or the ๐‘— th predictor variable has no significant effect to the response variable. table 3. parameter estimator of bayesian hurdle poisson regression model parameter parameter estimator percentile 2.5% percentile 97.5% decision logit ๐›ฟ0 16.6551 5.0846 28.4970 reject ๐ป0 ๐›ฟ1 0.0004 -0.0031 0.0022 accept ๐ป0 ๐›ฟ2 โˆ’0.2270 -0.5155 0.0572 accept ๐ป0 ๐›ฟ3 โˆ’0.2974 -0.6936 0.0984 accept ๐ป0 ๐›ฟ4 0.0006 -0.0001 0.0014 accept ๐ป0 ๐›ฟ5 โˆ’0.1922 -0.3257 -0.0549 reject ๐ป0 truncated poisson ๐›ฝ0 โˆ’4.2404 -5.7179 -2.7044 reject ๐ป0 ๐›ฝ1 โˆ’0.0027 -0.0032 -0.0023 reject ๐ป0 ๐›ฝ2 0.1500 0.1086 0.1911 reject ๐ป0 ๐›ฝ3 0.5121 0.4677 0.5551 reject ๐ป0 ๐›ฝ4 โˆ’0.0004 -0.0006 -0.0002 reject ๐ป0 ๐›ฝ5 0.0805 0.0636 0.0968 reject ๐ป0 based on table 3, the bayesian hurdle poisson regression model can be presented as follows ๐‘™๐‘œ๐‘”๐‘–๐‘ก ๏ฟฝฬ‚๏ฟฝ๐‘– = 16,6551 โˆ’ 0,1922๐‘‹5๐‘– (6) ln ๏ฟฝฬ‚๏ฟฝ๐‘– = โˆ’4,2404 โˆ’ 0,0027๐‘‹1๐‘– + 0,1500๐‘‹2๐‘– + 0,5121๐‘‹3๐‘– โˆ’ 0,0004๐‘‹4๐‘– + 0,0805๐‘‹5๐‘– (7) the interpretation of the logit model in equation (6), that is, every 1% increase in the percentage of households that have access to proper sanitation in 34 provinces in indonesia will increase the probability of the number of cases of death due to chronic filariasis in 34 provinces in indonesia by exp(-0.1922) = 0.825 times of the original number of death from chronic filariasis cases. the interpretation of poisson's truncated model in equation (7) is: 1. every 1 person increase in the total number of chronic filariasis cases in 34 provinces in indonesia will increase the average number of deaths due to chronic filariasis in 34 provinces in indonesia by exp(-0.0027)=0.997โ‰ˆ1 person. 2. every increase in 1 district/city that succeeds in reducing microphilia <1% will increase the average number of cases of death due to chronic filariasis in 34 provinces in indonesia by exp(0.1500)=1.16โ‰ˆ1 person. 3. every increase in 1 district/city in indonesia that is still implementing mass preventive drug delivery (mpdd) will increase the average number of cases of death due to chronic filariasis in 34 provinces in indonesia by exp(0,5121)=1,669โ‰ˆ2 persons. 4. every 1 person/km2 increase in population density in 34 provinces in indonesia will increase the average number of cases of death due to chronic filariasis in 34 provinces in indonesia by exp(-0.0004)=0.9996โ‰ˆ1 person. bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 392 5. every 1% increase in the percentage of households having access to proper sanitation in 34 provinces in indonesia will increase the average number of cases of death due to chronic filariasis in 34 provinces in indonesia by exp(0.0805)=1.08โ‰ˆ 1 person. conclusions in the logit model, the percentage of households that have access to proper sanitation in 34 provinces in indonesia (๐‘‹5) has a significant effect on the number of cases of death due to chronic filariasis in 34 provinces in indonesia (๐‘Œ). then in the truncated poisson model, all predictor variables, namely the number of all chronic cases of filariasis in 34 provinces in indonesia (๐‘‹1), the number of district/cities managed to reduce microphilia <1% in 34 provinces in indonesia (๐‘‹2), the number of district/cities that are still implementing the mass preventive drug delivery (mpdd) for filariasis in 34 provinces in indonesia (๐‘‹3), population density in 34 provinces in indonesia (๐‘‹4), as well as the percentage of households that have access to proper sanitation in 34 provinces in indonesia (๐‘‹5) have a significant effect on the number of deaths due to chronic filariasis in 34 provinces in indonesia (y). references [1] d. w. osgood, โ€œpoisson based regression analysis of aggregate crime rates,โ€ quant. methods criminol., vol. 16, no. 1, pp. 577โ€“599, 2017, doi: 10.4324/9781315089256-23. [2] w. t. tedra, i. m. rizki, and d. prariesa, โ€œkonsumsi rokok masyarakat kota bandung tahun 2015 dengan model hurdle negatif binomial ( hurdle-nb ),โ€ forum statistika dan komputasi., vol. 15, no.1, pp. 18โ€“27, 2015. [3] a. taufiq, a. b. astuti, and a. a. rinaldo fernandes, โ€œgeographically weighted regression in cox survival analysis for weibull distributed data with bayesian approach,โ€ iop conf. ser. mater. sci. eng., vol. 546, no. 5, 2019, doi: 10.1088/1757899x/546/5/052078. [4] a. r. maulana, s. astutik, u. brawijaya, and l. belakang, โ€œpenerapan regresi zero inflated poisson dengan metode bayesian,โ€ prosiding seminar nasional pendidikan matematika, vol. 1, pp. 226โ€“233, 2016. [5] g. meliyanie and d. andiarsa, โ€œprogram eliminasi lymphatic filariasis di indonesia,โ€ j. heal. epidemiol. commun. dis., vol. 3, no. 2, pp. 63โ€“70, 2019, doi: 10.22435/jhecds.v3i2.1790. [6] a. a. arsin, epidemiologi filariasis di indonesia, makassar: masagna press, 2016. [7] a. ernawati, โ€œfaktor risiko penyakit filariasis (kaki gajah),โ€ j. litbang media inf. penelitian, pengemb. dan iptek, vol. 13, no. 2, pp. 105โ€“114, 2017, doi: 10.33658/jl.v13i2.98. [8] kementerian kesehatan ri, โ€œsituasi filariasis di indonesia tahun 2018,โ€ infodatin pusat data dan informasi kementerian kesehatan ri. pp. 1&4, 2019, [online]. available: https://pusdatin.kemkes.go.id/download.php?file=download/pusdatin/infodatin /infodatin-filariasis-2019.pdf. [9] kementerian kesehatan ri, "profil kesehatan indonesia 2020," 2021. [10] f. antoneli, f. m. passos, l. r. lopes, and m. r. s. briones, โ€œa kolmogorov-smirnov test for the molecular clock based on bayesian ensembles of phylogenies,โ€ plos one, vol. 13, no. 1, 2018, doi: 10.1371/journal.pone.0190826. bayesian hurdle poisson regression for assumption violation nur kamilah saโ€™diyah 393 [11] d. n. gujarati and d. c. porter, dasar-dasar ekonometrika, edisi 5, jakarta: salemba empat, 2012. [12] a. agresti, categorical data analysis second edition, new york: john wiley & sons inc, 2002. [13] g. e. p. box and g. c. tiao, bayesian inference in statistical analysis. 1992. [14] a. b. astuti, n. iriawan, irhamah, h. kuswanto, and l. sasiarini, โ€œblood sugar levels of diabetes mellitus patients modeling with bayesian mixture model averaging,โ€ glob. j. pure appl. math., vol. 12, no. 4, pp. 3143โ€“3158, 2016. [15] i. ntzoufras, "bayesian modeling using winbugs", vol. 698. john wiley & sons, 2011. 1a sampul depan pendekatan cart untuk mendapatkan faktor yang mempengaruhi terjangkitnya penyakit demam tifoid di aceh utara muhammad sjahid akbar1, dina yuanita2, dan sri harini3 1,2jurusan statistika its 3jurusan matematika, uin malulana malik ibrahim malang e-mail: sri_harini21@yahoo.com abstract typhoid fever is a disease caused by salmonella typhi bacteria. it is attack the digestive tract. typhoid fever caused by poor sanitation and personal hygiene is not good. according to the basic health research in 2007 showed that the prevalence of typhoid fever in indonesia of 1.6%. nad province is hight typhoid fever prevalence(2,96 %). because having traced the biggest contributor was derived from nad. therefore, the research conducted to find factors that influence the outbreak of typhoid fever in nad. research using the cart method. the results of the analysis indicate that the main factor causing typhoid fever was drinking water reservoirs. the other factors are waste water reservoirs, the physical quality of drinking water, a habit washing hands with soap before eating, the bowel, the dump, gender, socioeconomic status, habits of washing hands with soap after defecation and health education. keywords: cart, typhoid fever pendahuluan penyakit demam tifoid seringkali menjadi sebab seseorang harus menjalani rawat inap. demam tifoid atau typhoid fever yang biasa juga disebut typhus atau types oleh orang awam, merupakan penyakit yang disebabkan oleh bakteri salmonella typhi (s. typhi). bakteri s. typhi menyerang bagian saluran pencernaan. puslitbang sistem dan kebijakan kesehatan menyatakan demam tifoid disebabkan pencemaran air minum dan sanitasi yang buruk. demam tifoid adalah penyakit infeksi akut yang menyerang mulai dari usia balita, anak-anak dan dewasa. data world health organization (who) tahun 2003 memperkirakan terdapat sekitar 17 juta kasus demam tifoid di seluruh dunia dengan kejadian 600.000 kasus kematian tiap tahun (anonim, 2008). angka kejadian demam tifoid diketahui lebih tinggi pada negara berkembang khususnya di daerah tropis. sehingga tak heran jika demam tifoid banyak ditemukan di indonesia. hasil riset dasar kesehatan tahun 2007 menunjukkan bahwa persentase penduduk yang terjangkit demam tifoid dibandingkan dengan seluruh penduduk (prevalensi) di indonesia sebesar 1,6%. provinsi nad merupakan prevalensi tifoid tertinggi yaitu sebesar 2,96%. setelah ditelusuri ternyata penyumbang terbesar berasal dari kabupaten aceh utara. oleh karena itu penelitian dilakukan di wilayah aceh utara untuk mendapatkan faktor-faktor yang menyebabkan terjangkitnya penyakit demam tifoid. ada tiga penelitian yang digunakan untuk dasar penelitian ini. tugas akhir nunik hidayati mahasiswa s1 jurusan statistika fmipa its, thesis rahayu lubis mahasiswa pasca sarjana jurusan kesehatan masyarakat di universitas sumatera utara, dan penelitian bambang wasito tjipto peneliti dari puslitbang system dan kebijakan kesehatan. hidayati (2001) memodelkan kasus penyakit demam tifoid di jawa timur dengan menggunakan regresi poisson. asumsi yang harus dipenuhi apabila menggunakan metode regresi poisson adalah variabel dependen harus diskrit dan berdistribusi poisson. ada beberapa faktor resiko yang diduga mempengaruhi terjangkitnya penyakit demam tifoid antara lain kepadatan penduduk, prosentase cakupan penduduk pemakai air bersih, prosentase cakupan penduduk pemakai jamban keluarga, prosentase kondisi rumah yang memenuhi syarat, prosentase cakupan pembuangan sampah sementara yang memenuhi syarat, prosentase cakupan tempat pengolahan makanan yang memenuhi syarat, dan prosentase cakupan penduduk pemakai sarana pembuangan air limbah. hasil dari penelitian hidayati variabel yang mempengaruhi terjangkitnya demam tifoid adalah kepadatan penduduk, prosentase cakupan penduduk pemakai air bersih, prosentase cakupan pembuangan sampah sementara yang memenuhi syarat, prosentase cakupan tempat pengolahan makanan yang memenuhi syarat, dan prosentase cakupan penduduk pemakai sarana pembuangan air limbah. sedangkan penelitian lubis (2007) mempelajari faktor risiko yang muhammad sjahid akbar, dina yuanita, dan sri harini 72 volume 1 no. 2 mei 2010 berhubungan dengan kejadian penyakit demam tifoid pada penderita yang dirawat di rsud dr. soetomo surabaya dengan menggunakan regresi logistik. variabel yang digunakan seperti tingkat pengetahuan, higiene perorangan, kebiasaan makan/minum diluar rumah dan sanitasi lingkungan. hasilnya faktor yang mempengaruhi kejadian penyakit demam tifoid adalah hygiene perorangan dan kualitas air minum. selain itu, tjipto (2009) meneliti faktor-faktor yang berpengaruh terhadap kejadian penyakit demam tifoid pada balita di indonesia dengan analisis multivariate logistik biner. tjipto (2009) menyatakan bahwa demam tifoid erat kaitannya dengan higiene perorangan dan sanitasi lingkungan. hasil penelitian menunjukkan bahwa faktor-faktor yang berpengaruh agar tidak terjadi penyakit infeksi tifoid adalah buang air besar ditempat yang baik (jamban), dan mencuci tangan dengan benar (memakai sabun). tujuan penelitian ini adalah untuk mendapatkan faktor yang mempengaruhi terjangkitnya demam tifoid menggunakan metode classification and regression trees (cart). alasan menggunakan metode cart adalah cart merupakan salah satu metode non parametrik dengan hasil analisis berupa topologi pohon atau berupa grafis sehingga hasil analisis lebih mudah diinterpretasi (lewis dan roger, 2000). data yang digunakan merupakan data sekunder yang diambil dari riskesdas tahun 2007 dan susenas tahun 2007. data dihimpun oleh badan litbangkes departemen kesehatan ri. total sampel art di aceh utara adalah sebanyak 2.491 art. pada penelitian ini data yang digunakan 1816 data art dengan batasan art minimal berusia 10 tahun. variabel respon yang digunakan berskala biner yaitu , 1 untuk anggota rumah tangga terinfeksi demam tifoid dan 2 untuk anggota rumah tangga yang tidak terinfeksi demam tifoid. sedangkan variabel prediktor yang digunakan dalam penelitian ini adalah. asal daerah (x1), jenis kelamin (x2), status sosial ekonomi (x3), kualitas fisik air minum (x4), tempat penampungan air minum(x5), tempat pembuangan sampah(x6), tempat penampungan air limbah (x7), tempat buang air besar (x8), kebiasaan cuci tangan pakai sabun setelah buang air besar (x9), kebiasaan cuci tangan pakai sabun sebelum makan (x10), dan penyuluhan kesehatan (x11). classification and regression trees (cart) classification and regression trees (cart) adalah suatu metode teknik pohon keputusan (breiman et al., 1993). cart menghasilkan suatu pohon klasifikasi jika variabel responnya kategorik, dan menghasilkan pohon regresi jika variabel responnya kontinu. tujuan utama cart adalah untuk mendapatkan suatu kelompok data yang akurat sebagai penciri dari suatu pengklasifikasian. klasifikasi pohon dalam cart melibatkan 4 komponen, yaitu variabel respon, variabel prediktor, data learning, dan data testing. data learning untuk verifikasi model dan data testing untuk validasi model. sebagai ilustrasi struktur pohon klasifikasi dapat dilihat pada gambar 1. simpul utama dinotasikan dengan t1 sedangkan internal nodes (simpul dalam) dinotasikan dengan t2, t3, t4, t7, t9 dan t13. simpul akhir atau simpul terminal adalah t5, t6, t8, t10, t11, t12, t14 dan t15 . penghitungan depth (kedalaman) pohon dimulai dari simpul utama t1 yang berada pada kedalaman 1, sedangkan t2 dan t3 berada pada kedalaman 2 begitu seterusnya sampai pada t14 dan t15 yang berada pada kedalaman 6. pembentukan pohon klasifikasi terdiri atas 3 tahap yang memerlukan learning sample l. tahap pertama adalah pemilihan pemilah. menurut breiman et al. (1993) setiap pemilahan hanya bergantung pada nilai yang berasal dari satu variabel independen. rumus kemungkinan pemilah disajikan sebagai berikut. variabel independen kontinu = 1โˆ’n pemilahan variabel independen kategori nominal = 12 1 โˆ’โˆ’l pemilahan (1) variabel independen kategori ordinal = l 1 pemilahan setelah semua kemungkinan pemilah didapatkan, masing-masing pemilah dicari nilai goodness of split. goodness of split merupakan suatu evaluasi pemilahan oleh pemilah s pada simpul t. goodness of split ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ didefinisikan sebagai penurunan keheterogenan. sehingga semakin besar nilai goodness of split semakin homogen simpul anak yang dihasilkan. ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ† ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ (2) pengembangan pohon dilakukan dengan mencari semua kemungkinan pemilah pada simpul ๏ฟฝ๏ฟฝ sehingga ditemukan pemilah s* yang memberikan nilai penurunan keheterogenan tertinggi yaitu, โˆ† ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ (3) dengan ๏ฟฝ๏ฟฝ๏ฟฝ adalah fungsi keheterogenan indeks gini, ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ adalah kriteria goodness of split, ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ adalah proporsi pengamatan dari simpul t menuju simpul kiri, dan ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ adalah proporsi pengamatan dari simpul t menuju simpul kanan. pendekatan cart untuk mendapatkan faktor yang mempengaruhiโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 73 indeks gini sebagai metode pemilahan yang digunakan mempunyai fungsi sebagai berikut. ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ‘ ๏ฟฝ๏ฟฝ |๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ|๏ฟฝ๏ฟฝ (4) dengan, ๏ฟฝ๏ฟฝ |๏ฟฝ๏ฟฝ adalah proporsi kelas i pada simpul t, dan ๏ฟฝ๏ฟฝ๏ฟฝ|๏ฟฝ๏ฟฝ adalah proporsi kelas j pada simpul t. gambar 1 struktur klasifikasi pohon tahap kedua adalah penentuan simpul terminal (penghentian pembentukan pohon). simpul t dapat dijadikan simpul terminal jika (1) tidak terdapat penurunan keheterogenan yang berarti. (2) hanya terdapat satu pengamatan (n=1) pada tiap simpul anak. (3) adanya batasan minimum n/pengamatan pada simpul anak. dan (4) adanya batasan jumlah level atau tingkat kedalaman pohon maksimal (lewis, 2000). tahap ketiga adalah penandaan label tiap simpul terminal berdasarkan aturan jumlah anggota kelas terbanyak, yaitu: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ|๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ|๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ!๏ฟฝ ๏ฟฝ๏ฟฝ!๏ฟฝ (5) dengan ๏ฟฝ๏ฟฝ๏ฟฝ|๏ฟฝ๏ฟฝ adalah proporsi kelas j pada simpul t, "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ adalah jumlah pengamatan kelas j pada simpul t, dan "๏ฟฝ๏ฟฝ๏ฟฝ adalah jumlah pengamatan pada simpul t. label kelas simpul terminal t adalah ๏ฟฝ๏ฟฝ yang memberi nilai dugaan kesalahan pengklasifikasian simpul t terbesar. setelah terbentuk pohon maksimal tahap selanjutnya adalah pemangkasan pohon untuk mencegah terbentuknya pohon klasifikasi yang berukuran sangat besar dan kompleks. sehingga diperoleh ukuran pohon yang layak berdasarkan cost complexity prunning. besarnya resubtitution estimate pohon t pada parameter kompleksitas # yaitu : $%๏ฟฝ&๏ฟฝ ๏ฟฝ $๏ฟฝ&๏ฟฝ ' %|&(| (6) dengan rฮฑ(t) adalah resubtitution suatu pohon t pada kompleksitas ฮฑ, r(t) adalah resubstitution estimate, ฮฑ adalah parameter cost complexity bagi penambahan satu simpul akhir pada pohon t, dan |&(| adalah banyaknya simpul terminal pohon t. cost complexity prunning menentukan pohon bagian t(ฮฑ) yang meminimumkan rฮฑ(t) pada seluruh pohon bagian untuk setiap nilai ฮฑ. nilai parameter kompleksitas ฮฑ akan secara perlahan meningkat selama proses pemangkasan. selanjutnya pencarian pohon bagian t(ฮฑ) < tmax yang dapat meminimumkan rฮฑ(t) yaitu : $% ๏ฟฝ&๏ฟฝ%๏ฟฝ๏ฟฝ ๏ฟฝ )*+&,-./0 $%๏ฟฝ&๏ฟฝ (7) setelah dilakukan pemangkasan diperoleh pohon klasifikasi optimal yang berukuran sederhana namun memberikan nilai pengganti yang cukup kecil. penduga pengganti yang sering digunakan adalah penduga sampel uji (test sample estimate) dan validasi silang lipat v (cross validation v-fold estimate). menurut breiman et al. (1993) jika jumlah sampel yang digunakan lebih kecil dari 3000 pengamatan penduga pengganti yang digunakan adalah cross validation v-fold estimate. penduga validasi silang lipat v sering digunakan apabila amatan yang ada tidak cukup besar. amatan dalam l dibagi secara acak menjadi v bagian yang saling lepas dengan ukuran kurang lebih sama besar untuk setiap kelasnya. pohon t(v) dibentuk dari l-lv dengan v = 1, 2, ..., v. misalkan d(v)(x) adalah hasil pengklasifikasian. penduga sampel uji untuk r(t1(v)) yaitu 12๏ฟฝ342 ๏ฟฝ5๏ฟฝ6 ๏ฟฝ ๏ฟฝ 78 โˆ‘ 93:๏ฟฝ5๏ฟฝ๏ฟฝ๏ฟฝ;๏ฟฝ < ๏ฟฝ;6๏ฟฝ0=,๏ฟฝ=๏ฟฝ>๏ฟฝ? (8) dengan "@ ๏ฟฝ "/b adalah jumlah amatan dalam lv. kemudian dilakukan prosedur yang sama kedalaman 1 kedalaman 6 kedalaman 2 2 pemilah 6 t15 t14 1 3 4 pemilah 7 t13 t12 2 3 t8 t9 pemilah 4 t7 t4 t10 t11 3 4 pemilah 5 pemilah 2 pemilah 3 pemilah 1 t1 t3 t2 t5 t6 muhammad sjahid akbar, dina yuanita, dan sri harini 74 volume 1 no. 2 mei 2010 menggunakan seluruh l, maka penduga validasi silang lipat v untuk 42 ๏ฟฝ5๏ฟฝ adalah : 1c8๏ฟฝ42๏ฟฝ ๏ฟฝ ๏ฟฝ 5 โˆ‘ 12๏ฟฝ34๏ฟฝ8๏ฟฝ658๏ฟฝ๏ฟฝ (9) pohon klasifikasi optimum dipilih t* dengan 1c8๏ฟฝ4๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ d2 1 c8๏ฟฝ42๏ฟฝ (10) aplikasi dan pembahasan penelitian menggunakan variabel respon kategorik berskala biner. bernilai 1 untuk anggota rumah tangga terinfeksi demam tifoid dan 0 untuk anggota rumah tangga yang tidak terinfeksi demam tifoid, sehingga didapatkan pohon klasifikasi untuk menjelaskan keterkaitan 11 variabel prediktor yang diduga mempengaruhi terjangkitnya penyakit demam tifoid. pada klasifikasi pohon data sampel anggota rumah tangga terjangkit dan tidak terjangkit demam tifoid di aceh utara dibagi menjadi dua kelompok yaitu data learning dan data testing. penelitian ini menggunakan perbandingan data learning 75% (1.362 data) dan testing 25% (454 data). tahap pertama pembentukan pohon klasifikasi maksimal adalah pemilah-pemilah. perhitungan pemilah pada setiap variabel prediktor menggunakan persamaan (1). hasil yang diperoleh adalah variabel asal daerah, variabel jenis kelamin, variabel status sosial ekonomi, variabel kualitas air minum, variabel tempat buang air besar, variabel kebiasaan cuci tangan pakai sabun setelah buang air, variabel kebiasaan cuci tangan pakai sabun sebelum makan, dan variabel keikutsertaan penyuluhan dengan 1 kemungkinan pemilahan. variabel kondisi penampungan air minum dan variabel kondisi tempat pembuangan sampah dengan 3 kemungkinan pemilahan. dan variabel kondisi penampungan air limbah dengan 15 kemungkinan pemilahan. penelitian ini menggunakan metode pemilahan indeks gini sesuai persamaan (4). pemilah terbaik adalah pemilah yang menghasilkan nilai penurunan keheterogenan tertinggi (kriteria pemilahan goodness of split pada persamaan (3)). pemilah terbaik pada simpul 1 (pemilah utama) pada penelitian ini adalah variabel tempat penampungan air (x5). variabel tempat penampungan air terpilih sebagai pemilah utama karena menghasilkan nilai penurunan keheterogenan tertinggi pada simpul 1 (gambar 2). informasi hasil perhitungan penurunan keheterogenan pada setiap pemilah di simpul 1 disajikan pada table 1. tahap kedua yaitu penentuan simpul terminal. simpul t dikatakan sebagai simpul terminal jika tidak terdapat penurunan keheterogenan yang berarti sehingga tidak akan dipilah lagi. simpul terminal adalah simpul yang berwarna merah, biru dan putih. pohon klasifikasi maksimal (maximal tree) dari data anggota rumah tangga yang terjangkit maupun tidak terjangkit demam tifoid ditunjukkan pada gambar 2. tabel 1. nilai penurunan keheterogenan variabel pemilah pada simpul 1 pemilah split โˆ† ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ x1 1 0,000418599 x2 1 0,000126786 x3 1 0,000714858 x4 1 0,000867109 x5 1,2 0,001200313 x5 1,3 2,08527e-05 x5 2,3 0,000896645 x6 1,2 9,47417e-05 . . . x7 2,3 0,000400087 . . . . . . x8 1 0,000343279 x9 1 0,000118855 x10 1 0,001019946 x11 1 0,00041325 pohon klasifikasi maksimal terdiri dari 89 simpul terminal dengan 15 kedalaman. kedalaman adalah jumlah level atau tingkatan dalam pohon maksimal dimana tiap level terdiri atas beberapa simpul. kedalaman dihitung dari simpul utama sampai simpul terminal (simpul akhir). pohon klasifikasi akan semakin besar jika kedalaman pohon juga semakin besar. tahap ketiga adalah penandaan label kelas. pemberian label kelas untuk setiap simpul terminal berdasarkan rumus pada persamaan (5). perbedaan warna pada tiap simpul terminal menunjukkan adanya perbedaan label kelas. simpul terminal dengan warna biru menunjukkan pada simpul tersebut ditandai dengan label kelas 1 yang berarti anggota rumah tangga terjangkit demam tifoid, dengan persentase jumlah pengamatan yang terjangkit demam tifoid mendekati 100%. warna biru akan berubah secara perlahan menjadi warna putih jika persentase jumlah pengamatan yang terjangkit demam tifoid pada simpul terminal tersebut berkisar 50%. sedangkan untuk simpul terminal berwarna merah menunjukkan label kelas 2 yang berarti anggota rumah tangga tidak pendekatan cart untuk mendapatkan faktor yang mempengaruhiโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 75 terjangkit demam tifoid, dimana persentase jumlah pengamatan kelas yang tidak terjangkit demam tifoid pada simpul tersebut mendekati 100%. gambar 2. pohon klasifikasi maksimal tabel 2. kesalahan klasifikasi data learning pada pohon maksimal kelas aktual kelas prediksi total aktual 1 2 1 68 0 68 2 167 1.127 1.294 total prediksi 235 1.127 1.362 benar 1 0,871 total benar 0,877 tabel 2 menunjukkan hasil klasifikasi pohon maksimal untuk data learning. kesalahan klasifikasi terjadi bila data pada kelas aktual 1 (terjangkit demam tifoid) masuk ke dalam kelas prediksi 2 (tidak terjangkit demam tifoid) begitupun sebaliknya. tidak terjadi kesalahan pengklasifikasian pada kelas 1 yang merupakan kelas bagi anggota rumah tangga yang terjangkit demam tifoid. pada kelas 2 (kelas bagi anggota rumah tangga yang tidak terjangkit demam tifoid) terjadi kesalahan pengklasifikasian sebanyak 167 pengamatan. ketepatan klasifikasi untuk data learning pada pohon klasifikasi maksimal adalah sebesar 68 ' 1.127 1.362 ๏ฟฝ 100% ๏ฟฝ 87,7% selanjutnya dilakukan pemangkasan pohon klasifikasi maksimal. breiman, et al (1993) menyatakan pemangkasan pohon klasifikasi dilakukan apabila pohon klasifikasi yang terbentuk berukuran sangat besar dan kompleks dalam penggambaran struktur data. sehingga pada akhirnya diperoleh ukuran pohon yang layak dan berdasarkan cost complexity minimum. gambar 3 memberikan informasi bahwa nilai relative cost pohon klasifikasi maksimal lebih besar dibandingkan relative cost pohon klasifikasi optimal. oleh karena itu perlu dilakukan pemangkasan pohon maksimal agar didapatkan nilai relative cost yang paling kecil. garis hijau menunjukkan nilai relative cost minimum pada pohon optimal sebesar 0,599 (persamaan 10). gambar 3. plot relative cost setelah dilakukan pemangkasan terhadap pohon klasifikasi maksimal maka dihasilkan pohon klasifikasi optimal yang memiliki relative costi terkecil dengan 9 kedalaman dan 16 simpul terminal yang disajikan dalam gambar 4 dan spilters pada pohon klasifikasi optimal disajikan pada gambar 5. gambar 4. pohon klasifikasi optimal gambar 5. spilters pohon klasifikasi optimal variabel prediktor yang menjadi pemilah utama pada pohon klasifikasi optimal adalah muhammad sjahid akbar, dina yuanita, dan sri harini 76 volume 1 no. 2 mei 2010 tempat penampungan air minum (x5) dengan skor variabel penting 100. dengan kata lain penampungan air minum merupakan faktor utama yang mempengaruhi anggota rumah tangga terjangkit atau tidak terjangkit demam tifoid. keterangan dari dr. satinta febrianti yang berdinas di rumah sakit yasmin banyuwangi, penyebab seseorang terjangkit demam tifoid adalah bakteri salmonella thypi.penularannya melalui makanan dan minuman yang telah tercemari oleh bakteri salmonella thypi. orang yang kelelahan lebih mudah terjangkit penyakit demam tifoid karena daya tahan tubuhnya menurun. apabila seseorang dengan daya tahan tubuh menurun mengkonsumsi makanan atau minuman yang tercemar oleh bakteri s.thypi maka orang tersebut mudah terjangkit penyakit demam tifoid. hal ini sesuai dengan hasil penelitian ini yang mendghasilkan tempat penampungan air minum sebagai faktor utama yang mempengaruhi terjangkitnya demam tifoid. karena dengan tidak mempunyai tempat penampungn air minum atau tempat penampungan air minum terbuka maka mudah sekali bakteri salmonella thypi mencemari air yang merupakan bahan pokok untuk keperluan sehari-hari. sehingga orang yang tidak mempunyai tempat penampungan air minum atau tempat penampungan air minumnya terbuka lebih rentan terjangkit demam tifoid. selain tempat penampungan air minum variabel yang juga berkontribusi dalam pembentukkan pohon optimal adalah variabel tempat penampungan air limbah (x7) dengan skor 70.61, variabel kualitas fisik air minum (x4) dengan skor 55.23, variabel kebiasaan cuci tangan pakai sabun sebelum makan (x10) dengan skor 48.12, dan variabel tempat buang air besar (x8) dengan skor 40.60. variabel tempat pembuangan sampah(x6), variabel jenis kelamin (x2), dan variabel status sosial ekonomi (x3) juga berkontribusi dalam pembentukan pohon optimal dengan skor variabel penting masingmasing adalah 37.50, 33.80, 22.09. sedangkan variabel kebiasaan cuci tangan pakai sabun setelah buang air besar (x9) dan penyuluhan kesehatan (x11) memiliki skor variabel penting dibawah 20 . simpul utama (simpul 1) dipilah oleh variabel penampungan air minum dengan mengelom-pokkan 931 anggota rumah tangga yang tidak memiliki tempat penampungan air minum dan anggota rumah tangga yang penampungan air minumnya terbuka pada simpul kiri menjadi simpul 2. sisannya yaitu 431 anggota rumah tangga yang tempat penampungan air minumnya terbuka dikelompokkan pada simpul kanan menjadi simpul terminal 16. simpul 2 terdapat 62 anggota rumah tangga yang terjangkit demam tifoid (6,7%) dan 869 anggota rumah tangga yang tidak terjangkit demam tifoid (93,3%). sedangkan simpul terminal 16 terdapat 6 anggota rumah tangga yang terjangkit demam tifoid (1,4%) dan 425 anggota rumah tangga yang tidak terjangkit demam tifoid (98,6%). karena proporsi terbesar pada simpul terminal 16 adalah tidak terjangkit demam tifoid, maka pada simpul terminal 6 diberi label kelas tidak terjangkit demam tifoid (persamaan 5). terjadi kesalahan pengklasifikasian pada simpul terminal 16 dengan label kelas tidak terjangkit demam tifoid, karena terdapat 6 anggota rumah tangga yang dinyatakan terjangkit demam tifoid. proses pemilahan akan terjadi lagi pada simpul 2 namun pada simpul terminal 16 tidak akan terjadi pemilahan. simpul 2 dipilah variabel kebiasaan cuci tangan pakai sabun sebelum makan. sebanyak 663 anggota rumah tangga yang mencuci tangan pakai sabun sebelum makan dipilah pada simpul kiri menjadi simpul 3 dan 268 anggota rumah tangga yang tidak mencuci tangan pakai sabun sebelum makan dipilah pada simpul kanan menjadi simpul 13. pada simpul 3 terdapat 56 anggota rumah tangga yang dinyatakan terjangkit demam tifoid (8,4%) dan 607 anggota rumah tangga yang tidak terjangkit demam tifoid (91,6%). sedangkan pada simpul 13 terdapat 6 anggota rumah tangga yang terjangkit demam tifoid (2,2%) dan 262 anggota rumah tangga yang tidak terjangkit demam tifoid (97,8). pemilahan akan dilakukan terus-menerus sampai simpul terminal. tabel 3 menunjukkan hasil klasifikasi pohon maksimal untuk data learning. kesalahan klasifikasi terjadi bila data pada kelas aktual 1 (terjangkit demam tifoid) masuk ke dalam kelas prediksi 2 (tidak terjangkit demam tifoid) begitupun sebaliknya. jumlah kesalahan pengklasifikasian untuk kelas 1 (terjangkit demam tifoid) adalah sebanyak 17 dari 68 jumlah amatan. jumlah kesalahan pengklasifikasian untuk kelas 2 (tidak terjangkit demam tifoid) adalah sebanyak 199 dari 1.294 jumlah amatan. dengan demikian diperoleh ketepatan pengklasifikasian sebesar 51 ' 1.095 1.362 ๏ฟฝ 100% ๏ฟฝ 84,1% tabel 3. ketepatan pohon klasifikasi optimal dari data learning kelas aktual prediksi kelas total aktual 1 2 1 51 17 68 2 199 1.095 1.294 total prediksi 250 1.112 1.362 benar 0,750 0,846 total benar 0,841 jurnal cauchy selanjutnya dilakukan uji validasi. dilakukan validasi adalah untuk mengetahui layak atau tidak model pohon klasifikasi dalam pengklasifikasian data baru. caranya yaitu data testing klasifikasi yang telah terbentuk sebelumnya dari data learning sebesar 25% dari total data keseluruhan yaitu 454 data tabel 4 menunjukkan bahwa data sebanyak 454 pengamatan menghasilkan ketepatan pengklasifikasian sebesar jumlah kesalahan pengklasifikasian untuk kelas 1 (terjangkit demam tifoid) adalah sebanyak 18 dari 37 jumlah amatan. sedangkan jumlah kesalahan pengklasifikasian untuk kelas 2 (tidak terjangkit demam tifoid) adalah sebanyak 47 dari 417 jumlah amatan. karen pada data testing sudah tinggi yaitu 85,7% maka model pohon klasifikasi optimal yang dihasilkan sudah baik. tabel 4. kelas aktual 1 2 total prediksi benar total benar penutup metode klasifikasi optimal dengan ketepatan klasifikasi data learning ketepatan klasifikasi data 85,7%. variabel yang berpengaruh terhadap terjangkitnya penyakit demam tifoid di aceh utara pada pohon optimal adalah variabel tempat penampungan air minum sebagai faktor utama dengan skor tertinggi sebesar 100, tempat penampungan air limba kualitas fisik air minum dengan skor 55.23, kebiasaan cuci tangan pakai sabun sebelum makan dengan skor 48.12, variabel tempat buang air besar dengan skor 40.60, tempat pembuangan sampah dengan skor 37.50, jenis kelamin dengan skor 33.80 dan status sosial ekonomi dengan skor jurnal cauchy โ€“ issn: 2086 selanjutnya dilakukan uji validasi. dilakukan validasi adalah untuk mengetahui layak atau tidak model pohon klasifikasi dalam pengklasifikasian data baru. caranya yaitu data dimasukkan kedalam model pohon klasifikasi yang telah terbentuk sebelumnya dari learning. data sebesar 25% dari total data keseluruhan yaitu 454 data. tabel 4 menunjukkan bahwa data sebanyak 454 pengamatan menghasilkan ketepatan pengklasifikasian sebesar jumlah kesalahan pengklasifikasian untuk kelas 1 (terjangkit demam tifoid) adalah sebanyak 18 dari 37 jumlah amatan. sedangkan jumlah kesalahan pengklasifikasian untuk kelas 2 (tidak terjangkit demam tifoid) adalah sebanyak 47 dari 417 jumlah amatan. karen pada data testing sudah tinggi yaitu 85,7% maka model pohon klasifikasi optimal yang dihasilkan sudah baik. tabel 4. ketepatan pohon klasifikasi optimal dari data kelas aktual prediksi kelas 1 19 2 47 total prediksi 66 benar 0,514 total benar 0,857 penutup metode cart klasifikasi optimal dengan ketepatan klasifikasi learning sebesar 84,1%, sedangkan ketepatan klasifikasi data 85,7%. variabel yang berpengaruh terhadap terjangkitnya penyakit demam tifoid di aceh utara pada pohon optimal adalah variabel tempat penampungan air minum sebagai faktor utama dengan skor tertinggi sebesar 100, tempat penampungan air limba kualitas fisik air minum dengan skor 55.23, kebiasaan cuci tangan pakai sabun sebelum makan dengan skor 48.12, variabel tempat buang air besar dengan skor 40.60, tempat pembuangan sampah dengan skor 37.50, jenis kelamin dengan .80 dan status sosial ekonomi dengan skor issn: 2086-0382 selanjutnya dilakukan uji validasi. dilakukan validasi adalah untuk mengetahui layak atau tidak model pohon klasifikasi dalam pengklasifikasian data baru. caranya yaitu data dimasukkan kedalam model pohon klasifikasi yang telah terbentuk sebelumnya dari data testing yang digunakan sebesar 25% dari total data keseluruhan yaitu tabel 4 menunjukkan bahwa data sebanyak 454 pengamatan menghasilkan ketepatan pengklasifikasian sebesar 85,7%. jumlah kesalahan pengklasifikasian untuk kelas 1 (terjangkit demam tifoid) adalah sebanyak 18 dari 37 jumlah amatan. sedangkan jumlah kesalahan pengklasifikasian untuk kelas 2 (tidak terjangkit demam tifoid) adalah sebanyak 47 dari 417 jumlah amatan. karena ketepatan klasifikasi pada data testing sudah tinggi yaitu 85,7% maka model pohon klasifikasi optimal yang dihasilkan ketepatan pohon klasifikasi optimal dari data testing prediksi kelas 1 2 19 18 47 370 66 388 0,514 0,887 0,857 cart menghasilkan pohon klasifikasi optimal dengan ketepatan klasifikasi sebesar 84,1%, sedangkan ketepatan klasifikasi data testing 85,7%. variabel yang berpengaruh terhadap terjangkitnya penyakit demam tifoid di aceh utara pada pohon optimal adalah variabel tempat penampungan air minum sebagai faktor utama dengan skor tertinggi sebesar 100, tempat penampungan air limbah dengan skor 70.61, kualitas fisik air minum dengan skor 55.23, kebiasaan cuci tangan pakai sabun sebelum makan dengan skor 48.12, variabel tempat buang air besar dengan skor 40.60, tempat pembuangan sampah dengan skor 37.50, jenis kelamin dengan .80 dan status sosial ekonomi dengan skor pendekatan cart untuk mendapatkan faktor yang mempengaruhiโ€ฆ 0382 selanjutnya dilakukan uji validasi. tujuan dilakukan validasi adalah untuk mengetahui layak atau tidak model pohon klasifikasi dalam pengklasifikasian data baru. caranya yaitu data dimasukkan kedalam model pohon klasifikasi yang telah terbentuk sebelumnya dari yang digunakan sebesar 25% dari total data keseluruhan yaitu tabel 4 menunjukkan bahwa data testing sebanyak 454 pengamatan menghasilkan ketepatan pengklasifikasian sebesar jumlah kesalahan pengklasifikasian untuk kelas 1 (terjangkit demam tifoid) adalah sebanyak 18 dari 37 jumlah amatan. sedangkan jumlah kesalahan pengklasifikasian untuk kelas 2 (tidak terjangkit demam tifoid) adalah sebanyak 47 dari a ketepatan klasifikasi pada data testing sudah tinggi yaitu 85,7% maka model pohon klasifikasi optimal yang dihasilkan ketepatan pohon klasifikasi optimal total aktual 37 417 454 0,887 menghasilkan pohon klasifikasi optimal dengan ketepatan klasifikasi sebesar 84,1%, sedangkan adalah sebesar 85,7%. variabel yang berpengaruh terhadap terjangkitnya penyakit demam tifoid di aceh utara pada pohon optimal adalah variabel tempat penampungan air minum sebagai faktor utama dengan skor tertinggi sebesar 100, tempat h dengan skor 70.61, kualitas fisik air minum dengan skor 55.23, kebiasaan cuci tangan pakai sabun sebelum makan dengan skor 48.12, variabel tempat buang air besar dengan skor 40.60, tempat pembuangan sampah dengan skor 37.50, jenis kelamin dengan .80 dan status sosial ekonomi dengan skor pendekatan cart untuk mendapatkan faktor yang mempengaruhiโ€ฆ tujuan dilakukan validasi adalah untuk mengetahui layak atau tidak model pohon klasifikasi dalam pengklasifikasian data baru. caranya yaitu data dimasukkan kedalam model pohon klasifikasi yang telah terbentuk sebelumnya dari yang digunakan sebesar 25% dari total data keseluruhan yaitu testing sebanyak 454 pengamatan menghasilkan jumlah kesalahan pengklasifikasian untuk kelas 1 (terjangkit demam tifoid) adalah sebanyak 18 dari 37 jumlah amatan. sedangkan jumlah kesalahan pengklasifikasian untuk kelas 2 (tidak terjangkit demam tifoid) adalah sebanyak 47 dari a ketepatan klasifikasi pada data testing sudah tinggi yaitu 85,7% maka model pohon klasifikasi optimal yang dihasilkan menghasilkan pohon klasifikasi optimal dengan ketepatan klasifikasi sebesar 84,1%, sedangkan adalah sebesar 85,7%. variabel yang berpengaruh terhadap terjangkitnya penyakit demam tifoid di aceh utara pada pohon optimal adalah variabel tempat penampungan air minum sebagai faktor utama dengan skor tertinggi sebesar 100, tempat h dengan skor 70.61, kualitas fisik air minum dengan skor 55.23, kebiasaan cuci tangan pakai sabun sebelum makan dengan skor 48.12, variabel tempat buang air besar dengan skor 40.60, tempat pembuangan sampah dengan skor 37.50, jenis kelamin dengan .80 dan status sosial ekonomi dengan skor 22.09. sedangkan variabel kebiasaan cuci tangan pakai sabun setelah buang air besar dan penyuluhan kesehatan dengan skor variabel penting dibawah 20. daftar pustaka [1] [2] [3] [4] [5] [6] [7] [8] [9] [10 pendekatan cart untuk mendapatkan faktor yang mempengaruhiโ€ฆ 22.09. sedangkan variabel kebiasaan cuci tangan pakai sabun setelah buang air besar dan penyuluhan kesehatan dengan skor variabel penting dibawah 20. daftar pustaka ] anonim. 2007. . ] breiman l, friedman j.h, olshen r.a, dan stone c.j. 1993. trees. chapman and hall. ] departemen kesehatan ri. 2008. kesehatan dasar (laporan nasional 2007) jakarta. ] hidayati, n terhadap faktor mempengaruhi penyakit demam typhoid di provinsi jawa timurโ€. jurusan statistika fmipa its ] jevuska. 2008. fever), . 10] steinberg d. dan phillip c. 2005. classification and regression trees salford system, san diego. pendekatan cart untuk mendapatkan faktor yang mempengaruhiโ€ฆ 22.09. sedangkan variabel kebiasaan cuci tangan pakai sabun setelah buang air besar dan penyuluhan kesehatan dengan skor variabel penting dibawah 20. daftar pustaka anonim. 2007. demam tifoid http://ummusalma.wordpress.com/2007/ 01/22/helloworld/, tanggal akses: 27 september 2009>. breiman l, friedman j.h, olshen r.a, dan stone c.j. 1993. classification and regression . chapman and hall. departemen kesehatan ri. 2008. kesehatan dasar (laporan nasional 2007) n. 2001. โ€œanalisis regresi poisson terhadap faktor mempengaruhi penyakit demam typhoid di provinsi jawa timurโ€. jurusan statistika fmipa its jevuska. 2008. demam tifoid (typhoid http://www.jevuska.com/2008/05/ tifoid-typhoid 26 september 2009>. kompas. 2005. masyarakat diminta waspadai penyakit tipus http://www.kompas.com/ kompas tanggal akses: 28 agustus2009 lewis dan roger j. 2000. to classification and regression trees (cart) analysis. presented at the 2000. . (2007). โ€œfaktor resiko kejadian penyakit demam tifoid penderita yang dirawat di rsud dr. thesis, mahasiswa jurusan ilmu kesehatan masyarakat universitas sumatera utara. sumatera utara. salma, u. 2007. demam tifoid . steinberg d. dan phillip c. 2005. fication and regression trees salford system, san diego. pendekatan cart untuk mendapatkan faktor yang mempengaruhiโ€ฆ 22.09. sedangkan variabel kebiasaan cuci tangan pakai sabun setelah buang air besar dan penyuluhan kesehatan dengan skor variabel demam tifoid, http://ummusalma.wordpress.com/2007/ tanggal akses: 27 breiman l, friedman j.h, olshen r.a, dan classification and regression . chapman and hall. new york. departemen kesehatan ri. 2008. kesehatan dasar (laporan nasional 2007) โ€œanalisis regresi poisson terhadap faktor-faktor yang mempengaruhi penyakit demam typhoid di provinsi jawa timurโ€. skripsi, mahasiswa jurusan statistika fmipa its. surabaya. demam tifoid (typhoid http://www.jevuska.com/2008/05/ typhoid-fever, tanggal akses: masyarakat diminta waspadai penyakit tipus http://www.kompas.com/ kompas tanggal akses: 28 agustus2009>. lewis dan roger j. 2000. an introduction to classification and regression trees . presented at the 2000. faktor resiko kejadian penyakit demam tifoid penderita yang dirawat di rsud dr. soetomo surabaya thesis, mahasiswa jurusan ilmu kesehatan masyarakat universitas . sumatera utara. demam tifoid, . steinberg d. dan phillip c. 2005. fication and regression trees salford system, san diego. pendekatan cart untuk mendapatkan faktor yang mempengaruhiโ€ฆ 77 22.09. sedangkan variabel kebiasaan cuci tangan pakai sabun setelah buang air besar dan penyuluhan kesehatan dengan skor variabel http://ummusalma.wordpress.com/2007/ tanggal akses: 27 breiman l, friedman j.h, olshen r.a, dan classification and regression new york. departemen kesehatan ri. 2008. riset kesehatan dasar (laporan nasional 2007). โ€œanalisis regresi poisson faktor yang mempengaruhi penyakit demam typhoid di skripsi, mahasiswa . surabaya. demam tifoid (typhoid http://www.jevuska.com/2008/05/10fever, tanggal akses: masyarakat diminta waspadai penyakit tipus, http://www.kompas.com/ kompas-cetak/, an introduction to classification and regression trees . presented at the 2000. faktor resiko kejadian penyakit demam tifoid penderita yang soetomo surabayaโ€. thesis, mahasiswa jurusan ilmu kesehatan masyarakat universitas press.com steinberg d. dan phillip c. 2005. cartโ€“ fication and regression trees. ca: microsoft word 1 sampul depan.doc 31ย  perambatan gelombang optik pada grating sinusoidal dengan chirp dan taper isnani darti jurusan matematika, fakultas mipa universitas brawijaya, jl. veteran malang 65145 email: isnanidarti@yahoo.com abstrak artikel ini membahas model perambatan gelombang optik pada grating sinusoidal takhomogen. model tersebut diturunkan dengan mereduksi secara eksak persamaan helmholtz menjadi sistem persamaan diferensial orde satu dengan syarat awal yang dapat diselesaikan dengan metode runge-kutta orde empat. metode ini disebut metode integrasi langsung (mil). formulasi mil sangat sederhana baik dalam hal penurunannya maupun implementasinya karena tidak memerlukan prosedur iterasi maupun optimasi. dengan menggunakan mil, dipelajari perubahan respon optik pada grating sinusoidal akibat variasi amplitudo modulasi indeks (taper) dan variasi frekuensi spasial grating (chirp). hasil simulasi menunjukkan bahwa taper menyebabkan adanya fenomena penghilangan side-lobe pada spektrum transmitansi. adanya chirp menyebabkan penghalusan side-lobe pada spektrum transmitansi dengan semakin besar parameter chirp menyebabkan peningkatan transmitansi di sekitar pusat band-gap dari grating homogen. selain implementasi integrasi numerik (runge-kutta), mil merupakan metode eksak sehingga dapat digunakan untuk mengevaluasi validitas metode yang sering digunakan yaitu persamaan moda tergandeng (pmt). dari hasil perbandingan dapat disimpulkan bahwa secara umum pmt kurang akurat dalam menganalisis struktur grating sinusoidal baik homogen maupun tak-homogen. kata kunci: grating sinusoidal tak-homogen (taper, chirp), metode integrasi langsung, persamaan moda tergandeng, metode runge-kutta orde empat. 1. pendahuluan salah satu blok komponen penting dalam peralatan optik terpadu adalah struktur grating, yaitu suatu sistem yang terbuat dari beberapa lapisan medium dielektrik yang disusun secara bergantian (periodik). struktur ini memiliki sifat dasar bahwa gelombang dengan frekuensi yang termasuk dalam suatu interval tertentu akan dipantulkan secara sempurna oleh struktur grating. interval frekuensi ini disebut dengan band gap; lihat (joannopoulos et al. 1995, soukoulis 1993, soukoulis 1996). salah satu struktur grating yang sering dikaji adalah grating dengan indeks bias berbentuk sinusoidal (disebut grating sinusoidal). struktur grating tersebut telah diaplikasikan dalam berbagai peralatan optik yang menarik seperti filter (lei et al. 1997), cermin sempurna (joannopoulos et al. 1995), optical limiter dan switching (scalora et al., 1994, tran, 1997) dan sensor (mandal et al., 2005). sebelum mendesain peralatan yang menggunakan struktur grating, adalah sangat penting untuk mengetahui perilaku transmisi gelombang optik yang melewati struktur tersebut. untuk mempelajari perilaku transmisi secara eksperimen dibutuhkan fasilitas yang sangat mahal seperti โ€œclean roomโ€. oleh karena itu pengertian secara teoritis dan prinsip-prinsip dasar sangat diperlukan untuk efisiensi waktu dan biaya. untuk itu perlu dikembangkan metode analisis yang sangat akurat dan efisien sebagai dasar untuk simulasi komputer. metode yang sering banyak diaplikasikan untuk mempelajari fenomena pada grating sinusoidal adalah persamaan moda tergandeng (pmt) (de sterke at at., 1991). secara umum pmt dikembangkan dengan mengasumsikan bahwa amplitudo gelombang bervariasi secara lambat (slowly varying envelope isnaniย dartiย  32 volumeย 1ย no.ย 1ย novemberย 2009 approximation, disingkat svea) sehingga untuk kasus-kasus tertentu keakuratannya diragukan. untuk mengatasi hal tersebut, suryanto dan darti (2005) telah mengembangkan metode integrasi langsung (mil). dalam metode ini, persamaan maxwell diselesaikan dalam domain frekuensi dan ditransformasikan ke dalam sistem persamaan diferensial yang dapat diintegrasikan secara langsung. metode tersebut telah diaplikasikan untuk mempelajari respon optik baik dari grating step-index dengan beberapa lapisan cacat (suryanto dan darti, 2005; suryanto, 2006) maupun grating sinusoidal dengan pergeseran fasa (suryanto dan darti, 2008; suryanto, 2009). dalam artikel ini metode integrasi langsung akan diaplikasikan untuk mempelajari perubahan respon optik pada grating sinusoidal akibat variasi amplitudo modulasi indeks (taper) dan variasi frekuensi spasial (chirp). 2. grating sinusoidal tak-homogen dan metode numerik struktur grating sinusoidal yang akan dikaji dalam artikel ini adalah struktur grating dengan indeks bias berbentuk ( ) ( ) ( ) โŽŸ โŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› ฮป += z z znzn ฯ€ ฮด 2 sin0 (1) dengan ,0n ( )zฮด dan ( )zฮป masing-masing adalah rata-rata indeks bias medium, kedalaman modulasi indeks sinusoidal dan panjang periode grating. secara skematik, struktur grating yang dikaji dapat dilihat pada gambar 1. gambar 1. gambar skematik variasi indeks grating terhadap z. 2.1. persamaan gelombang dan metode integrasi langsung perambatan gelombang elektromagnetik secara umum dimodelkan oleh persamaan maxwell. pada medium linear satu dimensi, persamaan maxwell direduksi menjadi persamaan helmholtz (suryanto et al., 2003a, suryanto et al., 2003b): ( ) 0222 2 =+ eznk dz ed (2) dimana e adalah gelombang elektrik, ck /ฯ‰= adalah konstanta propagasi di ruang hampa dengan c adalah kecepatan cahaya. persamaan (2) dapat dinyatakan dalam bentuk sistem persamaan diferensial: ( ) ( ) ( ) ( ) ( ).22 zeznk dz zdv zv dz zde โˆ’= = (3) perhatikan bahwa sistem persamaan (3) diturunkan dari persamaan helmholtz (2) tanpa melakukan aproksimasi. untuk menyelesaikan persamaan (3), diperlukan syarat awal. syarat awal ditentukan dengan mengasumsikan bahwa gelombang elektromagnetik dengan frekuensi ฯ‰ dan amplitudo dtga diiluminasikan dengan sudut normal hanya dari perambatanย gelombangย optikย padaย gratingย sinusoidalย denganย chiperย danย taperย  volumeย 1ย no.ย 1ย novemberย 2009 33 sebelah kiri grating. secara umum, gelombang datang tersebut akan dipantulkan (misalkan gelombang pantul mempunyai amplitudo ptla ) oleh struktur grating dan sebagian diteruskan oleh grating (misal dengan amplitudo tra ). jika grating diasumsikan terletak di antara z = 0 dan z = maxz dan medium di luar grating mempunyai indeks bias konstan 0nn = , maka medan elektrik di luar grating secara umum adalah ( ) 0;00 โ‰ค+= โˆ’ zeaeaze ziknptl zikn dtg (4.a) ( ) max)( ;0 zzeaze lzikntr โ‰ฅ= โˆ’โˆ’ . (4.b) dengan mengimplementasikan kondisi antar-muka pada z = 0 dan z = maxz , didapat bahwa ( ) ( ) tr tr aiknlv ale 0โˆ’= = (5) dan amplitudo gelombang datang dan gelombang pantul ditentukan oleh ( ) ( ) ( ) ( ) .00 2 1 00 2 1 0 0 โŽŸโŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› โˆ’= โŽŸโŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› += v kn i ea v kn i ea ptl dtl (6) penyelesaian persamaan (3) dengan kondisi awal (5) dapat dicari dengan menggunakan metode integrasi numerik mulai dari z = maxz sampai z = 0. dalam artikel ini, metode yang digunakan adalah metode runge-kutta orde empat. setelah seluruh medan elektrik terhitung, amplitudo gelombang datang dan gelombang pantul dapat dihitung dengan mengaplikasikan persamaan (6) dan reflektansi dan transmitansi dapat ditentukan dengan persamaan: 2 dtg ptl a a r = dan 2 dtg tr a a t = . (7) 2.2. persamaan moda-tergandeng (pmt) untuk menurunkan pmt, pertama diasumsikan bahwa variasi modulasi amplitudo grating ( )zฮด bernilai cukup kecil, sehingga kuadrat indeks bias dalam persamaan (1) dapat diaproksimasi menjadi ( ) ( ) ( ) โŽŸ โŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› ฮป += z z znnzn ฯ€ ฮด 2 sin2 0 2 0 2 . (8) selanjutnya, medan elektrik diasumsikan sebagai superposisi dari moda normal dari medium konstan (yaitu jika ( ) 0=zฮด ) tetapi dengan amplitudo tergantung pada posisi z, yaitu ( ) ( ) ( )zikzbzikzaze 00 exp)(exp)( +โˆ’= (9) dengan 00 knk = . dengan mengasumsikan svea dan menganggap bahwa moda harmonik spasial order tiga sangat kecil, persamaan helmholtz (2) direduksi menjadi pmt: ( )( ) ( )( )zkkiak z b zkkibk z a โˆ’โˆ’= โˆ‚ โˆ‚ โˆ’= โˆ‚ โˆ‚ 0 0 2exp 2 1 2exp 2 1 ฮด ฮด (10) isnaniย dartiย  34 volumeย 1ย no.ย 1ย novemberย 2009 dengan ฮป = ฯ€2 k . untuk grating homogen, penyelesaian analitik pmt dapat ditemukan dalam literatur (yeh, 1988), yaitu: ( ) ( )[ ] ( )[ ] ( ) [ ] ( ) ( )[ ] ( ) [ ] โŽŸ โŽ  โŽž โŽœ โŽ โŽ› ฮดโˆ’ ฮด+ โˆ’ โˆ’= โŽŸ โŽ  โŽž โŽœ โŽ โŽ› ฮด ฮด+ โˆ’ฮด+โˆ’ = kzia szkiszs zzsi zb kzia szkiszs zzskizzss za 2 1 exp sinh 2 1 cosh sinh 2 1 exp sinh 2 1 cosh sinh 2 1 cosh 0 maxmax max 0 maxmax maxmax ฮบ (11) dimana kkk โˆ’=ฮด 02 , ฮดฮบ k2 1 = , 2 2 2 โŽŸ โŽ  โŽž โŽœ โŽ โŽ› ฮดโˆ’= k s ฮบ and ( )00 aa = . tetapi untuk grating tak-homogen, penyelesaian eksak relatif sulit didapatkan. dalam artikel ini pmt pada persamaan (1) diintegralkan secara numerik seperti pada mil, yaitu menggunakan metode runge-kutta order empat dengan syarat awal ( ) .0 )( max max = = zb aza tr (12) reflektansi dan transmitansi dapat ditentukan dengan cara yang identik dengan mil, yaitu ( ) ( ) 2 0 0 a b r = dan ( ) ( ) 2 max 0a za t = . (13) 3. simulasi numerik perambatan gelombang optik pada grating sinusoidal 3.1. grating homogen pada bagian ini akan ditunjukkan hasil simulasi numerik gelombang optik pada grating homogen. khususnya akan dibahas sifat-sifat transmisi grating sinusoidal homogen, yaitu struktur dengan indeks bias seperti pada persamaan (1) dengan 20 =n , ( ) 4.00 == ฮดฮด z dan ( ) 02 1 n z b =ฮป=ฮป . (a) (b) gambar 2. spektrum transmitansi grating sinusoidal homogen dengan (a) n = 10 dan (b) n = 20; dihitung dengan mil dan pmt. pada gambar 2 ditunjukkan pengaruh jumlah perioda grating terhadap karakteristik transmisi. terlihat bahwa semakin banyak perioda, semakin banyak pula jumlah frekuensi resonan (frekuensi dengan transmitansi t = 1) yang muncul. terlebih perambatanย gelombangย optikย padaย gratingย sinusoidalย denganย chiperย danย taperย  volumeย 1ย no.ย 1ย novemberย 2009 35 lagi, pada ujung-ujung band-gap untuk jumlah perioda yang lebih besar, resonan memiliki lebar spektrum yang lebih sempit. perbandingan hasil mil dengan pmt untuk grating sinusoidal homogen juga dapat dilihat pada gambar 2. secara umum pmt memberikan spektrum transmitansi dengan jumlah resonan yang sama dengan mil tetapi dengan side-lobe lebih dangkal untuk spektrum di sebelah kiri band-gap dan lebih dalam untuk spektrum di sebelah kanan band-gap. lebih lanjut, spektrum transmitansi hasil pmt tergeser ke kanan jika dibandingkan spektrum hasil mil. hasil ini menunjukkan bahwa pmt kurang akurat dalam menganalisis grating sinusoidal. perbedaan antara spektrum hasil pmt dan mil semakin berkurang dengan semakin kecilnya nilai 0ฮด . 3.2. grating dengan taper linear untuk melihat pengaruh taper, diasumsikan bahwa amplitudo modulasi indeks bias mengalami peningkatan (untuk taper positif) atau penurunan (untuk taper negatif) secara linear, yaitu grating mempunyai modulasi amplitudo secara linear: ( ) ( )znzn ฮด+= 10ฮดฮด (14) dengan panjang perioda dan rata-rata modulasi indeks bias bernilai konstan yaitu ( ) 02 1 n z =ฮป dan 4.00 =ฮด . (a) (b) gambar 3. spektrum transmitansi grating (n = 10) dengan taper linear: (a) taper positif ; (b) taper negatif. gambar 4. spektrum transmitansi grating dengan taper positif dan n = 20. transmitansi dari grating dengan jumlah perioda n = 10 dapat dilihat pada gambar 3.a untuk taper positif dan gambar 3.b untuk taper negatif. adanya taper pada grating, baik positif ataupun negatif menunjukkan adanya fenomena penghilangan side-lobe. perbedaannya, taper positif mengakibatkan interval band-gap semakin lebar dan sebaliknya taper negatif mengakibatkan penghilangan interval band-gap. fenomena isnaniย dartiย  36 volumeย 1ย no.ย 1ย novemberย 2009 penghilangan side-lobe dan pelebaran/penghilangan interval band-gap semakin terlihat apabila parameter taper ฮดn diperbesar atau jika jumlah perioda grating n ditingkatkan. sebagai contoh, fenomena tersebut dapat dilihat dari spektrum transmitansi grating sinusoidal dengan taper linear dan jumlah perioda n = 20, lihat gambar 4. pada gambar 3 dan 4 juga dibandingkan spektrum transmitansi grating dengan taper hasil mil dengan hasil pmt. pada gambar-gambar tersebut dapat dilihat bahwa perbedaan antara hasil mil dan pmt serupa dengan masalah grating homogen. hasilhasil simulasi menunjukkan bahwa pmt semakin tidak akurat jika parameter taper atau jumlah perioda grating diperbesar. 3.3. grating dengan chirp chirp pada grating dibuat dengan mengubah periodasitas dari grating homogen, yaitu panjang perioda masing-masing grating diberikan oleh ( ) ( ) negatif untuk ;1 positif untuk;1 minmax max minmax min chirpi n chirpi n i i โˆ’โŽŸ โŽ  โŽž โŽœ โŽ โŽ› ฮปโˆ’ฮป โˆ’ฮป=ฮป โˆ’โŽŸ โŽ  โŽž โŽœ โŽ โŽ› ฮปโˆ’ฮป+ฮป=ฮป (15) dengan ( ) ( ) ( ) .4.0;1;1 0minmax ==ฮปโˆ’=ฮปฮป+=ฮป ฮดฮดฯƒฯƒ zbb gambar 5 menunjukkan spektrum transmitansi dari grating dengan chirp dan jumlah perioda n = 10. terlihat pada gambar tersebut bahwa chirp menghaluskan side-lobe dan apabila parameter chirp diperbesar maka transmitansi meningkat di sekitar pusat band-gap dari grating homogen. pada gambar 5 terlihat bahwa pmt untuk masalah grating dengan chirp sangat tidak akurat. hal ini ditunjukkan oleh perbedaan spektrum transmitansi hasil mil dan pmt. hasil simulasi lain menunjukkan bahwa semakin besar parameter chirp ataupun semakin besar jumlah perioda grating menyebabkan pmt semakin tidak akurat. (a) (b) gambar 5. spektrum transmitansi grating dengan jumlah perioda n = 10: (a) chirp negatif dan (b) chirp positif. 4. kesimpulan dalam artikel ini telah dikembangkan mil untuk analisis grating sinusoidal takhomogen. dalam metode tersebut persamaan helmholtz secara langsung diubah menjadi sistem persamaan diferensial orde satu dengan syarat awal yang dapat diselesaikan secara langsung oleh metode runge-kutta order empat. jika dibandingkan dengan mil, pmt secara umum kurang akurat dalam menganalisis grating sinusoidal baik homogen maupun tak-homogen. dengan menggunakan mil, telah dipelajari pengaruh taper dan chirp terhadap respon optik pada grating sinusoidal. ditunjukkan juga bahwa taper dan chirp masingperambatanย gelombangย optikย padaย gratingย sinusoidalย denganย chiperย danย taperย  volumeย 1ย no.ย 1ย novemberย 2009 37 masing menyebabkan adanya fenomena penghilangan dan penghalusan side-lobe pada spektrum transmitansi. parameter chirp yang besar mengakibatkan peningkatan transmitansi di sekitar pusat band-gap (grating homogen). ucapan terima kasih artikel ini merupakan bagian dari hasil penelitian fundamental yang dibiayai oleh direktorat penelitian dan pengabdian kepada masyarakat (dp2m) dengan surat perjanjian pelaksanaan hibah penugasan penelitian desentralisasi nomor: 320/sp2h/pp/dp2m/iii/2008, direktorat jenderal pendidikan tinggi, departemen pendidikan nasional. penulis mengucapkan terima kasih kepada a. suryanto (jurusan matematika, universitas brawijaya) atas diskusi dan saran yang sangat bermanfaat pada penulisan artikel ini. daftar pustaka de sterke, c.m., k.r. jackson, b.d. robert, 1991, nonlinear coupled-mode equations on a finite interval: a numerical procedure, j. opt. soc. am. b. 8: 403. joannopoulos, j.d., r.d. meade dan j.n. winn, 1995, photonics crystals, princeton university press, princeton, nj. lei, x-y., h. li, f. din, w. zhang dan n-b. ming, 1997, novel application of a perturbed photonic crystal: high-quality filter, appl. phys. lett. 71: 2889. mandal, j., y. shen, s. pal, t. sun, k.t.v. grattan dan a.t. augousti, 2005, bragg grating tuned fiber laser system for measurement of wider range temperature and strain, opt. comm. 244: 111. scalora, m., j.p. dowling, c.m. bowden dan m.j. bloemer,1994, optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials, phys. rev. lett. 73: 1368. soukoulis, c.m., 1993, photonics band gaps and localization, plenum, new york. soukoulis, c.m., 1996, photonics band gaps materials, kluwer academic, dordrecht. suryanto, a., e. van groesen, m. hammer dan h.j.w.m. hoekstra, 2003a, a finite element scheme to study the nonlinear optical response of a finite grating without and with defect, opt. and quant. electr. 35: 313. suryanto, a., e. van groesen dan m. hammer, 2003b, finite element analysis of optical bistability in one-dimensional nonlinear photonics band gap structures with a defect, j. nonl. opt. phys. & mater. 12:187. suryanto, a. dan i. darti, 2005, perubahan sifat-sifat transmisi gelombang optik pada struktur grating satu dimensi akibat adanya beberapa lapisan cacat, laporan penelitian dasar dp2m-dikti. suryanto, a. 2006, transmission characteristics of one-dimensional photonics bandgap structures with some defects, j. nonl. opt. phys. & mater. 15: 331. suryanto, a. dan i. darti, 2008, pengaruh variasi frekuensi spatial dan pergeseran fasa terhadap karakteristik optical bistability pada fiber bragg grating nonlinear berstruktur sinusoidal, laporan penelitian fundamental dp2m-dikti. suryanto, a., 2009, on the numerical modelling of optical switching in nonlinear phase-shifted grating, j. nonl. opt. phys. & mater. 18: 129. tran, p., 1997, optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect, j. opt. soc. am. b14: 2589. yeh, p., 1988, optical waves in layered media, john wiley & sons, new york. spatio temporal modelling for government policy the covid-19 pandemic in east java cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 218-226 p-issn: 2086-0382; e-issn: 2477-3344 submitted: november 07, 2020 reviewed: december 03, 2020 accepted: april 12, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.10639 spatio temporal modelling for government policy the covid-19 pandemic in east java atiek iriany1, novi nur aini1, agus dwi sulistyono2 1 department of statistics faculty of mathematics and natural sciences, brawijaya university, indonesia 2 faculty of fisheries and marine science, brawijaya university, indonesia email: atiekiriany@ub.ac.id abstract covid-19 has cursorily spread globally. just in four months, its status altered into a pandemic. in indonesia, the virus epicenter is identified in java. the first positive case was identified in west java and later spread in all java. the large-scale social restrictions are seemingly inefficient as the sars-cov-2 transmission remains. as such, the government is struggling to find anticipatory policies and steps best to mitigate the transmission. in this particular article, we used a spatiotemporal model method for the total covid-19 cases in java and forecasted the total cases for the next 14 days, allowing the stakeholders to make more effective policies. the data we were using was the daily data of the cumulative number of covid-19 cases taken from www.covid19.go.id. data modeling was conducted using a generalized spatio-temporal autoregressive model. the model acquired to model the covid-19 cases in java was the gstar(1)(1,0,0) model. keywords: covid-19; forecasting, pandemic; spatio-temporal introduction as stipulated by who on 12 march 2020, covid-19 had become a pandemic [1]. the virus, firstly identified in wuhan in december 2019, rapidly spread throughout china and other 190 countries [2]. no research exactly explains how the sars-cov-2 was initially transmitted, but, in the meantime, it is believed that humans transmit this virus to humans. later research reveals that symptomatic patients transmit sars-cov-2 through droplets or sneezes [3]. moreover, another research mentions that sars-cov-2 can live in gas particles, e.g., air (generated through nebulizer) for approximately three hours [4]. due to its relatively rapid transmission and mortality rate which cannot be overlooked and no definitive therapy found, covid-19 is one of the diseases to which we should alert [5]. the coronavirus epicenter in indonesia is identified in java. the first positive case was identified in west java and later spread in all java. it indicates that adjacent locations closely pertain to the sars-cov-2 transmission. in response to the virus, chinaโ€™s social distancing regulation is proven effective to stabilize the virus transmission, and hence the number declines [6]. indonesia, similar to china, issues the same regulation, namely the large-scale social restrictions (psbb). nevertheless, the regulation is seemingly inefficient as the sars-cov-2 transmission remains. as such, the government is struggling to find anticipatory policies and steps best to mitigate the transmission. http://dx.doi.org/10.18860/ca.v6i4.10639 http://www.covid19.go.id/ spatio-temporal modelling for government policy the covid-19 pandemic in java atiek iriany 219 many researchers, e.g., jia et al. [7], albana [8], and fajar [9] have studied the covid-19 transmission and aim to recommend some anticipatory efforts. meanwhile, we made covid-19 modeling using a spatio-temporal approach due to the sars-cov-2 transmission, which is mostly influenced by interplay, and numerous positive cases. several researchers used the spatio-temporal model [10] and [11]. one of the methods used to handle data attributed to time and location was generalized space-time autoregressive (gstar). some researchers, such as iriany [12], ruchjana [13], and prastyo [14], prefer this method. in this particular article, we used a spatio-temporal model for the total covid-19 cases in java and forecasted the total cases for the next 14 days, allowing the stakeholders to make more effective policies. methods data source the data we were using in this research were the daily data of the cumulative number of covid-19 cases taken from www.covid19.go.id. data stationarity according to the stationary time series data, neither a sharp decrease nor an increase in data value nor fluctuated data was found around the constant mean value [15]. stationary data had the mean ๐ธ(๐‘๐‘ก) = ยต and variance ๐‘‰๐‘Ž๐‘Ÿ(๐‘๐‘ก) = ฯƒ2. the mean value conditioned that data had to be stationary, so neither decrease nor an increase in data from time to time was allowed [16]. furthermore, the characteristic of a stationary time series was endlessly constant average and variance. there were two types of time series stationarity, namely stationarity to variance and the mean. a. stationarity to variance stationarity to variance was if ๐‘‰๐‘Ž๐‘Ÿ(๐‘๐‘ก) = ๐‘‰๐‘Ž๐‘Ÿ(๐‘๐‘กโˆ’๐‘˜) for all t and k, the variance was constant from time to time [17]. to observe whether or not the data was stationary to variance, we used a box-cox plot. non-stationary data could be altered into stationary ones through transformation. b. stationarity to the mean stationarity to the mean was if ๐ธ(๐‘๐‘ก) = ๐ธ(๐‘๐‘กโˆ’๐‘˜) for all t and k, the mean function remained constant from time to time. stationarity to the mean was observed using the acf (autocorrelation function) plot or the dickey-fuller test. non-stationary data could be altered into stationary ones through differencing. generalized space-time autoregressive integrated (gstar) the ar order was determined using the mpacf plot. correlation between zt and zt+k, after a dependence relationship, was linear. the variables zt+1, zt+2, โ€ฆ, and zt+k-1 were thus negated. the formula of correlation partial matrix function is as follows: ฯ•kk = ๐‘๐‘œ๐‘ฃ [(๐‘๐‘กโˆ’๏ฟฝฬ‚๏ฟฝ๐‘ก),(๐‘๐‘ก+๐‘˜โˆ’๏ฟฝฬ‚๏ฟฝ๐‘ก+๐‘˜)] โˆš๐‘ฃ๐‘Ž๐‘Ÿ(๐‘๐‘กโˆ’๏ฟฝฬ‚๏ฟฝ๐‘ก)โˆš๐‘ฃ๐‘Ž๐‘Ÿ(๐‘๐‘ก+๐‘˜โˆ’๏ฟฝฬ‚๏ฟฝ๐‘ก+๐‘˜) (1) where ฯ•kk = partial correlation matrix coefficient at lag k ๐‘๐‘ก = observation data at the time t ๏ฟฝฬ‚๏ฟฝ๐‘ก = predictor for ๐‘๐‘ก ๐‘๐‘ก+๐‘˜ = observation data at the time ๐‘ก + ๐‘˜ ๏ฟฝฬ‚๏ฟฝ๐‘ก+๐‘˜ = predictor for ๐‘๐‘ก+๐‘˜ http://www.covid19.go.id/ spatio-temporal modelling for government policy the covid-19 pandemic in java atiek iriany 220 the partial autoregression matrix at lag s became the last matrix coefficient when the data were leveraged for the vector autoregression process of the order s. the best model was selected among some models considered feasible for mpacf testing. model selection was conducted using aic. the less the aic value in a model, the better the model. the quantification of the aic value was as follows: ๐ด๐ผ๐ถ(๐‘–) = ln (|๐‘†(๐‘)| + 2๐‘๐‘2 ๐‘‡ ) (2) where: b = the number of predicted parameters in the model t = the number of observations s(p) = residual sum of squares p = var model order the gstar model was introduced by borovkova, lopuha, and ruchjana in 2020 in wutsqa et al. [18]. it was more flexible and generalized than the star model and did not require the same parameter values at all locations. the gstar model (๐‘, ๐œ†1, โ€ฆ . , ๐œ†๐‘™) is written as follows [19]: zt = โˆ‘ [ฯ†๐‘˜0 + ๐‘ ๐‘˜=1 ฯ†๐‘˜1๐‘Š] ๐‘๐‘กโˆ’๐‘ + ๐‘’๐‘ก (3) where: ฯ†๐‘˜0 = diag (๐œ™๐‘˜0 1 , โ€ฆ , ๐œ™๐‘˜0 ๐‘› ), diagonal matrix of the parameter space-time lag spatial 0 and the parameter autoregressive lag at the time kth ฯ†๐‘˜1 = diag (๐œ™๐‘˜1 1 , โ€ฆ , ๐œ™๐‘˜1 ๐‘› ), diagonal matrix of the parameter space-time lag spatial 1 and the parameter autoregressive lag at the time kth w = weighing matrix (nร—n) selected as such that ๐‘Š ๐‘–๐‘– (๐‘˜) = 0 dan โˆ‘ ๐‘Š ๐‘–๐‘— (๐‘˜) = 1๐‘–โ‰ ๐‘— e(t) = the white-nose vector in size of (n ร— 1) z(t) = the random vector in size of (n ร— 1) at the time t suhartono and subanar [20] introduced a new method for determining weight using the result of cross-correlation normalization between locations at a congruent time lag. ๏ฟฝฬ‚๏ฟฝ๐‘–๐‘—(๐‘˜) = ๐‘Ÿ๐‘–๐‘— (๐‘˜) = โˆ‘ [๐‘๐‘–(๐‘ก)โˆ’ ๐‘๐‘™ฬ…ฬ… ฬ…] ๐‘› ๐‘˜+1 [[๐‘๐‘—(๐‘กโˆ’๐‘˜)โˆ’ ๐‘๐‘—] ฬ…ฬ… ฬ…ฬ… โˆš(โˆ‘ [๐‘๐‘–(๐‘ก)โˆ’ ๐‘๐‘™ฬ…ฬ… ฬ…] 2๐‘› ๐‘ก=1 )(โˆ‘ [๐‘๐‘—(๐‘ก)โˆ’ ๐‘๐‘— ฬ…ฬ… ฬ…]2๐‘›๐‘ก=1 (4) the determination of location weight for the gstar model (1;p) is as follows: wij = ๐‘Ÿ๐‘–๐‘—(1) โˆ‘ |๐‘Ÿ๐‘–๐‘˜(1)|๐‘˜โ‰ 1 (5) with i โ‰  j and the weight had fulfilled โˆ‘ ๐‘ค๐‘–๐‘—๐‘–โ‰ ๐‘— = 1. the weight of cross-correlation normalization represented the variance of correlation between locations occurring in the data. spatio-temporal modelling for government policy the covid-19 pandemic in java atiek iriany 221 results and discussion the covid-19 cases in indonesia were ever-increasing, and java was regarded as the transmission epicenter. the increase in the covid-19 cases is depicted in figure 1. figure 1. the plot of the time series of covid-19 cases in each province figure 1 indicates that as of 2 march-18 may 2020, the covid-19 cases increased in all provinces in java. on 18 may 2020, the highest number of cases, 5,555, was reportedly in jakarta, whereas the lowest one, 185, was in yogyakarta. using the data of the total covid-19 cases in six provinces in java, we identified the correlation between provinces and the covid-19 transmission in java. correlation between locations was identified using pearsonโ€™s correlation between provinces. the result of pearson correlation quantification is presented in table 1. table 1. the correlation value of the covid-19 cases between provinces in java banten jakarta west java central java yogyakarta east java banten 1 0.994 0.994 0.982 0.981 0.973 jakarta 0.994 1 0.995 0.989 0.975 0.967 west java 0.994 0.995 1 0.992 0.986 0.977 central java 0.982 0.989 0.992 1 0.983 0.980 yogyakarta 0.981 0.975 0.986 0.983 1 0.996 east java 0.973 0.967 0.977 0.980 0.996 1 in table 1, we can see that the data of the number of the covid-19 cases in six provinces in java had a high pearsonโ€™s correlation value which was higher than 0.9. it implies that the correlation of the covid-19 cases between provinces in java was strong. data stationarity test data stationarity testing was performed in two stages which were stationarity to variance and stationarity to the mean. stationarity to variance was tested using the boxcox transformation. data were regarded stationary if the lambda value was 1, signifying that var(zt) = var(zt-k). the result of the stationarity test to variance is shown in table 2. table 2. the result of box-cox transformation location ฮป transformation final transformation trans. ฮป trans. ฮป banten 0.20 zt0.20 1.00 zt0.20 jakarta 0.20 zt0.20 1.00 zt0.20 spatio-temporal modelling for government policy the covid-19 pandemic in java atiek iriany 222 location ฮป transformation final transformation trans. ฮป trans. ฮป west java 0.19 zt0.19 1.00 zt0.19 central java 0.00 ln(zt) 1.00 ln(zt) yogyakarta 0.00 ln(zt) 0.00 ln(zt) 1.00 ln(ln(zt)) east java 0.00 ln(zt) 0.50 zt0.50 1.00 ln(zt)0.50 as seen in table 2, the initial data had not fulfilled the stationarity to variance yet. several transformations were thus called for. after conducting the data stationarity test, we did the stationarity test to the mean. the test was conducted using an augmented dickey-fuller test. the result of the stationarity test to the mean is indicated in table 3. table 3. the result of the augmented dickey-fuller test location lag 0 1 2 banten ฯ€ 98.73 60.83 34.96 p-value 0.001 0.001 0.001 jakarta ฯ€ 107.89 32.98 21.15 p-value 0.001 0.001 0.001 west java ฯ€ 100.74 40.22 28.78 p-value 0.001 0.001 0.001 central java ฯ€ 122.94 55.84 29.66 p-value 0.001 0.001 0.001 yogyakarta ฯ€ 75.55 51.84 42.09 p-value 0.001 0.001 0.001 east java ฯ€ 155.97 57.49 25.85 p-value 0.001 0.001 0.001 from the augmented dickey-fuller test, we acquired predicted values less than the real ones (0.05). it indicates that the data had fulfilled the stationarity to variance. interpretation of the gstar model parameter model identification was aimed to find the autoregressive gstar model order. the order was elicited by identification using aic. the lag with the smallest aic value was regarded as the autoregressive gstar model order. table 4 lists the aic values. table 4. the aic value in model order selection lag ma 0 ma 1 ma 2 ma 3 ma 4 ma 5 ar 0 34.0876 35.2909 35.5546 36.0924 36.8882 36.1828 ar 1 31.9424 32.9755 33.3945 33.9363 33.9725 33.0619 ar 2 32.0815 33.1868 33.0648 33.8555 34.487 34.3527 ar 3 32.006 32.8989 33.096 35.128 35.9621 36.0125 ar 4 32.9289 34.1187 32.882 35.2756 35.429 42.0827 ar 5 34.6863 35.2259 35.61 35.7834 42.3544 table 4 shows the smallest aic value at the lag ar(1) and ma(0), hence the gstar(1)(1,0,0) model. spatio-temporal modelling for government policy the covid-19 pandemic in java atiek iriany 223 interpretation of the gstar model parameter the gstar model was a particular form of var engaging spatial elements. estimating the gstar(1) (1,0,0) spatial parameters with the ordinary least square method using cross-correlation normalization weight generated the following parameters. table 5. the parameters of the gstar(1)(1,0,0) model location parameter estimation banten โˆ…10 (1) 1.015 โˆ…11 (1) 0.793 jakarta โˆ…10 (2) 0.915 โˆ…11 (2) 0.984 west java โˆ…10 (3) 0.758 โˆ…11 (3) 1.031 central java โˆ…10 (4) -0.003 โˆ…11 (4) 0.256 yogyakarta โˆ…10 (5) 0.118 โˆ…11 (5) 0.061 east java โˆ…10 (6) 0.088 โˆ…11 (6) -0.013 referring to table 5, we generated the matrix equation of the gstar(1)(1,0,0) model, which is as follows: [ ๐‘1(๐‘ก) ๐‘2(๐‘ก) ๐‘3(๐‘ก) ๐‘4(๐‘ก) ๐‘5(๐‘ก) ๐‘6(๐‘ก)] = [ 1.015 0 0 0 0 0 0 0.915 0 0 0 0 0 0 0.758 0 0 0 0 0 0 โˆ’0.03 0 0 0 0 0 0 0.118 0 0 0 0 0 0 0.088] [ ๐‘1(๐‘ก โˆ’ 1) ๐‘2(๐‘ก โˆ’ 1) ๐‘3(๐‘ก โˆ’ 1) ๐‘4(๐‘ก โˆ’ 1) ๐‘5(๐‘ก โˆ’ 1) ๐‘6(๐‘ก โˆ’ 1)] + [ 0.793 0 0 0 0 0 0 0.984 0 0 0 0 0 0 1.031 0 0 0 0 0 0 0.256 0 0 0 0 0 0 0.061 0 0 0 0 0 0 โˆ’0.013] [ 0 0.256 0.116 0.209 0.183 0.236 0.205 0 0.187 0.217 0.160 0.231 0.192 0.223 0 0.233 0.150 0.201 0.092 0.273 0.194 0 0.231 0.210 0.156 0.242 0.079 0.276 0 0.247 0.134 0.241 0.180 0.124 0.321 0 ] [ ๐‘1(๐‘ก โˆ’ 1) ๐‘2(๐‘ก โˆ’ 1) ๐‘3(๐‘ก โˆ’ 1) ๐‘4(๐‘ก โˆ’ 1) ๐‘5(๐‘ก โˆ’ 1) ๐‘6(๐‘ก โˆ’ 1)] + [ ๐‘’1(๐‘ก) ๐‘’2(๐‘ก) ๐‘’3(๐‘ก) ๐‘’4(๐‘ก) ๐‘’5(๐‘ก) ๐‘’6(๐‘ก)] the following matrix equation was derived from the above equation. spatio-temporal modelling for government policy the covid-19 pandemic in java atiek iriany 224 [ ๐‘1(๐‘ก) ๐‘2(๐‘ก) ๐‘3(๐‘ก) ๐‘4(๐‘ก) ๐‘5(๐‘ก) ๐‘6(๐‘ก)] = [ 1.015 0 0 0 0 0 0 0.915 0 0 0 0 0 0 0.758 0 0 0 0 0 0 โˆ’0.03 0 0 0 0 0 0 0.118 0 0 0 0 0 0 0.088] [ ๐‘1(๐‘ก โˆ’ 1) ๐‘2(๐‘ก โˆ’ 1) ๐‘3(๐‘ก โˆ’ 1) ๐‘4(๐‘ก โˆ’ 1) ๐‘5(๐‘ก โˆ’ 1) ๐‘6(๐‘ก โˆ’ 1)] + [ 0 0.259 0.118 0.212 0.186 0.239 0.202 0 0.184 0.213 0.157 0.227 0.198 0.229 0 0.240 0.155 0.207 0.024 0.069 0.049 0 0.059 0.054 0.009 0.015 0.005 0.017 0 0.015 โˆ’0.002 โˆ’0.004 โˆ’0.002 โˆ’0.002 โˆ’0.004 0 ] [ ๐‘1(๐‘ก โˆ’ 1) ๐‘2(๐‘ก โˆ’ 1) ๐‘3(๐‘ก โˆ’ 1) ๐‘4(๐‘ก โˆ’ 1) ๐‘5(๐‘ก โˆ’ 1) ๐‘6(๐‘ก โˆ’ 1)] + [ ๐‘’1(๐‘ก) ๐‘’2(๐‘ก) ๐‘’3(๐‘ก) ๐‘’4(๐‘ก) ๐‘’5(๐‘ก) ๐‘’6(๐‘ก)] from the model generated, we made a comparison between the actual and predicted data, in which we acquired an rmse and mape value of 0.005 and 1.43, respectively. the two gave us a hint that the model generated was good. prediction result from the equation, we forecasted the total cases for the next 14 days, namely 19 may-1 june 2020, the result of which is presented in table 6. table 6. the predicted covid-19 cases on 19 may-1 june 2020 banten jakarta west java central java yogyakarta east java 1 628 5662 1689 1214 195 2321 2 651 5738 1746 1249 201 2438 3 674 5802 1804 1283 207 2561 4 699 5850 1862 1318 214 2689 5 725 5881 1920 1352 220 2822 6 754 5892 1978 1386 227 2961 7 784 5880 2035 1419 233 3105 8 817 5841 2092 1450 240 3255 9 852 5773 2148 1481 247 3411 10 891 5672 2202 1509 254 3573 11 933 5533 2254 1535 260 3741 12 979 5351 2305 1559 267 3916 13 1030 5122 2352 1579 274 4097 14 1086 4839 2396 1596 280 4284 the prediction stated that the total cases in all provinces in java would increase, except jakarta, in which there would be a declined total number of cases. the prediction was based on the assumption that there was no change in social interaction in the community. spatio-temporal modelling for government policy the covid-19 pandemic in java atiek iriany 225 conclusions the model acquired in modeling the covid-19 cases in java was the gstar(1)(1,0,0) model. our predicted covid-19 case data was close to the actual number of covid-19 cases in java. a spatio-temporal model could be used to predict the number of covid-19 cases in java. human-to-human transmission likely had a cross-location impact due to an interaction between individuals. our prediction indicates that all provinces in java, but jakarta, would likely have an increase in the total number of covid19 cases for the next 14 days. acknowledgments we would like to thank the university of brawijaya university for funding and support of this research. references [1] w. h. organization, โ€œwho director-generalโ€™s opening remarks at the media briefing on covid-19-11 march 2020,โ€ geneva, switz., 2020. [2] w. h. organization, โ€œnovel coronavirus (2019-ncov), situation reportโ€“70, as of march 30, 2020,โ€ url https//www. who. int/docs/defaultsource/coronaviruse/situation-reports/20200330-sitrep-70-covid-19. pdf? sfvrsn= 7e0fe3f8_2. [3] y. han and h. yang, โ€œthe transmission and diagnosis of 2019 novel coronavirus infection disease (covidโ€19): a chinese perspective,โ€ j. med. virol., vol. 92, no. 6, pp. 639โ€“644, 2020. [4] n. van doremalen, t. bushmaker, d. h. morris, m. g. holbrook, a. gamble, and b. n. williamson, โ€œ& lloyd-smith, jo (2020). aerosol and surface stability of sars-cov2 as compared with sars-cov-1,โ€ n. engl. j. med. [5] a. susilo et al., โ€œcoronavirus disease 2019: tinjauan literatur terkini,โ€ j. penyakit dalam indones., vol. 7, no. 1, pp. 45โ€“67, 2020. [6] k. roosa et al., โ€œreal-time forecasts of the covid-19 epidemic in china from february 5th to february 24th, 2020,โ€ infect. dis. model., vol. 5, pp. 256โ€“263, 2020. [7] j. s. jia, x. lu, y. yuan, g. xu, j. jia, and n. a. christakis, โ€œpopulation flow drives spatiotemporal distribution of covid-19 in china,โ€ nature, pp. 1โ€“11, 2020. [8] a. s. albana, โ€œoptimasi alokasi pasien untuk kasus covid-19 wilayah surabaya,โ€ j. tecnoscienza, vol. 4, no. 2, pp. 181โ€“200, 2020. [9] m. fajar, โ€œestimation of covid-19 reproductive number case of indonesia.โ€ [10] d. giuliani, m. m. dickson, g. espa, and f. santi, โ€œmodelling and predicting the spatio-temporal spread of coronavirus disease 2019 (covid-19) in italy,โ€ available ssrn 3559569, 2020. [11] d. giuliani, m. m. dickson, g. espa, and f. santi, โ€œmodelling and predicting the spread of coronavirus (covid-19) infection in nuts-3 italian regions,โ€ arxiv prepr. arxiv2003.06664, 2020. [12] a. iriany and b. n. suhariningsih, โ€œruchjana and setiawan," prediction of precipitation data at batu town using the gstar (1, p)-sur model,",โ€ j. basic appl. sci. res., vol. 3, no. 6, pp. 860โ€“865, 2013. [13] b. n. ruchjana, s. a. borovkova, and h. p. lopuhaa, โ€œleast-squares estimation of spatio-temporal modelling for government policy the covid-19 pandemic in java atiek iriany 226 generalized space-time autoregressive (gstar) model and its properties,โ€ in aip conference proceedings, 2012, vol. 1450, no. 1, pp. 61โ€“64. [14] d. d. prastyo, f. s. nabila, m. h. lee, n. suhermi, and s.-f. fam, โ€œvar and gstarbased feature selection in support vector regression for multivariate spatiotemporal forecasting,โ€ in international conference on soft computing in data science, 2018, pp. 46โ€“57. [15] w. w. s. wei, โ€œtime series analysis,โ€ in the oxford handbook of quantitative methods in psychology: vol. 2, 2006. [16] s. makridakis, s. c. wheelwright, and v. e. mcgee, โ€œmetode dan aplikasi peramalan,โ€ jakarta: erlangga, 1999. [17] d. c. jonathan and c. kung-sik, โ€œtime series analysis with applications in r,โ€ springerlink, springer ebooks, 2008. [18] d. u. wutsqa, s. b. suhartono, and b. sutijo, โ€œgeneralized space-time autoregressive modeling,โ€ in proceedings of the 6th imt-gt conference on mathematics, statistics and its applications (icmsa2010), 2010. [19] s. borovkova, h. p. lopuhaรค, and b. n. ruchjana, โ€œconsistency and asymptotic normality of least squares estimators in generalized star models,โ€ stat. neerl., vol. 62, no. 4, pp. 482โ€“508, 2008. [20] s. suhartono and s. subanar, โ€œthe optimal determination of space weight in gstar model by using cross-correlation inference,โ€ quant. methods, vol. 2, no. 2, pp. 45โ€“ 53, 2006. trace of positive integer power of squared special matrix cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 200-211 p-issn: 2086-0382; e-issn: 2477-3344 submitted: september 15, 2020 reviewed: january 04, 2021 accepted: january 27, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.10312 trace of positive integer power of squared special matrix rahmawati1, aryati citra2, fitry aryani3, corry corazon marzuki4, yuslenita muda5 1,2,3,4,5 department of mathematics, faculty of science and technology, state islamic university of sultan syarif kasim riau st. hr. soebrantas no. 155 simpang baru, panam, pekanbaru, 28293 email: 1rahmawati@uin-suska.ac.id , 2aryaticitra1@gmail.com, 3khodijah_fitri@uin-suska.ac.id, 4corry@uin-suska.ac.id, 5yuslenita.muda@uin-suska.ac.id abstract the rectangle matrix to be discussed in this research is a special matrix where each entry in each line has the same value which is notated by ๐ด๐‘›. the main aim of this paper is to find the general form of the matrix trace of ๐ด๐‘› powered positive integer ๐‘š or notated by ๐‘‡๐‘Ÿ(๐ด๐‘›) ๐‘š. to prove whether the general form of the matrix trace of ๐ด๐‘› powered positive integer can be confirmed, mathematics induction and direct proof are used. the main results present the general formula of (๐ด๐‘›) ๐‘š and ๐‘‡๐‘Ÿ(๐ด๐‘›) ๐‘š with observing the pattern of power matrix for 2 โ‰ค ๐‘š โ‰ค 11,๐‘› โ‰ฅ 2, and ๐‘š โˆˆ โ„ค+. keywords: direct proof; mathematics induction; matrix trace; squared matrix introduction the calculation of trace of power of square matrix has become attention. according to brezinski [1], trace of power of matrix is often used in some fields of mathematics, especially network analysis, number theory, dynamic systems, matrix theory, and differential equations. the discussion about trace matrix has been widely studied by several researchers before. datta et.al [2], has obtained algorithm of trace of power of squared matrix ๐‘‡๐‘Ÿ(๐ด๐‘˜), with ๐‘˜ is an integer and ๐ด is hassenberg matrix with a codiagonal unit. there is also discussion of trace in several applications in matrix theory and numerical linear algebra. for example in determining the eigenvalue of a symmetric matrix, the basic procedure in estimating a trace (๐ด๐‘›) and trace (๐ดโˆ’๐‘›) with ๐‘› integers, this is explained in pan [3]. chu. mt [4] discussed symbolic calculations on the power of squared tridiagonal of matrix trace. for example, ๐ด a symmetric positive definite matrix, and for example {๐œ†๐‘˜} notated its eigen value. for ๐‘ž โˆˆ โ„, ๐ด ๐‘ž also symmetric definite matrices, and are listed in hignam [5] with formula ๐‘‡๐‘Ÿ(๐ด๐‘ž) = โˆ‘๐œ†๐‘˜ ๐‘ž ๐‘˜ . according to zarelua [6] in quantum and combinatorial theory, the trace matrix is a whole number in relation to the euler equations ๐‘‡๐‘Ÿ(๐ด๐‘ ๐‘Ÿ ) = ๐‘‡๐‘Ÿ(๐ด๐‘ ๐‘Ÿโˆ’1 ) ๐‘š๐‘œ๐‘‘(๐‘๐‘Ÿ) http://dx.doi.org/10.18860/ca.v6i4.10312 mailto:rahmawati@uin-suska.ac.id mailto:aryaticitra1@gmail.com mailto:khodijah_fitri@uin-suska.ac.id mailto:corry@uin-suska.ac.id mailto:yuslenita.muda@uin-suska.ac.id trace of positive integer power of squared special matrix rahmawati 201 for all matrix a integers, p is the prime number and r original number. then this article also discuss about invariant in dynamic system which is illustrate as form of trace of integer squared matrix, for example the number lefschetz. next, pahade and jha [7], discuss about the formation of general form of trace matrix ordo 2 ร— 2 square with powered positive integer. in that article there are two general forms of order trace 2ร— 2 with integer square n. first, the general form of order trace matrix trace 2 x 2 with even number square ๐‘›, is ๐‘‡๐‘Ÿโ€„(๐ด๐‘›)โ€„=โ€„โˆ‘ โ€„ (โˆ’1)๐‘Ÿ ๐‘Ÿโ€„! ๐‘› 2โ„ ๐‘Ÿ=0 โ€„๐‘›โ€„[๐‘›โ€„ โˆ’โ€„(๐‘Ÿ + 1)]โ€„[๐‘›โ€„ โˆ’โ€„(๐‘Ÿ + 2)]โ€„โ‹ฏโ€„[๐‘› โˆ’ (๐‘Ÿ +(๐‘Ÿ โˆ’ 1))]โ€„(detโ€„(๐ด)) ๐‘Ÿโ€„ (๐‘‡๐‘Ÿโ€„(๐ด)) ๐‘›โˆ’2๐‘Ÿ . second, the main form of trace matrix 2 ร— 2 with odd number square ๐‘›, is ๐‘‡๐‘Ÿโ€„(๐ด๐‘›)โ€„=โ€„โˆ‘ โ€„ (โˆ’1)๐‘Ÿ ๐‘Ÿโ€„! (๐‘›โˆ’1) 2โ„ ๐‘Ÿ=0 โ€„๐‘›โ€„[๐‘›โ€„โˆ’โ€„(๐‘Ÿ + 1)]โ€„[๐‘›โ€„ โˆ’โ€„(๐‘Ÿ + 2)]โ€„โ‹ฏโ€„[๐‘› โˆ’ (๐‘Ÿ + (๐‘Ÿ โˆ’ 1))]โ€„(detโ€„(๐ด)) ๐‘Ÿโ€„ (๐‘‡๐‘Ÿโ€„(๐ด)) ๐‘›โˆ’2๐‘Ÿ . in the network analysis field, especially on triangle counting in a graph, based on avron [8], when analyzing a complex network, the important problem is calculating the total numbers of triangle on the simple connected graph. this number is equal to ๐‘‡๐‘Ÿ(๐ด3) 6โ„ , where ๐ด is adjacency matrix from the graph. then, in 2017, pahade and jha [9] discuss about trace of squared adjacency matrix on positive integers. in the paper, there is a symmetrical adjacency matrix on a complete simple graph with vertex n, for even number k is formulated ๐‘‡๐‘Ÿ(๐ด๐‘˜) = โˆ‘๐‘ (๐‘˜,๐‘Ÿ)๐‘›(๐‘› โˆ’ 1)๐‘Ÿ(๐‘› โˆ’ 2)๐‘˜โˆ’2๐‘Ÿ ๐‘› 2 ๐‘Ÿ=1 and for odd number k is formulated ๐‘‡๐‘Ÿ(๐ด๐‘˜) = โˆ‘ ๐‘ (๐‘˜,๐‘Ÿ)๐‘›(๐‘› โˆ’ 1)๐‘Ÿ(๐‘› โˆ’ 2)๐‘˜โˆ’2๐‘Ÿ ๐‘›โˆ’1 2 ๐‘Ÿ=1 with ),( rks is a number thats depend on k and r, and defined as ๐‘ (๐‘˜,1) = 1,๐‘ (๐‘˜, ๐‘˜ 2 ) = 1,๐‘ (๐‘˜, ๐‘˜โˆ’1 2 ) = ๐‘˜โˆ’1 2 , and ๐‘ (๐‘˜,๐‘Ÿ) = ๐‘ (๐‘˜ โˆ’ 1,๐‘Ÿ)+ ๐‘ (๐‘˜ โˆ’ 2,๐‘Ÿ โˆ’ 1). next, by this research, it will be decided the trace of rectangle matrix with the real number entries which for every entry row has an equal value. in this research, there are some related definitions and theorems. definition 1.1 (anton [10]) if ๐ด is a rectangle matrix, then the definition of squared of powered non negative integers of ๐ด is ๐ด0 โ€„= โ€„๐ผโ€„,โ€„๐ด๐‘› โ€„=โ€„๐ด๐ดโ€ฆ๐ดโŸ ๐‘›โ€„๐‘“๐‘Ž๐‘˜๐‘ก๐‘œ๐‘Ÿ โ€„(๐‘›โ€„ > โ€„0). next, if ๐ด is invertible, then the definition of squared of powered negative integers of ๐ด is ๐ดโˆ’๐‘› โ€„=โ€„(๐ดโˆ’1)๐‘› โ€„=โ€„๐ดโˆ’1๐ดโˆ’1 โ€ฆ๐ดโˆ’1โŸ ๐‘›โ€„๐‘“๐‘Ž๐‘˜๐‘ก๐‘œ๐‘Ÿ . theorem 1.1 (andrilli, [11]) if ๐ด is a rectangle matrix, and if ๐‘Ÿ and ๐‘  are nonnegative integers, then 1. ๐ด๐‘Ÿโ€„๐ด๐‘  โ€„=โ€„๐ด๐‘Ÿโ€„+โ€„๐‘  2. (๐ด๐‘Ÿ)๐‘  โ€„=โ€„๐ด๐‘Ÿ๐‘  = (๐ด๐‘ )๐‘ก trace of positive integer power of squared special matrix rahmawati 202 definition 1.2 [10] if ๐ด is a rectangle matrix, then the trace of ๐ด which is stated as ๐‘‡๐‘Ÿ(๐ด), is defined as the total entries on main diagonal of ๐ด. trace from ๐ด cannot be defined when ๐ด is not a rectangle matrix ๐‘‡๐‘Ÿโ€„(๐ด)โ€„=โ€„๐‘Ž11 + ๐‘Ž22 + โ‹ฏ+ ๐‘Ž๐‘›๐‘› = โˆ‘ โ€„๐‘Ž๐‘–๐‘– ๐‘› ๐‘–=1 . (1.1) theorem 1.2 [12] if ๐ด and ๐ต are rectangle matrix in the same order and ๐‘ is r scale, then apply: a. ๐‘‡๐‘Ÿ(๐ด)โ€„= โ€„๐‘‡๐‘Ÿ(๐ด๐‘‡), b. ๐‘‡๐‘Ÿ(๐‘๐ด)โ€„= โ€„๐‘โ€„๐‘‡๐‘Ÿ(๐ด), (1.2) c. ๐‘‡๐‘Ÿ(๐ดโ€„+ โ€„๐ต)โ€„= โ€„๐‘‡๐‘Ÿ(๐ด) + ๐‘‡๐‘Ÿ(๐ต), d. ๐‘‡๐‘Ÿ(๐ด๐ต)โ€„= โ€„๐‘‡๐‘Ÿ(๐ต๐ด). methods the method used in order to reach the aim of this paper is using literature study or conceptual foundation by following steps. ๏‚ท finding the general formula of power matrix (๐ด๐‘›) ๐‘š with ๐‘šโ€„ โˆˆโ€„โ„ค+ and proof it using mathematical induction, ๏‚ท determining trace matrix (๐ด๐‘›) ๐‘š, notated by ๐‘‡๐‘Ÿโ€„(๐ด๐‘›) ๐‘š, finding the general formula and using mathematical induction, we proof the formula obtained. results and discussion this research is going to discuss about positive integers squared trace of m from special matrix of ๐‘› ๐‘ฅ ๐‘› order with the entries of real numbers where each entry has the same value in a row, which is noted with matrix ๐ด๐‘› ๐‘š. the research started by deciding the general form of matrix square of ๐ด๐‘› ๐‘š by calculating matrix square in order of 2 x 2 to order of 5 x 5 squared by m positive integers. after the general matrix of ๐ด๐‘› ๐‘š is formed, then this research is continued by looking for ๐‘‡๐‘Ÿ(๐ด๐‘› ๐‘š). special matrix order of ๐’โ€„ร— โ€„๐’โ€„(๐’โ€„ โ‰ฅ โ€„๐Ÿ) squared by ๐’Ž positive integers this part is going to explain about squaring of special matrix order of ๐‘›โ€„ ร—โ€„๐‘›โ€„,๐‘› โ‰ฅ 2 with the real number entries where each entry has the same value in a row, this matrix is formulated as follows ๐ด๐‘› โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] โ€„,โ€„๐‘Ž๐‘– โ€„โˆˆ โ€„โ„โ€„;โ€„โ€„๐‘–โ€„ = โ€„1,โ€„2,โ€„โ€ฆโ€„, โ€„๐‘›. (2.1) it is special matrix in order of 22 ๏‚ด to 55 ๏‚ด which is formulated as follows. ๐ด2 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ] , ๐ด3 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ] , ๐ด4 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ], ๐ด5 โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5] trace of positive integer power of squared special matrix rahmawati 203 for ๐‘› = 2, it is decided the matrix squaring values of (๐ด2) 2 to (๐ด2) 11 which are presented in table 1 below. table 1. special matrix squaring values of (๐ด2) 2 to (๐ด2) 11 no special matrix squaring of ๐‘จ2 matrix squaring values ๐‘จ2 1. (๐ด2) 2 (๐‘Ž1โ€„+โ€„๐‘Ž2)โ€„๐ด2 2. (๐ด2) 3 (๐‘Ž1โ€„+โ€„๐‘Ž2) 2โ€„๐ด2 3. (๐ด2) 4 (๐‘Ž1โ€„+โ€„๐‘Ž2) 3โ€„๐ด2 4. (๐ด2) 5 (๐‘Ž1โ€„+โ€„๐‘Ž2) 4โ€„๐ด2 5. (๐ด2) 6 (๐‘Ž1โ€„+โ€„๐‘Ž2) 5โ€„๐ด2 6. (๐ด2) 7 (๐‘Ž1โ€„+โ€„๐‘Ž2) 6โ€„๐ด2 7. (๐ด2) 8 (๐‘Ž1โ€„+โ€„๐‘Ž2) 7โ€„๐ด2 8. (๐ด2) 9 (๐‘Ž1โ€„+โ€„๐‘Ž2) 8โ€„๐ด2 9. (๐ด2) 10 (๐‘Ž1โ€„+โ€„๐‘Ž2) 9โ€„๐ด2 10. (๐ด2) 11 (๐‘Ž1โ€„+โ€„๐‘Ž2) 10โ€„๐ด2 after getting the values of special matrix squaring of ๐ด2 which are in table 1, then it can be predicted that the general form of the special matrix squaring based on its recursive pattern is (๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘šโˆ’1โ€„๐ด2. according to the prediction, then the general form of matrix squaring of ๐ด2 is presented in theorem 2.1 below. theorem 2.1 if given the special matrix of ๐ด2 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ] ;โ€„๐‘Ž1,โ€„๐‘Ž2 โ€„โˆˆ โ€„โ„, then (๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘šโˆ’1โ€„๐ด2 with ๐‘šโ€„ โˆˆโ€„โ„ค +. (2.2) proof: using mathematic induction. for example ๐‘(๐‘š)โ€„:โ€„(๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘šโˆ’1โ€„๐ด2 1. for ๐‘š = 1 then ๐‘โ€„(1)โ€„:โ€„(๐ด2) 1 โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) 1โˆ’1โ€„๐ด2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) 0โ€„๐ด2 =โ€„๐ด2 2. for ๐‘š = ๐‘˜ then it is assumed that ๐‘โ€„(๐‘˜) is correct, which is ๐‘โ€„(๐‘˜)โ€„:โ€„(๐ด2) ๐‘˜ โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โˆ’1โ€„๐ด2 will be presented for ๐‘šโ€„ = โ€„๐‘˜ + 1 then ๐‘โ€„(๐‘˜ + 1) is also correct, which is ๐‘โ€„(๐‘˜ + 1)โ€„:โ€„(๐ด2) ๐‘˜+1 โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โ€„๐ด2. (2.3) then, (๐ด2) ๐‘˜+1 โ€„=โ€„(๐ด2) ๐‘˜โ€„(๐ด2) =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โˆ’1โ€„๐ด2โ€„๐ด2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โˆ’1โ€„(๐ด2) 2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โˆ’1โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2)โ€„๐ด2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) (๐‘˜โˆ’1)+1โ€„๐ด2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โ€„๐ด2 by giving attention to the equation (2.3) then ๐‘โ€„(๐‘˜ + 1) is correct. due to step (1) and (2) are presented correctly, then theorem 2.1 is proven. โˆŽ trace of positive integer power of squared special matrix rahmawati 204 for ๐‘› = 3, it is decided the value of matrix squaring of (๐ด3) 2 to (๐ด3) 11 which are presented in table 2 below. table 2. the value of special matrix squaring of (๐ด3) 2 to (๐ด3) 11 no special matrix squaring of ๐ด3 the value matrix squaring of ๐ด3 1. (๐ด3) 2 ๏€จ ๏€ฉ 3321 aaaa ๏€ซ๏€ซ 2. (๐ด3) 3 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 2โ€„๐ด3 3. (๐ด3) 4 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 3โ€„๐ด3 4. (๐ด3) 5 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 4โ€„๐ด3 5. (๐ด3) 6 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 5โ€„๐ด3 6. (๐ด3) 7 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 6โ€„๐ด3 7. (๐ด3) 8 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 7โ€„๐ด3 8. (๐ด3) 9 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 8โ€„๐ด3 9. (๐ด3) 10 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 9โ€„๐ด3 10. (๐ด3) 11 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 10โ€„๐ด3 after getting the values of the special matrix squaring of ๐ด3 which is in table 2, then it can be predicted the general form of the special matrix squaring is based on its recursive pattern which is (๐ด3) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) ๐‘šโˆ’1โ€„๐ด3. according to the prediction, then the general form of matrix squaring of 3a is presented in theorem 2.2 below. theorem 2.2 if given the special matrix of ๐ด2 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ] ;โ€„๐‘Ž1,โ€„๐‘Ž2,โ€„๐‘Ž3 โ€„โˆˆ โ€„โ„, then (๐ด3) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) ๐‘šโˆ’1โ€„๐ด3 with ๐‘šโ€„ โˆˆโ€„โ„ค +. (2.4) proof: applying the same steps with theorem 2.1, then this theorem is proved. โˆŽ for ๐‘› = 4, it is decided the value of matrix squaring of (๐ด4) 2 to (๐ด4) 11 which are presented in table 3 below. table 3. the value of special matrix squaring of (๐ด4) 2 to (๐ด4) 11 no special matrix squaring of ๐ด4 matrix squaring value of๐ด4 1. (๐ด4) 2 (๐‘Ž1 +โ€„๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4)โ€„๐ด4 2. (๐ด4) 3 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 2โ€„๐ด4 3. (๐ด4) 4 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 3โ€„๐ด4 4. (๐ด4) 5 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 4โ€„๐ด4 5. (๐ด4) 6 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 5โ€„๐ด4 6. (๐ด4) 7 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 6โ€„๐ด4 7. (๐ด4) 8 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 7๐ด4 8. (๐ด4) 9 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 8๐ด4 9. (๐ด4) 10 (๐‘Ž1 +๐‘Ž2 +๐‘Ž3โ€„+ ๐‘Ž4) 9๐ด4 10. (๐ด4) 11 (๐‘Ž1โ€„+ ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 10๐ด4 after getting the values of special matrix squaring of ๐ด4 which is in table 3, then it can be predicted that the general form of the special matrix squaring is based on its recursive pattern which is (๐ด4) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3โ€„+โ€„๐‘Ž4) ๐‘šโˆ’1โ€„๐ด4. according to the trace of positive integer power of squared special matrix rahmawati 205 prediction, then the general form of matrix squaring of ๐ด4 is presented in theorem 2.3 below. theorem 2.3 if given the special matrix of ๐ด4 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ];โ€„โ€„๐‘Ž1,โ€„๐‘Ž2,โ€„๐‘Ž3,โ€„๐‘Ž4 โ€„โˆˆ โ€„โ„, then (๐ด4) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3โ€„+โ€„๐‘Ž4) ๐‘šโˆ’1โ€„๐ด4 with ๐‘šโ€„ โˆˆโ€„โ„ค +. (2.5) proof: adopting the proof in theorem 2.1, then this theorem is proven as well. โˆŽ for ๐‘› = 5, it is decided the value of matrix squaring of (๐ด5) 2 to (๐ด5) 11 which is presented in the table 4 below. table 4. the value of special matrix squaring of (๐ด5) 2to (๐ด5) 11 no special matrix squaring of ๐ด5 matrix squaring value of ๐ด5 1. (๐ด5) 2 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5)โ€„๐ด5 2. (๐ด5) 3 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 2๐ด5 3. (๐ด5) 4 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 3๐ด5 4. (๐ด5) 5 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 4๐ด5 5. (๐ด5) 6 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 5๐ด5 6. (๐ด5) 7 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 6๐ด5 7. (๐ด5) 8 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 7๐ด5 8. (๐ด5) 9 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 8๐ด5 9. (๐ด5) 10 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 9๐ด5 10. (๐ด5) 11 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 10๐ด5 after getting the values of matrix squaring of ๐ด5 which is in table 3, then in can be predicted that the general form of the special matrix squaring is based on its recursive pattern which is (๐ด5) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) ๐‘šโˆ’1๐ด5. according to the prediction, then the general form of matrix squaring of ๐ด5 is presented in theorem 2.4 below. theorem 2.4 if given the special matrix of ๐ด5 โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5] ; ๐‘Ž1,๐‘Ž2,๐‘Ž3,๐‘Ž4,๐‘Ž5 โˆˆ โ„ then (๐ด5) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) ๐‘šโˆ’1๐ด5 with ๐‘šโ€„ โˆˆโ€„โ„ค +. (2.6) proof: it is clear from above theorems. โˆŽ by giving attention to the recursive pattern of equation (2.2), equation (2.4), equation (2.5) and equation (2.6) which are trace of positive integer power of squared special matrix rahmawati 206 (๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘šโˆ’1โ€„๐ด2 (๐ด3) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) ๐‘šโˆ’1โ€„๐ด3 (๐ด4) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3โ€„+โ€„๐‘Ž4) ๐‘šโˆ’1โ€„๐ด4 (๐ด5) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3โ€„+โ€„๐‘Ž4โ€„+โ€„๐‘Ž5) ๐‘šโˆ’1โ€„๐ด5. it can be predicted that the general form of the special matrix squaring in order of ๐‘› ร—๐‘›, ๐‘› โ‰ฅ 2 is equal to the equation (2.1), which is (๐ด๐‘›) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ€ฆโ€„+โ€„๐‘Ž๐‘›) ๐‘šโˆ’1โ€„๐ด๐‘› =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 ๐ด๐‘› according to the prediction, then the general form of special matrix squaring in order of ๐‘›โ€„ ร—โ€„๐‘›โ€„,๐‘› โ‰ฅ 2 is equal to equation (2.1) is presented in the theorem 2.5 below. theorem 2.5 if given the special matrix in order ๐‘› ร—๐‘›โ€„, ๐‘› โ‰ฅ 2 which is ๐ด๐‘› โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] โ€„;โ€„๐‘Ž๐‘– โ€„โˆˆ โ€„โ„โ€„, โ€„โ€„๐‘–โ€„ = โ€„1, โ€„2,โ€„โ€ฆโ€„, โ€„๐‘› then (๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1๐ด๐‘›โ€„, โ€„๐‘‘๐‘’๐‘›๐‘”๐‘Ž๐‘›โ€„๐‘šโ€„ โˆˆโ€„โ„ค +. proof: again, by using mathematic induction, for example ๐‘โ€„(๐‘š)โ€„:โ€„(๐ด๐‘›) ๐‘š โ€„= โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1๐ด๐‘›โ€„, with ๐‘š โˆˆ โ„ค + 1. for ๐‘šโ€„ = โ€„1 then ๐‘โ€„(1)โ€„:โ€„(๐ด๐‘›) 1 โ€„=โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) 1โˆ’1 ๐ด๐‘› =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) 0 ๐ด๐‘› = ๐ด๐‘› 2. for km ๏€ฝ is assumed that ๐‘โ€„(๐‘˜) is correct, which is ๐‘โ€„(๐‘˜)โ€„:โ€„(๐ด๐‘›) ๐‘˜ โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1๐ด๐‘›, with ๐‘šโ€„ โˆˆโ€„โ„ค +. will be presented for ๐‘šโ€„ = โ€„๐‘˜ + 1 then ๐‘โ€„(๐‘˜โ€„ + โ€„1) is also correct, which is ๐‘โ€„(๐‘˜โ€„ + โ€„1)โ€„:โ€„(๐ด๐‘›) ๐‘˜+1 โ€„=โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) (๐‘˜+1)โˆ’1 ๐ด๐‘› =โ€„โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜๐ด๐‘› (2.7) the proof is below (๐ด๐‘›) ๐‘˜+1 โ€„=โ€„(๐ด๐‘›) ๐‘˜โ€„(๐ด๐‘›) trace of positive integer power of squared special matrix rahmawati 207 =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1 ๐ด๐‘›๐ด๐‘› =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1 [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] โ€„ =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1โ€„ [ ๐‘Ž1 2โ€„+โ€„๐‘Ž1๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘› ๐‘Ž1 2โ€„+โ€„๐‘Ž1๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘› โ‹ฏ ๐‘Ž1 2โ€„+โ€„๐‘Ž1๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘› ๐‘Ž1๐‘Ž2โ€„+โ€„๐‘Ž2 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘› ๐‘Ž1๐‘Ž2โ€„+โ€„๐‘Ž2 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ‹ฏ ๐‘Ž1๐‘Ž2โ€„+โ€„๐‘Ž2 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ‹ฎ โ‹ฎ โ€„ โ‹ฎ ๐‘Ž1๐‘Ž๐‘– โ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› ๐‘Ž1๐‘Ž๐‘– โ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ‹ฏ ๐‘Ž1๐‘Ž๐‘– โ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž1๐‘Ž๐‘› โ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘› 2 ๐‘Ž1๐‘Ž๐‘› โ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘› 2 โ‹ฏ ๐‘Ž1๐‘Ž๐‘› โ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘› 2] =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1 โ€„ [ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž1 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž1 โ‹ฏ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž1 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž2 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž2 โ‹ฏ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘– (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘– โ‹ฏ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘› (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘› โ‹ฏ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘›] =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„ [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 )โ€„๐ด๐‘› =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) (๐‘˜โˆ’1)+1โ€„๐ด๐‘› =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โ€„๐ด๐‘› by giving attention to the equation (2.7) then ๐‘โ€„(๐‘˜โ€„+ โ€„1) is correct. due to step (1) and (2) are presented correctly, then the theorem 2.5 is proven. โˆŽ trace of special matrix in order ๐’โ€„ร—โ€„๐’โ€„(๐’โ€„ โ‰ฅ โ€„๐Ÿ) squared by positive integers in this part is going to be given the trace of special matrix of ๐ด2 ๐‘š,๐ด3 ๐‘š,๐ด4 ๐‘š, and ๐ด5 ๐‘š which are contained in theorem 3.1 to theorem 3.4 as follows. theorem 3.1 if it is given the special matrix of ๐ด2 = [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ] ; ๐‘Ž1,๐‘Ž2 โˆˆ โ„ then ๐‘‡๐‘Ÿโ€„(๐ด2) ๐‘š = (๐‘Ž1 + ๐‘Ž2) ๐‘š, with ๐‘š โˆˆ โ„ค+. (3.1) proof. the proof of theorem uses direct proof. because of the known matrix of ๐ด2 then ๐‘‡๐‘Ÿ(๐ด2) = ๐‘Ž1 + ๐‘Ž2. according to theorem 2.1, is got equation (2.2) which is (๐ด2) ๐‘š = (๐‘Ž1 + ๐‘Ž2) ๐‘šโˆ’1๐ด2. by using the definition 1.2 and theorem 1.2 (b), it is formulated ๐‘‡๐‘Ÿโ€„(๐ด2) ๐‘š = ๐‘‡๐‘Ÿ((๐‘Ž1 + ๐‘Ž2) ๐‘šโˆ’1๐ด2) = (๐‘Ž1 + ๐‘Ž2) ๐‘šโˆ’1๐‘‡๐‘Ÿ(๐ด2) = (๐‘Ž1 + ๐‘Ž2) ๐‘šโˆ’1(๐‘Ž1 + ๐‘Ž2) = (๐‘Ž1 + ๐‘Ž2) (๐‘šโˆ’1)+1 trace of positive integer power of squared special matrix rahmawati 208 = (๐‘Ž1 + ๐‘Ž2) ๐‘š. according to the proof, then theorem 3.1 is proven. โˆŽ theorem 3.2 if it is given special matrix of ๐ด3 = [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ] ;๐‘Ž1,๐‘Ž2,๐‘Ž3 โˆˆ โ„ then ๐‘‡๐‘Ÿโ€„(๐ด3) ๐‘š = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) ๐‘š, with ๐‘š โˆˆ โ„ค+. (3.2) proof. it is clear from above theorem. โˆŽ theorem 3.3 if it is given the special matrix of ๐ด4 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ];โ€„๐‘Ž1,โ€„๐‘Ž2,โ€„๐‘Ž3,โ€„๐‘Ž4 โ€„โˆˆ โ€„โ„, then ๐‘‡๐‘Ÿโ€„(๐ด4) ๐‘š = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) ๐‘š, with ๐‘š โˆˆ โ„ค+. (3.3) proof. the proof is clear. โˆŽ theorem 3.4 if given the special matrix of ๐ด5 โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5] ; ๐‘Ž1,โ€„๐‘Ž2,โ€„๐‘Ž3,๐‘Ž4 and ๐‘Ž5 โ€„โˆˆ โ€„โ„ then ๐‘‡๐‘Ÿโ€„(๐ด5) ๐‘š = (๐‘Ž1 +๐‘Ž2 +๐‘Ž3 +๐‘Ž4 +๐‘Ž5) ๐‘š, with ๐‘š โˆˆ โ„ค+. (3.4) proof. clearly proven by following theorem 3.1. โˆŽ by giving attention to the recursive pattern on equation (3.1), equation (3.2), equation (3.3) and equation (3.4) which are ๐‘‡๐‘Ÿโ€„(๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2) ๐‘š ๐‘‡๐‘Ÿโ€„(๐ด3) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) ๐‘š ๐‘‡๐‘Ÿโ€„(๐ด4) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) ๐‘š ๐‘‡๐‘Ÿโ€„(๐ด5) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3 + ๐‘Ž4 + ๐‘Ž5) ๐‘š. it can be predicted that the general form of the trace of special matrix in order ๐‘› ๐‘ฅ ๐‘›,๐‘› โ‰ฅ 2 is equal to equation (2.1) squared by positive integer (nonnegative integer) which is ๐‘‡๐‘Ÿโ€„(๐ด๐‘›) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ€ฆโ€„+โ€„๐‘Ž๐‘›) ๐‘š = (โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘š . according to the prediction, then the general form of trace of special matrix in order ๐‘› ๐‘ฅ ๐‘›โ€„,๐‘› โ‰ฅ 2 is presented in theorem 3.5 below. trace of positive integer power of squared special matrix rahmawati 209 theorem 3.5 if given special matrix in order ๐‘› ๐‘ฅ ๐‘›โ€„,๐‘› โ‰ฅ 2 which is ๐ด๐‘› โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] โ€„,โ€„โ€„๐‘Ž๐‘– โ€„โˆˆ โ€„โ„โ€„;โ€„โ€„๐‘–โ€„ = โ€„1,โ€„2,โ€„โ€ฆโ€„, โ€„๐‘›. then ๐‘‡๐‘Ÿโ€„(๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘š, with ๐‘šโ€„ โˆˆโ€„โ„ค+. proof: this theorem will be proven by direct proof. because matrix ๐ด๐‘› is known, then ๐‘‡๐‘Ÿโ€„(๐ด๐‘›)โ€„=โ€„โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 . from theorem 2.5, obtained (๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1๐ด๐‘›. so that by using definition 1.2 and theorem 1.2 (b) obtained ๐‘‡๐‘Ÿ(๐ด๐‘›) ๐‘š โ€„= โ€„๐‘‡๐‘Ÿโ€„((โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 ๐ด๐‘›) โ€„=โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 โ€„๐‘‡๐‘Ÿโ€„(๐ด๐‘›) = (โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘š . based on the evidence, then theorem 3.5 is proven. โˆŽ the application of matrix ๐‘จ๐’ ๐’Ž and ๐‘ป๐’“(๐‘จ๐’ ๐’Ž) in examples the following is given the example of question related to theorem 2.5 and theorem 3.5 as follows. example 1. consider matrix ๐ด4 as follows ๐ด4 = [ 3 3 3 3 12 12 12 12 25 25 25 25 10 10 10 10 ] determine (๐ด4) 80 and ๐‘‡๐‘Ÿ(๐ด4) 80. solution: by giving attention to matrix ๐ด4, value of ๐‘Ž1 = 3,๐‘Ž2 = 12,๐‘Ž3 = 25, and ๐‘Ž4 = 10. based on theorem 2.5 obtained (๐ด4) 80 = (โˆ‘๐‘Ž๐‘– 4 ๐‘–=1 ) 80โˆ’1 ๐ด4 = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 79๐ด4 = (3+ 12 + 25 + 10)79 [ 3 3 3 3 12 12 12 12 25 25 25 25 10 10 10 10 ] trace of positive integer power of squared special matrix rahmawati 210 = (50)79 [ 3 3 3 3 12 12 12 12 25 25 25 25 10 10 10 10 ] based on theorem 3.5 obtained ๐‘‡๐‘Ÿ(๐ด4) 80 = (โˆ‘๐‘Ž๐‘– 4 ๐‘–=1 ) 80 = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 80 = (3+ 12 + 25 + 10)80 = (50)80 example 2. given matrix ๐ด5 as follows ๐ด5 = [ 8 8 8 8 8 5/16 5/16 5/16 5/16 5/16 โˆ’12 โˆ’12 โˆ’12 โˆ’12 โˆ’12 2/3 2/3 2/3 2/3 2/3 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12] determine (๐ด5) 27 and ๐‘‡๐‘Ÿ(๐ด5) 27. solution : by giving attention to matrix ,5a value of ๐‘Ž1 = 8,๐‘Ž2 = 5/16,๐‘Ž3 = โˆ’12,๐‘Ž4 = 2/3 and ๐‘Ž5 = โˆ’5/12. based on theorem 2.5 obtained (๐ด5) 27 = (โˆ‘๐‘Ž๐‘– 5 ๐‘–=1 ) 27โˆ’1 ๐ด5 = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4 + ๐‘Ž5) 26๐ด5 = (8 + (5/16) +(โˆ’12) +(2/3) + (โˆ’5/12))26 [ 8 8 8 8 8 5/16 5/16 5/16 5/16 5/16 โˆ’12 โˆ’12 โˆ’12 โˆ’12 โˆ’12 2/3 2/3 2/3 2/3 2/3 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12] = (โˆ’3 7 16 )26 [ 8 8 8 8 8 5/16 5/16 5/16 5/16 5/16 โˆ’12 โˆ’12 โˆ’12 โˆ’12 โˆ’12 2/3 2/3 2/3 2/3 2/3 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12] according to theorem 3.5 it is formulated ๐‘‡๐‘Ÿ(๐ด5) 27 = (โˆ‘๐‘Ž๐‘– 5 ๐‘–=1 ) 27 = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4 + ๐‘Ž5) 27 = (8+ (5/16) + (โˆ’12) + (2/3) +(โˆ’5/12))27 = (โˆ’3 7 16 )27. trace of positive integer power of squared special matrix rahmawati 211 conclusions based on elaboration and discussion in previous part, several conclusions can be drawn as follows. 1. the general form of integer of a special matrix form in order ๐‘› ร— ๐‘›โ€„,๐‘› โ‰ฅ 2 in equation (2.1) is as follows. (๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 โ€„๐ด๐‘›, โ€„withโ€„๐‘šโ€„ โˆˆโ€„โ„ค +. 2. general form of trace in a special matrix form in order ๐‘› ร— ๐‘›โ€„,๐‘› โ‰ฅ 2 in equation (2.1) is as follows. ๐‘‡๐‘Ÿโ€„(๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘š, โ€„withโ€„๐‘šโ€„ โˆˆโ€„โ„ค+. acknowledgments we thank all authors (rr, ac, fa, ccm, and ym) for their responsibility to designed the research and approved the final manuscript. rr, ac wrote the manuscript, fa, ccm gave their suggestion and edited the manuscript and ym read, edited for the final content of the manuscript. none of the authors had a conflict of interest. references [1] c. brezinski, p. fika, and m. mitrouli, โ€œestimations of the trace of powers of positive self-adjoint operators by extrapolation of the moments,โ€ electron. trans. numer. anal., vol. 39, pp. 144โ€“155, 2012. [2] b. n. datta and k. datta, โ€œan algorithm for computing powers of a hessenberg matrix and its applications,โ€ linear algebra appl., vol. 14, no. 3, pp. 273โ€“284, 1976, doi: 10.1016/0024-3795(76)90072-0. [3] v. pan, โ€œestimating the extremal eigenvalues of a symmetric matrix,โ€ comput. math. with appl., vol. 20, no. 2, pp. 17โ€“22, 1990, doi: 10.1016/08981221(90)90236-d. [4] m. t. chu, โ€œsymbolic calculation of the trace of the power of a tridiagonal matrix,โ€ vol. 268, pp. 257โ€“268, 1985. [5] n. higham, โ€œfunctions of matrices: theory and computation, chapter 5 matrix sign function,โ€ soc. ind. appl. math., no. march, p. 445, 2008. [6] a. v. zarelua, โ€œon congruences for the traces of powers of some matrices,โ€ proc. steklov inst. math., vol. 263, no. 1, pp. 78โ€“98, 2008, doi: 10.1134/s008154380804007x. [7] j. pahade and m. jha, โ€œtrace of positive integer power of real 2 x 2 matrices,โ€ adv. linear algebr. & matrix theory, vol. 05, no. 04, pp. 150โ€“155, 2015, doi: 10.4236/alamt.2015.54015. [8] h. avron, โ€œcounting triangles in large graphs using randomized matrix trace estimation categories and subject descriptors,โ€ kdd-ldmta, 2010. [9] j. k. pahade and m. jha, โ€œtrace of positive integer power of adjacency matrix,โ€ glob. j. pure appl. math., vol. 13, no. 6, pp. 2079โ€“2087, 2017. [10] c. r. howard anton, elementary linear algebra: applications version, 11th edition 11. 2013. [11] j. asquith and b. kolman, elementary linear algebra, vol. 71, no. 457. 1987. [12] j. e. gentle, matrix algebra, theory, computations, and applications in statistics, vol. 102. 2009. modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 118-128 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 25, 2021 reviewed: november 05, 2021 accepted: november 08, 2021 doi: https://doi.org/10.18860/ca.v7i1.12995 modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar1, athifa salsabila deva2, maiyastri3, hazmira yozza4, aidinil zetra5 1,2,3,4mathematics department, faculty of mathematics and natural sciences, universitas andalas, padang 5political sciences department, faculty of social and political sciences, universitas andalas, padang email: ferrayanuar@sci.unand.ac.id, athifasalsabila4300@gmail.com, maiyastri@sci.unand.ac.id, hazmirayozza@sci.unand.ac.id, aidinil@soc.unand.ac.id abstract this study aims to construct the model for the length of hospital stay for patients with covid-19 using quantile regression and bayesian quantile approaches. the quantile regression models the relationship at any point of the conditional distribution of the dependent variable on several independent variables. the bayesian quantile regression combines the concept of quantile analysis into the bayesian approach. in the bayesian approach, the asymmetric laplace distribution (ald) distribution is used to form the likelihood function as the basis for formulating the posterior distribution. all 688 patients with covid-19 treated in m. djamil hospital and universitas andalas hospital in padang city between march-july 2020 were used in this study. this study found that the bayesian quantile regression method results in a smaller 95% confidence interval and higher value than the quantile regression method. it is concluded that the bayesian quantile regression method tends to yield a better model than the quantile method. based on the bayesian quantile regression method, it was found that the length of hospital stay for patients with covid-19 in west sumatra was significantly influenced by age, diagnoses, and discharge status. keywords: length of hospital stay; bayesian quantile regression; asymmetric laplace distribution (ald) introduction the problem of covid-19 has become the concern of the world community from every group. in cases of being infected with covid-19 in west sumatra province, not a few people have been declared cured, died, or are undergoing treatment at the hospital. people with criteria for severe symptoms of covid-19 must undergo treatment in a hospital [1]. certain factors influence the length of stay of covid-19 patients. an estimation of the regression model parameters is carried out using quantile regression and bayesian quantile regression methods to identify the factors that influence the length of stay of covid-19 patients. the estimated length of stay for covid-19 patients who are hospitalized can be used for specific purposes such as in health service activities. the need for health facilities at each level of health care. and the preparation of decisions related to mitigation scenarios and preparedness for covid-19 [2]โ€“[4]. https://doi.org/10.18860/ca.v7i1.12995 mailto:ferrayanuar@sci.unand.ac.id mailto:athifasalsabila4300@gmail.com mailto:maiyastri@sci.unand.ac.id mailto:hazmirayozza@sci.unand.ac.id mailto:aidinil@soc.unand.ac.id modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 119 if linear model assumptions are fulfilled, such as no multicollinearity, homoscedasticity, and no autocorrelation, the ordinary least squares (ols) method is used to estimate the model parameters [5]. in the preliminary analysis, data on the length of stay of covid-19 patients in west sumatra province were not normally distributed. therefore, the use of ols was not efficient in estimating model parameters. for this reason, an analysis of the estimated parameters was carried out using quantile regression and bayesian quantile regression. quantile regression analysis was chosen because in estimating the parameters, it does not require any assumptions, including the assumption of normality, which only requires large data. the merging of quantile analysis into bayesian concepts is carried out so that the resulting estimator becomes more effective and natural so that it can produce a better predictive model that is closer to the actual value [6], [7]. research related to bayesian quantile regression was initiated by yu and mooyed [8]. research on this topic then developed rapidly, including research on numerical simulations in estimating the parameters of the bayesian quantile regression method using the gibbs sampling algorithm [9]. the application of the bayesian quantile regression method is also applied in the use of binary response data based on the asymmetric laplace distribution (ald) distribution [10]. subsequent research discussed the analysis of variable selection in quantile regression using the gibbs sampling concept [7]. further bayesian quantile regression analysis was also used to estimate the model by approximating the likelihood function [11], as well as the analysis of posterior inference with the likelihood of the ald distribution [12]. the application of bayesian quantile regression was also used in modeling the jeonse deposit in korea [13]. oh et al. do selecting variables using the bayesian quantile regression method using the savageโ€“ dickey density ratio [14]. furthermore, the application of bayesian quantile regression was also applied in constructing a low birth weight model using the gibbs sampling algorithm approach [15]. this study aims to construct a model of length of stay for covid-19 patients using quantile and bayesian quantile regression methods to then compare the results between two methods. this case is important to be investigated since the cases of covid-19 is increasing. as the results, rooms in hospitals become full. for this reason, this research needs to be carried out in an effort to find out what factors affect the length of stay of covid-19 patients. this research will give information on how to shorten the length of stay of covid-19 patients. methods material huskamp et al. and kaufman et al. have found that mortalities are higher for the old populace than young populace [16], [17]. yuki et al. recognized that older patients were more powerless to longer the length of hospital stay than younger patients [18]. this information implies that age could influence the length of hospital stay of a patient. many studies also investigated that the presence of hypertension, diabetes, and coronary artery disease were considered as hazard factors to covid-19 [19]. gebhard et al, demonstrated that covid-19 is deadlier for infected men than women [20]. the hypothesis model is constructed based on literatures to be then fitted to the data. the data used were 688 covid-19 patients treated at m. djamil hospital, padang city, and andalas university hospital in march-july 2020. in this study, the variables used are factors that are assumed to affect the length of stay of covid-19 patients in west sumatra modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 120 province, they are: age (๐‘‹1), gender (๐‘‹2) with male and female categories, diagnosis of covid-19 (๐‘‹3) by categories are asymptomatic person (asymp), person under supervision (perus), patients under supervision (paus), and positive, discharge status (๐‘‹4) with the categories are recovered, died, forced discharge, outpatient, referred to another hospital, and the number of comorbid (๐‘‹5). table 1 presents the frequency distribution for data of covid-19 patients by categorical independent variables, i.e., gender, diagnosis, and discharge status. table 1 shows that most diagnose of the respondents are paus (patients under supervision) with 87.7% of all respondents and 73.3% respondents were recovered. table 1. frequency distribution of covid-19 patients for categorical independent variables variable category frequency percentage gender (๐‘‹1) male 347 50.4 female 341 49.6 diagnose (๐‘‹3) asymp 1 0.1 perus 6 0.9 paus 604 87.8 positive 77 11.2 discharge status (๐‘‹4) recovered 504 73.3 died 141 20.5 forced discharge 30 4.4 outpatient 4 0.6 referred to another hospital 9 1.3 in figure 1 below, part (a) shows that the length of stay for covid-19 patients has a histogram that is skewed to the left, while part (b) shows that some data are not located around a linear line. based on both figures, these are informed that the data on the length of stay of covid-19 patients is not normally distributed. (a) (b) figure 1. data of length of hospital stay: (a) histogram and (b) qq-plot quantile regression method assummed that ๐’š = (๐‘ฆ1, ๐‘ฆ2, โ‹ฏ , ๐‘ฆ๐‘›) โ€ฒ is response variable vector and ๐’™ = (๐‘ฅ1, ๐‘ฅ2, โ‹ฏ , ๐‘ฅ๐‘˜ ) โ€ฒ is a covariate vector. in general, a linear regression equation model for the ๐œ-th quantile. modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 121 where 0 < ๐œ < 1 with ๐‘› sample and ๐‘˜ predictor for ๐‘– = 1,2, โ€ฆ , ๐‘› written in the form: ๐‘ฆ๐‘– = ๐›ฝ0๐œ + ๐›ฝ1๐œ ๐‘ฅ๐‘–1 + ๐›ฝ2๐œ ๐‘ฅ๐‘–2 + โ‹ฏ + ๐›ฝ๐‘˜๐œ๐‘ฅ๐‘–๐‘˜ + ๐œ€๐‘– , (1) where ๐œท(๐œ) is parameterโ€™s vector and ๐œบ is the leftover vector. the ๐œ-th conditional quantile function in the quantile regression method is defined as ๐‘„๐‘ฆ๐‘– (๐œ|๐‘ฅ๐‘– ) = ๐‘ฅ โ€ฒ ๐‘– ๐œท(๐œ) then the estimated value of the parameter is ๏ฟฝฬ‚๏ฟฝ(๐œ) obtained by minimizing [21]: โˆ‘ ๐œŒ๐œ (๐‘ฆ๐‘– โˆ’ ๐‘ฅ๐‘– โ€ฒ๐œท)๐‘›๐‘–=1 , (2) where ๐œŒ๐œ (๐‘ข) = ๐‘ข(๐œ โˆ’ ๐ผ(๐‘ข < 0)) is a loss function which is equivalent to : ๐œŒ๐œ (๐œ€) = ๐œ€(๐œ๐ผ(๐œ€ > 0) โˆ’ (1 โˆ’ ๐œ)๐ผ(๐œ€ < 0)), (3) ๐ผ(. ) is an indicator function. with value 1 if ๐ผ(. ) is true and zero rest. minimization of equation (2) was done by using the simplex method in linear programming. however, using the simplex method in estimating parameters is complicated to do. therefore, an approach with the bayes method is carried out so that the parameter estimation process becomes a little easier. bayesian quantile regression method yu and mooyed [8] found that minimizing the loss function of the quantile regression is equivalent to maximizing the likelihood function formed from the data assumed to be distributed in the asymmetric laplace distribution (ald). the ald is used in the likelihood distribution to make bayesian estimators more effective and natural. this estimation resulted in the ald distribution is a possible parametric relationship between the minimization problem of equation (2) and the maximum likelihood theory [7]. in addition, the quantile regression loss function is identical to the likelihood function of ald [22]. the ald distribution is one of the continuous probability distributions. a random variable ๐œ€ has an ald distribution with probability density function ๐‘“(๐œ€) [7], [8]: ๐‘“๐œ (๐œ€) = ๐œ(1 โˆ’ ๐œ)๐‘’๐‘ฅ๐‘(โˆ’๐œŒ๐œ (๐œ€)). (4) where 0 < ๐œ < 1 and ๐œŒ๐œ (๐œ€) where defined in equation (3). the estimation of model parameters using the bayesian quantile regression method can be done for any data distribution by assuming the following [8]: 1. ๐‘“(๐‘ฆ ; ๐œ‡๐‘– ) has ald distribution. 2. ๐‘”(๐œ‡๐‘– ) = ๐‘ฅ๐‘– โ€ฒ๐œท(๐œ). the observation was given by ๐’š = (๐‘ฆ1, ๐‘ฆ2, โ‹ฏ , ๐‘ฆ๐‘› ). based on equation (4), to combine the quantile regression method into the bayesian method to estimate the parameter, ๐œท. ald was used to form the likelihood function. the ald has a combined representation of several distributions based on the exponential distribution and normal distribution [9]. a random variable ๐œ€ can be expressed in: ๐œ€ = ๐œƒ๐‘ง + ๐‘๐‘ขโˆš๐‘ง, (5) where ๐œƒ = 1โˆ’2ฯ„ (1โˆ’ฯ„)ฯ„ and ๐‘2 = 2 (1โˆ’ฯ„)ฯ„ . the ๐œ-th quantile regression model can be written as: ๐‘ฆ๐‘– = ๐‘ฅ๐‘– โ€ฒ๐œท๐œ + ๐œŽ๐œƒ๐‘ง๐‘– + ๐œŽ๐‘๐‘ข๐‘– โˆš๐‘ง๐‘– , (6) where ๐‘ง๐‘– ~๐‘’๐‘ฅ๐‘(1) and ๐‘ข๐‘– ~๐‘(0,1), ๐‘ฃ๐‘– = ๐œŽ๐‘ง๐‘– , ๐’— = (๐‘ฃ1, ๐‘ฃ2, โ‹ฏ , ๐‘ฃ๐‘› ) โ€ฒ. because of ๐‘ง๐‘– ~๐‘’๐‘ฅ๐‘(1) then ๐‘ฃ๐‘– ~๐‘’๐‘ฅ๐‘(๐œŽ), and ๐‘– = 1,2, โ‹ฏ , ๐‘›. so, we get the probability density function of ๐‘ฆ๐‘– : ๐‘“(๐‘ฆ๐‘– ; ๐œท๐œ , ๐‘ฃ๐‘– , ๐œŽ) = 1 ๐‘โˆš๐œŽ๐‘ฃ๐‘–โˆš2๐œ‹ ๐‘’๐‘ฅ๐‘ (โˆ’ (๐‘ฆ๐‘–โˆ’(๐‘ฅ๐‘– โ€ฒ๐œท๐œ+๐œƒ๐‘ฃ๐‘–)) 2 2๐‘2๐œŽ๐‘ฃ๐‘– ) , (7) and the likelihood function is obtained as follows: modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 122 ๐ฟ(๐œท๐œ , ๐’—, ๐œŽ) โˆ (โˆ (๐œŽ๐‘ฃ๐‘– ) โˆ’ 1 2 ๐‘› ๐‘–=1 ) (๐‘’๐‘ฅ๐‘ (โˆ’ โˆ‘ (๐‘ฆ๐‘–โˆ’(๐‘ฅ๐‘– โ€ฒ๐œท๐œ+๐œƒ๐‘ฃ๐‘–)) 2 2๐‘2๐œŽ๐‘ฃ๐‘– ๐‘› ๐‘–=1 )). (8) then, the prior distribution is selected for the parameter ๐œท๐œ ~๐‘(๐‘0, ๐‘ฉ0). ๐‘ฃ๐‘– ~๐‘’๐‘ฅ๐‘(๐œŽ), and ๐œŽ~๐ผ๐บ(๐‘Ž, ๐‘). the posterior distribution is obtained, i.e: (๐œท๐œ|๐’—, ๐œŽ, ๐’š)~๐‘ [(๐‘ฉ0 โˆ’1 + ๐‘ฅ๐‘– (๐‘ 2๐œŽ๐’—)โˆ’๐Ÿ๐‘ฅ๐‘– โ€ฒ) โˆ’1 (๐‘ฉ0 โˆ’1๐‘๐ŸŽ + ๐‘ฅ๐‘– (๐‘ 2๐œŽ๐’—)โˆ’๐Ÿ๐’š โˆ’ ๐‘ฅ๐‘– (๐‘ 2๐œŽ๐’—)โˆ’๐Ÿ๐œƒ๐’—), (๐‘ฉ0 โˆ’1 + ๐‘ฅ๐‘– (๐‘ 2๐œŽ๐’—)โˆ’๐Ÿ๐‘ฅ๐‘– โ€ฒ) โˆ’1 ] ; (๐‘ฃ๐’Š|๐œท๐œ , ๐œŽ, ๐’š)~๐บ๐ผ๐บ ( 1 2 , ( (๐‘ฆ๐‘–โˆ’๐‘ฅ๐‘– โ€ฒ๐œท๐œ) 2 ๐‘2๐œŽ ) , ( 2 ๐œŽ + ๐œƒ๐Ÿ ๐‘2๐œŽ )) ; (๐œŽ|๐œท๐œ, ๐’—, ๐’š)~๐ผ๐บ ((๐‘Ž + 3๐‘› 2 ) , (๐‘ + โˆ‘ ๐‘ฃ๐‘– ๐‘› ๐‘–=1 + โˆ‘ (๐‘ฆ๐‘– โˆ’ (๐‘ฅ๐‘– โ€ฒ๐œท๐œ + ๐œƒ๐‘ฃ๐‘– )) 2 2๐‘2๐‘ฃ๐‘– ๐‘› ๐‘–=1 )). these posterior distribution then are used to estimate mean posterior and variance posterior as point estimate for unknown parameter using gibbs sampling iteration method [23], [24]. the goodness of fit for both methods is measured using ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 [25]. the formula for ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 is as follows: ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 = 1 โˆ’ ๐‘…๐ด๐‘†๐‘Š๐œ ๐‘‡๐ด๐‘†๐‘Š๐œ , (9) where ๐‘…๐ด๐‘†๐‘Š๐œ is the residual absolute sum of weighted differences between the observed dependent variable and the estimated quantile of conditional distribution in the more complex model. while, ๐‘‡๐ด๐‘†๐‘Š๐œ is the total absolute sum of weighted differences between the observed dependent variable and the estimated quantile of conditional distribution in the simplest model. the range values for ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 are between zero and one. the value of ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 indicates the goodness of fit of the proposed model in explaining the variance of the response variable. the higher the value of ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 the better the proposed model obtained. results and discussion data analysis begins with fitting the data to the hypothesis model using the ols method to select the significant variables involved for modeling in the quantile and bayesian analysis. based on ols analysis, the variables of age, diagnosis, and discharge status contributed significantly. furthermore, a model of the length of stay for covid-19 patients is constructed using the quantile regression method and the bayesian quantile regression method. the analysis results are then compared between both methods by looking at the width of the 95% confidence interval and ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 of the selected quantile. the quantile used are 0.10; 0.25; 0.50; 0.75; dan 0.90. r software was used to analyze the data. the results of the analysis from both methods are provided in table 3. modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 123 table 3. comparison between quantile and bayesian quantile method indicator variables quantile method bayesian quantile method estimate 95% ci estimate 95% ci ๐œ = 0.10 intersep 2.0000 na -1.5006 14.6799 age (๐‘‹1) 0.0000 0.0000 0.0002 0.0041 diagnose (๐‘‹3) perus (๐‘‹3๐ท1) -2.0000 na 1.3864 15.3326 paus (๐‘‹3๐ท2) -1.0000 na 2.4139 14.6589 positive (๐‘‹3๐ท3) 0.0000 na 3.1337 14.8359 discharge status (๐‘‹4) recovered (๐‘‹4๐ท1) 2.0000* 0.0000 2.0446* 0.6021 died (๐‘‹4๐ท2) 0.0000 0.0000 0.0275 0.6264 outpatient (๐‘‹4๐ท3) 0.0000 na -0.2693 5.0697 referred to another hospital (๐‘‹4๐ท4) 0.0000 na -0.1649 2.0374 ๐œ = 0.25 intersep 1.0000 na -1.0118 14.2889 age (๐‘‹1) 0.0000 0.0000 0.0014 0.0094 diagnose (๐‘‹3) perus (๐‘‹3๐ท1) -1.0000 na 1.2671 14.8492 paus (๐‘‹3๐ท2) 0.0000 na 2.1446 14.2644 positive (๐‘‹3๐ท3) 3.0000 na 5.1174* 14.4329 discharge status (๐‘‹4) recovered (๐‘‹4๐ท1) 3.0000* 1.2544 2.6699* 1.2514 died (๐‘‹4๐ท2) 0.0000 0.9709 -0.2344 1.1873 outpatient (๐‘‹4๐ท3) 0.0000 na 1.5336 6.3011 referred to another hospital (๐‘‹4๐ท4) 0.0000 1.1155 0.1684 2.9599 ๐œ = 0.50 intersep 1.0000 na 1.4877 15.5613 age (๐‘‹1) 0.0000 0.0000 0.0002 0.0010 diagnose (๐‘‹3) perus (๐‘‹3๐ท1) 1.0000 na 0.9143 16.1529 paus (๐‘‹3๐ท2) 1.0000 na 0.9518 15.4168 positive (๐‘‹3๐ท3) 7.0000 na 6.8087 15.6258 discharge status (๐‘‹4) recovered (๐‘‹4๐ท1) 3.0000* 1.3265 2.4889* 2.1480 died (๐‘‹4๐ท2) -1.0000* 2.1006 -1.3962* 2.1555 outpatient (๐‘‹4๐ท3) 3.0000 6.1705 2.4900 7.1299 referred to another hospital (๐‘‹4๐ท4) 0.0000 2.9157 0.0397 4.2175 ๐œ = 0.75 intersep 2.0000 na 5.7668 22.7172 age (๐‘‹1) -1.05๐‘ฅ10 โˆ’7 0.0210 -0.0071* 0.0229 diagnose (๐‘‹3) perus (๐‘‹3๐ท1) 5.0000 na 0.1273 24.1500 paus (๐‘‹3๐ท2) 2.0000 na -1.4964 22.7243 positive (๐‘‹3๐ท3) 12.0000 na 9.2450 23.1280 modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 124 indicator variables quantile method bayesian quantile method estimate 95% ci estimate 95% ci discharge status (๐‘‹4) recovered (๐‘‹4๐ท1) 2.0000* 2.0233 2.2849* 2.2233 died (๐‘‹4๐ท2) -2.0000* 1.5733 -1.8134* 2.3198 outpatient (๐‘‹4๐ท3) 2.0000 na 2.8668 8.5570 referred to another hospital (๐‘‹4๐ท4) 0.0000 9.5010 0.5922 5.9888 ๐œ = 0.90 intersep -0.6596 na 8.3752 36.4268 age (๐‘‹1) -0.0213 0.0539 -0.0181 * 0.0339 diagnose (๐‘‹3) perus (๐‘‹3๐ท1) 8.7021 na 0.2688 38.0224 paus (๐‘‹3๐ท2) 5.6596 na -2.9586 36.2285 positive (๐‘‹3๐ท3) 27.5957 na 18.1682 37.1268 discharge status (๐‘‹4) recovered (๐‘‹4๐ท1) 5.9362* 2.7045 5.2751 * 2.7938 died (๐‘‹4๐ท2) -0.5957* 2.7368 -1.1434 * 2.8253 outpatient (๐‘‹4๐ท3) 2.1702 na 3.5015 10.9954 referred to another hospital (๐‘‹4๐ท4) 0.7660 na 1.2313 6.3550 * significant at ๐›ผ = 0.05, na = not available. in table 3, it can be seen that for the quantile regression method, the ๐‘‹4๐ท1 variable (recovered) contributed significantly in each quantile, and the category died is significant in the quantile 0.50; 0.75; and 0.90. meanwhile, none were statistically significant for other categories in other quantiles in influencing the length of stay of covid-19 patients. meanwhile, by using the bayesian quantile regression method, the age contributed significantly at the quantile 0.75, and 0.90 in giving affects to the length of stay of covid19 patients. while, diagnose variable (only positive category) contributed significantly to the length of stay of covid-19 patients in quantile 0.25, discharge status (only recovered category) contributed significantly in all quantiles, discharge status (only died category) is significant in quantile 0.50; 0.75; and 0.90 to affect the length of stay of covid-19 patients. from the results of this estimation analysis, it is found that the bayesian quantile regression method as a whole has more significant parameter and smaller 95% confidence interval than the quantile regression method. in order to determine the best method including the best model, it could be based on the higher value of ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2. the ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 values for both methods for all selected quantiles are provided in table 4. table 4. the pseudo r2 values at all selected quantiles. quantile ๐‰๐’•๐’‰ ๐‘ท๐’”๐’†๐’–๐’…๐’ ๐‘น๐Ÿ quantile bayesian quantile 0.10 0.27030 0.27235 0.25 0.57550 0.57843 0.50 0.87950 0.88262 0.75 0.93925 0.94244 0.90 0.67508 0.67787 modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 125 in table 4 above, it can be seen that for the quantile regression method, the model at quantile 0.75 is the best model because it has the highest value of ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2, that is 0.93925. this value informs that the proposed model can explain the variance of length of hospital stay for patients with covid-19 is 93.925%. this means that the proposed model at quantile 0.75 is acceptable and could be accepted. meanwhile for the bayesian quantile regression method, the quantile 0.75 is also as the best model because it has the highest value of ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2, that is 0.94244. this informs us that the model can explain the variance of the length of stay for covid-19 patients by 94.244%. since the ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 value obtained from bayesian quantile regression model is higher than quantile method at corresponding quantiles, we could conclude here that bayesian quantile method tends to result better model than quantile method. therefore, the best model for the length of stay of covid-19 patients in west sumatra is model at quantile 0.75 based on bayesian quantile regression method. this proposed model is formulated as follows: ๏ฟฝฬ‚๏ฟฝ = 5.7668 โˆ’ 0.0071๐‘‹1 + 0.1273๐‘‹3๐ท1 โˆ’ 1.4964๐‘‹3๐ท2 + 9.2450๐‘‹3๐ท3 + 2.2849๐‘‹4๐ท1 โˆ’ 1.8134๐‘‹4๐ท2 + 2.8668๐‘‹4๐ท3 + 0.5922๐‘‹4๐ท4. there were 75% of the length of stay for covid-19 patients diagnosed with perus (person under supervision) is 0.1273 days longer than patients diagnosed with asymp (asymptotic persons) assuming others constants. around 75% of the length of stay for covid-19 patients diagnosed with paus (patients under supervision) is 1.4964 days longer than patients diagnosed with asymp (asymptotic persons) assuming others constants. approximately, 75% of the length of stay of covid-19 patients diagnosed with positive was 9.2450 days longer than patients diagnosed with asymp (asymptotic persons) assuming other variables constant. the similar interpretation could be stated for other variables. furthermore, the convergence test of the proposed parameter model obtained was carried out. because of limited space, the selected results of these test are provided in figure 2 below. (a) (b) (c) figure 2. convergency test for category recovered at quantile 0.75 (a) trace-plot, (b) densityplot, dan (c) acf plot in figure 2 (a), it can be seen that the resulting trace-plot forms a pattern that converges to a value so that it can be stated that the model parameters have converged. modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 126 while in part (b), it can be seen that the resulting density plot resembles a normal distribution curve. it can be stated that the model parameters are normally distributed. then in part (c), the resulting acf plot shows a smaller autocorrelation value so that it can be stated that there is no autocorrelation between samples. based on these convergency test, it can be concluded that the model parameters have converged and proposed model could be accepted. conclusions this study found that the length of stay of covid-19 patients in west sumatra was influenced by age, diagnoses of covid-19 patients, and discharge status. from the analysis carried out, the bayesian quantile regression method is better in modeling the length of stay of covid-19 patients than quantile method. the 95% confidence interval based on bayesian quantile regression is smaller, and the ๐‘ƒ๐‘ ๐‘’๐‘ข๐‘‘๐‘œ ๐‘…2 value is greater than the quantile regression method. acknowledgments this research was funded by directorate of resources directorate general of higher education, ministry of education, culture, and research and technology of indonesia, in accordance with contract number 104/e4.1/ak.04.pt/2021. references [1] kemenkes ri, โ€œkmk no. hk.01.07-menkes-413-2020 ttg pedoman pencegahan dan pengendalian covid-19.pdf.โ€ 2020. [online]. available: https://covid19.go.id/p/regulasi/keputusan-menteri-kesehatan-republikindonesia-nomor-hk0107menkes4132020 [2] n. lapidus, x. zhou, f. carrat, b. riou, y. zhao, and g. hejblum, โ€œbiased and unbiased estimation of the average length of stay in intensive care units in the covid-19 pandemic,โ€ ann. intensive care, vol. 10, no. 135, pp. 1โ€“9, dec. 2020, doi: 10.1186/s13613-020-00749-6. [3] e. m. rees et al., โ€œcovid-19 length of hospital stay: a systematic review and data synthesis,โ€ bmc med, vol. 18, no. 270, pp. 1โ€“22, dec. 2020, doi: 10.1186/s12916020-01726-3. [4] s. wu et al., โ€œunderstanding factors influencing the length of hospital stay among non-severe covid-19 patients: a retrospective cohort study in a fangcang shelter hospital,โ€ plos one, vol. 15, no. 10, p. e0240959, oct. 2020, doi: 10.1371/journal.pone.0240959. [5] n. desviona and f. yanuar, โ€œsimulation study of autocorrelated error using bayesian quantile regression,โ€ sci. technol. indones., vol. 5, no. 3, pp. 70โ€“74, jul. 2020, doi: 10.26554/sti.2020.5.3.70-74. [6] r. alhamzawi, k. yu, and d. f. benoit, โ€œbayesian adaptive lasso quantile regression,โ€ statistical modelling, vol. 12, no. 3, pp. 279โ€“297, jun. 2012, doi: 10.1177/1471082x1101200304. modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 127 [7] r. alhamzawi and k. yu, โ€œvariable selection in quantile regression via gibbs sampling,โ€ journal of applied statistics, vol. 39, no. 4, pp. 799โ€“813, apr. 2012, doi: 10.1080/02664763.2011.620082. [8] k. yu and r. a. moyeed, โ€œbayesian quantile regression,โ€ statistics & probability letters, vol. 54, pp. 437โ€“447, 2001. [9] h. kozumi and g. kobayashi, โ€œgibbs sampling methods for bayesian quantile regression,โ€ journal of statistical computation and simulation, vol. 81, no. 11, pp. 1565โ€“1578, nov. 2011, doi: 10.1080/00949655.2010.496117. [10] d. f. benoit and d. van den poel, โ€œbinary quantile regression: a bayesian approach based on the asymmetric laplace distribution,โ€ j. appl. econ., vol. 27, no. 7, pp. 1174โ€“1188, nov. 2012, doi: 10.1002/jae.1216. [11] y. feng, y. chen, and x. he, โ€œbayesian quantile regression with approximate likelihood,โ€ bernoulli, vol. 21, no. 2, pp. 832โ€“850, may 2015, doi: 10.3150/13bej589. [12] y. yang, h. j. wang, and x. he, โ€œposterior inference in bayesian quantile regression with asymmetric laplace likelihood: bayesian quantile regression,โ€ international statistical review, vol. 84, no. 3, pp. 327โ€“344, dec. 2016, doi: 10.1111/insr.12114. [13] e. j. nam, e. k. lee, and m.-s. oh, โ€œbayesian quantile regression analysis of korean jeonse deposit,โ€ csam, vol. 25, no. 5, pp. 489โ€“499, 2018, doi: 10.29220/csam.2018.25.5.489. [14] m.-s. oh, j. choi, and e. s. park, โ€œbayesian variable selection in quantile regression using the savageโ€“dickey density ratio,โ€ journal of the korean statistical society, vol. 45, no. 3, pp. 466โ€“476, 2016, doi: 10.1016/j.jkss.2016.01.006. [15] f. yanuar, a. zetra, c. muharisa, d. devianto, a. r. putri, and y. asdi, โ€œbayesian quantile regression method to construct the low birth weight model,โ€ j. phys.: conf. ser., vol. 1245, p. 012044, aug. 2019, doi: 10.1088/17426596/1245/1/012044. [16] h. a. huskamp, d. g. stevenson, d. c. grabowski, e. brennan, and n. l. keating, โ€œlong and short hospice stays among nursing home residents at the end of life,โ€ journal of palliative medicine, vol. 13, no. 8, pp. 957โ€“964, aug. 2010, doi: 10.1089/jpm.2009.0387. [17] b. g. kaufman, c. a. sueta, c. chen, b. g. windham, and s. c. stearns, โ€œare trends in hospitalization prior to hospice use associated with hospice episode characteristics?,โ€ am j hosp palliat care, vol. 34, no. 9, pp. 860โ€“868, nov. 2017, doi: 10.1177/1049909116659049. [18] k. yuki, m. fujiogi, and s. koutsogiannaki, โ€œcovid-19 pathophysiology: a review,โ€ clinical immunology, vol. 215, no. 108427, pp. 1โ€“7, jun. 2020, doi: 10.1016/j.clim.2020.108427. [19] y. du et al., โ€œclinical features of 85 fatal cases of covid-19 from wuhan. a retrospective observational study,โ€ am j respir crit care med, vol. 201, no. 11, pp. 1372โ€“1379, jun. 2020, doi: 10.1164/rccm.202003-0543oc. [20] c. gebhard, v. regitz-zagrosek, h. k. neuhauser, r. morgan, and s. l. klein, โ€œimpact of sex and gender on covid-19 outcomes in europe,โ€ biol sex differ, vol. 11, no. 1, pp. 1โ€“13, dec. 2020, doi: 10.1186/s13293-020-00304-9. [21] r. alhamzawi and k. yu, โ€œconjugate priors and variable selection for bayesian quantile regression,โ€ computational statistics & data analysis, vol. 64, pp. 209โ€“219, aug. 2013, doi: 10.1016/j.csda.2012.01.014. modeling length of hospital stay for patients with covid-19 in west sumatra using quantile regression ferra yanuar 128 [22] y. yang, h. j. wang, and x. he, โ€œposterior inference in bayesian quantile regression with asymmetric laplace likelihood: bayesian quantile regression,โ€ international statistical review, vol. 84, no. 3, pp. 327โ€“344, 2015, doi: 10.1111/insr.12114. [23] c. muharisa, f. yanuar, and d. devianto, โ€œsimulation study the using of bayesian quantile regression in nonnormal error,โ€ cauchy, vol. 5, no. 3, pp. 121โ€“126, dec. 2018, doi: 10.18860/ca.v5i3.5633. [24] i. ntzoufras, bayesian modeling using winbugs. hoboken, n.j: wiley, 2009. [25] f. yanuar, h. yozza, f. firdawati, i. rahmi, and a. zetra, โ€œapplying bootstrap quantile regression for the construction of a low birth weight model,โ€ makara journal of health research, vol. 23, no. 2, pp. 90โ€“95, aug. 2019, doi: 10.7454/msk.v23i2.9886. 3 desy norma spectrum detour graf n-partisi komplit spectrum detour graf n-partisi komplit desy norma puspita dewi jurusan matematika uin maulana malik ibrahim malang e-mail:phyta_23@yahoo.co.id abstrak matriks detour dari graf g adalah matriks yang elemen ke-(i,j) merupakan panjang lintasan terpanjang antara titik ๏ฟฝ๏ฟฝ ke titik ๏ฟฝ๏ฟฝ di g. himpunan nilai eigen matriks detour dari graf terhubung langsung g adalah spectrum detour. spectrum detour dari graf g biasanya dinotasikan dengan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ.. dalam artikel ini, hanya menentukan spectrum detour graf n-partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,โ€ฆ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, dan graf 3partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ. dalam menentukan spectrum detour graf tersebut dengan cara menggambar pola grafnya, mencari matriks detournya, setelah itu dicari nilai eigen dan vektor eigen dari matriks tersebut, sehingga diperoleh pola (konjektur) spectrum detour, kemudian merumuskan konjektur sebagai teorema yang dilengkapi dengan bukti-bukti. kata kunci: graf n-partisi komplit, matriks detour, dan spectrum, abstract the detour matrices of a graph is for its (i,j) entry the length of the longest path between vertices ๏ฟฝ๏ฟฝ to ๏ฟฝ๏ฟฝ of g. set of detour matrices eigenvalues of a connected graph g are detour spectrum. detour spectrum of g, denoted by ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ. in this article, only determination of detour spectrum of complete npartition graph ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,โ€ฆ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, and complete 3-partition graph ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ. determination of spectrum detour graph are picturing model graph, then finding detour matrices, after that finded eigenvalues and eigenvectors from that matrices, with the result that detour spectrum obtained model of detour spectrum, end then formulate the model as theorem with its prove. keywords: complete npartitions graph, detour matrices, and spectrum pendahuluan graf g adalah pasangan (v(g),e(g)) dengan v(g) adalah himpunan tidak kosong dan berhingga dari objek-objek yang disebut titik (vertex), dan e(g) adalah himpunan (mungkin kosong) pasangan tak berurutan dari titik-titik berbeda di v(g) yang disebut sisi (edge). misalkan terdapat suatu graf g, dari suatu graf tersebut dibentuk matriks adjacency atau matriks keterhubungan. matriks adjacency merupakan matriks simetri. matriks adjacency dapat dirubah menjadi matriks detour, yang unsur-unsur ke--(i,j) merupakan panjang lintasan terpanjang antara titik i dan j. setelah dibentuk menjadi matriks detour, maka dapat dicari nilai eigen dan vektor eigen dari matriks tersebut. biasanya spectrum graf dibentuk dari nilai eigen dari matriks terhubung langsung. dalam pengertian, nilai eigen dari graf g dinotasikan dengan ๏ฟฝ๏ฟฝ , i = 1,2,โ€ฆ,n dan spectrum ditulis dengan spec(g). matriks detour didefinisikan dd=dd(g) dari g sehingga unsur ke (i,j) adalah panjang lintasan terpanjang antara titik i dan j. nilai eigen dari dd(g) disebut dd-nilai eigen dari g dan membentuk dd-spectrum dari g, dinotasikan dengan spec๏ฟฝ๏ฟฝ g๏ฟฝ. karena matriks detour simetris, semua nilai eigen ยต , i = 1,2,โ€ฆ,n adalah real dan dapat diberi label ยต๏ฟฝ ! ยต๏ฟฝ ! " !ยต#. jika ยต $ ! ยต % ! " ! ยต & adalah nilai eigen dari matriks detour, maka dd-spectrum dapat ditulis sebagai ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ' (ยต $)๏ฟฝ ยต %)๏ฟฝ โ€ฆโ€ฆ ยต &)*+ di mana mmenyatakan banyaknya basis untuk ruang vektor eigen m . dan m1 / m2 / " / m๏ฟฝ 'n. (ayyaswamy dan balachandran, 2010:250). kajian teori 1. graf definisi 1 graf g adalah pasangan himpunan (v,e) dengan v adalah himpunan tidak kosong dan berhingga dari obyek-obyek yang disebut sebagai titik dan e adalah himpunan (mungkin kosong) pasangan tak berurutan dari titik-titik berbeda di g yang disebut sebagai sisi (chartrand dan lesniak, 1986:4). desy norma puspita dewi 14 volume 2 no. 1 november 2011 sehingga jika ' 1 ๏ฟฝ, 2 ๏ฟฝ๏ฟฝ, maka 1 ๏ฟฝ ' 3๏ฟฝ1, ๏ฟฝ2, โ€ฆ , ๏ฟฝ๏ฟฝ4 dan 2 ๏ฟฝ ' 3๏ฟฝ1, ๏ฟฝ2, โ€ฆ ,๏ฟฝ๏ฟฝ4, dimana ๏ฟฝ๏ฟฝ 5 1 ๏ฟฝ, 6 ' 1,2, โ€ฆ , 9 disebut titik (vertex) dan ๏ฟฝ๏ฟฝ 5 2 ๏ฟฝ, : ' 1,2, โ€ฆ , ) disebut sisi (edge). 2. adjacent dan incident sisi ๏ฟฝ ' ;๏ฟฝ dikatakan menghubungkan titik ; dan ๏ฟฝ. jika ๏ฟฝ ' ;๏ฟฝ adalah sisi di graf , maka ; dan ๏ฟฝ disebut terhubung langsung (adjacent). ๏ฟฝ dan ๏ฟฝ serta ; dan ๏ฟฝ disebut terkait langsung (incident). titik ; dan ๏ฟฝ disebut ujung dari ๏ฟฝ. dua sisi berbeda ๏ฟฝ1 dan ๏ฟฝ2 disebut terhubung langsung jika terkait langsung pada titik yang sama. untuk selanjutnya sisi ๏ฟฝ ' ;, ๏ฟฝ๏ฟฝ ditulis ๏ฟฝ ' ;๏ฟฝ (abdussakir, dkk, 2009:6). 3. graf komplit definisi 2 graf komplit (complete graph) adalah graf dengan dua titik yang berbeda saling terhubung langsung (adjacent). graf komplit dengan 9 titik dinyatakan dengan ๏ฟฝ๏ฟฝ (chartrand dan lesniak, 1986:9). definisi 3 graf g dikatakan partisi n-komplit jika g adalah graf partisi-n dengan himpunan partisi 11, 12, โ€ฆ , 1๏ฟฝ sehingga jika ; < 1๏ฟฝ dan ๏ฟฝ < 1๏ฟฝ, 6 < :, maka ;๏ฟฝ < 2 ๏ฟฝ. maka graf ini dinotasikan dengan ๏ฟฝ=1,=2,โ€ฆ,=> (abdussakir, dkk. 2009:23). 4. graf terhubung definisi 4 misalkan graf. misalkan ; dan ๏ฟฝ adalah titik pada . jalan (trail) ;๏ฟฝ pada yang dinotasikan ? adalah barisan berhingga yang berganti ?: ; ' ๏ฟฝ0, ๏ฟฝ1, ๏ฟฝ1, ๏ฟฝ2, ๏ฟฝ2, โ€ฆ ,๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ' ๏ฟฝ antara titik dan sisi yang diawali dan diakhiri dengan titik dengan ๏ฟฝ๏ฟฝ ' ๏ฟฝ๏ฟฝa1๏ฟฝ๏ฟฝ adalah sisi di untuk 6 ' 1,2, โ€ฆ , 9. ๏ฟฝ0 disebut titik awal dan ๏ฟฝ๏ฟฝ disebut titik akhir. titik ๏ฟฝ0, ๏ฟฝ1, ๏ฟฝ2, โ€ฆ , ๏ฟฝ๏ฟฝ disebut titik internal, dan 9 menyatakan panjang dari ?. jika ๏ฟฝ0 < ๏ฟฝ๏ฟฝ, maka w disebut jalan terbuka. jika ๏ฟฝ0 ' ๏ฟฝ๏ฟฝ maka w disebut jalan tertutup. jalan yang tidak mempunyai sisi disebut jalan trivial (abdussakir, dkk. 2009:49). 5. nilai eigen dan vector eigen definisi 5 misalkan a sebuah matrik n ร— n. bilangan ๏ฟฝ disebut nilai eigen (eigenvalue) dari a jika terdapat vektor tidak nol ๏ฟฝ 5 b๏ฟฝ sedemikian sehingga ax = ๏ฟฝx . kemudian vektor x disebut vektor eigen (eigenvector) dari a yang berpasangan ke nilai eigen ๏ฟฝ (jain & gunawardena, 2004:151). 6. spectrum graf misalkan terdapat suatu graf g, dari suatu graf tersebut dibentuk matriks adjacency atau matriks keterhubungan. matriks adjacency merupakan matriks simetri. matriks adjacency dapat dirubah menjadi matriks detour, yang unsur-unsur ke-(i,j) merupakan panjang lintasan terpanjang antara titik i dan j. setelah dibentuk menjadi matriks detour, maka dapat dicari nilai eigen dan vektor eigen dari matriks tersebut. misalkan g graf berorder p dan a matriks keterhubungan dari graf g. suatu vektor tak nol x disebut vektor eigen (eigen vector) dari a jika cd adalah suatu kelipatan skalar dari x, yakni cd ' ๏ฟฝd, untuk sebarang skalar ๏ฟฝ. skalar ๏ฟฝ disebut nilai eigen (eigen value) dari a, dan x disebut sebagai vektor eigen dari a yang bersesuaian dengan ๏ฟฝ. untuk menentukan nilai eigen dari matriks a, persamaan cd ' ๏ฟฝed๏ฟฝd ditulis kembali dalam bentuk c f ๏ฟฝe๏ฟฝd ' 0, dengan i matriks identitas berordo p. persamaan ini akan mempunyai solusi tak nol jika dan hanya jika g๏ฟฝh c f ๏ฟฝe๏ฟฝd ' 0 persamaan g๏ฟฝh c f ๏ฟฝe๏ฟฝ ' 0 akan menghasilkan persamaan polinomial dalam variabel ๏ฟฝ dan disebut persamaan karakteristik dari matriks a. skalar-skalar ๏ฟฝ yang memenuhi persamaan karakteristik ini tidak lain adalah nilai-nilai eigen dari matriks a. misalkan ๏ฟฝ1, ๏ฟฝ2, โ€ฆ , ๏ฟฝ๏ฟฝ adalah nilai eigen berbeda dari a, dengan ๏ฟฝ1, ๏ฟฝ2, โ€ฆ , ๏ฟฝ๏ฟฝ, dan misalkan )๏ฟฝ1, )๏ฟฝ2, โ€ฆ , )๏ฟฝ๏ฟฝ adalah banyaknya basis untuk ruang vektor eigen masingmasing i๏ฟฝ , maka matriks berordo 2 j 9๏ฟฝ yang memuat ๏ฟฝ1, ๏ฟฝ2, โ€ฆ , ๏ฟฝ๏ฟฝ pada baris pertama dan )๏ฟฝ1, )๏ฟฝ2, โ€ฆ , )๏ฟฝ๏ฟฝ pada baris kedua disebut spectrum graf g, dan dinotasikan dengan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ. jadi spectrum graf g dapat ditulis dengan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ' ( ๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ โ€ฆโ€ฆ ๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ+ (abdussakir, dkk, 2009:82-83). 7. graf dalam matriks detour matriks detour didefinisikan dd = dd(g) dari g sehingga unsur atau entry (i,j) adalah panjang lintasan terpanjang antara titik i dan j. nilai eigen dari dd(g) disebut ddnilai eigen dari g dan membentuk ddspectrum dari g, yang dinotasikan dengan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ. selama matriks detour simetris, semua nilai eigen k๏ฟฝ , i = 1, 2, โ€ฆ, n adalah real dan dapat diberi label k1 ! k2 ! " ! k๏ฟฝ. jika k๏ฟฝ1 ! k๏ฟฝ2 ! " ! k๏ฟฝl adalah nilai eigen dari matriks detour, maka dd-spectrum dapat ditulis sebagai spectrum detour graf n-partisi komplit jurnal cauchy โ€“ issn: 2086-0382 15 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ' (ยต $)๏ฟฝ ยต %)๏ฟฝ โ€ฆโ€ฆ ยต &)*+ di mana )๏ฟฝ menunjukkan banyaknya basis untuk ruang vektor eigen dalam k๏ฟฝm dan tentunya )1 / )2 / โ€ฆ / )* ' 9. (ayyaswamy dan balachandran, 2010) pembahasan 1. spectrum detour dari graf n-partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,โ€ฆ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ pembahasan spectrum detour dari graf npartisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,โ€ฆ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, dibatasi pada 9 ! 2, ) ! 1 dan 9, ) 5 n. 1.1 spectrum detour graf 3-partisi komplit op,q,r ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,s,t๏ฟฝ ' u64 f81 8 y 1.2 spectrum detour graf 4-partisi komplit op,q,r,z ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,s,t,[๏ฟฝ ' u169 f131 13 y 1.3 spectrum detour graf 5-partisi komplit op,q,r,z,^ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,s,t,[๏ฟฝ ' u361 f191 19 y 1.4 spectrum detour graf 6-partisi komplit op,q,r,z,^,_ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,s,t,[๏ฟฝ ' u676 f261 26 y teorema 1: jika ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ adalah graf n-partisi komplit dengan 9 ! 2, ) ! 1; 9, ) 5 n dan ๏ฟฝ ' 9 / 9 / 1๏ฟฝ / 9 / 2๏ฟฝ / " / 9 / )๏ฟฝ, maka: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ' ( ๏ฟฝ f 1๏ฟฝ2 f ๏ฟฝ f 1๏ฟฝ 1 ๏ฟฝ f 1๏ฟฝ + dimana ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ adalah spectrum detour dari graf n-partisi komplit dan 9 bilangan asli. bukti: misalkan bb ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ adalah matrik detour adjacent dari ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, maka bb ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' cd dd e 0 ๏ฟฝ f 1 ๏ฟฝ f 1 โ€ฆ ๏ฟฝ f 1๏ฟฝ f 1 0 ๏ฟฝ f 1 โ€ฆ ๏ฟฝ f 1๏ฟฝ f 1 ๏ฟฝ f 1 0 โ€ฆ ๏ฟฝ f 1f f f g f๏ฟฝ f 1 ๏ฟฝ f 1 ๏ฟฝ f 1 โ€ฆ 0 hi ii j dari matriks detour adjacent di atas, maka akan dicari nilai eigennya dengan menentukan det k๏ฟฝe f bb ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝl ' 0 mmฮป cdd de1 0 0 โ€ฆ 00 1 0 โ€ฆ 00 0 1 โ€ฆ 0f f f g f0 0 0 โ€ฆ 1hi iij f cd dd e 0 ๏ฟฝ f 1 ๏ฟฝ f 1 โ€ฆ ๏ฟฝ f 1๏ฟฝ f 1 0 ๏ฟฝ f 1 โ€ฆ ๏ฟฝ f 1๏ฟฝ f 1 ๏ฟฝ f 1 0 โ€ฆ ๏ฟฝ f 1f f f g f๏ฟฝ f 1 ๏ฟฝ f 1 ๏ฟฝ f 1 โ€ฆ 0 hi ii j mm ' 0 mm ฮป f ๏ฟฝ f 1๏ฟฝ f ๏ฟฝ f 1๏ฟฝ โ€ฆ f ๏ฟฝ f 1๏ฟฝf ๏ฟฝ f 1๏ฟฝ ฮป f ๏ฟฝ f 1๏ฟฝ โ€ฆ f ๏ฟฝ f 1๏ฟฝf ๏ฟฝ f 1๏ฟฝ f ๏ฟฝ f 1๏ฟฝ ฮป โ€ฆ f ๏ฟฝ f 1๏ฟฝf f f g ff ๏ฟฝ f 1๏ฟฝ f ๏ฟฝ f 1๏ฟฝ f ๏ฟฝ f 1๏ฟฝ โ€ฆ ฮป m m ' 0 kita kalikan matriks di atas dengan 1a =a1๏ฟฝ, sehingga diperoleh m m m ฮปf ๏ฟฝ f 1๏ฟฝ 1 1 โ€ฆ 1 1 ฮปf ๏ฟฝ f 1๏ฟฝ 1 โ€ฆ 1 1 1 ฮปf ๏ฟฝ f 1๏ฟฝ โ€ฆ 1f f f g f1 1 1 โ€ฆ ฮปf ๏ฟฝ f 1๏ฟฝm m m ' 0 dimisalkan ๏ฟฝp ' k q=a1l, maka mm fฮปp 1 1 โ€ฆ 11 fฮปp 1 โ€ฆ 11 1 fฮปp โ€ฆ 1f f f g f1 1 1 โ€ฆ fฮปp mm ' 0 melalui operasi basis elementer, matriks det k๏ฟฝe f bb ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝl direduksi menjadi matriks segitiga atas, sehingga diperoleh m m mfฮป p 1 1 โ€ฆ 10 akrs%a๏ฟฝlrs 1 โ€ฆ 10 0 akrs%a๏ฟฝl rsa๏ฟฝ๏ฟฝrsa๏ฟฝ โ€ฆ 1f f f g f0 0 1 โ€ฆ akrs%a ta๏ฟฝ๏ฟฝ ta๏ฟฝ๏ฟฝ rsa ta๏ฟฝ๏ฟฝ๏ฟฝ%lrsa ta๏ฟฝ๏ฟฝ ta๏ฟฝ๏ฟฝ m m m ' 0 sehingga det k๏ฟฝe f bb ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝl tidak lain adalah hasil perkalian diagonal matriks segitiga atas tersebut, sehingga diperoleh det kฮปi f dd k#,#๏ฟฝ๏ฟฝ,#๏ฟฝ๏ฟฝ,โ€ฆ#๏ฟฝz๏ฟฝl' ฮปp f p f 1๏ฟฝ๏ฟฝ ฮปp / 1๏ฟฝta๏ฟฝ karena det kฮปe f bb ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝl ' 0, maka ฮปp f p f 1๏ฟฝ๏ฟฝ ฮปp / 1๏ฟฝta๏ฟฝ ' 0 sehingga didapat nilai eigen ๏ฟฝp ' ๏ฟฝ f 1๏ฟฝ atau ฮปp ' f1, karena ฮปp ' ra ta๏ฟฝ๏ฟฝ maka nilai eigennya diperoleh ๏ฟฝ ' ๏ฟฝ f 1๏ฟฝ atau ๏ฟฝ ' f1 r ta๏ฟฝ๏ฟฝ ' p f 1๏ฟฝ r ta๏ฟฝ๏ฟฝ ' f1 ฮป ' p f 1๏ฟฝ๏ฟฝ ฮป ' f p f 1๏ฟฝ sedangkan untuk vektor eigennya, yaitu cd ' ๏ฟฝd ' 0 desy norma puspita dewi 16 volume 2 no. 1 november 2011 ( ) ' 1 ' 2 ' 1 ' 01 1 1 01 1 1 01 1 1 01 1 1 p p x x x x ฮป ฮป ฮป ฮป โˆ’ ๏ฃฎ ๏ฃน๏ฃฎ ๏ฃนโˆ’ ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ=โˆ’ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ ๏ฃฐ ๏ฃป๏ฃฐ ๏ฃป ๏ฃฐ ๏ฃป โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎโ‹ฎโ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฏ kemudian, akan dibuktikan bahwa untuk ฮป ' n f 1๏ฟฝ๏ฟฝ akan didapatkan banyaknya basis vektor eigen adalah 1. untuk ฮป ' f p f 1๏ฟฝ akan didapatkan ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 2 2 1 2 1 1 1 1 1 1 0 1 1 1 1 0 01 1 1 1 1 0 1 1 1 1 1 p p p p xp xp xp p x p p โˆ’ ๏ฃฎ ๏ฃนโˆ’ ๏ฃฏ ๏ฃบ โˆ’ โˆ’๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฎ ๏ฃนโˆ’๏ฃฏ ๏ฃบ ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ โˆ’ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ=โˆ’ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ โˆ’๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป๏ฃฐ ๏ฃป๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ โˆ’๏ฃฐ ๏ฃป โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎโ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฏ ( ) ( ) ( ) ( ) ( ) 1 2 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 p p xp xp xp p x โˆ’ ๏ฃฎ ๏ฃน๏ฃฎ ๏ฃนโˆ’ โˆ’ ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ โˆ’ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ โˆ’ = ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ โˆ’ ๏ฃฐ ๏ฃป๏ฃฐ ๏ฃป ๏ฃฐ ๏ฃป โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎโ‹ฎ โ‹ฏ dengan mereduksi matriks di atas menjadi bentuk eselon tereduksi baris, aka didapatkan ( ) 1 2 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 p p x x x x โˆ’ ๏ฃฎ ๏ฃนโˆ’๏ฃฎ ๏ฃน ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ=โˆ’ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป ๏ฃฐ ๏ฃป๏ฃฐ ๏ฃป โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎโ‹ฎ โ‹ฏ kemudian didapat d1 ' d=, d2 ' d=, โ€ฆ , d=a1 ' d= sehingga diperoleh d1 ' d2 ' " ' d=a1 ' d=. misal d= ' ๏ฟฝ maka vektor eigennya adalah ( ) 1 2 1 1 1 1 1 1 p p x s x s s s x s sx โˆ’ ๏ฃฎ ๏ฃน ๏ฃฎ ๏ฃน ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ= = = ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป ๏ฃฐ ๏ฃป๏ฃฐ ๏ฃป โ‹ฎ โ‹ฎ โ‹ฎ jadi didapatkan banyaknya basis ruang eigen untuk ฮป ' p f 1๏ฟฝ๏ฟฝ adalah 1. untuk ฮป ' f p f 1๏ฟฝ akan didapatkan ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 1 1 1 1 1 1 0 1 1 1 1 0 01 1 1 1 1 0 1 1 1 1 1 p p p p xp xp xp p x p p โˆ’ ๏ฃฎ ๏ฃนโˆ’ โˆ’ ๏ฃฏ ๏ฃบโˆ’ โˆ’๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฎ ๏ฃนโˆ’ โˆ’ ๏ฃฎ ๏ฃน๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ โˆ’๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ=โˆ’ โˆ’๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบโˆ’ โˆ’ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฐ ๏ฃป๏ฃฐ ๏ฃป ๏ฃฏ ๏ฃบ โˆ’ โˆ’๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ โˆ’๏ฃฐ ๏ฃป โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎโ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฏ ( ) 1 2 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 p p x x x x โˆ’ ๏ฃฎ ๏ฃน๏ฃฎ ๏ฃน ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ= ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป ๏ฃฐ ๏ฃป๏ฃฐ ๏ฃป โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎโ‹ฎ โ‹ฏ dengan mereduksi matriks di atas menjadi bentuk eselon tereduksi baris, maka didapatkan ( ) 1 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p p x x x x โˆ’ ๏ฃฎ ๏ฃน๏ฃฎ ๏ฃน ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ= ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป ๏ฃฐ ๏ฃป๏ฃฐ ๏ฃป โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎโ‹ฎ โ‹ฏ kemudian didapat d1 / d2 / " / d =a1๏ฟฝ / d= ' 0 sehingga diperoleh d1 ' fd2 f " f d =a1๏ฟฝ f d=. maka vektor eigennya adalah ( ) ( ) ( ) 2 11 2 2 1 1 2 pp p p p p x x xx x x s x x x x โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’๏ฃฎ ๏ฃน๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ= = ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป ๏ฃฐ ๏ฃป โ‹ฏ โ‹ฎ โ‹ฎ jadi didapatkan banyaknya basis ruang eigen untuk ๏ฟฝ ' f ๏ฟฝ f 1๏ฟฝ adalah ๏ฟฝ f 1๏ฟฝ. jadi terbukti bahwa ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ1,๏ฟฝ๏ฟฝ2,โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' ( ๏ฟฝ f 1๏ฟฝ2 f ๏ฟฝ f 1๏ฟฝ 1 ๏ฟฝ f 1๏ฟฝ +. 2. spectrum detour dari graf 3-partisi komplit 2,2,nk pembahasan spectrum detour dari graf 3partisi komplit 2,2,nk dibatasi pada 9 ! 5. 2.1 spectrum detour graf 3-partisi komplit op,p,z ( )2,2,5 25 1029 25 1029 6 8 1 1 3 4 ddspec k ๏ฃฎ ๏ฃน+ โˆ’ โˆ’ โˆ’ = ๏ฃฏ ๏ฃบ ๏ฃฐ ๏ฃป 2.2 spectrum detour graf 3-partisi komplit op,p,^ ( )2 ,2 ,6 29 129 7 29 1297 6 8 1 1 3 5 ddspec k ๏ฃฎ ๏ฃน+ โˆ’ โˆ’ โˆ’ = ๏ฃฏ ๏ฃบ ๏ฃฐ ๏ฃป 2.3 spectrum detour graf 3-partisi komplit op,p,_ ( )2,2,7 33 1597 33 1597 6 8 1 1 3 6 ddspec k ๏ฃฎ ๏ฃน+ โˆ’ โˆ’ โˆ’ = ๏ฃฏ ๏ฃบ ๏ฃฐ ๏ฃป 2.4 spectrum detour graf 3-partisi komplit op,p,{ ( )2,2,8 37 1929 33 1929 6 8 1 1 3 7 ddspec k ๏ฃฎ ๏ฃน+ โˆ’ โˆ’ โˆ’ = ๏ฃฏ ๏ฃบ ๏ฃฐ ๏ฃป 2.5 spectrum detour graf 3-partisi komplit op,p,| ( )2,2,9 41 2293 41 2293 6 8 1 1 3 8 ddspec k ๏ฃฎ ๏ฃน+ โˆ’ โˆ’ โˆ’ = ๏ฃฏ ๏ฃบ ๏ฃฐ ๏ฃป 2.6 spectrum detour graf 3-partisi komplit op,p,}~ ( )2,2,10 45 2689 45 2689 6 8 1 1 3 9 ddspec k ๏ฃฎ ๏ฃน+ โˆ’ โˆ’ โˆ’ = ๏ฃฏ ๏ฃบ ๏ฃฐ ๏ฃป spectrum detour graf n-partisi komplit jurnal cauchy โ€“ issn: 2086-0382 17 berdasarkan hasil spectrum detour dari graf 3-partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ di atas, dapat diperoleh dugaan sementara bahwa bentuk umum dari spectrum detour adalah: ( ) ( ) ( ) 2 2 2,2, (2 2 2 1) (2 2 2 1)16 220 793 16 220 793 6 8 1 1 3 1 dd n n n n n spec k n n n n n+ + + + + + + โˆ’๏ฃฎ ๏ฃน+ + + + โˆ’ โˆ’=๏ฃฏ ๏ฃบ โˆ’๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป dengan 5n โ‰ฅ dan n adalah bilangan asli. penutup kesimpulan berdasarkan pembahasan mengenai spectrum detour dari graf n-partisi komplit, diperoleh kesimpulan: (a). untuk graf n-partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,โ€ฆ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ dengan 9 ! 2, ) !1; 9, ) 5 n dan ๏ฟฝ ' 9 / 9 / 1๏ฟฝ / 9 / 2๏ฟฝ / " / 9 / )๏ฟฝ, maka ( ) ( ) ( ) ( ) 2 , 1 , 2 , 1 1 1 1 d d n n n n m p p s p e c k p + + โ€ฆ + ๏ฃฎ ๏ฃนโˆ’ โˆ’ โˆ’ = ๏ฃฏ ๏ฃบ โˆ’๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป , (b). untuk graf 3-partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ dengan 9 ! 2, 9 5 n ( ) ( ) ( ) 2 2 2,2, (2 2 2 1) (2 2 2 1)16 220 793 16 220 793 6 8 1 1 3 1 dd n n n n n spec k n n n n n+ + + + + + + โˆ’๏ฃฎ ๏ฃน+ + + + โˆ’ โˆ’=๏ฃฏ ๏ฃบ โˆ’๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป saran pada artikel ini, penulis hanya memfokuskan pada spectrum detour yang digambarkan oleh dua bentuk graf n-partisi komplit yaitu graf n-partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ,โ€ฆ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ dan graf 3-partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ. pada bentuk graf 3-partisi komplit ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ masih merupakan konjektur, sehingga perlu diselidiki lebih lanjut. karena masih banyaknya bentuk dari graf ini, maka untuk penulisan skripsi selanjutnya diteliti pada graf lain. daftar pustaka [1] abdussakir, dkk. 2009. teory graf : topik dasar untuk tugas akhir/skripsi. malang: uin-malang press. [2] chartrand, g and lesniak, l. 1986. graph and digraph: second edition california: a division wadsworth [3] ayyaswamy, s.k. dan balachandran, s. (2010). โ€œon detour spectra of some graphsโ€. world academy of science, enggineering and technology. (www.waset.org/journals/waset/v67/v6788.pdf. diakses 2 februari 2011). [4] jain, s. k. 2004. linear algebra; an interactive approach. australia: thomson learning. on irregular colorings of unicyclic graph family cauchy โ€“jurnal matematika murni dan aplikasi volume 7(4) (2023), pages 503-512 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 01, 2022 reviewed: july 24, 2022 accepted: august 15, 2022 doi: http://dx.doi.org/10.18860/ca.v7i4.16917 on irregular colorings of unicyclic graph family arika indah kristiana*, dafik, qurrotul aโ€™yun, robiatul adawiyah, ridho alfarisi mathematics education study program, faculty of teacher training and education university of jember, indonesia email: arika.fkip@unej.ac.id abstract an irregular coloring is a proper coloring where each vertex on a graph must have a different code. the color code of a vertex v is ๐‘๐‘œ๐‘‘๐‘’(๐‘ฃ) = (๐‘Ž0,๐‘Ž1,๐‘Ž2, . . . ,๐‘Ž๐‘˜) where ๐‘Ž0 = ๐‘(๐‘ฃ) and ๐‘Ž๐‘– = ๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘˜ is the number of vertices that are adjacent to ๐‘ฃ and colored ๐‘–. the minimum k-color used in irregular coloring is called the irregular chromatic number and denoted by ๐œ’๐‘–๐‘Ÿ. the type of research used in this research is exploratory research. in this paper, we discuss the irregular chromatic number of the bull graph, pan graph, sun graph, peach graph, and caveman graph. copyright ยฉ 2023 by authors, published by cauchy group. this is an open access article under the cc bysa license (https://creativecommons.org/licenses/by-sa/4.0/) keywords: irregular coloring; irregular chromatic number; unicyclic graph introduction a graph ๐บ = (๐‘‰,๐ธ) is a pair of a vertex set denoted by ๐‘‰(๐บ) and an edge set (may be empty) denoted by ๐ธ(๐บ). more detail definitions and some properties can be seen in [1]. in that year, a four-color theorem which discusses maps coloring was discovered. this theorem states that there is a separation of a plane into adjacent areas resulting in an image called a map. the maximum colors which is needed to color the area on the map so that two neighboring areas do not have the same color is four [2]. ๐‘๐‘œ๐‘‘๐‘’(๐‘ฃ) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜) where ๐‘Ž0 = ๐‘(๐‘ฃ) and ๐‘Ž๐‘– = ๐‘–,(1 โ‰ค ๐‘– โ‰ค ๐‘˜) is the number of vertices that are adjacent to ๐‘ฃ, and colored ๐‘ฃ, where ๐‘(๐‘ฃ) is the color at vertex ๐‘ฃ. the minimum color used in irregular coloring is called the irregular chromatic number and denoted by ๐œ’๐‘–๐‘Ÿ [2]. an irregular coloring is included proper coloring of g, it follows that [2] ๐œ’(๐บ) โ‰ค ๐œ’๐‘–๐‘Ÿ(๐บ). the following are the theorems, corollaries, and observations that will be used in this paper. lemma 1. [2] for every pair ๐‘Ž,๐‘ of integers with 2 โ‰ค ๐‘Ž โ‰ค ๐‘, there is a connected graph ๐บ with ๐œ’(๐บ) = ๐‘Ž and ๐œ’๐‘–๐‘Ÿ(๐บ) = ๐‘. corollary 1. [2] for every graph ๐บ, ๐œ”(๐บ) โ‰ค ๐œ’(๐บ) the clique number ๐œ”(๐บ) of a graph ๐บ is the maximum order of a complete subgraph of ๐บ. observation 1.[2] let ๐‘ be a (proper) vertex coloring of a nontrivial graph ๐บ and let ๐‘ข and ๐‘ฃ be two distinct vertices of ๐บ. a. if ๐‘(๐‘ข) โ‰  ๐‘(๐‘ฃ), then ๐‘๐‘œ๐‘‘๐‘’(๐‘ข) โ‰  ๐‘๐‘œ๐‘‘๐‘’ (๐‘ฃ) b. if ๐‘‘๐‘’๐‘”๐บ๐‘ข โ‰  ๐‘‘๐‘’๐‘”๐บ๐‘ฃ, then ๐‘๐‘œ๐‘‘๐‘’(๐‘ข) โ‰  ๐‘๐‘œ๐‘‘๐‘’ (๐‘ฃ) c. if ๐‘ is irregular coloring and ๐‘(๐‘ข) = ๐‘(๐‘ฃ), ๐‘(๐‘ข) โ‰  ๐‘(๐‘ฃ) http://dx.doi.org/10.18860/ca.v7i4.16917 mailto:arika.fkip@unej.ac.id https://creativecommons.org/licenses/by-sa/4.0/ on irregular colorings of unicyclic graph family arika indah kristiana 504 lemma 2. [3] let ๐‘ be an irregular k-coloring of the vertices of a graph ๐บ. the number of different possible color codes of the vertices of degree r in g is ๐‘˜( ๐‘Ÿ + (๐‘˜ + 1) โˆ’ 1 ๐‘Ÿ ) = ๐‘˜( ๐‘Ÿ + ๐‘˜ โˆ’ 2 ๐‘Ÿ ) corollary 2. [3] if c is an irregular k-coloring of a nontrivial connected graph g, then g contains at most ๐‘˜( ๐‘Ÿ + ๐‘˜ โˆ’ 2 ๐‘Ÿ ) vertices of degree r. corollary 3. [3] if ๐œ’๐‘–๐‘Ÿ(๐บ) = ๐‘˜ where ๐‘› โ‰ฅ 3, then ๐‘› โ‰ค (๐‘˜)( ๐‘˜ 2 ) = ๐‘˜2(๐‘˜โˆ’1) 2 corollary 4.[3] let ๐‘˜ โ‰ฅ 3 be an integer, ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘›) โ‰ฅ ๐‘˜ for all integers n. such that (๐‘˜ โˆ’ 1)2(๐‘˜ โˆ’2) +2 2 โ‰ค ๐‘› โ‰ค ๐‘˜2(๐‘˜ โˆ’ 1) 2 propotition 1.[3] ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘›) = 4 if n is even and ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘›) = 3 if n is odd for 3 โ‰ค ๐‘› โ‰ค 9. lemma 3. [3] let ๐‘˜ โ‰ฅ 3, if ๐‘› = ๐‘˜2(๐‘˜โˆ’1) 2 , then ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘›โˆ’1) โ‰ฅ ๐‘˜ + 1 a. rohoni et. al have discussed irregular coloring in the double wheel graph family [4], fan graphs families [5], and wheel related graphs [6]. avudainayaki et. al [7] has discussed irregular coloring on central and middle graphs of double star graphs, anderson et. al [8] discussed irregular coloring on regular graphs, and kristiana et. al [9] has discussed local irregularity coloring of some family graphs. there are some previous results of irregular coloring of bipartite graph dan tree graph family [10], star families [11], some generalized graph [12], and mycielskian graphs [13]. in this paper, we observed the irregular coloring of bull graph, pan graph, sun graph, peach graph, and caveman graph. the bull graph is a planar undirected graph with 5 vertices and 5 edges, in the form of a triangle with two disjoint pendant edges [14]. the pan pan graph is a graph obtained by combining a cycle graph cn with a singleton star graph k1[15]. the sun graph of order 2๐‘› is a cycle ๐ถ๐‘› with an edge terminating in a pendent vertex attached to each vertex[16]. a peach graph is a circular graph cm which has ๐‘› pendants at one vertex, which is at vertex ๐‘ฅ1 contained in the cycle graph[17]. a caveman graph arises by modifying a set of fully connected clusters (caves) by removing one edge from each cluster and using it to connect to a neighboring one such that the clusters form a single loop [18]. method the type of research used in this research is exploratory research. this research is research conducted to dig up data and find new things that you want to know so that the results obtained can be used as knowledge development. the following is a description of the steps taken to determine irregular chromatic numbers: (1) determining the graph that will be researched; (2) determining the cardinality of the graph that is used as research; (3) do vertex coloring of the researched graph; (4) create a code from each vertex in the graph. specifically, ๐‘๐‘œ๐‘‘๐‘’ (๐‘ฃ) = (๐‘Ž0,๐‘Ž1,โ€ฆ,๐‘Ž๐‘˜) =, where ๐‘Ž0 = ๐‘(๐‘ฃ) and ๐‘Ž๐‘– (1 โ‰ค ๐‘– โ‰ค ๐‘˜) are the number of vertices of color ๐‘– adjacent to ๐‘ฃ; (5) if the codes are the same for each vertex, proceed to step 3. (6) determining irregular chromatic numbers. result and discussion this research is focused on finding irregular chromatic numbers in the unicyclic graph family, including bull graph, pan graph, sun graph, peach graph, and caveman graph. on irregular colorings of unicyclic graph family arika indah kristiana 505 theorem 1. the irregular chromatic number of bull graph ๐‘ฉ๐Ÿ‘,๐’ is ๐’ + ๐Ÿ. proof: this graph has the vertex set ๐‘‰(๐ต3,๐‘›) = {๐‘ฅ๐‘–| 1 โ‰ค ๐‘– โ‰ค 3} โˆช {๐‘ฆ2๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช {๐‘ฆ3๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘›} and edge set is ๐ธ(๐ต3,๐‘›) = {๐‘ฅ1๐‘ฅ๐‘–| 2 โ‰ค ๐‘– โ‰ค 3} โˆช{๐‘ฅ2๐‘ฅ3} โˆช{๐‘ฅ2๐‘ฆ2๐‘–| 1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช{๐‘ฅ3๐‘ฆ3๐‘–| 1 โ‰ค ๐‘– โ‰ค ๐‘›}.|๐‘‰(๐ต3,๐‘›)| = 2๐‘› + 3 and |๐ธ(๐ต3,๐‘›)| = 2๐‘› + 3. we need to prove the upper bound ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) โ‰ค ๐‘› + 1 and the lower bound ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) โ‰ฅ ๐‘› + 1. first, we prove that the lower bound of the irregular chromatic number of bull graph is ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) โ‰ฅ ๐‘› + 1. assume that ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) < ๐‘› + 1. we have some condition as follows. (1) ๐‘(๐‘ฅ๐‘–) = ๐‘(๐‘ฆ2๐‘–) and ๐‘(๐‘ฅ๐‘–) ๐‘(๐‘ฆ2๐‘–) โˆˆ ๐ธ(๐ต3,๐‘›). it's contradicting. (2) ๐‘(๐‘ฅ๐‘–) = ๐‘(๐‘ฆ3๐‘–) and ๐‘(๐‘ฅ๐‘–) ๐‘(๐‘ฆ3๐‘–) โˆˆ ๐ธ(๐ต3,๐‘›). it's contradicting. (3) ๐‘(๐‘ฅ2๐‘˜) = ๐‘(๐‘ฆ2๐‘™) and ๐‘˜ โ‰  ๐‘™. it's contradicting. (4) ๐‘(๐‘ฅ3๐‘˜) = ๐‘(๐‘ฆ3๐‘™) and ๐‘˜ โ‰  ๐‘™. it's contradicting. based on (1), (2), (3), and (4), we get the lower bound of the irregular coloring on a bull graph is ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) โ‰ฅ ๐‘› + 1. furthermore, we prove that the upper bound of the irregular chromatic number of the bull graph is ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) โ‰ค ๐‘› + 1. the color function ๐‘ on this graph is defined as follows. ๐‘(๐‘ฅ๐‘–) = ๐‘–,1 โ‰ค ๐‘– โ‰ค 3 ๐‘(๐‘ฆ2๐‘–) = { ๐‘– ๐‘– = 1 ๐‘– + 1 2 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘(๐‘ฆ3๐‘–) = { ๐‘– 1 โ‰ค ๐‘– โ‰ค 2 ๐‘– + 1 3 โ‰ค ๐‘– โ‰ค ๐‘› based on the color function, the code for each vertex in the bull graph is obtained as follows. ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ1) = (๐‘(๐‘ฅ1),0,1,1,0,0,โ€ฆ,0โŸ ๐‘›+1 ) ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ2) = (๐‘(๐‘ฅ2),2,0,2,1,1,โ€ฆ,1โŸ ๐‘›+1 ) ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ3) = (๐‘(๐‘ฅ3),2,1,0,1,1,โ€ฆ,1โŸ ๐‘›+1 ) ๐‘๐‘œ๐‘‘๐‘’(๐‘ฆ2๐‘–) = (๐‘(๐‘ฆ2๐‘–),0,1,0,0,0,โ€ฆ,0โŸ ๐‘›+1 ) ๐‘๐‘œ๐‘‘๐‘’(๐‘ฆ3๐‘–) = (๐‘(๐‘ฆ3๐‘–),0,0,1,0,0,โ€ฆ,0โŸ ๐‘›+1 ) based on the color function and vertex code obtained, each neighboring vertex has a different color and each vertex in the graph has a different color code. therefore, the upper bound of the irregular chromatic number on the bull graph is ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) โ‰ค ๐‘› + 1. the lower and upper bound of the irregular chromatic number of bull graph is ๐‘› + 1 โ‰ค ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) โ‰ค ๐‘› + 1. so, ๐œ’๐‘–๐‘Ÿ(๐ต3,๐‘›) = ๐‘› + 1. theorem 2. let (๐’Œโˆ’๐Ÿ)( ๐’Œ โˆ’ ๐Ÿ ๐Ÿ ) + ๐Ÿ โ‰ค ๐’ โ‰ค ๐’Œ( ๐’Œ ๐Ÿ ) and ๐’Œ โ‰ฅ ๐Ÿ’. irregular chromatic number of pan graph ๐‘ท๐’‚๐’ is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = { 3 ๐‘“๐‘œ๐‘Ÿ ๐‘› ๐‘œ๐‘‘๐‘‘,3 โ‰ค ๐‘› โ‰ค 9 3 ๐‘“๐‘œ๐‘Ÿ ๐‘› = 4 4 ๐‘“๐‘œ๐‘Ÿ ๐‘› ๐‘’๐‘ฃ๐‘’๐‘›,6 โ‰ค ๐‘› โ‰ค 9 on irregular colorings of unicyclic graph family arika indah kristiana 506 proof: this graph has the vertex set ๐‘‰(๐‘ƒ๐‘Ž๐‘›) = {๐‘ฅ๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช{๐‘ฆ} and the edge set is ๐ธ(๐‘ƒ๐‘Ž๐‘›) = {๐‘ฅ๐‘–๐‘ฅ๐‘–+1|1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1} โˆช{๐‘ฅ1๐‘ฅ๐‘›} โˆช {๐‘ฅ๐‘–๐‘ฆ}. |๐‘‰(๐‘ƒ๐‘Ž๐‘›)| = ๐‘› + 1 and |๐ธ(๐‘ƒ๐‘Ž๐‘›)| = ๐‘› + 1. the pan graph contains the ๐ถ๐‘› subgraph where ๐ถ๐‘› is a cycle graph. in this case, the ๐ถ๐‘› subgraph is labeled according to the ๐ถ๐‘› graph. there are three cases in this proof. case 1. ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = 3,๐‘“๐‘œ๐‘Ÿ ๐‘› ๐‘œ๐‘‘๐‘‘,3 โ‰ค ๐‘› โ‰ค 9 we need to prove the upper bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3 and the lower bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 3. first, we prove that the lower bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 3. assume that ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) < 3, for example ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = 2, we get the color on ๐‘ฅ๐‘– is 1,2,1,2, . . . ,1 or 2,1,2, . . . ,2 periodically. since ๐‘(๐‘ฅ1) = ๐‘(๐‘ฅ๐‘›) and ๐‘ฅ1๐‘ฅ๐‘› โˆˆ ๐ธ(๐‘ƒ๐‘Ž๐‘›). this contradicts the definition of proper coloring where each pair of adjacent vertices must have different colors. therefore, ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 3. furthermore, we prove that the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3 where 3 โ‰ค ๐‘› โ‰ค 9. define the color function ๐‘:๐‘ฃ โ†’ {1,2,3,โ€ฆ,๐œ’๐‘–๐‘Ÿ},๐‘† = {1,2,3,โ€ฆ,๐œ’๐‘–๐‘Ÿ} and ๐‘,๐‘ž โˆˆ ๐‘. ๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1 โˆˆ ๐‘‰(๐‘ƒ๐‘Ž๐‘›), with ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1), ๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โˆˆ ๐‘†. if ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โ‰  ๐‘(๐‘ฅ(๐‘ž(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘ž+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1), then ๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1) = ๐‘(๐‘ฅ(๐‘ž+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1). the color of y is ๐‘(๐‘ฆ), for ๐‘(๐‘ฆ) โˆˆ ๐‘†, ๐‘(๐‘ฅ๐‘–) โ‰  ๐‘(๐‘ฆ), ๐‘ฅ๐‘–๐‘ฆ โˆˆ ๐ธ(๐‘ƒ๐‘Ž๐‘›). based on the color function, it can be written, if it is known that ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), and ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) โ‰  ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž). we get the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3. the lower and upper bound of the irregular chromatic number of pan graph is 3 โ‰ค ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3. so, ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = 3. case 2. ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = 3,๐‘› = 4 we need to prove the upper bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3 and the lower bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 3. first, we prove that the lower bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 3. assume that ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) < 3, for example ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = 2. define the color function ๐‘:๐‘ฃ โ†’ {1,2} is ๐‘(๐‘ฅ1) = 1,๐‘(๐‘ฅ2) = 2,๐‘(๐‘ฅ3) = 1,๐‘(๐‘ฅ4) = 2,๐‘(๐‘ฆ) = 2. the color code obtained is ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ1) = (1,0,3), ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ2) = (2,2,0),๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ3) = (1,0,2),๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ4) = (2,2,0),๐‘๐‘œ๐‘‘๐‘’(๐‘ฆ) = (2,1,0). based on the code obtained, there is the same code, namely ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ2) = ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ4). this contradicts the definition of irregular colorin that each vertex in a graph must have a different color code. so, ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 3. furthermore, we prove that the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3. define the color function ๐‘:๐‘ฃ โ†’ {1,2,3} is ๐‘(๐‘ฅ1) = 1,๐‘(๐‘ฅ2) = 3,๐‘(๐‘ฅ3) = 1,๐‘(๐‘ฅ4) = 2,๐‘(๐‘ฆ) = 2. the color code obtained is ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ1) = (1,0,2,1), ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ2) = (3,2,0,0),๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ3) = (1,0,1,1),๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ4) = (2,2,0,0),๐‘๐‘œ๐‘‘๐‘’(๐‘ฆ) = (2,1,0,0). so, it can be concluded that ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3. we get the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3. the lower and upper bound of the irregular chromatic number of pan graph is 3 โ‰ค ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 3. so, ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = 3. case 3. ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = 4,๐‘“๐‘œ๐‘Ÿ ๐‘› ๐‘’๐‘ฃ๐‘’๐‘›,6 โ‰ค ๐‘› โ‰ค 9 we need to prove upper bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 4 and lower bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 4. first, we prove that the lower bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 4. according to lemma 3, if ๐‘˜ = 3, then ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘›โˆ’1) โ‰ฅ 4. we get an odd n, so on irregular colorings of unicyclic graph family arika indah kristiana 507 ๐‘› โˆ’ 1 is even. since pan has the subgraph cn, where cn is a cycle graph labeled as cn. so, based on lemma 3, we can conclude that ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 4. next, ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ 4. furthermore, we prove that the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 4 where 3 โ‰ค ๐‘› โ‰ค 9. define the color function ๐‘:๐‘ฃ โ†’ {1,2,3,โ€ฆ,๐œ’๐‘–๐‘Ÿ},๐‘† = {1,2,3,โ€ฆ,๐œ’๐‘–๐‘Ÿ} and ๐‘,๐‘ž โˆˆ ๐‘. ๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1 โˆˆ ๐‘‰(๐‘ƒ๐‘Ž๐‘›), with ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โˆˆ ๐‘†. if ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โ‰  ๐‘(๐‘ฅ(๐‘ž(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘ž+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1), then ๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1) = ๐‘(๐‘ฅ(๐‘ž+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1). the color on y is ๐‘(๐‘ฆ), for ๐‘(๐‘ฆ) โˆˆ ๐‘†, ๐‘(๐‘ฅ๐‘–) โ‰  ๐‘(๐‘ฆ), ๐‘ฅ๐‘–๐‘ฆ โˆˆ ๐ธ(๐‘ƒ๐‘Ž๐‘›). based on the color function, it can be written, if it is known that ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), and ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) โ‰  ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž). so, we get the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 4. the lower and upper bound of the irregular chromatic number of pan graph is 4 โ‰ค ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค 4. so, ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = 4. figure 1. ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž7) = 3 theorem 3. let (๐’Œโˆ’๐Ÿ)( ๐’Œ โˆ’ ๐Ÿ ๐Ÿ ) + ๐Ÿ โ‰ค ๐’ โ‰ค ๐’Œ( ๐’Œ ๐Ÿ ) irregular chromatic number of pan graph ๐‘ท๐’‚๐’ for ๐’ โ‰ฅ ๐Ÿ‘,๐’Œ โ‰ฅ ๐Ÿ’ is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = { ๐‘˜ ๐‘“๐‘œ๐‘Ÿ ๐‘› โ‰  ๐‘˜( ๐‘˜ 2 ) โˆ’1 ๐‘˜ + 1 ๐‘“๐‘œ๐‘Ÿ ๐‘› = ๐‘˜( ๐‘˜ 2 ) โˆ’1 proof: this graph has the vertex set ๐‘‰(๐‘ƒ๐‘Ž๐‘›) = {๐‘ฅ๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช{๐‘ฆ} and the edge set is ๐ธ(๐‘ƒ๐‘Ž๐‘›) = {๐‘ฅ๐‘–๐‘ฅ๐‘–+1|1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1} โˆช{๐‘ฅ1๐‘ฅ๐‘›} โˆช {๐‘ฅ๐‘–๐‘ฆ}. |๐‘‰(๐‘ƒ๐‘Ž๐‘›)| = ๐‘› + 1 and |๐ธ(๐‘ƒ๐‘Ž๐‘›)| = ๐‘› + 1. the pan graph contains the ๐ถ๐‘› subgraph where ๐ถ๐‘› is a cycle graph. in this case, the ๐ถ๐‘› subgraph is labeled according to the ๐ถ๐‘› graph. there are two cases in this proof. case 1. ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = ๐‘˜,๐‘“๐‘œ๐‘Ÿ ๐‘› โ‰  ๐‘˜( ๐‘˜ 2 ) โˆ’ 1 we need to prove upper bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค ๐‘˜ and lower bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ ๐‘˜. first, we prove that the lower bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ ๐‘˜. according to corollary 4, if ๐‘˜ โ‰ฅ 3 is an integer, then ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘›) โ‰ฅ ๐‘˜. since ๐‘ƒ๐‘Ž๐‘› has the subgraph ๐ถ๐‘›, where ๐ถ๐‘› is a cycle graph labeled as ๐ถ๐‘›. therefore, we get ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ ๐‘˜. next, we prove that the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค ๐‘˜. color function ๐‘:๐‘ฃ โ†’ {1,2,3,โ€ฆ,๐œ’๐‘–๐‘Ÿ},๐‘† = {1,2,3,โ€ฆ,๐œ’๐‘–๐‘Ÿ} and ๐‘,๐‘ž โˆˆ ๐‘. ๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1 โˆˆ ๐‘‰(๐‘ƒ๐‘Ž๐‘›), with ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โˆˆ ๐‘†. on irregular colorings of unicyclic graph family arika indah kristiana 508 if ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โ‰  ๐‘(๐‘ฅ(๐‘ž(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘ž+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1), then ๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1) = ๐‘(๐‘ฅ(๐‘ž+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1). the color on y is ๐‘(๐‘ฆ), for ๐‘(๐‘ฆ) โˆˆ ๐‘†, ๐‘(๐‘ฅ๐‘–) โ‰  ๐‘(๐‘ฆ), ๐‘ฅ๐‘–๐‘ฆ โˆˆ ๐ธ(๐‘ƒ๐‘Ž๐‘›). based on the color function, it can be written, if it is known that ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), and ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) โ‰  ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž). so, we get the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค ๐‘˜. the lower and upper bound of the irregular chromatic number of pan graph is ๐‘˜ โ‰ค ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค ๐‘˜. so, ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = ๐‘˜. case 2. ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = ๐‘˜ + 1,๐‘“๐‘œ๐‘Ÿ ๐‘› = ๐‘˜( ๐‘˜ 2 ) โˆ’ 1 we need to prove upper bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค ๐‘˜ + 1 and lower bound ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ ๐‘˜ + 1. first, we prove that the lower bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ ๐‘˜ +1. according to lemma 3, if ๐‘› = ๐‘˜2(๐‘˜+1) 2 = ๐‘˜( ๐‘˜ 2 ), then ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘›โˆ’1) โ‰ฅ ๐‘˜ + 1. since ๐‘ƒ๐‘Ž๐‘› has the subgraph ๐ถ๐‘›, where ๐ถ๐‘› is a cycle graph labeled as ๐ถ๐‘›. therefore, if ๐‘› โˆ’ 1, then ๐‘˜( ๐‘˜ 2 ) โˆ’ 1. so, if ๐‘› = ๐‘˜( ๐‘˜ 2 ) โˆ’1, then ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ฅ ๐‘˜ + 1. next, we prove that the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค ๐‘˜ +1. color function ๐‘:๐‘ฃ โ†’ {1,2,3,โ€ฆ,๐œ’๐‘–๐‘Ÿ},๐‘† = {1,2,3,โ€ฆ,๐œ’๐‘–๐‘Ÿ} and ๐‘,๐‘ž โˆˆ ๐‘. ๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1 โˆˆ ๐‘‰(๐‘ƒ๐‘Ž๐‘›),with ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1), ๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โˆˆ ๐‘†. if ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โ‰  ๐‘(๐‘ฅ(๐‘ž(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘ž+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1), then ๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1) = ๐‘(๐‘ฅ(๐‘ž+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1). the color on y is ๐‘(๐‘ฆ), for ๐‘(๐‘ฆ) โˆˆ ๐‘†, ๐‘(๐‘ฅ๐‘–) โ‰  ๐‘(๐‘ฆ), ๐‘ฅ๐‘–๐‘ฆ โˆˆ ๐ธ(๐‘ƒ๐‘Ž๐‘›). based on the color function, it can be written, if it is known that ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), and ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) โ‰  ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž). so, we get the upper bound of the irregular chromatic number on the pan graph is ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค ๐‘˜ + 1. the lower and upper bound of the irregular chromatic number of pan graph is ๐‘˜ +1 โ‰ค ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) โ‰ค ๐‘˜ + 1. so, ๐œ’๐‘–๐‘Ÿ(๐‘ƒ๐‘Ž๐‘›) = ๐‘˜ + 1. theorem 4. the irregular chromatic number of sun graph ๐‘บ๐’ for ๐’Œ ๐Ÿ + ๐’Œ+ ๐Ÿ โ‰ค ๐’ โ‰ค ๐’Œ๐Ÿ + ๐Ÿ‘๐’Œ+ ๐Ÿ and ๐’Œ โˆˆ ๐‘ต is ๐’Œ+ ๐Ÿ. proof: this graph has the vertex set ๐‘‰(๐‘†๐‘›) = {๐‘ฅ๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช {๐‘ฆ๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘›} and the edge set is ๐ธ(๐‘†๐‘›) = {๐‘ฅ๐‘–๐‘ฅ๐‘–+1|1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’1} โˆช{๐‘ฅ1๐‘ฅ๐‘›} โˆช {๐‘ฅ๐‘–๐‘ฆ๐‘—|1 โ‰ค ๐‘– โ‰ค ๐‘›,1 โ‰ค ๐‘— โ‰ค ๐‘›}. |๐‘‰(๐‘†๐‘›)| = 2๐‘› and |๐ธ(๐‘†๐‘›)| = 2๐‘›. we need to prove upper bound ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) โ‰ค ๐‘˜ + 2 and lower bound ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) โ‰ฅ ๐‘˜ + 2. first, we prove that the lower bound of the irregular chromatic number on the sun graph is ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) โ‰ฅ ๐‘˜ + 2. assume that ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) < ๐‘˜ + 2. if ๐‘ฅ๐‘– colored with k+1-color, then at most k + 1 vertex of the same color. because of ๐‘ฅ๐‘˜๐‘ฆ๐‘˜ โˆˆ ๐ธ(๐‘†๐‘›) and ๐‘ฆ๐‘˜ are colored with k+1-color, then there are two neighboring vertices having the same color, namely ๐‘(๐‘ฅ๐‘˜) = ๐‘(๐‘ฆ๐‘˜). this contradicts the definition of proper coloring, where each neighboring vertex must have a different color. thus, it can be concluded that the upper bound of the irregular chromatic number of a sun graph is ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) โ‰ฅ ๐‘˜ + 2. next, we prove that the upper bound of the irregular chromatic number on the sun graph is ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) โ‰ค ๐‘˜ + 2. the color function c on this graph is defined as follows. on irregular colorings of unicyclic graph family arika indah kristiana 509 ๏‚ท for ๐‘ฅ๐‘– vertices, where ๐‘› โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘˜ + 2) the color of the vertices 1,2,3,โ€ฆ,๐‘˜ + 2,1,2,3,โ€ฆ,๐‘˜ + 2 periodically. ๏‚ท for ๐‘ฅ๐‘– vertices, where n not equivalent 1(๐‘š๐‘œ๐‘‘ ๐‘˜ + 2) the color of the vertices 1,2,3,โ€ฆ,๐‘˜ + 2,1,2,3,โ€ฆ,๐‘˜ + 2,โ€ฆ,1,2,3,โ€ฆ,๐‘˜ + 2,2 periodically. ๏‚ท for ๐‘ฆ๐‘– vertices, ๐‘(๐‘ฅ๐‘–) โ‰  ๐‘(๐‘ฆ๐‘—) where ๐‘ฅ๐‘–๐‘ฆ๐‘— โˆˆ ๐ธ(๐‘†๐‘›), and ๐‘(๐‘ฅ๐‘–) โ‰  ๐‘(๐‘ฅ๐‘—) for ๐‘ฅ๐‘–๐‘ฆ๐‘˜,๐‘ฅ๐‘—๐‘ฆ๐‘™ โˆˆ ๐ธ(๐‘†๐‘›), with ๐‘(๐‘ฆ๐‘˜) = ๐‘(๐‘ฆ๐‘™),๐‘˜ โ‰  ๐‘™. we know that the ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜) and ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜), then based on the color function obtained, ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) โ‰  ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž). thus, the upper bound of the irregular chromatic number on a sun graph is ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) โ‰ค ๐‘˜ + 2. the ilustration of irregular coloring of sun graph can be seen in figure 2. the lower and upper bound of the irregular chromatic number of caveman graph is ๐‘˜ + 2 โ‰ค ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) โ‰ค ๐‘˜ + 2. so, ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) = ๐‘˜ + 2. figure 2. ๐œ’๐‘–๐‘Ÿ(๐‘†๐‘›) = 4 theorem 5. irregular chromatic number of peach graph ๐‘ช๐’Ž ๐’Ž for ๐’Ž โ‰ฅ ๐Ÿ‘ is ๐’Ž + ๐Ÿ. proof: this graph has the vertex set ๐‘‰(๐ถ๐‘š ๐‘š) = {๐‘ฅ๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘š}โˆช{๐‘ฆ๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘š} and the edge set is ๐ธ(๐ถ๐‘š ๐‘š) = {๐‘ฅ๐‘–๐‘ฅ๐‘–+1|1 โ‰ค ๐‘– โ‰ค ๐‘š โˆ’ 1} โˆช{๐‘ฅ1๐‘ฅ๐‘š} โˆช{๐‘ฅ1๐‘ฆ๐‘–|1 โ‰ค ๐‘– โ‰ค ๐‘š}. |๐‘‰(๐ถ๐‘š ๐‘š)| = 2๐‘š and |๐ธ(๐ถ๐‘š ๐‘š)| = 2๐‘š. we need to prove upper bound ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) โ‰ค ๐‘š + 1 and lower bound ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) โ‰ฅ ๐‘š +1. first, we prove that the lower bound of the irregular chromatic number on the peach graph is ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) โ‰ฅ ๐‘š + 1. assume that ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) < ๐‘š + 1. we have the following cases. case 1. ๐‘(๐‘ฅ๐‘–) = ๐‘(๐‘ฆ๐‘—), ๐‘ฅ๐‘–๐‘ฆ๐‘— โˆˆ ๐ธ(๐ถ๐‘š ๐‘š). itโ€™s contradicts. case 2. ๐‘(๐‘ฅ๐‘˜) = ๐‘(๐‘ฆ๐‘™), ๐‘˜ โ‰  ๐‘™,๐‘ฆ๐‘˜๐‘ฅ1,๐‘ฆ๐‘—๐‘ฅ1 โˆˆ ๐ธ(๐ถ๐‘š ๐‘š). itโ€™s contradicts. based on case 1 and case 2 above, the lower bound is obtained from the irregular chromatic number on the peach graph is ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) โ‰ฅ ๐‘š + 1. next, we prove that the upper bound of the irregular chromatic number on the peach graph is ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) โ‰ค ๐‘š + 1. the color function c on this graph is defined as follows. ๐‘(๐‘ฅ๐‘–) = ๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘š ๐‘(๐‘ฆ๐‘—) = { ๐‘— ๐‘“๐‘œ๐‘Ÿ 2 โ‰ค ๐‘— โ‰ค ๐‘š ๐‘š + 1 ๐‘“๐‘œ๐‘Ÿ ๐‘— = 1 on irregular colorings of unicyclic graph family arika indah kristiana 510 based on the color function above, the code for each vertex in the peach graph is obtained as follows. ๐‘๐‘œ๐‘‘๐‘’ (๐‘ฅ๐‘–) = { (๐‘(๐‘ฅ๐‘–),0,2,1,1,1,1,0,0,โ€ฆ,1,1,2โŸ ๐‘š+1 ๐‘“๐‘œ๐‘Ÿ ๐‘– = 1 (๐‘(๐‘ฅ๐‘–),0,โ€ฆ,0โŸ , ๐‘–โˆ’2 1,0,1,0,โ€ฆ,0โŸ , ๐‘šโˆ’1 ๐‘“๐‘œ๐‘Ÿ 2 โ‰ค ๐‘– โ‰ค ๐‘š โˆ’ 1 (๐‘(๐‘ฅ๐‘–),1,0,0,0,0,0,0,โ€ฆ,0,0,1,0โŸ ๐‘š+1 ๐‘“๐‘œ๐‘Ÿ ๐‘– = ๐‘š ๐‘๐‘œ๐‘‘๐‘’(๐‘ฆ๐‘–) = (๐‘(๐‘ฆ๐‘–),1,0,0,0,โ€ฆ,0,0,0)โŸ ๐‘š+1 based on the color function and vertex code obtained, each neighboring vertex has a different color and each vertex in the graph has a different color code. therefore, the upper bound of the irregular chromatic number on the peach graph is ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) โ‰ค ๐‘š + 1. the illustration of irregular coloring of sun graph can be seen in figure 3. the lower and upper bound of the irregular chromatic number of peach graph is ๐‘š + 1 โ‰ค ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) โ‰ค ๐‘š + 1. so, ๐œ’๐‘–๐‘Ÿ(๐ถ๐‘š ๐‘š) = ๐‘š + 1. figure 3. ๐œ’๐‘–๐‘Ÿ(๐ถ8 8) = 9 theorem 6. irregular chromatic number of caveman graph ๐‘ฒ๐’Ž,๐Ÿ‘ for ๐’Œ ๐Ÿ + ๐’Œ + ๐Ÿ โ‰ค ๐’Ž โ‰ค ๐’Œ๐Ÿ + ๐Ÿ‘๐’Œ+ ๐Ÿ and ๐’Œ โˆˆ ๐‘ต is ๐’Œ+ ๐Ÿ. proof: this graph has the vertex set ๐‘‰(๐พ๐‘š,3) = {๐‘ฅ๐‘–|1 โ‰ค ๐‘– โ‰ค 2๐‘š} โˆช{๐‘ฆ๐‘—|1 โ‰ค ๐‘— โ‰ค ๐‘š} and the edge set is ๐ธ(๐พ๐‘š,3) = {๐‘ฅ๐‘–๐‘ฅ๐‘–+1|1 โ‰ค ๐‘– โ‰ค 2๐‘š โˆ’ 1} โˆช{๐‘ฅ1๐‘ฅ2๐‘š}โˆช {๐‘ฅ๐‘–๐‘ฆ๐‘–|1 โ‰ค ๐‘– โ‰ค 2๐‘š,๐‘– = ๐‘œ๐‘‘๐‘‘,1 โ‰ค ๐‘— โ‰ค ๐‘š}. |๐‘‰(๐พ๐‘š,3)| = 3๐‘š + 6 and |๐ธ(๐พ๐‘š,3)| = 3๐‘š + 6. we need to prove upper bound ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) โ‰ค ๐‘˜ + 2 and lower bound ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) โ‰ฅ ๐‘˜ + 2. first, we prove that the lower bound of the irregular chromatic number on the caveman graph is ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) โ‰ฅ ๐‘˜ + 2. assume that ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) โ‰ค ๐‘˜ + 2, for example is ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) = ๐‘˜ + 1. if ๐‘ฅ๐‘–, where deg(๐‘ฅ๐‘–) = 3 is colored with k+1-color, then at most k+1 vertex of the same color. because of ๐‘ฅ๐‘–๐‘ฆ๐‘— โˆˆ ๐ธ(๐พ๐‘š,3) and ๐‘ฆ๐‘— are colored with k+1-color, then there are two neighboring vertices having the same color, namely ๐‘(๐‘ฅ๐‘–) = ๐‘(๐‘ฆ๐‘—). this contradicts the definition of proper coloring, where each neighboring vertex must have a different color. on irregular colorings of unicyclic graph family arika indah kristiana 511 thus, it can be concluded that the lower bound of the irregular chromatic number of a caveman graph is ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) โ‰ฅ ๐‘˜ + 2. next, we prove that the upper bound of the irregular chromatic number on the caveman graph is ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) โ‰ค ๐‘˜ + 2. the color function c on this graph is defined as follows. ๏‚ท for ๐‘ฅ๐‘– vertices, where deg(๐‘ฅ๐‘–) = 3, the color of the vertices 1,2,3,โ€ฆ,๐‘˜ + 2,1,2,3,โ€ฆ,๐‘˜ + 2 periodically. ๏‚ท for ๐‘ฅ๐‘– and ๐‘ฅ๐‘— vertices, with deg(๐‘ฅ๐‘–) = deg(๐‘ฅ๐‘—) = 2, ๐‘ฅ๐‘– = ๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1and ๐‘ฅ๐‘— = ๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1. if ๐‘† = {1,2,3,โ€ฆ,๐‘˜ + 2}, ๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1,๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1 โˆˆ ๐‘‰(๐พ๐‘š,3) โ‰ฅ ๐‘˜ + 1, with ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โˆˆ ๐‘†. if ๐‘(๐‘ฅ(๐‘(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1) โ‰  ๐‘(๐‘ฅ(๐‘ž(๐‘š๐‘œ๐‘‘ ๐‘›))+1),๐‘(๐‘ฅ(๐‘ž+2(๐‘š๐‘œ๐‘‘ ๐‘›))+1), then ๐‘(๐‘ฅ(๐‘+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1) = ๐‘(๐‘ฅ(๐‘ž+1(๐‘š๐‘œ๐‘‘ ๐‘›))+1). ๏‚ท for ๐‘ฆ๐‘— vertices, ๐‘(๐‘ฅ๐‘–) โ‰  ๐‘(๐‘ฆ๐‘—) for ๐‘ฅ๐‘–๐‘ฆ๐‘— โˆˆ ๐ธ(๐พ๐‘š,3) ๏‚ท for ๐‘ฆ๐‘— vertices, ๐‘(๐‘ฆ๐‘˜) = ๐‘(๐‘ฆ๐‘™) when ๐‘ฅ๐‘–๐‘ฆ๐‘—,๐‘ฅ๐‘—๐‘ฆ๐‘™ โˆˆ ๐ธ(๐พ๐‘š,3) and ๐‘(๐‘ฅ๐‘–) โ‰  ๐‘(๐‘ฆ๐‘—) we know that the ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜) and ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž) = (๐‘Ž0,๐‘Ž1,๐‘Ž2,โ€ฆ,๐‘Ž๐‘˜) then based on the color function obtained, ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘) โ‰  ๐‘๐‘œ๐‘‘๐‘’(๐‘ฅ๐‘ž). thus, the upper bound of the irregular chromatic number on a caveman graph is ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) โ‰ค ๐‘˜ + 2. the illustration of irregular coloring of caveman graph can be seen in figure 4. the lower and upper bound of the irregular chromatic number of peach graph is ๐‘˜ + 2 โ‰ค ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) โ‰ค ๐‘˜ + 2. so, ๐œ’๐‘–๐‘Ÿ(๐พ๐‘š,3) = ๐‘˜ + 2. figure 4. ๐œ’๐‘–๐‘Ÿ(๐พ4,3) = 3 conclusions in this paper, we get the irregular chromatic number of the unicyclic graph family, namely bull graph, pan graph, sun graph, peach graph, caveman graph. on irregular colorings of unicyclic graph family arika indah kristiana 512 references [1] k. anitha, b. selvam, and k. thirusangu. new irregular colourings of graphs. journal of applied science and computations. vol. 6, no.5, pp.269-279,2019. [2] p. zhang. a kaleidoscopic view of graph colorings (springer nature), 2016. [3] m. radcliffe and p. zhang. irregular coloring of graphs. kalamazoo: western michigan university. 2005. [4] a. rohini and m. venkatachalam. on irregular colorings of double wheel graph families. international conference on current scenario in pure and applied mathematics. vol 68, no. 1, pp. 944-949, 2019. [5] a. rohini and m. venkatachalam. on irregular colorings of fan graph families. international conference on applied and computational mathematics. 1139, pp 1-6, 2018. [6] rohini, a., and m. venkatachalam. on irregular coloring of wheel related graphs. communications faculty of sciences university of ankara series a1 mathematics and statistics68.2 (2019): 1462-1472. [7] r. avudainayaki, b. selvam, and k. thirusangu. irregular coloring of some classes of graphs. international journal of pure and applied mathematics. vol.100, no.10, pp.119127, 2016. [8] m. anderson, r. p. vitray, and j. yellen. irregular colorings of regular graphs. discrete mathematics. 312. pp. 2329-2336, 2012. [9] a. i. kristiana, r. alfarisi, dafik, & n. azahra, local irregular vertex coloring of some families graph. journal of discrete mathematical sciences and cryptography, 25(1), 2022, 15-30. [10] q. aโ€™yun, r. adawiyah, i. h. agustin, & e.r. albirri, on the irregular coloring of bipartite graph and tree graph families. in journal of physics: conference series (vol. 1836, no. 1, p. 012024). 2021. iop publishing. [11] r. saraladevy, p. nedumaran, and k. anitha. irregular set coloring of star families. aip conference proceedings. vol. 2261. no. 1. aip publishing llc, 2020. [12] a. rohini, and m. venkatachalam. on irregular coloring of some generalised graphs. advanced studies in contemporary mathematics 30.1 (2020): 99-120. [13] r. avudainayaki, b. selvam, k. thirusangu, & p. p. ulaganathan, p. p. irregular coloring in mycielskian graphs. recent trends in graph theory & combinatorics, 14. 2017. [14] p. ghosh, s. n. mishra, and a. pal. various labeling on bull graph and some related graphs. international journal of applications of fuzzy sets and articial intelligence. 5, pp.23-35, 2015. [15] helmi, f. fran, and d. r. putra. prime labeling of pan graph and its line, middle and duplication graph. prisma. vol.3, pp.8-13, 2020. [16] m. mirzakhah and d. kiani. the sun graph is determined by its signless laplacian spectrum. electronic journal of linear algebra. 20, pp.610-620, 2010. [17] b. h. xing, g. d. yu, l. x. wang and j cao. the harary index of all unicyclic graphs with given diameter. discrete dynamics in nature and society. pp. 1-6, 2018. [18] d. koutra. exploring and making sense of large graphs. pittsburgh. computer science department. carnegie mellon university, 2015. 1a sampul depan membatasi k-ketenggaan simpul dalam pembangkitan random graph metode erdos royi untuk meningkatkan kinerja komputasi zainal abidin1 dan agus zainal arifin2 1 jurusan teknik informatika fakultas sains dan teknologi uin maulana malik ibrahim malang. 2 jurusan informatika fakultas teknologi informatika institut teknologi sepuluh nopember keputih, sukolilo, surabaya, indonesia e-mail : 1 br52s@cs.its.ac.id, 2agusza@cs.its.ac.id abstract edges generation by random graph erdos-royi methods was needed high computation, itโ€™s caused low performance. in fact, edge generation was used frequently with many nodes. this paper is described a node restriction by k-nearest neighbour on edge generation of random graph erdos royi method. result of node restriction by k-nearest neighbour can be reduced computation time. keywords: random graph, erdos royi, k-nearest neighbour, computation time. pendahuluan graph adalah himpunan simpul dan busur yang menghubungkan semua atau beberapa simpul (diestel, 2000). graph dengan anggota simpul-simpul tidak saling terhubung antar satu dan simpul lain disebut graph terisolasi. pembangkitan busur dari graph terisolasi sering digunakan sebagai sarana untuk simulasi. simulasi graph sering digunakan untuk mengetahui hubungan antar penulis dan pembimbing dalam melakukan aktifitas penelitian (newman, 2001a). graph yang terbentuk bisa diketahui seberapa banyak seorang peneliti melakukan pembimbingan. banyaknya bimbingan dapat diketahui dari jumlah busur yang terhubung keluar dari simpul peneliti dan bobotnya. graph dipakai untuk melihat karya peneliti terbaik (newman, 2001b). karya tulis dianggap sebauh simpul kemudian dibangkitkan busur kearahnya jika ada karya tulis yang mengacu pada karya tulis tersebut. graph digunakan untuk mengetahui seberan dari sel tumor otak (gunduz, 2004; demir 2005). sel-sel dari otak dianggap sebagai suatu simpul. simpul-simpul yang diperoleh dibangkitkan busur-busur menggunakan suatu probabilitas. probilitas digunakan untuk menentukan batas apakah suatu simpul terhubung atau tidak terhubung dengan simpul yang lain. graph dipakai mengukur dan menganalisa kerapatan (abidin dan arifin, 2008; abidin dan arifin, 2009). simpul-simpul yang digunakan untuk membangkitkan busur berjumlah ribuan. simpul digunakan dalam deteksi sebaran sel tumor sejumlah sekitar 4000 buah (gunduz, 2004; demir 2005). simpul digunakan dalam analisa kerapatan berjumlah antara 2000 sampai dengan sekitar 7000 buah (abidin dan arifin, 2008; abidin dan arifin, 2009). random graph dengan metode erdos royi adalah membangkitkan graph dari graph terisolasi dengan membangkitkan busur dari setiap simpul dengan semua simpul dengan suatu batasan sebuah probabilitas (watts dan strogatz, 1998). menghubungkan setiap simpul ke semua simpul yang lain memerlukan komputasi yang besar. persamaan 1 merupakan jumlah busur b yang mungkin terbentuk dengan jumlah simpul n. )1(21 โˆ’= nnb . (1) komputasi besar membuat kinerja komputer jadi rendah. prosesor dari komputer jadi sibuk. pembangkitan random graph metode erdos royi masih dapat ditingkatkan kinerjanya. pembatasan dalam bentuk probalitas antar simpul dapat digunakan sebagai dasar peningkatan kinerja. jika pembangkitan dibatasi dengan probablitas, maka tidak perlu setiap simpul dicoba dibangkitan busur dan dihitung probablitasnya, tetapi mungkin hanya perlu dicoba pada simpul-simpul terdekatnya saja. sejumlah n simpul terdekat atau ketetanggaan diberi notasi n-ketetangggan. dalam penelitian ini menjelaskan tentang pembatasan simpul sejumlah n-ketetanggan untuk peningkatan kinerja pada pembangkitan graph dengan metode erdos dan royi. zainal abidin dan agus zainal arifin 98 volume 1 no. 2 mei 2010 kajian graph a. dasar-dasar graph graph (g) adalah himpunan simpul (vertex, v) dan busur (edge, e), ditulis dengan g=(v, e) (reinhard diestel, 2000). graph ditampilkan dalam titik dan garis. titik adalah lambang dari simpul. garis merupakan lambang dari busur yang menghubungkan antara dua simpul. ukuran (size, order) graph g, |g| adalah jumlah simpul yang menjadi anggota himpunan dari graph, walaupun simpul tersebut tidak dihubungkan oleh suatu busur. jumlah busur dituliskan dengan ||g||. gambar 1, contoh graph dengan ukuran 7. simpul nomor enam tidak terhubung ke simpul yang lain. graph pada gambar 1 dapat ditulis dalam bentuk himpunan simpul v dan busur e, misal, v = {1, 2, 3, 4, 5, 6, 7}, e={{1,2}, {1,5}, {2,5},{3,4}, {5,7}}. busur {x,y} dapat tulis dengan busur xy atau yx. simpul x dan y dari graph g dikatakan saling berketetanggaan, jika xy adalah busur graph g. jika semua simpul dalam graph g saling berpasangan satu sama lain, maka graph g disebut komplet (complete) dituliskan dengan kn, dimana n adalah jumlah dari simpul. k-ketetanggaan terdekat (k-nn) dari simpul i bisa diperoleh dengan menarik sebuah lingkaran dengan berpusat pada simpul i sampai diperoleh k simpul lain yang berada dalam lingkaran. gambar 2, 3-ketetanggaan terdekat dari simpul a adalah tiga simpul, yaitu simpul b, c, dan d. 7-ketetanggaan terdekat dari simpul a diperoleh dengan memperpanjang jari-jari lingkaran sampai diperoleh 7 simpul yang berada dalam lingkaran, yaitu simpul b, c, d, e, f, g, dan h. dua simpul (i dan j) bukan anggota dari 7ketetanggaan terdekat dari simpul a, karena berada diluar lingkaran. graph terdiri dari berbagai jenis (newman, 2003), yaitu graph berarah, tak berarah, berbobot, dan tak berbobot. graph tak berarah (undirected graph) adalah pasangan busur xy sama dengan pasangan busur yx. busur tersebut dikatakan sebagai busur tak berarah. simpul x dan y disebut sebagai titik akhir (endpoint). sebuah graph g disebut graph tak berarah jika setiap busurnya terhubung tak berarah (levitin, 2005). jika pasangan busur xy tidak sama dengan busur yx, maka busur tersebut disebut sebagai busur berarah. busur xy meninggalkan x menuju y disebut juga x sebagai ekor, dan y sebagai kepala. graph g disebut sebagai graph berarah jika semua busur terhubung secara berarah (levitin, 2005). gambar 3a adalah contoh penggambaran dari graph tak berarah. busur yang menghubungkan antar simpul tidak mempunyai tanda arah. gambar 3b adalah contoh graph berarah. busur antar simpul pada gambar 3b mempunyai simbol anak panah yang menunjukkan arah hubungan dari simpul ekor ke simpul kepala. simpul c dan f mempunyai dua busur, yaitu cf dan fc. gambar 1. graph dengan tujuh simpul dan empat busur (diestel, 2000). gambar 2. ilustrasi k-ketetanggaan terdekat a b gambar 3. graph tidak berarah dan berarah. (a) graph tak berarah, (b) graph berarah (levitin, 2005) untuk kepentingan suatu komputasi atau sebuah algoritma, secara umum graph dapat digambarkan dengan bentuk matriks, disebut sebagai matriks adjacency. matriks adjacency dari graph dengan ukuran n adalah matriks n x n. setiap elemen dari matriks mewakili satu busur dari graph. elemen baris ke i dan kolom ke j bernilai satu jika simpul ke i terhubung dengan simpul ke j. elemen baris ke i dan kolom ke j bernilai nol jika simpul ke i tidak terhubung dengan simpul ke j (levitin, 2005). gambar 4 membatasi k-ketetanggaan simpul dalam pembangkitan random graphโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 99 merupakan adjacency matriks dari graph tak berarah pada gambar 3a. graph tak berarah mempunyai matriks adjacency yang simetris. graph berbobot (weigthed graph) merupakan graph dengan suatu nilai pada simpul atau busur. graph tak berbobot (unweigthed graph) adalah graph dengan simpul dan busurnya tidak mempunyai nilai. nilai bisa hanya dimiliki oleh salah satu elemen dari graph, simpul saja atau hanya busur. tetapi yang sering, nilai dimiliki oleh busur. nilai pada simpul digunakan untuk mewakili jumlah keanggotaan, luasan, atau besaran suatu simpul. nilai pada busur digunakan untuk mewakili jumlah busur yang terhubung dengan sepasang simpul, jarak dua simpul, atau biaya yang dibutuhkan untuk melewati busur. gambar 5 adalah contoh graph berbobot dengan matriks adjacency. a b c d e f a 0 0 1 1 0 0 b 0 0 1 0 0 1 c 1 1 0 0 1 0 d 1 0 0 0 1 0 e 0 0 1 1 0 1 f 0 1 0 0 1 0 gambar 4. graph dalam adjacency matriks (levitin, 2005) (a) (b) gambar 5. (a) graph berbobot, (b) matriks dari graph berbobot. ditinjau dari jumlah penghubung dalam setiap simpul, terdapat pasangan simpul dengan busur jamak (multi edge) dan pasangan simpul dengan busur secara tunggal (single edge). graph dengan busur jamak, simpul x dan y dihubungkan dengan lebih dari satu simpul. gambar 3b merupakan graph berbusur jamak. peng-gambaran dalam matriks adjacency berupa matriks berbobot. bobot dalam graph busur jamak mewakili dari jumlah busur yang menghubungkan antara simpul x dan simpul y. b. random graph random graph pertama kali dikenalkan oleh erdล‘s dan rรฉnyi tahun 1959 (diestel, 2000). random graph adalah graph dengan simpul sejumlah n dan setiap pasang simpulnya terhubung atau tidak terhubung dengan suatu probabilitas p atau (1-p) (newman, 2003). random graph di atas dinotasikan sebagai gn,p. secara teknis, graph g dengan m adalah jumlah busur yang muncul, maka probabilitas kemunculan busur dinyatakan dalam persamaan 8. gambar 6. graph dibangun dengan model erdos dan renyi, n = 16 dan p = 1/7 (newman, 2001c) mmm pp โˆ’โˆ’ )1( , (8) dimana )1(21 โˆ’= nnm . (9) dengan m adalah maksimum jumlah busur yang mungkin terjadi, persamaan 9. dari persamaan 8 dan 9 di atas, sering muncul random graph yang dinotasikan dengan gn,m. gambar 6 merupakan contoh random graph yang dibangun dengan model erdos dan renyi dengan probabilitas, p = 1/7. bahan dan metode a. bahan bahan untuk uji coba pembatasan kketetanggaan simpul menggunakan citra tiruan berwarna hitam. citra tiruan hitam penuh dikenakan pengotoran dengan derau putih. ukuran citra tiruan untuk uji coba adalah 200x500 piksel. pengotoran citra hitam penuh dengan derau menggunakan teknik pengkotoran salt and paper (gonzales, 2002). tingkat kepadatan derau pada citra tiruan mulai 0,003 dan 0,201. citra tiruan yang dipakai untuk bahan uji coba sejumlah 100 buah. citra tiruan yang telah dikotori dengan derau putih digunakan sebagai bahan model dari zainal abidin dan agus zainal arifin 100 volume 1 no. 2 mei 2010 graph. satu piksel putih pada citra tiruan dianggap sebagai sebuah simpul pada graph. model menghasilkan graph dengan simpulsimpul yang tersebar secara acak. graph yang dihasilkan berupa graph dengan simpul-simpul yang tidak saling terhubung atau disebut sebagai graph terisolasi. simpul-simpul dalam graph terisolasidigunakan sebagai bahan untuk membangkitkan busur-busur dengan metode erdos royi. gambar 7 potongan dari citra dengan ukuran 20x50 piksel yang telah diperbesar 400%. data jumlah simpul pada 100 citra tiruan hasil pengkotoran citra hitam penuh dengan menggunakan teknik pengkotoran salt and paper terdapat di dalam tabel 1. pada tabel 1 tercantum jumlah simpul atau piksel putih dan tingkat kepadatan simpul dalam citra tiruan. jumlah simpul terkecil 61 buah dan terbesar adalah 9951. variasi jumlah simpul untuk mengetahui kelebihan dan kelemahan random graph dengan metode erdos royi dengan k-nn. b. metode metode untuk menurunkan komputasi pembentukan graph dengan metode random graph erdos dan royi terdiri dari tiga tahapan. tiga tahapan itu adalah : inisialisasi graph, mencari k ketetanggaan simpul, dan menghubungkan setiap simpul dengan k tetangga dengan probabilitas p. gambar 8 diagram alir metode random graph erdos royi dengan k-nn. 1) inisialisasi graph pada tahapan inisialisasi graph digunakan untuk menentukan nilai-nilai parameter awal yang dipakai untuk membangun random graph metode erdos royi yang diintegrasikan dengan k-nn. dua paramater awal adalah jumlah ketanggaan dari setiap simpul, k dan jarak terjauh dari semua pasangan simpul, l. a b c gambar 7. citra sampel yang telah dikotori dengan salt and paper. (a) potongan dari citra dengan jumlah simpul 937. (b) potongan dari citra yang telah terkotori dengan jumlah simpul 2041. (c) potongan dari citra yang telah terkotori dengan jumlah simpul 2933. ( ) lvudeuvp โ‹…โˆ’โ‹…= ฮฒฮฑ ,),( . (2) nilai l digunakan untuk menentukan nilai probabilitas antar dua simpul , p(u,v), dengan metode waxman (gunduz, 2004), persamaan 2, dimana ฮฑ dan ฮฒ adalah bilangan konstan dengan besar antara nol sampai dengan satu. d(u,v) adalah jarak euclidean antara simpul u dan v. dalam graph, l bisa diperoleh dengan persamaan 3, dimana skala adalah lebar dimensi dari graph. dalam penelitian ini, graph dibangun berdasarkan citra, maka l diperoleh dari panjang diagonal citra, persamaan 4, dimana p dan l merupakan panjang dan lebar citra sampel. skalal โ‹…= 2 , (3) 22 lpl += , (4) random graph metode erdos royi menghubungkan setiap simpul (n) ke semua simpul lain (n-1). keterhubungan pasangan simpul memperhatikan probabilitas waxman, seperti dalam persamaan 2. dengan kata lain, random graph metode erdos dan royi mencoba memeriksa keterhubungan semua kemungkinan pasangan simpul, n(n-1). di sisi lain, jika graph g dengan setiap simpul dihubungkan dengan k ketetanggaan dan k jauh lebih besar dari ln(n), maka graph g dijamin menjadi graph terhubung (watts dan strogatz, 1998, distel, 2000), sesuai persamaan 5. syarat agar random graph menjadi terhubung, seperti pada persamaan 6 (watts dan strogatz, 1998, distel,2000). )ln(nk >> . (5) 1)ln( >>>>>> nkn . (6) dalam penelitian ini, untuk mendapatkan nilai k jauh lebih besar dari ln(n), k diperoleh dengan dua pangkat pembulatan ke bawah ln(n), seperti persamaan 7. ๏ฃฐ ๏ฃป)ln(2 nk = . (7) random graph metode erdos dan royi dengan k-nn menghubungkan setiap simpul (n) dengan k ketetanggaannya. sehingga graph dapat dihasilkan dengan random graph metode erdos dan royi dengan k-nn. komputasi dari random graph metode erdos dan royi dengan k-nn adalah n(k+k2). 2) mencari k ketetanggaan simpul. setelah diperoleh jumlah tetangga dari setiap simpul adalah k, tahapan selanjutnya membatasi k-ketetanggaan simpul dalam pembangkitan random graphโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 101 adalah mencari simpul yang menjadi tetangga dari setiap simpul dengan jumlah k. k tetangga terdekat dapat diperoleh dengam membuat jendela persegi panjang. ukuran panjang sisi adalah pembulatan ke atas akar k, seperti persamaan 8. gambar 8. diagram alir metode random graph erdos dan royi dengan k-nn tabel 1.data jumlah simpul dalam citra tiruan untuk uji coba nama file kerapatan jumlah simpul ug001.tif 0.003 61 ug002.tif 0.005 153 ug003.tif 0.007 257 ug004.tif 0.009 351 ug005.tif 0.011 459 ug006.tif 0.013 559 ug007.tif 0.015 610 ug008.tif 0.017 789 ug009.tif 0.019 919 ug010.tif 0.021 937 ug011.tif 0.023 1080 ug012.tif 0.025 1101 ug013.tif 0.027 1258 ug014.tif 0.029 1338 ug015.tif 0.031 1482 ug016.tif 0.033 1627 ug017.tif 0.035 1695 ug018.tif 0.037 1781 ug019.tif 0.039 1861 ug020.tif 0.041 2041 ug021.tif 0.043 2156 ug022.tif 0.045 2192 ug023.tif 0.047 2237 ug024.tif 0.049 2289 ug025.tif 0.051 2482 ug026.tif 0.053 2481 ug027.tif 0.055 2713 ug028.tif 0.057 2836 ug029.tif 0.059 2889 ug030.tif 0.061 2933 ug031.tif 0.063 3046 ug032.tif 0.065 3167 ug033.tif 0.067 3384 ug034.tif 0.069 3397 ug035.tif 0.071 3504 ug036.tif 0.073 3540 ug037.tif 0.075 3572 ug038.tif 0.077 3673 ug039.tif 0.079 3837 ug040.tif 0.081 4004 ug041.tif 0.083 3970 ug042.tif 0.085 4082 ug043.tif 0.087 4221 ug044.tif 0.089 4424 ug045.tif 0.091 4417 ug046.tif 0.093 4491 ug047.tif 0.095 4631 ug048.tif 0.097 4778 ug049.tif 0.099 4696 ug050.tif 0.101 4897 ug051.tif 0.103 5036 ug052.tif 0.105 5150 ug053.tif 0.107 5249 ug054.tif 0.109 5336 ug055.tif 0.111 5428 ug056.tif 0.113 5546 ug057.tif 0.115 5685 ug058.tif 0.117 5773 ug059.tif 0.119 5925 ug060.tif 0.121 5952 ug061.tif 0.123 6041 ug062.tif 0.125 6088 ug063.tif 0.127 6072 ug064.tif 0.129 6255 ug065.tif 0.131 6515 ug066.tif 0.133 6409 ug067.tif 0.135 6542 ug068.tif 0.137 6736 ug069.tif 0.139 6794 ug070.tif 0.141 6991 ug071.tif 0.143 7017 ug072.tif 0.145 7217 ug073.tif 0.147 7297 ug074.tif 0.149 7281 ug075.tif 0.151 7502 ug076.tif 0.153 7543 ug077.tif 0.155 7611 ug078.tif 0.157 7843 ug079.tif 0.159 7906 penambahan ukuran jendela pembangkitan random graph mulai inisialisasi graph l, k keluaran matriks adjacency selesai penentuan lebar jendela hitung tetangga dalam jendela tetangga < k ya tidak mencari k ketetanggaan zainal abidin dan agus zainal arifin 102 volume 1 no. 2 mei 2010 ug080.tif 0.161 7995 ug081.tif 0.163 7986 ug082.tif 0.165 8135 ug083.tif 0.167 8362 ug084.tif 0.169 8276 ug085.tif 0.171 8564 ug086.tif 0.173 8592 ug087.tif 0.175 8787 ug088.tif 0.177 8709 ug089.tif 0.179 8724 ug090.tif 0.181 9087 ug091.tif 0.183 9044 ug092.tif 0.185 9092 ug093.tif 0.187 9170 ug094.tif 0.189 9537 ug095.tif 0.191 9380 ug096.tif 0.193 9504 ug097.tif 0.195 9693 ug098.tif 0.197 9667 ug099.tif 0.199 9886 ug100.tif 0.201 9951 gambar 9 : ilustrasi pembuatan jendela k-nn dengan n=34 dan k=8, ๏ฃฎ ๏ฃนk . (8) diasumsikan bahwa semua bagian dalam jendela terisi dengan simpul secara penuh. jika semua bagian jendela terisi penuh, maka terdapat jumlah tetangga >= k. jika dalam jendela terdapat tetangga terdekat kurang dari k, maka lebar sisi jendela ditambah sebesar k/2. gambar 9 merupakan ilustrasi pembuatan jendela k-nn. ukuran graph 34, diperoleh ln(n) = 3,5 sehingga k = 8. pada ilustrasi dicari 8-ketetanggaan dari titik berlabel angka satu. proses inisialisasi diperoleh lebar jendela tiga dan titik yang menjadi tetangganya delapan. pada jendela ukuran 3x3 hanya terdapat empat simpul tetangga, jumlah simpul masih kurang dari k. lebar jendela ditambah untuk mendapatkan jumlah tetangga lebih besar atau sama dengan k. hasil dari penambahan lebar jendela diperoleh simpul tetangga sejumlah sembilan. 3) pembangkitan random graph setiap memperoleh k tetangga terdekat, suatu simpul dibuat busur yang menghubungkan simpul dengan semua k tetangganya. dalam pembentukan graph ditetapkan suatu nilai probabilitas setiap pasang simpul, p, dengan persamaan 2 dengan kondisi di atas bisa di hasilkan random graph gn,p. tabel 2. simulasi perhitungan probalitas waxman d p 1 0.2309609 2 0.0561505 3 0.0136511 4 0.0033188 5 0.0008069 6 0.0001962 7 0.0000477 8 0.0000116 9 0.0000028 10 0.0000007 persamaan 2 menghasilkan probabilitas yang mendekati satu sampai mendekati nol. jika jarak euclidean antara dua buah titik semakin dekat maka probabilitasnya semakin besar. demikian pula sebaliknya, jika jaraknya jauh maka probabilitasnya semakin kecil, cenderung nol. tabel 2 uji coba rumus 21 dalam simulasi sepuluh angka dengan lebar skala 10x10. 4) pembangunan graph hasil dari proses penentuan obyek berupa citra biner, nilai nol dan satu di citra biner dijadikan acuan pembentukan graph. piksel bernilai satu dianggap sebagai sebuah simpul. asumsi bahwa simpul-simpul dalam sampel sebagai simpul terasing yang tidak terhubung dengan busur. gambar 10 merupakan citra tiruan simpul-simpul yang tersimpan dalam citra biner. dalam citra tiruan terdapat 144 piksel putih yang berarti terdapat 144 simpul terasing. satu kotak kecil berisikan 9 piksel putih. pembentukan graph diawali dengan penghubungan setiap simpul dari citra sampel dengan busur. pembangkitan busur-busur dalam pembentukan graph menggunakan random graph metode erdos dan royi dengan k-nn. simpul yang saling terhubung dihitung probabilitasnya menggunakan metode waxman, persamaan 2. nilai probabilitas rendah menunjukan bahwa dua simpul mempunyai jarak yang jauh (panjang). sebaliknya probabilitas tinggi menunjukkan bahwa dua simpul mempunyai jarak yang dekat (pendek), lihat tabel 2. membatasi k-ketetanggaan simpul dalam pembangkitan random graphโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 103 keterhubungan antar dua simpul dibatasi dengan nilai ambang. jika nilai probabilitas dua simpul lebih kecil dari nilai ambang, maka busur yang menghubungkan dua simpul tersebut dihapus. tujuan dari pemotongan garis penghubung yang mempunyai probabilitas rendah adalah untuk menghapus hubungan dua simpul yang jauh . manfaatnya, simpul hanya terhubung dengan simpul-simpul yang dekat, sehingga dapat diketahui nilai-nilai karakter dari setiap simpul terhadap simpul tetangga terdekatnya. gambar 10. citra tiruan simpul gambar 11. graph dari citra tiruan. gambar 10 merupakan graph hasil dari citra tiruan. setiap simpul pada citra tiruan dihubungkan dengan nilai ambang probabilitas 0.2 dari citra berukuran 50x50. tampak graph dengan simpul-simpul yan saling berdekatan mempunyai busur lebih banyak dibandingkan dengan yang letaknya berjauhan. jumlah busur dari sebuah simpul dipengaruhi jumlah simpul tetangga yang dekat dan jarak antar simpul tetangga. tampak pada gambar 11, simpul-simpul yang mempunyai jarak dekat dengan tetangganya mempunyai jumlah busur lebih banyak dibandingkan dengan simpul yang jarak antar tetangganya jauh. jumlah busur pada setiap simpul merupakan degree dari simpul tersebut. simpul yang mempunyai degree tinggi adalah simpul yang dikelilingi oleh simpul lain dengan jarak yang dekat. sebaliknya simpul dengan degree rendah adalah simpul yang di sekitarnya terdapat simpul-simpul dengan jarak yang cenderung jauh. simpul dengan jumlah tetangga sedikit cenderung mempunyai degree rendah. simpul dengan tetangga sedikit biasanya berada dipinggir suatu area. aplikasi dan pembahasan 1) lingkungan uji coba uji coba lakukan di komputer acer aspire 3610. perangkat keras pendukungnya adalah prosesor 1.8 ghz, kapasitas memori 2 gbyte, kapasitas harddisk 40 gbyte. perangkat lunak pendukung adalah i windows xp service pack 1, bahasa pemrograman menggunakan matlab versi 7.1 2) skenario uji coba uji coba random graph metode erdos royi dengan k-nn. uji coba akan membandingkan random graph metode erdos royi murni dengan random graph metode erdos royi dengan k-nn. uji coba ini untuk melihat kebutuhan waktu komputasi dari masing-masing metode. uji coba dilaksanakan guna mengetahui keberhasilan random graph metode erdos dan royi dengan k-nn dalam menurunkan waktu komputasi pada saat membangkitkan suatu graph. metode diujicobakan dengan 100 data (tabel 4.1). data berupa citra yang dikotori dengan derau menggunakan teknik pengkotoran salt and paper (gonzalez, 2002). semua piksel putih dalam citra dianggap sebagai simpulsimpul terasing pada graph. semua data digunakan untuk masukan dalam pembangkitan random graph menggunakan metode erdos dan royi. kemudian hasil coba pertama dibandingkan dengan hasil uji coba pembangkitan random graph yang dilaksanakan dengan metode erdos dan royi dengan k-nn. 3) pelaksanaan dan evaluasi uji coba uji coba dilaksanakan sesuai dengan skenario yang telah dibahas pada subbab skenario uji coba. uji coba dilaksanakan untuk mengevaluasi hasil-hasil uji coba.hasil metode erdos royi murni dibandingkan dengan erdos royi dengan k-nn. kedua metode diujicobakan pada citra tiruan diperoleh dari citra hitam penuh yang dikotori dengan derau. pengkotoran menggunakan metode pengkotoran salt and zainal abidin dan agus zainal arifin 104 volume 1 no. 2 mei 2010 paper (gonzalez, 2002). jumlah citra 100 dengan kerapatan mulai 0.002 sampai dengan 0.2. jumlah piksel putih lebih lengkap dapat dilihat pada tabel 1. perlakuan uji coba kedua metode dikenakan pada lingkungan uji coba tertera pada tabel 3. gambar 12 perbandingan waktu komputasi dari dua metode. pada gambar 12 waktu komputasi erdos royi lebih besar jika banding dengan erdos royi dengan k-nn. data lebih lengkap tercantum dalam tabel 4. pada jumlah simpul kecil di bawah 1258, waktu komputasi random graph metode erdos dan royi lebih cepat. tetapi waktu komputasi random graph metode erdos dan royi dengan k-nn tidak terlalu lambat dibanding dengan komputasi random graph metode erdos dan royi murni. tabel 3 : parameter uji coba random graph. parameter nilai probabilitas 0,5 l 538,516 alfa 0,95 beta 0,05 grafik perbandingan waktu komputasi 0 10 20 30 40 50 60 70 80 90 100 6 1 3 5 1 6 1 0 9 3 7 1 2 5 8 1 6 2 7 1 8 6 1 2 1 9 2 2 4 8 1 2 8 3 6 3 0 4 6 3 3 9 7 3 5 7 2 3 9 7 0 4 2 2 1 4 4 9 1 4 7 7 8 5 1 5 0 5 4 2 8 5 7 7 3 6 0 4 1 6 2 5 5 6 5 4 2 6 9 9 1 7 2 8 1 7 5 4 3 7 9 0 6 8 1 3 5 8 5 6 4 8 7 2 4 9 0 8 7 9 3 8 0 9 6 6 7 9 9 5 1 jumlah simpul w a k tu k o m p u ta s i erdos royi erdos royi dengan k-nn gambar 12 : grafik komputasi random graph erdos royi dan erdos royi dengan k-nn. tabel 4 : perbandingan waktu komputasi random graph erdos dan royi dengan random graph erdos royi k-nn. jumlah simpul kerapatan waktu komputasi er k-nn er 61 0.003 0.57294 0.00697 153 0.005 0.62569 0.02100 257 0.007 0.54349 0.05890 351 0.009 0.47827 0.10926 459 0.011 0.88367 0.18505 559 0.013 0.86169 0.27676 610 0.015 0.86304 0.32878 789 0.017 0.82398 0.55010 919 0.019 0.83146 0.74452 937 0.021 0.80041 0.77365 1080 0.023 0.82323 1.02799 1101 0.025 1.45573 1.06906 1258 0.027 1.46713 1.39193 1338 0.029 1.44778 1.57528 1482 0.031 1.44725 1.93332 1627 0.033 1.49927 2.32916 1695 0.035 1.49051 2.52808 1781 0.037 1.50575 2.79336 1861 0.039 1.53051 3.04980 2041 0.041 1.54944 3.66728 2156 0.043 1.60874 4.09628 2192 0.045 1.62677 4.23201 2237 0.047 1.64248 4.40775 2289 0.049 1.63693 4.61314 2481 0.051 1.67972 5.42537 2482 0.053 1.67597 5.42627 2713 0.055 1.74183 6.47728 2836 0.057 1.81065 7.08220 2889 0.059 1.83860 7.34796 2933 0.061 1.84444 7.57942 3046 0.063 3.15187 8.16770 3167 0.065 3.23873 8.83156 3384 0.067 3.54660 10.08787 3397 0.069 3.46173 10.20142 3504 0.071 3.50742 10.81216 3540 0.073 3.65244 11.03016 3572 0.075 3.64004 11.22606 3673 0.077 3.67181 11.87704 3837 0.079 3.76098 12.96722 3970 0.081 3.73449 13.87264 4004 0.083 3.73913 14.11632 4082 0.085 3.75886 14.67194 4221 0.087 3.70121 15.68447 4417 0.089 3.80541 17.17473 4424 0.091 3.83085 17.21913 4491 0.093 3.91290 17.75805 4631 0.095 4.01942 18.87249 4696 0.097 4.10087 19.40843 4778 0.099 4.19061 20.10800 4897 0.101 4.29645 21.10801 5036 0.103 4.47701 22.30385 5150 0.105 4.63355 23.35821 membatasi k-ketetanggaan simpul dalam pembangkitan random graphโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 105 5249 0.107 4.73978 24.23739 5336 0.109 4.80595 25.05935 5428 0.111 4.92789 25.94123 5546 0.113 5.00948 27.06993 5685 0.115 5.16376 28.43455 5773 0.117 5.19992 29.34578 5925 0.119 5.17961 30.91552 5952 0.121 5.20977 31.16242 6041 0.123 5.20647 32.10460 6072 0.125 5.29950 32.45810 6088 0.127 5.24221 32.61672 6255 0.129 5.20859 34.42880 6409 0.131 5.20513 36.13983 6515 0.133 5.22762 37.36209 6542 0.135 5.26608 37.65784 6736 0.137 5.32041 39.93466 6794 0.139 5.40414 40.61880 6991 0.141 5.62366 43.02693 7017 0.143 5.63420 43.31324 7217 0.145 5.84581 45.84301 7281 0.147 5.90240 46.63678 7297 0.149 5.93010 46.84052 7502 0.151 6.24529 49.53723 7543 0.153 6.22858 50.08511 7611 0.155 6.30604 50.96423 7843 0.157 6.65871 54.11894 7906 0.159 6.72723 54.98794 7986 0.161 6.76583 56.11708 7995 0.163 6.84309 56.23221 8135 0.165 11.69431 58.21586 8276 0.167 12.07412 60.26962 8362 0.169 12.30286 61.56285 8564 0.171 12.70018 64.59212 8592 0.173 12.79342 64.96993 8709 0.175 13.00610 66.77934 8724 0.177 13.08824 66.93141 8787 0.179 13.16771 67.93681 9044 0.181 14.28052 71.92699 9087 0.183 13.72087 72.75217 9092 0.185 13.75461 72.71987 9170 0.187 13.69513 74.00391 9380 0.189 14.59682 79.08805 9504 0.191 16.60406 79.52803 9537 0.193 18.77744 80.03217 9667 0.195 17.57210 82.66109 9693 0.197 18.70974 83.11653 9886 0.199 19.80950 86.60223 9951 0.201 18.38680 87.59296 terlihat pada tabel 4 bahwa random graph metode erdos royi dengan k-nn lebih unggul pada posisi jumlah simpul lebih dari 1258. penambahan jumlah simpul tidak menambah waktu komputasi secara signifikan. penambahan waktu komputasi pada random graph metode erdos dan royi dengan k-nn bertambah secara linier terhadap jumlah simpul. waktu komputasi random graph metode erdos dan royi bertambah secara eksponensial terhadap jumlah simpul. kelemahan erdos royi dengan k-nn adalah pada waktu komputasi untuk mencari k ketetanggaan. pada data dengan tingkat kepadatan simpul rendah, jarak antar simpul relatif berjauhan, sehingga pencarian simpul tetangga memerlukan waktu relatih lama. data dengan tingkatan kepadatan simpul tinggi, waktu untuk pencarian simpul tetangga relatif cepat, karena dengan ukuran jendela yang tidak lebar tetangga simpul sejumlah k dapat ditemukan. pencarian ketetanggan pada area dengan kerapatan tinggi hanya memerlukan proses memperlebar jendela dengan waktu yang pendek. pada area dengan jumlah simpul 1338 waktu komputasi dari random graph metode erdos dan royi dengan knn. gambar 13b graph hasil random graph dari erdos royi. gambar 13c graph hasil random graph dengan metode erdos royi dengan k-nn. kedua graph dibangkitkan dari citra biner (gambar 13a) yang berisi 257 piksel putih dengan tingkat kepadatan 0.007. graph pada gambar 13 dibangkitkan dengan probabilitas 0,4. tampak dalam gambar bahwa dua graph yang dihasilkan tidak memiliki perbedaan, jumlah simpul yang terhubung oleh busur adalah sama, yaitu 252. a b c gambar 13 : contoh dari hasil uji coba random graph, (a) citra biner, (b) erdos royi, (c) erdos royi dengan k-nn. simpul-simpul pada gambar 13a yang tidak terhubung oleh busur merupakan simpul yang mempunyai tetangga sangat jauh, atau probabilitasnya lebih kecil dari 0,5. pasangan simpul yang probabilitasnya lebih kecil dari nilai ambang, maka busurnya tidak dihubungkan. simpul-simpul dengan jarak yang saling berdekatan mempunyai busur yang banyak. simzainal abidin dan agus zainal arifin 106 volume 1 no. 2 mei 2010 pul-simpul dengan jarak yang saling berjauhan mempunyai busur yang sedikit. dari graph dapat diketahui jumlah simpul yang saling berdekatan dengan melihat jumlah busur yang terhubung dengan simpul. simpul dengan jumlah busur (degree) besar berarti simpul mempunyai tetangga yang banyak. dengan kata lain, simpul berada di area yang rapat. penutup a. simpulan waktu komputasi pada random graph metode erdos dan royi dapat dikurangi dengan mengintegrasikan metode k-nn. k-nn digunakan untuk menghubungkan busur dari setiap simpul dengan k tetangga terdekat. random graph metode erdos dan royi yang semula menghubungkan n(n-1) simpul, setelah diintegrasikan dengan knn menjadi hanya menghubungkan n(k) simpul. waktu komputasi random graph metode erdos dan royi n(n-1), sedangkan random graph metode erdos dan royi dengan k-nn menjadi n(k+k2), dimana k adalah waktu untuk menghubungkan busur dari simpul ke k jumlah tetangga, dan k2 adalah waktu untuk mencari tetangga dalam jendela. b. saran pengurangan waktu komputasi pada random graph erdos royi dengan k-nn masih terdapat waktu komputasi untuk mencari k ketetanggaan yang relatif besar. waktu komputasi mencari k ketetanggaan masih perlu dikurangi. metode pembuatan jendela bisa ditingkatkan ketepatannya agar diperoleh k ketetanggaan lebih tepat dan waktu pencarian k ketetanggaan lebih cepat. daftar pustaka [1] abidin, zainal dan arifin agus z. 2008. generation graph with random graph erdos royi method by medical image to help diagnoses of osteoporosis. international conference bio medical engenering 2008 di its surabaya [2] abidin, zainal dan arifin agus z. 2009. analisa kerapatan trabecular bone berbasis graph berbobot pada citra panorama gigi untuk identifikasi osteoporosis. jurnal teknik informatika volume 7 nomor 3 januari 2009 [3] albert, r., barabasi, a. -l..(2002). โ€œstatistical mechanics of complex networksโ€ review of modern physics volume 75 halaman 47 โ€“ 98. [4] andre, m., ijaz, k., tillinghast, j. d., krebs, v. e., diem, l. a., metchock, b., crisp, t., mcelroy, p. d.(2006) โ€œtransmission network analysis to complement routine tuberculosis contact investigationsโ€ american journal of public healt. volume 96 nomor 11. [5] diestel, reinhard (2000). graph theory electronic edition. springer-verlag: new york. [6] demir, c., yener, b., dan gultekin, s. h. (2005). โ€œaugmented cell-graph for automated cancer diagnosisโ€. bioinformatic vol 21 suplemen 2. ii7-ii12 [7] gonzalez, r. c., woods, r. e., eddins, s. l.. (2002). digital image processing. prentice hall. new jersey. [8] guesebroek, jan-mark., smeulders, a.w .m., dan cornellisen f (1999). โ€œsegmentation of tissue by distance graph matchingโ€. cytometry 35:11-22 [9] gunduz, c., yener, b., dan gultekin, s. h. (2004). โ€œthe cell graphs of cancerโ€. bioinformatic vol. 20 suplemen 1. i145-i151. [10] levitin, anany. (2007). intoduction to the design and analysis of algoritms second edition. pearson education, inc. [11] newman, m. e. j.. (2001a). โ€œscientific collaboration network. ii. shostest paths, weighted network, and centralityโ€. physical review vol. e64 016132 [12] newman, m. e. j.. (2001b), โ€œwho is the best connected scientist ? a study of scientific coauthorship networkโ€. physical review vol. e64 0011144. [13] newman, m. e. j., (2001c), โ€œrandom graph models of sosial networkโ€. proc. natl. acad. sci. usa 99. 2566-2572. [14] newman, m. e. j., 2003, โ€œthe structure and function of complex networksโ€. siam review vol. 45 number 2 : 167-256 [15] watts, d. j., strogatz, s. h.. (1998). โ€œcollective dynamics of โ€˜small-wordโ€™ modelsโ€ nature. volume 393 halaman 440442. a fractional-order leslie-gower model with fear and allee effect cauchy โ€“jurnal matematika murni dan aplikasi volume 7(4) (2023), pages 521-534 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 18, 2022 reviewed: february 23, 2023 accepted: march 05, 2023 doi: http://dx.doi.org/10.18860/ca.v7i4.17336 a fractional-order leslie-gower model with fear and allee effect adin lazuardy firdiansyah*, dewi rosikhoh state islamic institute of madura, pamekasan, indonesia email: adin.lazuardy@iainmadura.ac.id abstract to describe the interaction of prey and predator, we consider a predator-prey model based on the lesliegower model. the model is formed by assuming fear effect in the prey and allee effect in predators. in order to account for the memory effect, we apply the caputo fractional-order derivative. the model has four possible equilibrium points, namely the origin, the predator extinction point, the prey extinction point, and all population exist point. here, we show that two local stable points and two unstable points. furthermore, we also investigate the stability changing caused by hopf bifurcation when the order of fractional derivative changes. finally, we perform several simulations to support our analysis results. we observe numerically by using the predictor-corrector method for the local stability, the existence of hopf bifurcation, and the influence of fear factor and allee effect to prey and predator. copyright ยฉ 2023 by authors, published by cauchy group. this is an open access article under the cc bysa license (https://creativecommons.org/licenses/by-sa/4.0/) keywords: hopf bifurcation; leslie-gower model; local stability introduction the relationship between predators and prey is still a special thing in the development of ecological modeling. the main concern of this situation is how to maintain the availability of the ecosystem resources. in ecology, the presence of prey depends on how they can protect themselves, and the presence of predators depends on the availability of prey [1]. these relationships make researchers interested in forming predator-prey interactions into mathematical models. several modifications have been made by researchers to build models that are more suitable for biological behavior. for example, the interaction between prey and predator considering the fear factor in prey [2]โ€“[5], the influence of allee effect on the availability of prey and predator [6]โ€“[9], the impact of refuge in prey to the existence of predator [10]โ€“[12], and the exploitation of prey and predator by harvesting [6], [12], [13]. in the last decade, the allee effect has received great attention for the population dynamics. the allee effect is divided into two types, namely demographic allee effect and component allee effect. according to [14], [15], the component allee effect is a scenario at the lower population density affected by the positive interaction between growth rate and population density so that can increase their extinction. this effect can make a demographic allee effect to a small population density. to be specific, if the population has a high density, then the competition for food will increase and the growth rate of population will decrease. therefore, the demographic allee effect does not hold for large population density [16]. the scenario occurs as a result of several conditions, such as http://dx.doi.org/10.18860/ca.v7i4.17336 mailto:adin.lazuardy@iainmadura.ac.id https://creativecommons.org/licenses/by-sa/4.0/ a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 522 obligate cooperators, mate finding problem, and anti-predator strategies in prey. we give an example, namely if a population reproduces sexually, then it can increase its density and an individual can find a mate easily. thus, it can reduce the risk of inbreeding. in contrast to the large population density, the small population density has the risk of inbreeding. in the ecological model, the allee effect can be constructed on prey population [6], [7], [17], predator population [9], [16], [18], or both population [8]. according to [16], for the literature on predator-prey model with the allee effect, predators are more prone than their prey because predators are usually smaller than prey population. for example, the spotted owls (strix occidentalis caurina) lost their habitat causing them to be unable to find their mates [19]. in addition, several experimental studies have shown that the presence of predators can change prey behavior even more strongly than the direct predation effect [2]โ€“[4]. fear of prey can affect the physiological state of juvenile prey (e.g., reduce prey reproduction) and be harmful to their survival as adults [3], [5], [20], [21]. for example, sparrows (melospiza melodia) during their breeding season without direct predation using electric fences, and it is found that there is a 40% reduction in the density of offspring due to predation risk [21]. recently, we study the dynamical behavior of predator-prey interaction by assuming that (i) the allee effect occurs in predators and (ii) prey is afraid of predators because prey is always alert to possible predator attacks. biologically, the growth rate of individual should involve previous and current conditions [22]. that is, all current conditions of population density depend on all previous conditions [23]. therefore, we also consider the memory effect which means the effect of all previous biological conditions to the present condition by replacing the first-order derivative with the fractional-order derivative [1], [9], [17], [24]. the memory effect shows that the population dynamics of present condition depend on all previous conditions stored in their memory system such as the experience in foraging, the best place to take shelter, the perfect time to migrate, and so on [1]. to play the superlative form of model, ordinary calculus is less effective in describing complex phenomenon involving memory effect and hereditary biological properties [25]. thus, the fractional calculus is applied to solve the problem. because, it has the ability to describe biological conditions related to the memory effect [26]. there are several well-known fractional-order derivatives that are used as operators in the predator-prey model. by considering the availability of analytical tools, we choose the caputo fractional-order for our model as done by [1], [9], [17], [24]. according to [22], the caputo fractional-order can be used on the classic initial condition as in the integer order equations. it has rich analytical tools in observing the dynamic of predator-prey systems. in this manuscript, we organize several contents as follows. the section 1 presents several methods to solve the model. in the section 2, the mathematical model is formulated to obtain the first-order model and replacing it with the fractional-order derivative operator. in the section 3 and 4, the model is solved to explore the dynamical behaviors by investigating the equilibrium points, local stability, and hopf bifurcation. in the section 4, the analytical results are demonstrated through several numerical simulations. we end this discussion by giving the conclusion in the section 5. a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 523 method in observing the interaction of the predator-prey population, we perform several steps to modify a modified leslie-gower predator-prey model. the steps are presented as follows. 1) reviewing and studying the previous literature related to the problems taken. 2) formulating the modified leslie-gower model by adding the fear factor and allee effect. next, we transform it into a fractional-order model. 3) identifying equilibrium points and local stability in the model. 4) investigating hopf bifurcation in the model. 5) performing several numerical simulations to observe dynamical behavior in the model. the numerical method used in this paper is the predictor-corrector method for fractional-order equations. results and discussion mathematical model the interaction between prey and predator population is presented in a modified leslie-gower model proposed by aziz-alaoui and okiye [27] and yu [28]. for the next research, yu [29] considers a modified leslie-gower model incorporating the beddington-deangelis functional response. the modified leslie-gower model with beddington-deangelis function response can be written as follows. ๐‘‘๐‘ ๐‘‘๐‘‡ = ๐‘Ÿ๐‘ (1 โˆ’ ๐‘ ๐พ ) โˆ’ ๐‘Ž๐‘๐‘ƒ 1 + ๐‘๐‘ + ๐‘๐‘ƒ , ๐‘‘๐‘ƒ ๐‘‘๐‘‡ = ๐‘ ๐‘ƒ (1 โˆ’ ๐‘’๐‘ƒ ๐‘˜ + ๐‘ ), (1) where ๐‘ = ๐‘(๐‘‡) and ๐‘ƒ = ๐‘ƒ(๐‘‡) are the density of prey and predator population at time ๐‘ก. the parameters ๐‘Ÿ, ๐พ, ๐‘, ๐‘, ๐‘ค, ๐‘ , ๐‘’, ๐‘˜ are positive values. in the particular, the biological meaning of parameters can be shown in table 1. table 1. the biological meaning of parameters in system (1) parameter biological meaning ๐‘Ÿ the intrinsic growth rate of prey ๐‘  the intrinsic growth rate of predator ๐‘Ž the capture rate by predator against prey ๐‘ the measure of handling time by predator against prey ๐‘ the amount of disturbance among predator ๐‘’ the reproduction rate of predator ๐พ the carrying capacity of prey ๐‘˜ the environmental protection of predator according to [30], the predation of the predator can influence the behavior of prey indirectly resulting in fear. consequently, the protection of frightened prey diminishes and leaves their newborn [20]. therefore, we consider the fear factor multiplying the intrinsic growth rate of prey with ๐‘“(๐‘ข, ๐‘ƒ) = 1 1+๐‘ข๐‘ƒ , where the parameter ๐‘ข is the fear rate of prey. biologically, the fear factor satisfies several conditions as follows. a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 524 ๐‘“(0, ๐‘ƒ) = 1, ๐‘“(๐‘ข, 0) = 1, lim ๐‘ขโ†’โˆž ๐‘“(๐‘ข, ๐‘ƒ) = 0, lim ๐‘ขโ†’โˆž ๐‘“(๐‘ข, ๐‘ƒ) = 0, ๐œ•๐‘“(๐‘ข, ๐‘ƒ) ๐œ•๐‘ข < 0, ๐œ•๐‘“(๐‘ข, ๐‘ƒ) ๐œ•๐‘ƒ < 0. the biological meaning of conditions can be shown in [31]. in this article, we are interested to observe the allee effect as done by feng and kang [8] and assume that the allee effect occurs only in predators. therefore, our system becomes the following system. ๐‘‘๐‘ ๐‘‘๐‘‡ = ๐‘Ÿ๐‘ 1 + ๐‘ข๐‘ƒ โˆ’ ๐‘Ÿ๐‘2 ๐พ โˆ’ ๐‘Ž๐‘๐‘ƒ 1 + ๐‘๐‘ + ๐‘๐‘ƒ , ๐‘‘๐‘ƒ ๐‘‘๐‘‡ = ๐‘ ๐‘ƒ ( ๐‘ƒ ๐‘ƒ + ๐‘› โˆ’ ๐‘’๐‘ƒ ๐‘˜ + ๐‘ ), (2) where the parameter ๐‘› is the measure of the allee effect in predator. for simplicity, system (2) is formed into a non-dimensional system by using parameters (๐‘ฅ, ๐‘ฆ, ๐‘ก) โ†’ ( ๐‘ ๐พ , ๐‘’๐‘ƒ ๐พ , ๐‘Ÿ๐‘‡). thus, we obtain the following system. ๐‘‘๐‘ฅ ๐‘‘๐‘ก = ๐‘ฅ 1 + ๐œŒ๐‘ฆ โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฆ ๐›ฟ + ๐›ฝ๐‘ฅ + ๐›พ๐‘ฆ , ๐‘‘๐‘ฆ ๐‘‘๐‘ก = ๐œƒ๐‘ฆ ( ๐‘ฆ ๐‘ฆ + ๐œ‡ โˆ’ ๐‘ฆ ๐œˆ + ๐‘ฅ ), (3) where ๐œŒ = ๐‘ข๐พ ๐‘’ , ๐›ฟ = ๐‘Ÿ๐‘’ ๐‘Ž๐พ , ๐›ฝ = ๐‘๐‘’๐‘Ÿ ๐‘Ž , ๐›พ = ๐‘๐‘Ÿ ๐‘Ž , ๐œƒ = ๐‘  ๐‘Ÿ , ๐œ‡ = ๐‘›๐‘’ ๐พ , ๐œˆ = ๐‘˜ ๐พ . from system (3), we can see that the system only has 7 dimensionless parameters, that is ๐œŒ, ๐›ฟ, ๐›ฝ, ๐›พ, ๐œƒ, ๐œ‡, and ๐œˆ. nondimensionalization can reduce the number of parameters by grouping them in a meaningful way. in general, the groupings can provide a relative measure of the influence of dimension parameters [32]. for example, ๐œƒ is the ratio of growth rates of predator to prey such that ๐œƒ > 1 and ๐œƒ < 1 have definite ecological significance. that is, prey can reproduce more rapidly than predator. model with caputo operator to form system (3) into a fractional-order model, we use the similar manner as in [1], [22], [24], [33]. by replacing the left-hand sides of the system (3) with the caputo fractional-order derivative, we obtain the following model with ๐›ผ is the memory effect. ๐ทโˆ— ๐›ผ๐‘ฅ = ๐‘ฅ 1 + ๐œŒ๐‘ฆ โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฆ ๐›ฟ + ๐›ฝ๐‘ฅ + ๐›พ๐‘ฆ , ๐ทโˆ— ๐›ผ๐‘ฆ = ๐œƒ๐‘ฆ ( ๐‘ฆ ๐‘ฆ + ๐œ‡ โˆ’ ๐‘ฆ ๐œˆ + ๐‘ฅ ), (4) where ๐ทโˆ— ๐›ผ shows the caputo fractional-order derivative for a real-valued function ๐‘“ defined as follows. ๐ทโˆ— ๐›ผ๐‘“(๐‘ก) = 1 ๐›ค(1 โˆ’ ๐›ผ) โˆซ (๐‘ก โˆ’ ๐œ)โˆ’๐›ผ๐‘“โ€ฒ(๐œ) ๐‘ก 0 ๐‘‘๐œ, a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 525 with ๐‘ก โ‰ฅ 0, ๐›ค(โˆ™) is eulerโ€™s gamma function, ๐‘“ โˆˆ ๐ถ๐‘›([0, +โˆž), โ„), and ๐›ผ โˆˆ [0,1) [34]. when we replace the operator with the caputo fractional-order, our model has an inconsistency timeโ€™s dimension between the left-hand sides of model with its right-hand side. to overcome this condition, we can adjust by rescaling all favorable parameters. thus, let ๐œƒ = ๐œƒ๐›ผ, ๏ฟฝฬ‚๏ฟฝ = ๐œ‡๐›ผ, ๏ฟฝฬ‚๏ฟฝ = ๐œˆ, ๏ฟฝฬ‚๏ฟฝ = ๐œŒ๐›ผ, ๐›ฟ = ๐›ฟ๐›ผ, ๏ฟฝฬ‚๏ฟฝ = ๐›ฝ๐›ผ, and ๐›พ = ๐›พ๐›ผ, we have ๐ทโˆ— ๐›ผ๐‘ฅ = ๐‘ฅ 1 + ๏ฟฝฬ‚๏ฟฝ๐‘ฆ โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฆ ๐›ฟ + ๏ฟฝฬ‚๏ฟฝ๐‘ฅ + ๐›พ๐‘ฆ , ๐ทโˆ— ๐›ผ๐‘ฆ = ๐œƒ๐‘ฆ ( ๐‘ฆ ๐‘ฆ + ๏ฟฝฬ‚๏ฟฝ โˆ’ ๐‘ฆ ๏ฟฝฬ‚๏ฟฝ + ๐‘ฅ ). (5) form model (5), we can simplify by re-denoting all parameters. we remove the hat . ฬ‚ on each parameters. thus, we have the final model as follows. ๐ทโˆ— ๐›ผ๐‘ฅ = ๐‘ฅ 1 + ๐œŒ๐‘ฆ โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฆ ๐›ฟ + ๐›ฝ๐‘ฅ + ๐›พ๐‘ฆ , ๐ทโˆ— ๐›ผ๐‘ฆ = ๐œƒ๐‘ฆ ( ๐‘ฆ ๐‘ฆ + ๐œ‡ โˆ’ ๐‘ฆ ๐œˆ + ๐‘ฅ ). (6) equilibrium points and local stability to investigate the existence and stability of the equilibrium points, we use the magtinon condition presented in the following condition. lemma 1. (see [35]) consider the caputo fractional-order system with initial conditions as follows. ๐ทโˆ— ๐›ผ๏ฟฝโƒ—๏ฟฝ(๐‘ก) = ๐‘“(๐‘ก, ๏ฟฝโƒ—๏ฟฝ), ๏ฟฝโƒ—๏ฟฝ(0) = ๏ฟฝโƒ—๏ฟฝ0, where ๐‘ฅ โˆˆ โ„๐‘›, ๐‘› โˆˆ โ„•, and ๐›ผ = (0,1]. the point ๏ฟฝโƒ—๏ฟฝโˆ— can be called an equilibrium point when ๏ฟฝโƒ—๏ฟฝโˆ— satisfies ๐‘“(๐‘ก, ๏ฟฝโƒ—๏ฟฝโˆ—) = 0. moreover, the point ๏ฟฝโƒ—๏ฟฝโˆ— is locally asymptotically stable when the eigenvalues ๐œ†๐‘–, ๐‘– = 1,2, โ€ฆ , ๐‘› of the jacobian matrix ๐ฝ(๏ฟฝโƒ—๏ฟฝ โˆ—) satisfies |arg(๐œ†๐‘–)| > ๐›ผ๐œ‹ 2 . from lemma 1, we identify the equilibrium points of the system (6) by setting ๐ทโˆ— ๐›ผ๐‘ฅ = ๐ทโˆ— ๐›ผ๐‘ฆ = 0. therefore, we obtain the equilibrium points and their existence condition as follows. 1) the point ๐ธ0(0,0) is always exists. it means that both populations are extinct. 2) the point ๐ธ1(1,0) is always exists. it explains that the predator is extinct. 3) the point ๐ธ2(0, ๐œˆ โˆ’ ๐œ‡) exists when ๐œˆ > ๐œ‡. it shows that prey is extinct. 4) the interior point ๐ธโˆ—(๐‘ฅโˆ—, ๐‘ฆโˆ—), where ๐‘ฅโˆ— = ๐‘ฆโˆ— + ๐œ‡ โˆ’ ๐œˆ and exists if ๐‘ฆโˆ— > ๐œˆ โˆ’ ๐œ‡ with ๐‘ฆโˆ— is positive roots of the cubic equations as follows. (๐‘ฆโˆ—)3 + ๐œ”1(๐‘ฆ โˆ—)2 + ๐œ”2๐‘ฆ โˆ— + ๐œ”3 = 0, (7) where ๐œ”1 = ๐œŒ(๐œ‡ โˆ’ ๐œˆ)(2๐›ฝ + ๐›พ) + ๐›ฟ๐œŒ + ๐›ฝ + ๐›พ + ๐œŒ 3๐œŒ(๐›พ + ๐›ฝ) , a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 526 ๐œ”2 = ๐›ฝ๐œŒ(๐œ‡2 โˆ’ 2๐œ‡๐œˆ + ๐œˆ2) + (๐œ‡ โˆ’ ๐œˆ)(๐›ฟ๐œŒ + 2๐›ฝ + ๐›พ) โˆ’ ๐›ฝ + ๐›ฟ โˆ’ ๐›พ + 1 3๐œŒ(๐›พ + ๐›ฝ) , ๐œ”3 = (๐œ‡ โˆ’ ๐œˆ โˆ’ 1)(๐›ฝ๐œ‡ โˆ’ ๐›ฝ๐œˆ + ๐›ฟ) ๐œŒ(๐›พ + ๐›ฝ) . let ๐‘  = ๐‘ฆโˆ— + ๐œ”1, we obtain ๐‘”(๐‘ ) = ๐‘ 3 + 3๐‘๐‘  + ๐‘ž = 0, (8) where ๐‘ = ๐œ”2 โˆ’ ๐œ”1 2 and ๐‘ž = ๐œ”3 โˆ’ 3๐œ”1๐œ”2 + 2๐œ”1 3. by using cardanโ€™s method as in [7], we have the existence condition of an equilibrium point as follows. lemma 2. let ๐‘ฆโˆ— > ๐œˆ โˆ’ ๐œ‡. the point ๐ธโˆ—(๐‘ฅโˆ—, ๐‘ฆโˆ—) is a positive equilibrium point with ๐‘ฆโˆ— is positive roots of (7) when it satisfies one of the following conditions. 1) if ๐‘ž < 0, then (8) has a single positive root. thus, system (6) has a unique equilibrium point ๐ธโˆ—(๐‘ 1 โˆ’ ๐œ”1 + ๐œ‡ โˆ’ ๐œˆ, ๐‘ 1 โˆ’ ๐œ”1) with ๐‘ 1 > ๐œ”1. 2) if ๐‘ž > 0 and ๐‘ < 0, then a) if ๐‘ž2 + 4๐‘3 = 0, then (8) has a positive root of multiplicity two. thus, system (4) has a unique equilibrium point ๐ธโˆ—(โˆšโˆ’๐‘ + ๐œ‡ โˆ’ ๐œˆ, โˆšโˆ’๐‘). b) if ๐‘ž2 + 4๐‘3 < 0, then (8) has two positive points. thus, system (6) has two possible equilibrium points, that is, ๐ธ1 โˆ—(๐‘ 1 โˆ’ ๐œ”1 + ๐œ‡ โˆ’ ๐œˆ, ๐‘ 1 โˆ’ ๐œ”1) and/or ๐ธ2 โˆ—(๐‘ 2 โˆ’ ๐œ”1 + ๐œ‡ โˆ’ ๐œˆ, ๐‘ 2 โˆ’ ๐œ”1) with ๐‘ 1,2 > ๐œ”1. 3) if ๐‘ž = 0 and ๐‘ < 0, then (8) has an unique positive root. thus, system (6) has an unique equilibrium point ๐ธโˆ—(โˆšโˆ’3๐‘ + ๐œ‡ โˆ’ ๐œˆ, โˆšโˆ’3๐‘). it is known that if (8) has two positive roots, then their positive roots are ๐‘ 1 = (โˆ’4๐‘ž+4โˆš4๐‘3+๐‘ž2) 2 3 โˆ’4๐‘ 2(โˆ’4๐‘ž+4โˆš4๐‘3+๐‘ž2) 1 3 and ๐‘ 2 = โˆ’ ๐‘ 1 2 + โˆš๐‘ 1 3+4๐‘ž 2โˆš๐‘ 1 . meanwhile, if (8) has a positive root, then the positive root is ๐‘ 1 = (โˆ’4๐‘ž+4โˆš4๐‘3+๐‘ž2) 2 3 โˆ’4๐‘ 2(โˆ’4๐‘ž+4โˆš4๐‘3+๐‘ž2) 1 3 . the local stability analysis is done by identifying the eigenvalue of the jacobian matrix. the jacobian matrix ๐ฝ(๐ธ) for all equilibrium points (๐‘ฅ, ๐‘ฆ) can be presented as follows. ๐ฝ(๐ธ) = [ 1 1 + ๐œŒ๐‘ฆ โˆ’ 2๐‘ฅ โˆ’ ๐‘ฆ(๐›ฟ + ๐›พ๐‘ฆ) (๐›ฟ + ๐›ฝ๐‘ฅ + ๐›พ๐‘ฆ)2 โˆ’ ๐‘ฅ๐œŒ (1 + ๐œŒ๐‘ฆ)2 โˆ’ ๐‘ฅ(๐›ฟ + ๐›ฝ๐‘ฅ) (๐›ฟ + ๐›ฝ๐‘ฅ + ๐›พ๐‘ฆ)2 ๐œƒ ( ๐‘ฆ ๐‘ฅ + ๐œˆ ) 2 ๐œƒ๐‘ฆ(๐‘ฆ + 2๐œ‡) (๐‘ฆ + ๐œ‡)2 โˆ’ 2๐œƒ๐‘ฆ ๐‘ฅ + ๐œˆ ] . (9) the local stability of any point is ensured by the following theorems. theorem 1. ๐ธ0(0,0) is unstable and ๐ธ1(1,0) is a non-hyperbolic point. proof: the jacobian matrix for ๐ธ0(0,0) and ๐ธ1(1,0) is presented as follows. ๐ฝ(๐ธ0) = [ 1 0 0 0 ], a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 527 ๐ฝ(๐ธ1) = [ โˆ’1 โˆ’๐œŒ โˆ’ 1 ๐›ฝ + ๐›ฟ 0 0 ]. based on the jacobian matrix ๐ฝ(๐ธ0), we know that the eigenvalues of ๐ฝ(๐ธ0) are ๐œ†1 = 1 and ๐œ†2 = 0. thus, the point ๐ธ0 is unstable because |arg(๐œ†1)| = 0 < ๐›ผ๐œ‹ 2 . moreover, for ๐ธ1(1,0), the eigenvalues of ๐ฝ(๐ธ1) are ๐œ†1 = โˆ’1 and ๐œ†2 = 0. it is shown that |arg(๐œ†2)| = ๐›ผ๐œ‹ 2 . thus, the point ๐ธ1 is a non-hyperbolic point. theorem 2. ๐ธ2(0, ๐œˆ โˆ’ ๐œ‡) is locally asymptotically stable. proof: by substituting ๐ธ2 into (9), we obtain ๐ฝ(๐ธ2) = [ 1 1 + ๐œŒ(๐œˆ โˆ’ ๐œ‡) โˆ’ (๐œˆ โˆ’ ๐œ‡) ๐›ฟ + (๐œˆ โˆ’ ๐œ‡)๐›พ 0 ๐œƒ ( ๐œˆ โˆ’ ๐œ‡ ๐œˆ ) 2 โˆ’๐œƒ ( ๐œˆ โˆ’ ๐œ‡ ๐œˆ ) 2 ] . from jacobian matrix ๐ฝ(๐ธ2), we obtain the eigenvalues, that is ๐œ†1 = 1 1+๐œŒ(๐œˆโˆ’๐œ‡) โˆ’ (๐œˆโˆ’๐œ‡) ๐›ฟ+(๐œˆโˆ’๐œ‡)๐›พ and ๐œ†2 = โˆ’๐œƒ ( ๐œˆโˆ’๐œ‡ ๐œˆ ) 2 . by using the existence condition of ๐ธ2, it is clear that ๐œ†1 < 0 when 1 1+๐œŒ(๐œˆโˆ’๐œ‡) < (๐œˆโˆ’๐œ‡) ๐›ฟ+(๐œˆโˆ’๐œ‡)๐›พ and ๐œ†2 < 0. thus, |arg(๐œ†1,2)| = ๐œ‹ > ๐›ผ๐œ‹ 2 . in other words, the point ๐ธ2 is locally asymptotically stable. theorem 3. suppose that ๐œ‘1 = ๐‘ฆโˆ—(๐›ฟ + 2๐›ฝ๐‘ฅโˆ— + ๐›พ๐‘ฆโˆ—) (๐›ฟ + ๐›ฝ๐‘ฅโˆ— + ๐›พ๐‘ฆโˆ—)2 โˆ’ ๐œƒ ( ๐‘ฆโˆ— ๐‘ฆโˆ— + ๐œ‡ ) 2 โˆ’ 1 1 + ๐œŒ๐‘ฆโˆ— , ๐œ‘2 = ๐œƒ ( ๐‘ฆโˆ— ๐‘ฆโˆ— + ๐œ‡ ) 2 ( ๐‘ฅโˆ—(๐›ฟ + ๐›ฝ๐‘ฅโˆ—) โˆ’ ๐‘ฆโˆ—(๐›ฟ + 2๐›ฝ๐‘ฅโˆ— + ๐›พ๐‘ฆโˆ—) (๐›ฟ + ๐›ฝ๐‘ฅโˆ— + ๐›พ๐‘ฆโˆ—)2 + 1 + ๐œŒ(๐‘ฅโˆ— + ๐‘ฆโˆ—) (1 + ๐œŒ๐‘ฆโˆ—)2 ) , ๐›ผโˆ— = 2 ๐œ‹ |tanโˆ’1 ( โˆš4๐œ‘2 โˆ’ ๐œ‘1 2 ๐œ‘1 )|. ๐ธโˆ—(๐‘ฅโˆ—, ๐‘ฆโˆ—) is locally asymptotically stable if it satisfies one of the following conditions. a) ๐œ‘1 2 โ‰ฅ 4๐œ‘2, ๐œ‘1 < 0, and ๐œ‘2 > 0. b) ๐œ‘1 2 < 4๐œ‘2, and if ๐œ‘1 < 0, or ๐œ‘1 > 0 and ๐›ผ < ๐›ผ โˆ—. proof: the jacobian matrix at ๐ธโˆ—(๐‘ฅโˆ—, ๐‘ฆโˆ—) is presented as follows. ๐ฝ(๐ธโˆ—) = [ โˆ’ 1 1 + ๐œŒ๐‘ฆโˆ— + ๐‘ฆโˆ—(๐›ฟ + 2๐›ฝ๐‘ฅโˆ— + ๐›พ๐‘ฆโˆ—) (๐›ฟ + ๐›ฝ๐‘ฅโˆ— + ๐›พ๐‘ฆโˆ—)2 โˆ’๐‘ฅโˆ— ( ๐œŒ (1 + ๐œŒ๐‘ฆโˆ—)2 + (๐›ฟ + ๐›ฝ๐‘ฅโˆ—) (๐›ฟ + ๐›ฝ๐‘ฅโˆ— + ๐›พ๐‘ฆโˆ—)2 ) ๐œƒ ( ๐‘ฆโˆ— ๐‘ฆโˆ— + ๐œ‡ ) 2 โˆ’๐œƒ ( ๐‘ฆโˆ— ๐‘ฆโˆ— + ๐œ‡ ) 2 ] , from jacobian matrix ๐ฝ(๐ธโˆ—), we have the characteristic equation ๐œ†2 โˆ’ ๐œ‘1๐œ† + ๐œ‘2 = 0. therefore, we obtain the eigenvalues ๐œ†1,2 = ๐œ‘1ยฑโˆš๐›ฌ 2 with ๐›ฌ = ๐œ‘1 2 โˆ’ 4๐œ‘2. suppose ๐œ‘1 2 โ‰ฅ 4๐œ‘2, a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 528 we have ๐›ฌ โ‰ฅ 0. in this condition, we observe that ๐œ†1,2 < 0 when ๐œ‘1 < 0 and ๐œ‘2 > 0. consequently, |arg(๐œ†1,2)| > ๐›ผ๐œ‹ 2 . thus, the point ๐ธโˆ— is locally asymptoticaly stable. however, if ๐œ‘1 2 < 4๐œ‘2, then ๐›ฌ < 0. the eigenvalues ๐œ†1,2 are a pair of complex conjugate. by using lemma 1, |arg(๐œ†1,2)| > ๐›ผ๐œ‹ 2 when ๐›ผ < ๐›ผโˆ— and one of two conditions, that is ๐œ‘1 < 0 or ๐œ‘1 > 0. thus, ๐ธ โˆ— is locally asymptoticaly stable. finally, the stability condition of ๐ธโˆ—(๐‘ฅโˆ—, ๐‘ฆโˆ—) is proven. hopf bifurcation hopf bifurcation for a fractional-order system is a change in the stability of systems that enters a limit cycle when there is a pair of complex eigenvalues. based on theorem 3, the order of derivatives can affect the stability of the interior equilibrium point with ๐œ‘1 2 < 4๐œ‘2 and ๐œ‘1 > 0. in this article, we take the order of derivative as the bifurcation parameter. therefore, to ensure the existence of hopf bifurcation, we present the following theorem. theorem 4. (existence of hopf bifurcation) suppose that ๐œ‘1 2 < 4๐œ‘2 and ๐œ‘1 > 0. the point ๐ธโˆ— enters a hopf bifurcation when ๐›ผ passes through ๐›ผโˆ—. proof: based on theorem 3, the roots of the characteristic equation for ๐ธโˆ— are a pair of complex conjugate eigenvalues with positive real parts. it is easy to confirm that ๐‘š(๐›ผโˆ—) = 0 and ๐‘‘๐‘š(๐›ผโˆ—) ๐‘‘๐›ผ | ๐›ผ=๐›ผโˆ— โ‰  0 with ๐‘š(๐›ผ) = ๐›ผ๐œ‹ 2 โˆ’ min 1โ‰ค๐‘–โ‰ค2 |arg(๐œ†๐‘–)|. according to [36], the point ๐ธ โˆ— undergoes a hopf bifurcation when ๐›ผ crosses ๐›ผโˆ—. numerical simulations to demonstrate the dynamical analysis results, we perform several numerical simulations. in this article, we use the predictor-corrector approximation for fractionalorder equations developed by diethelm, et. al. [37]. because the field data is not available, we choose the parameter values that satisfy the results of the stability conditions obtained from the previous discussion. for the first simulation, we choose several parameter values as follows: ๐œŒ = 1.2, ๐›ฟ = 0.1, ๐›ฝ = 0.8, ๐›พ = 0.3, ๐œƒ = 0.6, ๐œ‡ = 0.3, ๐œˆ = 0.5, ๐›ผ = 0.9. in this work, we obtain that ๐ธ2(0,0.2) is a unique equilibrium point because there are two unstable points, that is ๐ธ0(0,0) and ๐ธ1(1,0), and a local stable point ๐ธ2(0,0.2) which is shown by all solutions converged to ๐ธ2. we can see its phase portrait in figure 1. it means that the predator can live for a long time even though the prey has become extinct. it is caused because the great fear of prey causes prey to become extinct. meanwhile, the predator can survive against the allee effect because the environmental protection of predator is very good. a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 529 figure 1. phase portrait of system (6) using the parameter values as follows: ๐œŒ = 1.2, ๐›ฟ = 0.1, ๐›ฝ = 0.8, ๐›พ = 0.3, ๐œƒ = 0.6, ๐œ‡ = 0.3, ๐œˆ = 0.5, ๐›ผ = 0.9. for the second simulation, we set ๐œ‡ = 0.4 and the other parameter values are made the same as in the previous simulation. based on lemma 2, the point ๐ธโˆ— lies in the interior plane. therefore, we can interpret that all populations can live together for a long time because some predator populations die due to increased the allee effect. thus, the population density of predator will descrease. consequently, prey population can survive. now, if we take ๐›ผ = 0.6, the solution converges to the equilibrium point ๐ธโˆ— as in figure 2(a). in other words, the point ๐ธโˆ— is a local stable point. meanwhile, when we take ๐›ผ = 0.9, the solution loses stability and oscillates as in figure 2(b). it shows that the solution enters limit cycles or undergoes a hopf bifurcation which corresponds to theorem 4. therefore, the population density fluctuates when the memory effect is large, that is ๐›ผ > 0.9. (a) ๐›ผ = 0.6 a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 530 (b) ๐›ผ = 0.9 figure 2. time series of system (6) using the parameter values as follows: ๐œŒ = 1.2, ๐›ฟ = 0.1, ๐›ฝ = 0.8, ๐›พ = 0.3, ๐œƒ = 0.6, ๐œ‡ = 0.4, ๐œˆ = 0.5 figure 3. time series of system (6) using the parameter values as follows: ๐œŒ = 1.2, ๐›ฟ = 0.1, ๐›ฝ = 0.8, ๐›พ = 0.3, ๐œƒ = 0.6, ๐œ‡ = 0.6, ๐œˆ = 0.5 in this work, we want to observe the effect of the order derivative on the fractionalorder system. by using ๐œŒ = 1.2, ๐›ฟ = 0.1, ๐›ฝ = 0.8, ๐›พ = 0.3, ๐œƒ = 0.6, ๐œ‡ = 0.6, ๐œˆ = 0.5, we obtain the simulation as in figure 3 with ๐›ผ = {0.6,0.7,0.8,0.9,1}. it is obseved that all solutions oscillate and converge to the interior point ๐ธโˆ—. moreover, if we assign the order of derivative with larger values, then we can observe that the solution of system converges more quickly to the equilibrium point. therefore, the order of derivative affects the rate of convergence. it means that the when memory effect is large, then in this case, the prey population can increase for a long time. moreover, the predator populations tend to remain constant. from the previous experiment, we observe that the allee effect greatly affects the dynamical behaviour. therefore, we want to observe the impact of allee effect on the fractional-order system. by using ๐›ผ = 0.6 and setting the parameter ๐œ‡ with varying values, we get the simulation as in figure 4. in this work, it is shown that the number of prey increases when the parameter ๐œ‡ is large. but, when we take a large parameter ๐œ‡, the number of predator decreases. thus, the allee effect constant is inversely proportional to the number of predator and directly proportional to the number of prey. this result is the same as the conslusion in [9]. now, we observe the influence of fear effect on the system. by assigning ๐œ‡ = 0.4 and using the varying parameters ๐œŒ, we have the simulation as in figure 5. it is obeserved that all populations decrease when the parameter ๐œŒ is huge. this a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 531 means that the fear effect constant is inversely proportional to the density of two populations. figure 4. the time series of system (6) using the parameter values as follows: ๐œŒ = 1.2, ๐›ฟ = 0.1, ๐›ฝ = 0.8, ๐›พ = 0.3, ๐œƒ = 0.6, ๐œˆ = 0.5, ๐›ผ = 0.6 figure 5. the time series of system (6) using the parameter values as follows: ๐›ฟ = 0.1, ๐›ฝ = 0.8, ๐›พ = 0.3, ๐œƒ = 0.6, ๐œˆ = 0.5, ๐œ‡ = 0.4, ๐›ผ = 0.6 conclusions this manuscript has studied the predator-prey interaction formed into a fractionalorder leslie-gower model with allee and fear effect. we find two local stable points and two unstable points with certain conditions of existence and stability. we also present the existence of hopf bifurcation by assigning the order of derivative as the bifurcation parameter both analytically and numerically. from the results obtained, when the order of fractional derivative is large, then the solution converges faster. here, we observe that when ๐›ผ < 0.9, then the solutions of system are locally asymptotically stable. however, when ๐›ผ > 0.9, then the solutions of system are isolated by limit cycle via hopf bifurcation. we also conclude that the allee effect constant is directly proportional to the number of prey and inversely proportional to the number of predator. furthermore, the fear effect constant is inversely proportional to the number of the two populations. a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 532 references [1] h. s. panigoro, r. resmawan, a. t. r. sidik, n. walangadi, a. ismail, and c. husuna, โ€œa fractional-order predator-prey model with age structure on predator and nonlinear harvesting on prey,โ€ jambura j. math., vol. 4, no. 2, pp. 355โ€“366, 2022, doi: 10.34312/jjom.v4i2.15220. [2] s. pal, s. majhi, s. mandal, and n. pal, โ€œrole of fear in a predator-prey model with beddington-deangelis functional response,โ€ zeitschrift fur naturforsch. sect. a j. phys. sci., vol. 74, no. 7, pp. 591โ€“595, 2019, doi: 10.1515/zna-2018-0449. [3] h. zhang, y. cai, s. fu, and w. wang, โ€œimpact of the fear effect in a prey-predator model incorporating a prey refuge,โ€ appl. math. comput., vol. 356, no. 61373005, pp. 328โ€“337, 2019, doi: 10.1016/j.amc.2019.03.034. [4] a. l. firdiansyah and nurhidayati, โ€œdynamics in two competing predators-one prey system with two types of holling and fear effect,โ€ jambura j. biomath., vol. 2, no. 2, pp. 58โ€“67, 2021, doi: 10.34312/jjbm.v2i2.11264. [5] x. wang, y. tan, y. cai, and w. wang, โ€œimpact of the fear effect on the stability and bifurcation of a leslie-gower predator-prey model,โ€ int. j. bifurc. chaos, vol. 30, no. 14, pp. 1โ€“13, 2020, doi: 10.1142/s0218127420502107. [6] h. s. panigoro, e. rahmi, n. achmad, and s. l. mahmud, โ€œthe influence of additive allee effect and periodic harvesting to the dynamics of leslie-gower predator-prey model,โ€ jambura j. math., vol. 2, no. 2, pp. 87โ€“96, 2020, doi: 10.34312/jjom.v2i2.4566. [7] y. cai, c. zhao, w. wang, and j. wang, โ€œdynamics of a leslie-gower predator-prey model with additive allee effect,โ€ appl. math. model., vol. 39, no. 7, pp. 2092โ€“2106, 2015, doi: 10.1016/j.apm.2014.09.038. [8] p. feng and y. kang, โ€œdynamics of a modified leslie โ€“ gower model with double allee effects,โ€ nonlinear dyn., no. 80, pp. 1051โ€“1062, 2015, doi: 10.1007/s11071015-1927-2. [9] e. rahmi, i. darti, a. suryanto, trisilowati, and h. s. panigoro, โ€œstability analysis of a fractional-order leslie-gower model with allee effect in predator,โ€ j. phys. conf. ser., vol. 1821, no. 1, 2021, doi: 10.1088/1742-6596/1821/1/012051. [10] a. l. firdiansyah, โ€œeffect of fear in leslie-gower predator-prey model with beddington-deangelis functional response incorporating prey refuge,โ€ int. j. comput. sci. appl. math., vol. 7, no. 2, p. 56, 2021, doi: 10.12962/j24775401.v7i2.8718. [11] l. k. beay and m. saija, โ€œa stage-structure rosenzweig-macarthur model with effect of prey refuge,โ€ jambura j. biomath., vol. 1, no. 1, pp. 1โ€“7, 2020, doi: 10.34312/jjbm.v1i1.6891. [12] a. l. firdiansyah, โ€œeffect of prey refuge and harvesting on dynamics of ecoepidemiological model with holling type iii,โ€ jambura j. math., vol. 3, no. 1, pp. 16โ€“ 25, 2021, doi: 10.34312/jjom.v3i1.7281. [13] f. fitriah, a. suryanto, and n. hidayat, โ€œnumerical study of predator-prey model with beddington-deangelis functional response and prey harvesting,โ€ j. trop. life sci., vol. 5, no. 2, pp. 105โ€“109, 2015, doi: 10.11594/jtls.05.02.09. [14] f. courchamp, t. clutton-brock, and b. grenfell, โ€œinverse density dependence and the allee effect,โ€ trends ecol. evol., vol. 14, no. 10, pp. 405โ€“410, 1999, doi: 10.1016/s0169-5347(99)01683-3. [15] p. a. stephens and w. j. sutherland, โ€œconsequences of the allee effect for behaviour, ecology and conservation,โ€ trends ecol. evol., vol. 14, no. 10, pp. 401โ€“405, 1999, doi: 10.1016/s0169-5347(99)01684-5. a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 533 [16] a. j. terry, โ€œpredatorโ€“prey models with component allee effect for predator reproduction,โ€ j. math. biol., vol. 71, no. 6โ€“7, pp. 1325โ€“1352, 2015, doi: 10.1007/s00285-015-0856-5. [17] a. suryanto, i. darti, and s. anam, โ€œstability analysis of a fractional order modified leslie-gower model with additive allee effect,โ€ int. j. math. math. sci., vol. 2017, no. 0, p. 9, 2017, doi: 10.1155/2017/8273430. [18] s. k. sasmal and j. chattopadhyay, โ€œan eco-epidemiological system with infected prey and predator subject to the weak allee effect,โ€ math. biosci., vol. 246, no. 2, pp. 260โ€“271, 2013, doi: 10.1016/j.mbs.2013.10.005. [19] b. r. noon and k. s. mckelvey, โ€œmanagement of the spotted owl: a case history in conservation biology,โ€ annu. rev. ecol. syst., vol. 27, pp. 135โ€“162, 1996, doi: 10.1146/annurev.ecolsys.27.1.135. [20] r. k. upadhyay and s. mishra, โ€œpopulation dynamic consequences of fearful prey in a spatiotemporal predator-prey system,โ€ math. biosci. eng., vol. 16, no. 1, pp. 338โ€“ 372, 2019, doi: 10.3934/mbe.2019017. [21] l. y. zanette, a. f. white, m. c. allen, and m. clinchy, โ€œperceived predation risk reduces the number of offspring songbirds produce per year,โ€ science (80-. )., vol. 334, no. 6061, pp. 1398โ€“1401, 2011, doi: 10.1126/science.1210908. [22] a. l. firdiansyah, โ€œa fractional-order food chain model with omnivore and antipredator,โ€ commun. biomath. sci., vol. 5, no. 2, pp. 121โ€“136, 2023, doi: 10.5614/cbms.2022.5.2.2. [23] h. s. panigoro, a. suryanto, w. m. kusumawinahyu, and i. darti, โ€œdynamics of an eco-epidemic predator โ€“ prey model involving fractional derivatives with powerlaw and mittag-leffler kernel,โ€ symmetry (basel)., vol. 13, no. 785, pp. 1โ€“29, 2021, doi: https://doi.org/10.3390/sym13050785. [24] e. rahmi, i. darti, a. suryanto, and trisilowati, โ€œa modified leslieโ€“gower model incorporating beddingtonโ€“deangelis functional response, double allee effect and memory effect,โ€ fractal fract., vol. 5, no. 3, 2021, doi: 10.3390/fractalfract5030084. [25] p. panja, โ€œdynamics of a fractional order predator-prey model with intraguild predation,โ€ int. j. model. simul., vol. 39, no. 4, pp. 256โ€“268, 2019, doi: 10.1080/02286203.2019.1611311. [26] h. l. long, z. cheng, y. jiang, and z. teng, โ€œdynamical analysis of a fractional-order predator-prey model incorporating a prey refuge,โ€ j. appl. math. comput., 2016, doi: 10.1007/s12190-016-1017-8. [27] m. a. aziz-alaoui and m. daher okiye, โ€œboundedness and global stability for a predator-prey model with modified leslie-gower and holling-type ii schemes,โ€ appl. math. lett., vol. 16, no. 7, pp. 1069โ€“1075, 2003, doi: 10.1016/s08939659(03)90096-6. [28] s. yu, โ€œglobal asymptotic stability of a predator-prey model with modified lesliegower and holling-type ii schemes,โ€ discret. dyn. nat. soc., vol. 2012, p. 8, 2012, doi: 10.1155/2012/208167. [29] s. yu, โ€œglobal stability of a modified leslie-gower model with beddingtondeangelis functional response,โ€ adv. differ. equations, vol. 2014, no. 1, pp. 1โ€“14, 2014, doi: 10.1186/1687-1847-2014-84. [30] w. cresswell, โ€œpredation in bird populations,โ€ j. ornithol., vol. 152, pp. s251โ€“s263, 2011, doi: 10.1007/s10336-010-0638-1. [31] s. samaddar, m. dhar, and p. bhattacharya, โ€œeffect of fear on prey-predator dynamics: exploring the role of prey refuge and additional food,โ€ chaos, vol. 30, no. a fractional-order lelie-gower model with fear and allee effect adin lazuardy firdiansyah 534 6, pp. 1โ€“18, 2020, doi: 10.1063/5.0006968. [32] j. d. murray, mathematical biology i: an introduction, 3rd ed., vol. 17. washington: springer, 2002. [33] h. s. panigoro, a. suryanto, w. m. kusumawinahyu, and i. darti, โ€œa rosenzweigโ€“ macarthur model with continuous threshold harvesting in predator involving fractional derivatives with power law and mittagโ€“leffler kernel,โ€ axioms, vol. 9, no. 122, pp. 1โ€“22, 2020, doi: 10.3390/axioms9040122. [34] i. petras, fractional-order nonlinear systems: modeling, analysis and simulation. beijing: springer, 2011. [35] d. matignon, โ€œstability results for fractional differential equations with applications to control processing,โ€ comput. eng. syst. appl., vol. 2, pp. 963โ€“968, 1996. [36] x. li and r. wu, โ€œhopf bifurcation analysis of a new commensurate fractionalorder hyperchaotic system,โ€ nonlinear dyn., vol. 78, no. 1, pp. 279โ€“288, 2014, doi: 10.1007/s11071-014-1439-5. [37] k. a. i. diethelm, n. j. ford, and a. d. freed, โ€œa predictor-corrector approach for the numerical solution of fractional differential equation,โ€ nonlinear dyn., vol. 29, no. 1โ€“4, pp. 3โ€“22, 2002, doi: https://doi.org/https://doi.org/10.1023/a:1016592219341. microsoft word 1 sampul depan.doc 38ย  pemodelan copula: studi banding kuantifikasi autokorelasi fachrur rozi jurusan matematika, fakultas sains dan teknologi universitas islam negeri (uin) maulana malik ibrahim malang e-mail: fachrurkibar@yahoo.com abstrak dalam tulisan ini akan dijelaskan beberapa metode kuantifikasi dependensi antara dua variabel acak (bivariat) dan perbandingan antara metode kuantifikasi dependensi tersebut. selain itu akan diperkenalkan teori copula dalam kaitannya dengan kuantifikasi dependensi pada data time series, yang biasa disebut autokorelasi, khususnya kuantifikasi autokorelasi kendallโ€™s tau melalui copula. kata kunci: autokorelasi, copula, kendallโ€™s tau. 1. pendahuluan dalam kehidupan sehari-hari, sering kita dipertemukan dengan fenomena hubungan antara beberapa karakteristik yang diduga mempunyai keterkaitan antara karakteristik yang satu dengan karakteristik yang lain. dalam ilmu statistika keterkaitan ini sering disebut dependensi (keterhubungan) antara variabel yang satu dengan variabel yang lain. jogdeo (1982) mengatakan: โ€œhubungan ketergantungan (dependensi) antara beberapa variabel acak adalah salah satu persoalan yang sangat banyak dipelajari dalam ilmu probabilitas dan statistika. โ€ฆ..โ€ฆ..โ€ dalam tulisan ini akan dijelaskan beberapa metode kuantifikasi dependensi antara dua variabel acak dan perbandingan antara metode kuantifikasi dependensi tersebut. salah satu hal yang bisa dikatakan baru adalah memperkenalkan teori copula kaitannya dengan dependensi antara dua variabel acak, khususnya dependensi pada data time series, yang biasa disebut autokorelasi. dalam hal ini copula hadir sebagai perluasan metode dalam memodelkan dependensi antar variabel acak, copula akhir-akhir ini banyak dikembangkan dalam bidang biostatistika, ilmu aktuaria, dan keuangan. pembahasan pada tulisan ini hanya dilakukan dilakukan untuk dependensi antara dua variabel, khususnya pada kasus dependensi data time series, yang biasa disebut autokorelasi lag-1,. dengan demikian, teori-teori yang dijelaskan lebih ditekankan pada dependensi antara dua variabel (bivariat). dalam membandingkan kuantifikasi dependensi dilakukan dengan membandingkan hasil simulasi dari kuantifikasi dependensi yang yang diperoleh. 2. copula dan sifat-sifatnya pada bagian ini, akan dijelaskan mengenai definisi copula dan sifat-sifat dasarnya sebagai teori dasar yang akan digunakan dalam pembahasan selanjutnya. definisi 1. copula dua dimensi (2-copula) adalah fungsi 2:c i iโ†’ yang memenuhi sifat-sifat: a. untuk setiap 2( , )tu x y i= โˆˆ , maka berlaku ( , 0) 0 (0, )c x c y= = dan ( ,1)c x x= ; (1, )c y y= . (2.1) pemodelanย copula:ย studiย bandingย kuantifikasiย autokorelasiย  volumeย 1ย no.ย 1ย novemberย 2009 39 b. untuk setiap 21 1 2 2( , ) , ( , ) t tu x y v x y i= = โˆˆ sedemikian sehingga u vโ‰ค , maka berlaku 2 2 2 1 1 2 1 1( , ) ( , ) ( , ) ( , ) 0c x y c x y c x y c x yโˆ’ โˆ’ + โ‰ฅ . (2.2) himpunan dari semua copula dua dimensi didefinisikan sebagai c2. mengingat, [ ] [ ]( ) ( , ) ( , ) ( , 0) (0, ) (0, 0) 0, 0,c c u v c u v c u c v c v u v = โˆ’ โˆ’ + = ร— (2.3) maka hal ini akan menunjukkan bahwa ( , )c u v sebagai pengaitan suatu bilangan di i terhadap persegi panjang [ ] [ ]0, 0,u vร— . 2.1. copula dan variabel acak teorema 1. (teorema sklar) misalkan h adalah fungsi distribusi gabungan dari variable x dan y, dengan f dan g masing-masing adalah fungsi distribusi marginal dari x dan y. maka terdapat sebuah copula c sedemikian sehingga untuk setiap ,x y rโˆˆ berlaku ( )( , ) ( ), ( ) ( , )h x y c f x g y c u v= = , (2.4) dengan ( )u f x= dan ( )v g y= . jika f dan g kontinu, maka copula c tunggal, jika f dan g tidak kontinu, maka copula c tunggal pada ( ) ( )range f range gร— . sebaliknya, misalkan c adalah sebuah copula, f dan g masing-masing adalah fungsi distribusi marginal dari x dan y. maka terdapat fungsi distribusi gabungan h sedemikian sehingga untuk setiap ,x y rโˆˆ berlaku ( )( , ) ( ), ( ) ( , )h x y c f x g y c u v= = . sebagai konsekuensi dari teorema sklar, jika x dan y adalah variabel acak dengan fungsi distribusi gabungan h dan mempunyai fungsi distribusi marginal masing-masing adalah f dan g, maka untuk setiap ,x y rโˆˆ berlaku ( ) ( )max ( ) ( ) 1, 0 ( , ) min ( ), ( )f x g y h x y f x g y+ โˆ’ โ‰ค โ‰ค . (2.5) 2.2. copula empiris definisi 2. misalkan ( ){ } 1 , n k k k x y = adalah sampel berukuran n dari distribusi bivariat yang kontinu. copula empiris adalah fungsi cn yang didefinisikan sebagai ( ) ( ) ( ) , , i jn banyaknya pasangan data x y dalam sampel sehingga x x dan y yi j c n n n โ‰ค โ‰คโŽ› โŽž =โŽœ โŽŸ โŽ โŽ  di mana ( )ix dan ( )jy , 1 ,i j nโ‰ค โ‰ค , adalah statistik urutan dari sampel. copula frekuensi empiris adalah fungsi cn yang didefinisikan sebagai ( ) ( ){ }( ) ( ) 11 / , , , ,, 0 , . n i j k k k n n jika x y a d a la h elem en d a ri x yi j c n n la in n ya = โŽงโŽ› โŽž = โŽจโŽœ โŽŸ โŽ โŽ  โŽฉ (2.6) ilustrasi: misalkan diberikan sampel acak {( , )}k k k nx y โˆˆ dari variabel acak ( , )x y , tabel 1. data sampel acak k 1 2 3 4 5 6 x 1.3 2.4 3.2 1.7 4.3 0.8 y 2.5 3.5 2.6 2.1 3.2 1.8 fachrurย roziย  40 volumeย 1ย no.ย 1ย novemberย 2009 berdasarkan definisi 2, maka grafik dari copula frekuensi empiris , i j c n n โŽ› โŽž โŽœ โŽŸ โŽ โŽ  dan , i j c n n โŽ› โŽž โŽœ โŽŸ โŽ โŽ  , , 1, 2,..., 6i j = dari variabel x dan y adalah: (a) (b) gambar 1. (a) grafik copula frekuensi empiris , i j c n n โŽ› โŽž โŽœ โŽŸ โŽ โŽ  ; (b) grafik copula frekuensi empiris , i j c n n โŽ› โŽž โŽœ โŽŸ โŽ โŽ  3. dependensi autokorelasi berdasarkan pembatasan masalah pada pendahuluan, pembahasan akan difokuskan dalam mempelajari perbandingan kuantifikasi dependensi dalam data deret waktu (time series), yang biasanya disebut dengan istilah autokorelasi, dan lebih khusus lagi untuk kuantifikasi autokorelasi lag-1. bentuk klasik yang umum digunakan dalam kuantifikasi autokorelasi ini adalah koefisien autokorelasi dari fungsi autokorelasi (autocorrelation coefficient function/acf). bentuk kuantifikasi dependensi yang lain adalah bentuk modern yang menggunakan konsep konkordan, yang salah satunya kuantifikasi autokorelasi dengan pendekatan copula. 3.1. autokorelasi suatu himpunan hasil pengamatan yang dilakukan berdasarkan urutan waktu, biasa disebut time series. data time series yang dibahas dalam tulisan ini adalah berkaitan dengan data time series diskrit. adapun suatu fenomena statistika yang berkembang dalam kaitannya dengan runtutan waktu yang sesuai dengan aturan probabilistik di sebut proses stokastik. jadi analisa dari time series, dianggap sebagai realisasi dari proses stokastik. salah satu proses yang khusus dalam proses stokastik, disebut proses stasioner (box & jenkins, 1976). definisi 3. misalkan ( )t t tz z โˆˆ= adalah proses stokastik pada ruang probabilistik ( , , )f pฯ‰ . maka x dikatakan stasioner kuat, jika untuk setiap m nโˆˆ , { }1 2, ,..., mt t t tโŠ‚ dan setiap 0h > dengan { }1 2, ,..., mt h t h t h t+ + + โŠ‚ , kita punya ( ) ( )1 11 1,..., ,...,m mt h t h m t t mp z z z z p z z z z+ +< < = < < (3.1) untuk setiap 1 2, ,..., mz z z rโˆˆ . jika m = 1, asumsi kestasioneran berakibat bahwa fungsi distribusi peluang ( )tf z adalah sama untuk setiap t tโˆˆ , dan cukup menuliskan ( )f z . oleh karena itu proses stasioner mempunyai mean konstan: [ ] [ ] ( ).te z e z zf z dz โˆž โˆ’โˆž ฮผ = = = โˆซ (3.2) pemodelanย copula:ย studiย bandingย kuantifikasiย autokorelasiย  volumeย 1ย no.ย 1ย novemberย 2009 41 dan variansi konstan: ( ) ( )2 22 2( ) ( )z te z e z z f z dz โˆž โˆ’โˆž โŽก โŽค โŽก โŽคฯƒ = โˆ’ฮผ = โˆ’ฮผ = โˆ’ฮผโŽข โŽฅ โŽฃ โŽฆโŽฃ โŽฆ โˆซ . (3.3) dalam praktek, mean dan variansi dari proses stationer ditaksir dengan 1 1ห† n t t z z n = ฮผ = = โˆ‘ (3.4) dan ( )22 1 1ห† n z t t z z n = ฯƒ = โˆ’โˆ‘ (3.5) di mana 1 2, ,..., nz z z adalah pengamatan/sampel time series. asumsi kestasioneran juga berakibat bahwa fungsi distribusi peluang gabungan 1 2 ( , )t tf z z adalah sama untuk setiap 1 2,t t yang mana merupakan interval konstan yang terpisah. sehingga, karakteristik distribusi gabungan ini dapat diduga dengan memplot diagram pencar dari data pasangan ( ) 1 2 ( , ) ,t t t t kz z z z += yang merupakan bagian dari data time series yang dipisahkan oleh interval konstan atau lag k. gambar 2. contoh diagram pencar untuk data time series dengan lag-1 dalam hal ini kita dapat berbicara mengenai kovariansi dari tz dan t kz + , yang dipisahkan oleh k interval waktu diskrit, yang disebut autokovariansi pada lag k yang didefinisikan oleh: [ ] ( )( )cov ,k t t k t t kz z e z z+ +โŽก โŽคฮณ = = โˆ’ฮผ โˆ’ฮผโŽฃ โŽฆ (3.6) sehingga, dari definisi autokovariansi, kita bisa definisikan kuantifikasi autokorelasi pada lag k, didefinisikan oleh: ( )( ) ( ) ( ) ( )( ) 2 2 2 t t k k t t k t t k z e z z e z e z e z z + + + โŽก โŽคโˆ’ฮผ โˆ’ฮผโŽฃ โŽฆฯ = โŽก โŽค โŽก โŽคโˆ’ฮผ โˆ’ฮผโŽข โŽฅ โŽข โŽฅโŽฃ โŽฆ โŽฃ โŽฆ โŽก โŽคโˆ’ฮผ โˆ’ฮผโŽฃ โŽฆ= ฯƒ (3.7) dalam praktek, kuantifikasi autokorelasi di atas ditaksir oleh: ( )( ) ( ) 1 2 1 ห† n k t t k t k n t t z z z z z z โˆ’ + = = โˆ’ โˆ’ ฯ = โˆ’ โˆ‘ โˆ‘ (3.8) 0.9 0.95 1 1.05 1.1 1.15 0.9 1 1.1 1.2zi zi+1 fachrurย roziย  42 volumeย 1ย no.ย 1ย novemberย 2009 bentuk terakhir pada persamaan (3.8) merupakan bentuk klasik dari dependensi time series yang disebut koefisien autokorelasi (autocorrelation function). 3.2. kendallโ€™s tau dan copula pada bagian ini akan dijelaskan bentuk kuantifikasi dependensi lain selain koefisien autokorelasi, salah satunya adalah statistik kendallโ€™s ฯ„, yaitu kuantifikasi dependensi yang didasarkan atas data rangking. definisi 4. misalkan 1 1( , )x y dan 2 2( , )x y dua vektor acak yang independen dan berdistribusi identik pada ruang peluang ( , , )a pฯ‰ . kendallโ€™s ฯ„ didefinisikan sebagai. ( ) ( ). 1 2 1 2 1 2 1 2( )( ) 0 ( )( ) 0x y p x x y y p x x y yฯ„ โ‰ก ฯ„ = โˆ’ โˆ’ > โˆ’ โˆ’ โˆ’ < (3.9) selanjutnya kita menyebut bentuk di atas adalah definisi kendallโ€™s ฯ„ untuk populasi. jadi, kendallโ€™s ฯ„ adalah perbedaan antara peluang dari konkordan dan peluang dari diskordan. dalam prakteknya, kita dapat mendefinisikan ukuran dependensi kendallโ€™s ฯ„ berdasarkan sampel. misalkan { }1 1( , ),..., ( , )n nx y x y , 2n โ‰ฅ adalah sampel berukuran n dari vaktor acak kontinu ( , )x y . setiap pasang sampel { }( , ), ( , )i i j jx y x y , , {1,..., }, i j n i jโˆˆ โ‰  merupakan suatu diskordan atau konkordan. maka jelas terdapat 2 nโŽ› โŽž โŽœ โŽŸ โŽ โŽ  pasangan berbeda dari sampel yang ada. misalkan k menyatakan banyaknya pasangan konkordan, dan d menyatakan banyaknya pasangan diskordan. maka kendallโ€™s ฯ„ untuk sampel didefinisikan menjadi ห† 2 k d k d nk d โˆ’ โˆ’ ฯ„ = = + โŽ› โŽž โŽœ โŽŸ โŽ โŽ  (3.10) dengan definisi kendallโ€™s ฯ„ di atas, kita dapat menunjukkan bahwa copula mempunyai hubungan dengan kendallโ€™s ฯ„, untuk menunjukkan hubungan tersebut, sebelumnya perlu didefinisikan terlebih dahulu suatu fungsi konkordan q, yang menyatakan perbedaan peluang dari konkordan dan peluang diskordan antara dua vektor 1 1( , )x y dan 2 2( , )x y dari variabel acak kontinu dengan fungsi distribusi gabungan (yang mungkin) berbeda 1h dan 2h , tetapi dengan fungsi distribusi marginal yang sama f dan g. kemudian akan ditunjukkan bahwa fungsi konkordan ini bergantung pada distribusi dari 1 1( , )x y dan 2 2( , )x y melalui copula mereka. teorema 2. misalkan 1 1( , )x y dan 2 2( , )x y adalah dua vektor random dengan fungsi distribusi gabungan masing-masing 1h dan 2h , di mana ~ix f dan ~iy g , 1, 2i = . lebih lanjut, misalkan 1c dan 2c menyatakan copula dari 1 1( , )x y dan 2 2( , )x y , sedemikian sehingga ( )1 1( , ) ( ), ( )h x y c f x g y= dan ( )2 2( , ) ( ), ( )h x y c f x g y= . jika q menyatakan perbedaan antara peluang dari konkordan dan peluang diskordan dari 1 1( , )x y dan 2 2( , )x y , yang didefinisikan sebagai ( ) ( )1 2 1 2 1 2 1 2( )( ) 0 ( )( ) 0q p x x y y p x x y y= โˆ’ โˆ’ > โˆ’ โˆ’ โˆ’ < , (3.11) maka kita peroleh: 21 2 2 1( , ) 4. ( , ) ( , ) 1iq q c c c u v dc u v= = โˆ’โˆซโˆซ . (3.12) pemodelanย copula:ย studiย bandingย kuantifikasiย autokorelasiย  volumeย 1ย no.ย 1ย novemberย 2009 43 berdasarkan definisi fungsi konkordan pada teorema 2, maka kita dapat mendefinisikan kendallโ€™s ฯ„ untuk x dan y melalui copula dengan teorema berikut (nelsen, 1999): teorema 3. misalkan x dan y variabel acak kontinu dengan copula c. maka kendallโ€™s ฯ„ untuk x dan y diberikan oleh 2 . ( , ) 4. ( , ) ( , ) 1x y c i q c c c u v dc u vฯ„ โ‰ก ฯ„ = = โˆ’โˆซโˆซ . (3.20) perhatikan bahwa bentuk integral yang ada pada persamaan (3.20) dapat diinterpretasikan sebagai ekspektasi dari fungsi ( , )c u v , di mana u dan v variabel acak yang berdistribusi (0,1)u , atau dengan kata lain [ ]4. ( , ) 1c ce c u vฯ„ = โˆ’ . (3.21) teorema 4. misalkan x dan y variabel acak kontinu dengan fungsi distribusi gabungan h, dan misalkan [ ] ' ' ( , ) ( ', ') ( , ') ( , ') ' ' y x t h x y h x y h x y h x y dxdydx dy โˆž โˆž โˆ’โˆž โˆ’โˆž โˆ’โˆž โˆ’โˆž = โˆ’โˆซ โˆซ โˆซ โˆซ . (3.22) maka kendallโ€™s ฯ„ untuk x dan y diberikan oleh . 2x y tฯ„ = . berdasarkan definisi copula empiris, dan dengan memperhatikan kembali definisi kendallโ€™s ฯ„ untuk populasi untuk suatu variabel acak kontinu x dan y dengan copula c seperti pada persamaan 3.22 dengan modifikasi yaitu [ ] 1 1 ' ' 0 0 0 0 2 ( , ) ( ', ') ( ', ) ( , ') ' ' v u c u v c u v c u v c u v d u d vd u d vฯ„ = โˆ’โˆซ โˆซ โˆซ โˆซ , (3.23) maka teorema berikut (nelsen, 1999) akan menjelaskan bentuk turunan koefisien kendallโ€™s ฯ„ untuk sampel. teorema 5. misalkan cn dan cn masing-masing adalah fungsi copula empirik dan fungsi frekuensi copula empirik untuk sampel ( ){ } 1 , n k k k x y = . jika t adalah koefisien kendallโ€™s ฯ„ untuk sampel, maka 11 2 2 1 1 2 , , , , 1 jn n i n n n n i j p q n i j p j i q p q t c c c c n n n n n n n n n โˆ’โˆ’ = = = = โŽก โŽคโŽ› โŽž โŽ› โŽž โŽ› โŽž โŽ› โŽž= โˆ’โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸโŽข โŽฅโˆ’ โŽ โŽ  โŽ โŽ  โŽ โŽ  โŽ โŽ โŽฃ โŽฆ โˆ‘ โˆ‘ โˆ‘ โˆ‘ . (3.24) 3.3. kendallโ€™s tau untuk autokorelasi pada subbab ini, akan dijelaskan pendekatan kendallโ€™s ฯ„ untuk kuantifikasi autokorelasi dari data time series, dan dikhususkan untuk autokorelasi lag-1 (first-order serial dependence). misalkan diberikan barisan variabel acak 1 2, ,..., nx x x , 3n โ‰ฅ yang merupakan data time series dan 1 2, ,..., nr r r adalah barisan ranking yang bersesuaian dengan barisan variabel acak, maka ukuran autokorelasi lag-1 secara khusus didasarkan pada data pasangan 1 2 2 3 1( , ), ( , ),..., ( , )n nr r r r r rโˆ’ , (3.25) dan mungkin menambah dengan 1( , )nr r , dalam kasus barisan variabel acak tersebut bersiklus. misalkan diberikan barisan variabel acak 1 2, ,..., nx x x , 3n โ‰ฅ yang bersesuaian dengan barisan ranking 1 2, ,..., nr r r dari barisan acak. maka kuantifikasi kendallโ€™s ฯ„ untuk autokorelasi lag-1 untuk kasus barisan bersiklus dapat didefinisikan sebagai: 4 1 2 1 2 .( 1)n n d n n n โŽ› โŽžโŽ› โŽž ฯ„ = โˆ’ = โˆ’โŽœ โŽŸโŽœ โŽŸ โˆ’โŽ โŽ โŽ โŽ  , (3.26) fachrurย roziย  44 volumeย 1ย no.ย 1ย novemberย 2009 di mana d menyatakan banyaknya diskordan, atau { } ( ) 1 1 1 1 1 1 1 1 1 1 1 ( , ) ( , ) ( , ) n n i j i j i j i j i j i n n i j i j i j d i r r r r i r r r r i r r r r โˆ’ + + + + = = + + + = = = < > + > < = < > โˆ‘ โˆ‘ โˆ‘โˆ‘ (3.27) di mana ( )i a menyatakan fungsi indikator dari himpunan a. untuk kasus barisan yang tidak bersiklus, dengan mensubstitusikan n-1 untuk n pada persamaan (3.26) dan (3.27). 3.4. pengujian keberartian autokorelasi setelah melakukan kuantifikasi autorkorelasi, untuk dapat membandingkan hasil yang telah diperoleh dari masing-masing ukuran dependensi yang telah dijelaskan pada subbab sebelumnya, perlu dilakukan pengujian keberartian dependensi dari masingmasing ukuran dependensi, artinya hasil kuantifikasi autokorelasi harus diuji keberartiannya. 3.5. pengujian untuk koefisien autokorelasi klasik misalkan 1 2( , ,..., ), nz z z z n n= โˆˆ adalah proses stationer dengan waktu diskrit berukuran n, dan 1ฯฬ‚ adalah taksiran untuk koefisien autokorelasi lag-1, maka arcana (2005) mengatakan bahwa pada tingkat keberartian ฮฑ pada tingkat keberartian ฮฑ , nilai 1ฯฬ‚ dikatakan berarti untuk pengujian dua arah jika / 21ห† z n ฮฑฯ > , (3.28a) sedangkan, untuk pengujian satu arah, jika 11ห† z n โˆ’ฮฑฯ > atau 1ห† z n ฮฑฯ < , (3.28b) di mana zฮฑ adalah suatu nilai sehingga ( )p z zฮฑ< = ฮฑ dengan ~ (0,1)z n . 3.6. pengujian untuk koefisien autokorelasi kendallโ€™s ฯ„ misalkan 1 2( , ,..., ), nz z z z n n= โˆˆ adalah proses stationer dengan waktu diskrit berukuran n, dan ห† nฯ„ adalah taksiran kendallโ€™s ฯ„ untuk koefisien autokorelasi lag-1, maka genest & fergusen (1999) mendefinisikan [ ]ห† ห† ห†( ) n n n n e t var ฯ„ โˆ’ ฯ„ = ฯ„ , (3.29) di mana [ ]ห† 0ne ฯ„ = adalah mean dari ห† nฯ„ yang didefinisikan, [ ] 2ห† 3( 1)n e n ฯ„ = โˆ’ , 3n โ‰ฅ , (3.30) untuk kasus proses stasioner yang bersiklus maupun tidak bersiklus. dan ห†( )nvar ฯ„ adalah variansi dari ห† nฯ„ yang berbeda untuk kasus proses stasioner yang bersiklus dan tidak bersiklus. untuk kasus proses stasioner yang bersiklus ห†( ) 0nvar ฯ„ = , untuk 3n = , dan 3 2 2 2 20 14 98ห†( ) 45 ( 1) n n n var n n โˆ’ โˆ’ ฯ„ = โˆ’ , untuk 4n โ‰ฅ . (3.31) sedangkan untuk kasus proses stasioner yang tidak bersiklus ห†( ) 8 / 9nvar ฯ„ = , untuk 3n = , dan pemodelanย copula:ย studiย bandingย kuantifikasiย autokorelasiย  volumeย 1ย no.ย 1ย novemberย 2009 45 3 2 2 2 20 74 54 148ห†( ) 45( 1) ( 2) n n n n var n n โˆ’ + + ฯ„ = โˆ’ โˆ’ , untuk 4n โ‰ฅ . (3.32) selanjutnya untuk pengujian keberartian nilai ห† nฯ„ , genest & fergusen (1999) mengatakan pada tingkat keberartian ฮฑ , nilai ห† nฯ„ dikatakan berarti untuk pengujian dua arah, jika ,n nt tฮฑ> , (3.33a) sedangkan, untuk pengujian satu arah, jika tn > tฮฑ,n atau tn < โ€“ tฮฑ,n (3.33b) di mana ,ntฮฑ adalah suatu nilai sehingga ,( )n np t tฮฑ> = ฮฑ dengan ~n nt t . 4. simulasi dan hasil perbandingan kuantifikasi autokorelasi 4.1. desain simulasi simulasi ini dilakukan untuk membandingkan hasil kuantifikasi autokorelasi klasik dan kuantifikasi autokorelasi kendallโ€™s tau melalui copula empirik. adapun desain dari simulasi yang dilakukan adalah membangun barisan data yang mengikuti model proses stasioner, simulasi ini dilakukan untuk barisan data berukuran 10, 15, dan 20n = . cara membangun barisan data dalam simulasi ini adalah sebagai berikut: misalkan ie , 1, 2,...,i n= adalah data yang dibangkitkan secara acak dari distribusi normal (0,1), maka desain 2 1/ 21 1(1 )x e โˆ’= + ฮธ dan 1.i i ix x eโˆ’= ฮธ + , 2,...,i n= (4.1) di mana nilai ฮธ disimulasikan untuk beberapa nilai (1/ 2) jฮธ = , 1, 2,..., 5j = dan 0ฮธ = . selanjutnya, kuantifikasi autokorelasi dari barisan data yang ada dilakukan dengan metode yang telah dijelaskan sebelumnya. percobaan ini lakukan sebanyak 500 kali untuk setiap ukuran n, kemudian dilakukan pengujian keberartian autokorelasi berdasarkan hipotesis nol yang menyatakan bahwa tidak terdapat autokorelasi yang berarti pada barisan data simulasi. perbandingan terhadap hasil kuantifikasi autokorelasi untuk masing-masing metode dilakukan dengan menghitung prosentase penolakan hipotesis nol. sehingga dalam simulasi ini diperlukan data acak berdistribusi normal (0,1) sebanyak 500 x 6 x (10+15+20) = 135000 data. 4.2. hasil simulasi setelah dilakukan simulasi berdasarkan desain di atas, maka hasilnya dapat dilihat pada tabel 2. dari tabel tersebut, dapat dikatakan secara keseluruhan, jika nilai ฮธ semakin mendekati nol, maka prosentase penolakan hipotesis nol yang menyatakan bahwa autokorelasi pada model proses stasioner cenderung menurun. dalam batas nilai ฮธ yang digunakan dalam simulasi ini, perbandingan antara kuantifikasi autokorelasi klasik dengan kuantifikasi autokorelasi kendallโ€™s tau, dapat dikatakan mengenai beberapa hal, yaitu: 1. untuk nilai 1 1 1, ,2 4 8ฮธ = , prosentase penolakan hipotesis nol berdasarkan kuantifikasi autokorelasi kendallโ€™s tau melalui copula lebih tinggi dibanding prosentase penolakan hipotesis nol berdasarkan kuantifikasi autokorelasi klasik. fachrurย roziย  46 volumeย 1ย no.ย 1ย novemberย 2009 2. sebaliknya untuk nilai 1 1, , 016 32ฮธ = , prosentase penolakan hipotesis nol berdasarkan kuantifikasi autokorelasi klasik lebih tinggi dibanding prosentase penolakan hipotesis nol berdasarkan kuantifikasi autokorelasi kendallโ€™s tau melalui copula. 3. hal ini menunjukkan bahwa untuk nilai ฮธ tertentu kuantifikasi autokorelasi kendallโ€™s tau melalui copula dikatakan lebih baik dibanding dengan kuantifikasi autokorelasi klasik, sedangkan untuk ฮธ yang mendekati nol, kuantifikasi autokorelasi klasik dikatakan lebih baik dibanding dengan kuantifikasi autokorelasi kendallโ€™s tau melalui copula. tabel 2. prosentase penolakan hipotesis non pada simulasi pengujian autokorelasi statistic n theta ยฝ ยผ 1/8 1/16 1/32 0 autocorrelation function 10 15.4% 3.0% 2.0% 0.8% 1.6% 0.2% kendall' tau dg copula 10 22.6% 8.4% 6.2% 3.6% 3.4% 2.8% autocorrelation function 15 32.6% 11.8% 4.0% 4.0% 3.2% 0.6% kendall' tau dg copula 15 38.8% 18.4% 8.0% 7.2% 6.6% 4.6% autocorrelation function 20 49.4% 15.4% 6.0% 3.2% 4.0% 1.2% kendall' tau dg copula 20 54.8% 20.8% 10.6% 7.4% 5.6% 5.2% 5. kesimpulan dan saran berdasarkan penjelasan teori dan hasil simulasi yang dilakukan pada bagian sebelumnya, penulis mencoba mengambil beberapa kesimpulan sebagai berikut: 1. kendallโ€™s tau melalui copula adalah metode alternatif yang dapat digunakan dalam kuantifikasi dependensi antara dua variabel acak, lebih khusus dapat digunakan dalam kuantifikasi autokorelasi lag-1. 2. pada model 1.i i ix x eโˆ’= ฮธ + , i = 1,2,โ€ฆ,n , untuk batas ฮธ tertentu, kuantifikasi autokorelasi kendallโ€™s tau melalui copula dikatakan lebih baik dibanding dengan kuantifikasi autokorelasi klasik, sedangkan untuk ฮธ yang mendekati nol, kuantifikasi autokorelasi klasik dikatakan lebih baik dibanding dengan kuantifikasi autokorelasi kendallโ€™s tau melalui copula. 3. untuk simulasi, perlu adanya penelitian lebih lanjut mengenai pemilihan model time series yang lain serta penentuan batas nilai ฮธ yang digunakan dalam model. pemodelanย copula:ย studiย bandingย kuantifikasiย autokorelasiย  volumeย 1ย no.ย 1ย novemberย 2009 47 daftar pustaka arcana, i nyoman. (2005), batch process, how to measure a process capability with a better way: a case study at soft drink factory, j. int. conf. of app. math. (icams), bandung, indonesia, pp 5-6. box, g.e., dan jenkins, g.m. (1976), time series analysis: forecasting and control, holden day, san francisco, pp 23-28. genest, c., dan fergusen, t., (1999), kendallโ€™s tau for autocorrelation, departement of statistics papers of university of california, los angeles, pp 1-9, 11, 12. jogde, k., (1982), concepts of dependence, in encyclopedia of statistical sciences, vol.1, s. kotz dan n.l, johnson, editor, john wiley & sons, new york. nelsen, b. roger, (1999), an introduction to copula, spinger-verlag, new york. schmitz, v., (2003), copulas and stochastic processes, disertasi program doktor, shaker verlag, aachen. richards curve implementation for prediction of covid-19 spread in maluku province cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 195-206 p-issn: 2086-0382; e-issn: 2477-3344 submitted: september 10, 2021 reviewed: december 22, 2021 accepted: january 05, 2022 doi: http://dx.doi.org/10.18860/ca.v7i1.13323 richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi, francis yunito rumlawang, yopi andry lesnussa* department of mathematics, faculty of mathematics and natural sciences, pattimura university, indonesia *corresponding author email: yopi_a_lesnussa@yahoo.com* rumlawang@yahoo.com, nanangondi21@gmail.com abstract the first case of covid-19 in maluku province, indonesia was reported at the end of march 2020 as many as 1 case and the total cumulative cases reported were 3.884 cases on november 4, 2020. the purpose of this study is to predict the spread of covid-19 cases in maluku province by estimating the richards function parameters are i is the population size, k is carrying capacity, k is the growth rate, a is the scaling parameter and mt is the turning point using the nonlinear least-squares (nls) method. the method use in this research is richards curve method. the results of this research found the estimation results, with rmse = 75,1057, the peak of the spread of covid-19 cases in the maluku province is predicted to occur on october 22, 2020, with a total of 3.623 cases and ends on may 25, 2023, with a total of 9.451 cases. this research can provide an overview of the results of predictions for the development of covid-19 for the government, making it easier for the government to make decisions in the future. keywords: carrying capacity; covid-19; prediction; richards curve; turning point introduction coronavirus is a group of viruses from the subfamily orthocronavirinae in the coronaviridae family and the order nidovirales. this group of viruses can cause disease in birds and mammals, including humans [1]. in 2002, the sars-cov coronavirus (sars coronavirus) caused severe acute respiratory syndrome (sars) in guangdong, china [2]. in 2012 the type of coronavirus mers-cov (mers coronavirus) caused middle eastern respiratory syndrome (mers) which occurred in saudi arabia and the middle east [3]. in early 2020, who (world health organization) received a report from china that there were 44 patients with severe pneumonia in wuhan city, hubei province, china [4]. subsequent research showed a close relationship with the coronavirus that caused sars in 2002 [5]. on february 11, 2020, who inaugurated the term covid-19 (coronavirus disease 2019) which is an infectious disease similar to influenza caused by severe acute respiratory syndrome 2 (sars-cov-2) [6], [7]. the first covid-19 was reported in indonesia on march 23, 2020, with two cases. data on march 31, 2020, showed that there were 1,528 confirmed cases and 136 deaths. http://dx.doi.org/10.18860/ca.v7i1.13323 mailto:yopi_a_lesnussa@yahoo.com* mailto:rumlawang@yahoo.com mailto:nanangondi21@gmail.com richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 196 in 1839 verhulst introduced the logistics equation to model population growth which became known as the verhulst equation and was rediscovered in 1912 [8], [9]. in 1959 in research entitled: a flexible growth function for empirical use, richards modified the verhulst equation and became known as the richards curve [10] or generalized logistic function [11] because it is an extension of the logistic model [12], [13] and in some literature, the richards curve is also called the theta logistic model [14], [15] with parameters namely k (carrying capacity), k (growth rate), mt (inflection point) and a (scaling parameter) the shape of the richards curve resembles the shape of the exponential curve [16]. richards curve is a model of a population growth curve in conditions where growth is not symmetrical with inflexion points [17], [18]. in 2004 the richards curve was used to predict the spread of sars in singapore, hong kong and beijing [19] after estimation with the richards curve, the results obtained are that the spread of sars in beijing is predicted to end on 27 june 2003 with a total of 2.595 cases, in hong kong it is predicted to end on 29 june 2003 with a total of 1.748 cases and in singapore it is predicted to end in may 28, 2003 with a total of 207 cases. the prediction results of the spread of sars in singapore, hong kong and beijing using the richards curve were considered quite successful, because based on the data obtained, singapore last reported cases of sars on may 18, 2003 with a total of 206 cases, hong kong on june 11, 2003 with a total of cases of 1.755 cases and beijing on june 11, 2003 with a total of 2.631 cases. besides that, the richards curve was widely used in other studies [20]โ€“[22] and in 2020, the richards curve was used to predict the spread of covid-19 in the province of south sulawesi, indonesia, with the peak of the spread predicted to occur in mid-june 2020 july 2020 with a total of 10,000-12,000 cases and the end of the spread is predicted to occur at the end of november 2020. based on the above background, where the richards curve is considered quite good in predicting the spread of sars in singapore, hong kong and beijing in 2002, therefore in this study the richards curve will be used to predict the spread of covid-19 in maluku province. methods in general, the differential form of the richards curve is : [10], [23] ๏€จ ๏€ฉ 1 a di i i t ri dt k ๏ƒฉ ๏ƒน๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏€ฝ ๏€ฝ ๏€ญ๏ƒช ๏ƒบ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ๏ƒช ๏ƒบ๏ƒซ ๏ƒป ๏‚ข (1) where i is the population size, k is carrying capacity, k is the growth rate and a is the scaling parameter. to find a solution to equation 1, the integration technique can be written as: a a a k di r dt i k i ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท๏ƒฉ ๏ƒน๏€ญ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ ๏ƒณ ๏ƒด ๏ƒด ๏ƒต ๏ƒฒ or it can be written: richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 197 based on the similarity of the two sides, the values of 1a ๏€ฝ and 1a b i ๏€ญ ๏€ฝ are obtained so as to obtain : a a aa a k a b di di i k ii k i ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏€ซ๏ƒง ๏ƒท๏ƒง ๏ƒท ๏€ญ๏ƒฉ ๏ƒน๏€ญ ๏ƒจ ๏ƒธ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ ๏ƒณ ๏ƒณ ๏ƒด ๏ƒด๏ƒด ๏ƒต๏ƒต 1 1 a a a i di di i k i ๏€ญ๏ƒฆ ๏ƒถ๏ƒฆ ๏ƒถ ๏€ฝ ๏€ซ ๏ƒง ๏ƒท๏ƒง ๏ƒท ๏€ญ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒณ๏ƒณ ๏ƒด ๏ƒด ๏ƒต ๏ƒต so we get: ๏€จ ๏€ฉ 1 ln ln a a a a a a k di i k i i k i ๏€ญ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏€ญ ๏€ญ๏ƒง ๏ƒท๏ƒง ๏ƒท๏ƒง ๏ƒท๏ƒฉ ๏ƒน๏€ญ ๏ƒจ ๏ƒธ๏ƒจ ๏ƒธ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ ๏ƒณ ๏ƒด ๏ƒด ๏ƒต since we get r dt rt c๏€ฝ ๏€ซ๏ƒฒ , we can write: : ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 ln ln a a a i k i rt c ๏€ญ ๏ƒฆ ๏ƒถ ๏€ญ ๏€ญ ๏€ฝ ๏€ซ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ or it can be written : so we get: ๏€จ ๏€ฉ 1 a a a rt c k i e i ๏€ญ ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏€ญ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ to simplify the above form, both sides can be raised to the power of a so that we get: : ๏€จ ๏€ฉ๏€จ ๏€ฉ1 a a art ac k i e e ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท๏€ฝ ๏ƒง ๏ƒท๏€ซ ๏ƒจ ๏ƒธ (2) ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ a a a a a k i b i di r dt i k i ๏ƒฆ ๏ƒถ๏€ญ ๏€ซ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท๏€ญ ๏ƒจ ๏ƒธ ๏ƒณ ๏ƒด ๏ƒด ๏ƒต ๏ƒฒ ๏€จ ๏€ฉ 1 ln a a a k i rt c i ๏€ญ ๏ƒฆ ๏ƒถ ๏€ญ๏ƒง ๏ƒท ๏€ฝ๏€ญ ๏€ญ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 198 from equation 2, since ,a r and c are constants, it is assumed that k is the product of ar and q is the product of ๏€จ ๏€ฉac e ๏€ญ , so it can be written as: ๏€จ ๏€ฉ1 a a kt k i q e ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท๏€ฝ ๏ƒง ๏ƒท๏€ซ ๏ƒจ ๏ƒธ so we get: ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 1 kt a k i t q e ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒฉ ๏ƒน๏€ซ ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ (3) since the inflection point of equation 3 is ๏€จ ๏€ฉ 1 1 a k a ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒง ๏ƒท๏€ซ๏ƒจ ๏ƒธ [24] , let mt be the parameter of the inflection point of equation 3 then it can be written as : [25] ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 1 m k t t a k i t ae ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒฉ ๏ƒน๏ƒง ๏ƒท๏€ซ ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ (4) where i is the population size or the total number of cases that occurred at the time of t , k is the carrying capacity or total of the latest cases, k is the rate of growth of cases, mt is the inflexion point or time of the peak of the spread of covid-19 cases where ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏› ๏ 1 1 1 1 m m m k t t a a k k i t aae ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏€ฝ ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒง ๏ƒท๏ƒง ๏ƒท ๏€ซ๏ƒฉ ๏ƒน๏ƒง ๏ƒท๏€ซ ๏ƒจ ๏ƒธ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ . results and discussion covid-19 cases in maluku province have continued to increase since it was first reported on march 23, 2020, and as of november 4, 2020, the total cumulative cases of covid-19 in maluku province were reported as many as 3,884 cases, including 551 positive patient cases or with a percentage of 14.18%, 3,286 cases of patients cured or with a percentage of 84.6 and 47 cases of patients dying or with a percentage of 1.2%. cumulative case developments and the addition of daily cases of covid-19 in maluku province from march 23, 2020 โ€“ november 4, 2020, can be described as follows: table 1. cumulative and daily case data of covid-19 in maluku province date cumulative cases daily cases march 23, 2020 1 0 march 24, 2020 1 0 march 25, 2020 1 0 march 26, 2020 1 0 richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 199 date cumulative cases daily cases march 27, 2020 1 0 โ€ฆ โ€ฆ โ€ฆ october 30, 2020 3849 59 october 31, 2020 3851 2 november 1, 2020 3863 12 november 2, 2020 3863 0 november 3, 2020 3877 14 november 4, 2020 3884 7 the development of cumulative covid-19 cases in maluku province from 23 march โ€“ 4 november 2020 can be described as follows: figure 1. cumulative case development the first case of the spread of covid-19 in maluku province was reported on march 23, 2020, as many as 1 case and up to july 5, 2020 the total cumulative cases reported were 794 cases or with a growth rate of 755, 23%. on july 6 to october 22, 2020 the average daily addition of cases increased to 26 cases with the average growth rate increasing significantly as much as %1864, 953 from the previous one, which was 2620,183%, and from october 23 to november 4, 2020, the average increase in cases the daily rate of covid-19 in maluku province decreased by 18 cases. the graph of the daily increase in cases can be seen in figure 2, where the maluku province experienced the highest number of cases on october 2, 2020, which was 117 cases. figure 2. development of daily cases of covid-19 in maluku province 23 march โ€“ 4 november 2020 richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 200 parameter estimation results by using data on cumulative cases of covid-19 in maluku province from march 23 โ€“ november 4, 2020, an estimate was made with the richards function parameter using the nonlinear least square method in python with the following script: import scipy.optimize as optimize from scipy.optimize import curve_fit import numpy as np import pandas as pd def richardsfunction(t,k,a,k,tm): return k/(1 + a*(np.exp(-k*(t-tm))))**(1/a) df=pd.read_excel('coviddate_maluku.xlsx') data=df[0:227] y=data['cummulativecases'] t=np.arange(1,228,1) popt,pcov=optimize.curve_fit(richardsfunction,t,y,bounds=(0.01,np.inf)) the results obtained are: table 2. richards parameter estimation results (rmse: 75,1057) k a k mt 9.451,245 0,085 0,01 213,918 so by substituting the parameter values k , a , k and mt in equation (4) obtained the richards equation, namely : ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 20.01 0,08591 113, 8 9.451, 245 1 0, 085 t i t e ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒฉ ๏ƒน๏€ซ ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ then it can be illustrated that the comparison between the cumulative covid19 case data from the richards function parameter estimation results with the actual data for [1, 227]t ๏€ฝ is as follows: figure 3. comparison of the results of predictions of cumulative cases of covid-19 in maluku province with actual data richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 201 in figure 3. the cumulative comparison between the actual data and the predicted data using the richards function at the time of t = 1 to t = 227, we get rmse = 75.1057 while using the logistic function we get a larger rmse value of 85.1813. the comparison of the error values between the predicted results and the actual data can be seen in the following table 3: table 3. the error value of the predicted data with the actual data t actual predict error 1 1 16.65457518205870 15.65457518205870 2 1 17.48844921400830 16.48844921400830 3 1 18.35884011574600 17.35884011574600 4 1 19.26706628665680 18.26706628665680 5 1 20.21448005719650 19.21448005719650 โ€ฆ โ€ฆ โ€ฆ โ€ฆ 222 3849 3889.25714338151000 40.25714338151370 223 3851 3922.50525096264000 71.50525096263660 224 3863 3955.72658861666000 92.72658861666100 225 3863 3988.91835825547000 125.91835825547500 226 3877 4022.07779333937000 145.07779333936700 227 3884 4055.20215931066000 171.20215931065600 from figure 3, the richards curve can be described from the estimation results as follows: figure 4. richards curve of estimation results from figure 4, suppose that ๏€จ ๏€ฉii t is the total cumulative cases on day i and ๏€จ ๏€ฉ1ii t ๏€ญ is the total cumulative cases on day 1i ๏€ญ , then the total addition of daily cases can be formulated as follows : [26] ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ1 ; 1, 2, 3,...i i ij t i t i t i๏€ญ๏€ฝ ๏€ญ ๏€ฝ (5) so the comparison between the predicted data and actual data from daily covid-19 cases in maluku province can be described as follows: richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 202 figure 5. comparison of the results of daily covid-19 case predictions in maluku province with actual data from figure 5, it can be seen that the results of daily case predictions for covid19 in maluku province are as follows: figure 6. daily cases of covid-19 in maluku province from estimated result turning point of case deployment from the results of richards parameter estimation with data on covid-19 cases in maluku province, the parameter mt value is 213.918, meaning that the time of the turning point for the spread of covid-19 in maluku province is predicted to occur on the 214th day, where the total cases on the 214th day are obtained. from the equation: ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 0.01 214 0,085213,91 18 9.451, 245 214 1 0, 085 i e ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒฉ ๏ƒน๏€ซ ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ which is 3.622,654 means that the total cases at the inflection point are 3.623 cases or can be described as follows: figure 7. inflection point richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 203 for the addition of daily cases, the total addition of cases can be obtained at the inflexion point or when m t t๏€ฝ namely : ๏€จ ๏€ฉ ๏€จ ๏€ฉ214 213i i๏€ฝ ๏€ญ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 1 0.01 214 0.01 2130,0851 0,081 5213,918 213,9 8 1 9.451, 245 9.451, 245 33, 358161 1 0, 085 1 0, 085e e ๏€ญ ๏€ญ ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏€ฝ ๏€ญ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒฉ ๏ƒน ๏ƒฉ ๏ƒน๏€ซ ๏€ซ ๏ƒซ ๏€ฝ ๏ƒป ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ so the total addition of daily cases at the inflection point is 33 cases, so it can be concluded that the turning point of the covid-19 case in maluku province is based on the estimation results, namely ๏€จ ๏€ฉ๏€จ ๏€ฉ ๏€จ ๏€ฉ, 214, 33t i t ๏€ฝ or can be described as follows : figure 8. turning point in figure 7, the point ๏€จ ๏€ฉ๏€จ ๏€ฉ ๏€จ ๏€ฉ, 214, 33t i t ๏€ฝ which is the turning point of the curve is also the peak of the curve, namely when t = 214. end of case deployment from richards parameter estimation results with data on covid-19 cases in maluku province, the parameter k value is 9,451,245, meaning that the latest total cases for covid-19 cases in maluku province are predicted to be 9,451 cases. for example, if endt is the end time of covid-19 cases in maluku province, with a total of 9,450.5 cases or can be written as ๏€จ ๏€ฉendi t = 9.450,5 then the value of endt can be obtained from the equation: ๏€จ ๏€ฉ. 213,918 1 0 01 0,0851 9.451, 245 9.450, 5 1 0, 085 end t e ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒฉ ๏ƒน๏ƒง ๏ƒท๏€ซ ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ that is endt = 1.158,681 meaning that the time for the end of the covid-19 case in maluku province is predicted to occur on the 1.159th day. richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 204 figure 9. total case when 1.159t ๏€พ from figure 9, when 1.159t ๏€พ the population size will always be at number 1.159 and will only move towards the value of k or carrying capacity. conclusions from the estimation results of the richards function parameter with the cumulative case data of covid-19 in the maluku province, the richards equation is obtained to predict the spread of covid-19 in the maluku province, namely: ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 20.01 0,08591 113, 8 9.451, 245 1 0, 085 t i t e ๏€ญ ๏€ญ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏ƒฉ ๏ƒน๏€ซ ๏ƒซ ๏ƒป๏ƒจ ๏ƒธ where, the turning point or peak of the spread of covid-19 in maluku province is predicted to occur on october 22, 2020 with a total of 3.623 cases, while the time for the end of the spread of covid-19 in maluku province is predicted to occur on may 25, 2023 with 9.451 cases. references [1] n. r. yunus and a. rezki, โ€œkebijakan pemberlakuan lock down sebagai antisipasi penyebaran corona virus covid-19,โ€ salam j. sos. dan budaya syar-i, 2020, doi: 10.15408/sjsbs.v7i3.15083. [2] j. s. m. peiris et al., โ€œcoronavirus as a possible cause of severe acute respiratory syndrome,โ€ lancet, 2003, doi: 10.1016/s0140-6736(03)13077-2. [3] a. zumla, d. s. hui, and s. perlman, โ€œmiddle east respiratory syndrome,โ€ the lancet. 2015, doi: 10.1016/s0140-6736(15)60454-8. [4] h. diah, h. d. rendra, i. fathiyah, e. burhan, and a. heidy, โ€œpenyakit virus corona 2019,โ€ j. respirologi indones., 2020. [5] c. ceraolo and f. m. giorgi, โ€œgenomic variance of the 2019-ncov coronavirus,โ€ j. med. virol., 2020, doi: 10.1002/jmv.25700. [6] a. e. gorbalenya et al., โ€œthe species severe acute respiratory syndrome-related coronavirus: classifying 2019-ncov and naming it sars-cov-2,โ€ nature microbiology. 2020, doi: 10.1038/s41564-020-0695-z. richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 205 [7] l. lin, l. lu, w. cao, and t. li, โ€œhypothesis for potential pathogenesis of sars-cov2 infectionโ€“a review of immune changes in patients with viral pneumonia,โ€ emerging microbes and infections. 2020, doi: 10.1080/22221751.2020.1746199. [8] p. f. verhulst, โ€œnotice sur la loi que la population suit dans son accroissement,โ€ corresp. mathรฉmatique phys., 1838. [9] a. g. mckendrick and m. k. pai, โ€œxlv.โ€”the rate of multiplication of microorganisms: a mathematical study,โ€ proc. r. soc. edinburgh, vol. 31, pp. 649โ€“653, 1912. [10] f. j. richards, โ€œa flexible growth function for empirical use,โ€ j. exp. bot., vol. 10, no. 2, pp. 290โ€“301, 1959. [11] j. a. nelder, โ€œ182. note: an alternative form of a generalized logistic equation,โ€ biometrics, 1962, doi: 10.2307/2527907. [12] r. pearl and l. j. reed, โ€œthe logistic curve and the census count of 1930,โ€ science (80. )., 1930, doi: 10.1126/science.72.1868.399-a. [13] s. y. lee, b. lei, and b. mallick, โ€œestimation of covid-19 spread curves integrating global data and borrowing information,โ€ plos one, 2020, doi: 10.1371/journal.pone.0236860. [14] m. e. gilpin and f. j. ayala, โ€œglobal models of growth and competition,โ€ proc. natl. acad. sci. u. s. a., 1973, doi: 10.1073/pnas.70.12.3590. [15] j. v. ross, โ€œa note on density dependence in population models,โ€ ecol. modell., 2009, doi: 10.1016/j.ecolmodel.2009.08.024. [16] n. r. lambe, e. a. navajas, g. simm, and l. bรผnger, โ€œa genetic investigation of various growth models to describe growth of lambs of two contrasting breeds,โ€ j. anim. sci., 2006, doi: 10.2527/jas.2006-041. [17] g. a. f. seber and c. j. wild, โ€œnonlinear regression. hoboken,โ€ new jersey john wiley sons, vol. 62, p. 63, 2003. [18] h. anton, calculus: with analytic geometry, no. qa 303. a57 1980. 1980. [19] g. zhou and g. yan, โ€œsevere acute respiratory syndrome epidemic in asia.,โ€ emerg. infect. dis., vol. 9, no. 12, pp. 1608โ€“1610, 2003. [20] h. nishiura, s. tsuzuki, b. yuan, t. yamaguchi, and y. asai, โ€œtransmission dynamics of cholera in yemen, 2017: a real time forecasting,โ€ theor. biol. med. model., 2017, doi: 10.1186/s12976-017-0061-x. [21] r. zreiq, s. kamel, s. boubaker, a. a. al-shammary, f. d. algahtani, and f. alshammari, โ€œgeneralized richards model for predicting covid-19 dynamics in saudi arabia based on particle swarm optimization algorithm,โ€ aims public heal., vol. 7, no. 4, p. 828, 2020. [22] k. roosa et al., โ€œshort-term forecasts of the covid-19 epidemic in guangdong and zhejiang, china: february 13โ€“23, 2020,โ€ j. clin. med., 2020, doi: 10.3390/jcm9020596. [23] r. b. banks, growth and diffusion phenomena: mathematical frameworks and applications, vol. 14. springer science & business media, 1993. [24] a. t. goshu, โ€œderivation of inflection points of nonlinear regression curves implications to statistics,โ€ am. j. theor. appl. stat., 2013, doi: 10.11648/j.ajtas.20130206.25. richards curve implementation for prediction of covid-19 spread in maluku province nanang ondi 206 [25] y.-h. hsieh, โ€œrichards model: a simple procedure for real-time prediction of outbreak severity,โ€ 2009. [26] m. hรถรถk, j. li, n. oba, and s. snowden, โ€œdescriptive and predictive growth curves in energy system analysis,โ€ natural resources research. 2011, doi: 10.1007/s11053011-9139-z. bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution cauchy โ€“jurnal matematika murni dan aplikasi volume 7(4) (2023), pages 493-502 p-issn: 2086-0382; e-issn: 2477-3344 submitted: june 10, 2022 reviewed: february 22, 2023 accepted: march 09, 2023 doi: http://dx.doi.org/10.18860/ca.v7i4.16400 bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi1, taufiq iskandar2, nurbahari3, alim misbullah4, vina apriliani5* 1,2,3department of mathematics, syiah kuala university, banda aceh, indonesia 4department of informatics, syiah kuala university, banda aceh, indonesia 5department of mathematics education, uin ar-raniry, banda aceh, indonesia 1,5graduate school of natural science and technology, kanazawa university, kanazawa, japan email: vina.apriliani@ar-raniry.ac.id abstract one technique for determining the premium is using the credibility theory. in this study, a credibility premium determination model was derived with the best accuracy approach in the form of bรผhlmannโ€™s credibility premium. the approach used was a parameteric approach where the claim data is assumed to have a negative binomial and 2-poisson distribution. the bรผhlmann's credibility premium formula is given explicitly for these two data distributions. the obtained model is also applied to the correct data following these distributions. from the simulation results, it is obtained that the premium values are very close in value so that both models can be applied to the data and have a high level of credibility because they have a high credibility factor value. the results of this study provide a basic contribution to the development of actuarial science, especially in the technique of determining insurance premiums. copyright ยฉ 2023 by authors, published by cauchy group. this is an open access article under the cc by-sa license (https://creativecommons.org/licenses/by-sa/4.0/) keywords: 2-poisson distribution; bรผhlmann's credibility; negative binomial distribution introduction in everyday life, humans are very vulnerable to risk. for example, the risk of accidents, property loss, illness, and even loss of life. this risk causes humans to lose their assets. therefore, insurance comes with the aim of minimizing loss if the risk does occur. insurance is an agreement between the insured (policyholder) and the insurer which requires the policyholder to pay a premium as compensation for the insurance benefits to be provided by the insurer in the event of a risk of failure to the policyholder [1]. one of the problems of insurance companies is how to determine the premium of a product. one of the techniques used is credibility theory. this theory predicts the amount of premium rates in the future based on experience data in the past. there are two predictive models that can be formed, namely a model for the number of claims and a model for the amount of claims (claim severity) that occur. this of course will be related to the type of data distribution used. the statistical approach that can be used in modeling the data is a parametric approach and a nonparametric approach. in this approach, we used a http://dx.doi.org/10.18860/ca.v7i4.16400 mailto:vina.apriliani@ar-raniry.ac.id https://creativecommons.org/licenses/by-sa/4.0/ bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 494 parametric approach where the claim data is assumed to follow a certain distribution [2]. one type of credibility that is widely used is the best accuracy credibility which consists of the bรผhlmann model and the bรผhlmann-straub model [3]. in the bรผhlmann model, policyholders are assumed to be the same number between time periods, while the bรผhlmann-straub model is a general form of the bรผhlmann model where the number of policyholders may differ between time periods. several studies related to the determination of premiums with bรผhlmann and bรผhlmann-straub credibility parametrically can be seen in the research conducted by [4]โ€“[7]. the distributions that are commonly used to model many claims are the negative binomial distribution and the poisson distribution [8]. according to [9], mixed distribution is a distribution that can be considered in modeling the data. this is because, data modeling becomes more accurate. one of the mixed distributions used in this study is the 2-poisson distribution [10]. the use of 2-poisson distribution has not been found in previous studies. by using the assumption of a negative binomial and 2-poisson distribution on the data, the bรผhlmannโ€™s credibility model will be determined on the data that satisfies this distribution. the equation for determining bรผhlmann's credibility parameter is given explicitly. in addition, the prediction results obtained through the application of the data are also compared. applications on nonparametric data using r can be seen in [11]. methods poisson distribution the poisson distribution is a distribution with one parameter (๐œ†). the probability function for the poisson distribution is ๐‘๐‘˜ = ๐‘’โˆ’๐œ†๐œ†๐‘˜ ๐‘˜! , (1) with ๐‘˜ = 0,1,2, โ€ฆ. the expected value and variance of the poisson distribution are ๐ธ(๐‘‹) = ๐œ†, (2) ๐‘‰๐‘Ž๐‘Ÿ(๐‘‹) = ๐œ† (3) [12]. the other properties and the applications of this distribution can be seen in [13]. gamma distribution a random variable is said to have a gamma distribution with parameters ๐›ผ and ๐›ฝ, if it has a probability density function ๐‘”๐‘‹ (๐‘ฅ; ๐›ผ, ๐›ฝ) = ๐‘ฅ๐›ผโˆ’1๐‘’ โˆ’๐‘ฅ ๐›ฝโ„ ๐›ค(๐›ผ)๐›ฝ๐›ผ , ๐‘ฅ โˆˆ โ„+ (4) with ๐›ผ > 0, ๐›ฝ > 0, ฮณ(๐›ผ) > 0, and ฮณ(๐›ผ) = โˆซ ๐‘ฆ๐›ผโˆ’1 โˆž 0 ๐‘’โˆ’๐‘ฆ ๐‘‘๐‘ฆ. the parameter ๐›ผ is called the shape parameter associated with the gamma distribution and the parameter ๐›ฝ is generally called the scale parameter because it multiplies the random variable with a gamma distribution by a positive constant. the expected value and variance of the gamma distribution are ๐ธ(๐‘‹) = ๐›ผ ๐œ , (5) ๐‘‰๐‘Ž๐‘Ÿ(๐‘‹) = ๐›ผ ๐œ2 . (6) the evidence can be found at [14]. bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 495 negative binomial distribution a negative binomial distribution is formed by an experiment that satisfies the following conditions: 1. an experiment consists of a series of independent experiments. 2. each experiment can only produce one of two possible outcomes, failure and success. 3. the experiment continues until a total number of ๐‘ฅ successes. the negative binomial distribution can be formed from a mixed distribution of the poisson distribution and the gamma distribution. by using equation (1) and (4), it can be shown that this distribution has two parameters (๐›ผ and ๐œ). the probability density function is ๐‘๐‘‹ (๐‘ฅ) = ( ๐‘ฅ + ๐›ผ โˆ’ 1 ๐›ผ โˆ’ 1 ) (1 โˆ’ ๐œ)๐‘ฅ ๐œ๐›ผ , (7) with ๐‘ฅ = 0,1,2, โ€ฆ [15]. 2-poisson distribution the 2-poisson distribution is a distribution with three parameters (๐œ†1, ๐œ†2, and ๐‘). the probability function for the 2-poisson distribution is ๐‘๐‘‹ (๐‘ฅ) = ๐‘’โˆ’๐œ†1 ๐œ†1 ๐‘ฅ ๐‘ฅ! ๐‘ + (1 โˆ’ ๐‘) ๐‘’โˆ’๐œ†2 ๐œ†2 ๐‘ฅ ๐‘ฅ! , (8) with ๐‘ฅ = 0,1,2, โ€ฆ [16]. some of the applications of this distribution can be seen in [17]-[18]. bรผhlmannโ€™s credibility bรผhlmann's credibility is a credibility model with the best accuracy approach. in this model, the number of policyholders observed is assumed to be the same every year. premiums are determined based on a linear model between past data and theoretical premiums. the parameters used in the bรผhlmann's credibility model are as follows: 1. the average value of individual claims or premiums and the expected values ๐(๐œฝ) = ๐‘ฌ(๐‘ฟ|๐šฏ), (๐Ÿ—) ๐ = ๐‘ฌ(๐(๐œฝ)), (๐Ÿ๐ŸŽ) 2. the variance of the hypothetical mean ๐’‚ = ๐‘ฝ๐’‚๐’“(๐(๐œฝ)) = ๐‘ฝ๐’‚๐’“(๐šฏ), (๐Ÿ๐Ÿ) 3. variance process and the expected value of variance ๐’—(๐œฝ) = ๐‘ฝ๐’‚๐’“(๐‘ฟ|๐šฏ), (๐Ÿ๐Ÿ) ๐’— = ๐‘ฌ(๐’—(๐œฝ)), (๐Ÿ๐Ÿ‘) 4. credibility coefficient ๐‘ฒ = ๐’— ๐’‚ , (๐Ÿ๐Ÿ’) 5. credibility factor ๐’ = ๐‘ต ๐‘ต + ๐‘ฒ , (๐Ÿ๐Ÿ“) 6. credibility premium ๐‘ƒ๐ถ = ๐‘๏ฟฝฬ…๏ฟฝ + (1 โˆ’ ๐‘) (16) [19]. goodnes-of-fit test suppose ๐‘š is the largest value in the distribution of the observed data and ๐‘Ÿ is the number of parameters to be estimated, then with several predicted parameters, statistics bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 496 ๐Œ๐Ÿ = โˆ‘ (๐’๐’™ โˆ’ ๐’๐’‘๐‘ฟ(๐’™)) ๐Ÿ ๐’๐’‘๐’™(๐’™) ๐’Ž ๐’™=๐ŸŽ (๐Ÿ๐Ÿ•) asymptotically spread ๐Œ๐Ÿ with degrees of freedom ๐’Ž โˆ’ ๐’“. hypothesis testing is one of the statistical tests carried out for testing the suitability of the parameter ๐›ฝ๐‘– which is made with the following hypothesis: ๐ป0: ๐œƒ = ๐›ฝ๐‘– , (data has a distribution that matches the distribution of the test) ๐ป1: ๐œƒ โ‰  ๐›ฝ๐‘– . (data does not have a distribution that matches the distribution of the test) by using the values of the calculated chi-square and the table chi-square, the following decision rules apply: if ๐œ’๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ 2 โ‰ค ๐œ’๐‘ก๐‘Ž๐‘๐‘™๐‘’ 2 then the null hypothesis is accepted and if ๐œ’๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ 2 > ๐œ’๐‘ก๐‘Ž๐‘๐‘™๐‘’ 2 then the null hypothesis is rejected, by setting the alpha value as well as the degrees of freedom of the chi-square distribution [20]. results and discussion estimating bรผhlmannโ€™s credibility parameters using negative binomial distribution bรผhlmann's credibility model with claims of negative binomial distribution can be derived by providing an estimate of the credibility parameter assuming the frequency of claims with a negative binomial distribution. we know that the negative binomial distribution is a mixed distribution of the poisson distribution and the gamma distribution. suppose ๐‘‹|ฮธ โˆฝ poisson(๐œƒ) and ฮธ โˆฝ gamma(๐›ผ, ๐œ), it can be proven that ๐‘‹ has a negative binomial distribution with parameters ๐›ผ and ๐œ [21]. the following formula is given for the bรผhlmannโ€™s credibility parameters using this distribution assumption. hypothetical mean and the expected value for negative binomial model the hypothetical mean for negative binomial model can be determined using equation (9). since ๐‘‹|ฮธ โˆฝ poisson(๐œƒ) then ๐œ‡(ฮธ) = ๐ธ(๐‘‹|ฮธ = ฮธ) = ๐œƒ. the expected value of the hypothetical mean or known as the individual premium (๐œ‡) can be determined by equation (10) as follows: ๐œ‡ = ๐ธ(๐œ‡(ฮธ)) = ๐ธ(ฮธ). since ฮธ has gamma distribution (๐›ผ, ๐œ), then according to equation (5), ๐œ‡ = ๐›ผ ๐œ . (18) to determine the credibility coefficient, it is necessary to estimate the value of parameter ๐‘Ž. the value of ๐‘Ž is the variance of the hypothetical mean. using equation (11), the formula for the variance value of the hypothetical mean can be determined as follows: ๐‘Ž = ๐‘‰๐‘Ž๐‘Ÿ(๐œ‡(๐œƒ)) = ๐‘‰๐‘Ž๐‘Ÿ(ฮธ) = ๐ธ(ฮธ2) โˆ’ (๐ธ(ฮธ)) 2 . since ฮธ has gamma distribution, then according to equation (6), ๐‘Ž = ๐›ผ ๐œ2 . (19) variance process and the expected value for negative binomial model the variance process formula and the expected value can be determined using equation (12) and (13). since ๐‘‹|ฮธ โˆฝ poisson(๐œƒ) then ๐‘ฃ(๐œƒ) = ๐‘‰๐‘Ž๐‘Ÿ(๐‘‹|ฮธ = ฮธ) = ๐œƒ. the expected value of the variance process (๐‘ฃ) ishypothetical๐‘ฃ = ๐ธ(๐‘ฃ(ฮธ)) = ๐ธ(ฮธ) ๐‘ฃ = ๐›ผ ๐œ . (20) bรผhlmannโ€™s credibility coefficient for negative binomial model the credibility coefficient is the ratio between the expected value of variance process bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 497 and variance of the hypothetical mean. by using equation (11), (19), and (20), it is obtained ๐พ = ๐‘ฃ ๐‘Ž = ๐œ. (21) bรผhlmann's credibility premium for negative binomial model after obtaining the formula from the credibility parameter for the negative binomial model, it can be formulated a formula for determining the premium with the negative binomial model using equation (15) and (16) as follows: ๐‘ƒ๐ถ = ๐‘๏ฟฝฬ…๏ฟฝ + (1 โˆ’ ๐‘) ฮผ, (22) with ๐‘ = ๐‘ ๐‘ + ๐พ = ๐‘ ๐‘ + ๐œ , ๏ฟฝฬ…๏ฟฝ = โˆ‘ ๐‘ฅ๐‘– (๐‘›๐‘ฅ๐‘– ) ๐‘ ๐‘–=1 (๐‘›๐‘ฅ๐‘– ) . ๏ฟฝฬ…๏ฟฝ is the average of the observed data while ฮผ is the individual premium which can be determined using equation (18). the ๐‘ variable is also called the bรผhlmannโ€™s credibility factor for the frequency of claims with a negative binomial distribution, where ๐พ is a credibility coefficient that satisfies equation (21). estimating bรผhlmann's credibility parameters using 2-poisson distribution the following formula is given for the bรผhlmannโ€™s credibility parameters using this distribution assumption. hypothetical mean and the expected value for 2-poisson model as before, the hypothetical mean for 2-poisson model can be determined using equation (9). the 2-poisson distribution gives that ๐‘‹|ฮธ โˆฝ poisson(๐œƒ) and ฮธ โˆฝ ๐‘ข(๐œƒ) = { ๐‘ โˆถ ๐œƒ = ๐œ†1 1 โˆ’ ๐‘ โˆถ ๐œƒ = ๐œ†2. (23) since ๐‘‹|ฮธ โˆฝ poisson(๐œƒ), then according to equation (2), ๐œ‡(๐œƒ) = ๐ธ(๐‘‹|ฮธ = ฮธ) = ๐œƒ. (24) the expected value of the hypothetical mean (๐œ‡) is ๐œ‡ = ๐ธ(๐œ‡(ฮธ)) = ๐ธ(ฮธ) = ๐‘๐œ†1 + (1 โˆ’ ๐‘)๐œ†2 = ๐‘(๐œ†1 โˆ’ ๐œ†2) + ๐œ†2. (25) furthermore, the variance of the hypothetical mean can be determined using equation (11) and (23) as follows: ๐‘Ž = ๐‘‰๐‘Ž๐‘Ÿ(๐œ‡(๐œƒ)) = ๐‘‰๐‘Ž๐‘Ÿ(ฮธ) = ๐ธ(ฮธ2) โˆ’ (๐ธ(ฮธ)) 2 = ๐œ†1 2 ๐‘ + ๐œ†2 2(1 โˆ’ ๐‘) โˆ’ (๐‘(๐œ†1 โˆ’ ๐œ†2) + ๐œ†2) 2 = ๐œ†1 2 ๐‘ + ๐œ†2 2(1 โˆ’ ๐‘) โˆ’ (๐‘2(๐œ†1 โˆ’ ๐œ†2) 2 + 2๐‘(๐œ†1 โˆ’ ๐œ†2)๐œ†2 + ๐œ†2 2 ) = (๐œ†1 2 โˆ’ ๐œ†2 2 )๐‘ + ๐œ†2 2 โˆ’ [(๐‘(๐œ†1 โˆ’ ๐œ†2) + 2)๐‘(๐œ†1 โˆ’ ๐œ†2) + ๐œ†2 2 ] = (๐œ†1 2 โˆ’ ๐œ†2 2 )๐‘ (๐œ†1 โˆ’ ๐œ†2)(๐œ†1 + ๐œ†2) โˆ’ [(๐‘(๐œ†1 โˆ’ ๐œ†2) + 2)๐‘(๐œ†1 โˆ’ ๐œ†2)] = [(๐œ†1 + ๐œ†2) โˆ’ (๐‘(๐œ†1 โˆ’ ๐œ†2) + 2)๐‘(๐œ†1 โˆ’ ๐œ†2)] ๐‘Ž = [(1 โˆ’ ๐‘)(๐œ†1 + ๐œ†2) โˆ’ 2]๐‘(๐œ†1 โˆ’ ๐œ†2). (26) variance process and the expected value for 2-poisson model the variance process and the expected value can be determined using equation (12) bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 498 and (13). since ๐‘‹|ฮธ โˆฝ poisson(๐œƒ) then according to equation (3), we get ๐‘ฃ(๐œƒ) = ๐‘‰๐‘Ž๐‘Ÿ(๐‘‹|ฮธ = ฮธ) = ๐œƒ. the expected value of the variance process (๐‘ฃ) can be obtained using equation (23), which is as follows: ๐‘ฃ = ๐ธ(๐‘ฃ(ฮธ)) = ๐ธ(ฮธ) ๐‘ฃ = ๐‘๐œ†1 + (1 โˆ’ ๐‘)๐œ†2 ๐‘ฃ = ๐‘(๐œ†1 โˆ’ ๐œ†2) + ๐œ†2. (27) bรผhlmannโ€™s credibility coefficient for 2-poisson model the last part of determining bรผhlmann's credibility premium is the need to assign a credibility coefficient value. by using equation (14), (26), and (27), it is obtained ๐พ = ๐‘ฃ ๐‘Ž ๐พ = ๐‘๐œ†1 + (1 โˆ’ ๐‘)๐œ†2 [(1 โˆ’ ๐‘)(๐œ†1 + ๐œ†2) โˆ’ 2]๐‘(๐œ†1 โˆ’ ๐œ†2) . (28) bรผhlmann's credibility premium for 2-poisson model bรผhlmann's credibility premium is obtained by using equation (15) and (28) so that the bรผhlmann credibility value for the 2-poisson model is ๐‘ƒ๐ถ = ๐‘๏ฟฝฬ…๏ฟฝ + (1 โˆ’ ๐‘) ฮผ, (29) with ๐‘ = ๐‘ ๐‘ + ๐พ = ๐‘ ๐‘ + ๐‘๐œ†1+(1โˆ’๐‘)๐œ†2 [(1โˆ’๐‘)(๐œ†1+๐œ†2)โˆ’2]๐‘(๐œ†1โˆ’๐œ†2) , ๏ฟฝฬ…๏ฟฝ = โˆ‘ ๐‘ฅ๐‘– (๐‘›๐‘ฅ๐‘– ) ๐‘ ๐‘–=1 (๐‘›๐‘ฅ๐‘– ) . the ๐‘ variable is also known as the bรผhlmannโ€™s credibility factor for the frequency of claims with 2-poisson distribution. the value of ฮผ can be determined by equation (25) and ๏ฟฝฬ…๏ฟฝ is the average of the observed data. application on data the data used for the application of the model is data on the distribution of claims (๐‘›๐‘ฅ ) on the motor vehicle insurance portfolio in singapore [22]. the number of claims occurred from 1993 to 2001 which can be seen in table 1. table 1. portfolio of the number of claims from observation results (millions of dollars) ๐‘ฅ ๐‘›๐‘ฅ 0 178.080 1 19.224 2 1.859 3 177 4 11 5 1 >5 0 total ๐‘›๐‘ฅ = 199.352 before applying to the model, it is first tested whether the claim frequency data in table 1 has a negative binomial and 2-poisson distribution or not. testing the distribution of data was carried out using the chi-square test. bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 499 negative binomial distribution test the negative binomial distribution has two estimators for the parameters (๏ฟฝฬ‚๏ฟฝ and ๏ฟฝฬ‚๏ฟฝ) based on equation (7). parameter estimates can be obtained using the moment method. based on table 1, the average value of the number of claims ๏ฟฝฬ…๏ฟฝ = 0,1179923, ๏ฟฝฬ…๏ฟฝ2 = 0,01392218, and variance ๐‘†2 = 0,12881027. the values of ๏ฟฝฬ‚๏ฟฝ and ๏ฟฝฬ‚๏ฟฝ are ๏ฟฝฬ‚๏ฟฝ = ๏ฟฝฬ…๏ฟฝ2 ๐‘†2 โˆ’ ๏ฟฝฬ…๏ฟฝ = 0,01392218 0,01081797 = 1,28694966, ๏ฟฝฬ‚๏ฟฝ = ๏ฟฝฬ…๏ฟฝ ๐‘†2 โˆ’ ๏ฟฝฬ…๏ฟฝ = 0,1179923 0,01081797 = 10,9070648. the distribution test steps carried out are as follows: a. hypothesis formulation. ๐ป0 โˆถ data has negative binomial distribution. ๐ป1 โˆถ data is not distributed negative binomial. b. calculates the probability for each claim frequency and the expected value. the probability is calculated for each claim frequency (๐‘๐‘ฅ ) for each ๐‘ฅ in the table data and based on the parameter estimator values and the negative binomial distribution formula, then for ๐‘ฅ = 0: ๐‘๐‘ฅ = ( ๐›ผ + ๐‘ฅ โˆ’ 1 ๐‘ฅ ) ( ๐œ 1 + ๐œ ) ๐›ผ ( 1 1 + ๐œ ) ๐‘ฅ ๐‘0 = ( 1,28694966 + 0 โˆ’ 1 0 ) ( 10,9070648 1 + 10,9070648 ) 1,28694966 ( 1 1 + 10,9070648 ) 0 ๐‘0 = 0,89324646. for the expected value (๐‘›๐‘๐‘ฅ ): ๐‘›๐‘0 = 199.352(0,89324646) = 178.070,47. in the same way, it will produce a portfolio in table 2. table 2. portfolio of the number of claims with negative binomial distribution ๐‘ฅ ๐‘›๐‘ฅ ๐‘›๐‘๐‘‹ (๐‘ฅ) 0 178.080 178.070,47 1 19.224 19.246,38 2 1.859 1.848,29 3 177 170,07 4 11 15,31 5 1 1,36 >5 0 0,12 total 199.352 199.352 c. determine the value of the chi-square test statistic. the chi-square test statistic determined by equation (17) is obtained ๐œ’๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ 2 = 1,6912. with a 95% confidence interval, then ๐›ผ = 0,05 and ๐œ’๐‘ก๐‘Ž๐‘๐‘™๐‘’ 2 with degrees of freedom ๐‘š โˆ’ ๐‘Ÿ = 5 โˆ’ 2 = 3 is 7,8147. based on the values of ๐œ’๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ 2 and ๐œ’๐‘ก๐‘Ž๐‘๐‘™๐‘’ 2 , it can be concluded that ๐œ’๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ 2 < ๐œ’๐‘ก๐‘Ž๐‘๐‘™๐‘’ 2 and the null hypothesis is accepted. thus, the data used in this study has met the requirements for a negative binomial distribution. 2-poisson distribution test there are three parameters that are assumed to have 2-poisson distribution based on bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 500 equation (8). by using the moment method, it is obtained that ๐‘ ฬ‚ = 0,77481, ๐œ†1ฬ‚ = 0,06191, and ๐œ†2ฬ‚ = 0,31092. the distribution test steps carried out are as follows: a. hypothesis formulation. ๐ป0 โˆถ data has 2-poisson distribution. ๐ป1 โˆถ data is not distributed 2-poisson. b. calculates the probability for each claim frequency and the expected value. the probability is calculated for each claim frequency (๐‘๐‘ฅ ) for each ๐‘ฅ in the table data and based on the parameter estimator values and the 2-poisson distribution formula, the portfolio is obtained in table 3. table 3. portfolio of the number of claims with 2-poisson distribution ๐‘ฅ ๐‘›๐‘ฅ ๐‘›๐‘๐‘‹ (๐‘ฅ) 0 178.080 178.081,52 1 19.224 19.217,82 2 1.859 1.868,36 3 177 170,53 4 11 12,89 5 1 0,79 >5 0 0,04 total 199.352 199.352 c. determine the value of the chi-square test statistic. the chi-square test statistic determined by equation (17) is obtained ๐œ’๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ 2 = 0.6249634. with a 95% confidence interval, then ๐›ผ = 0,05 and ๐œ’๐‘ก๐‘Ž๐‘๐‘™๐‘’ 2 with degrees of freedom ๐‘š โˆ’ ๐‘Ÿ = 4 โˆ’ 3 = 1 is 3,8414. based on the values of ๐œ’๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ 2 and ๐œ’๐‘ก๐‘Ž๐‘๐‘™๐‘’ 2 , it can be concluded that ๐œ’๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ 2 < ๐œ’๐‘ก๐‘Ž๐‘๐‘™๐‘’ 2 and the null hypothesis is accepted. thus, the data used has met the requirements for a 2-poisson distribution. parameter estimation of bรผhlmann's credibility premium based on the estimation of distribution parameter values that have been obtained, it can be determined the parameter estimation of bรผhlmann's credibility premium. determination of the estimated parameter value using equation (18)-(29). the alleged results are presented in the table 4. table 4. parameter estimation of bรผhlmann's credibility premium from the data used parameter estimation negative binomial 2-poisson ๏ฟฝฬ…๏ฟฝ 0,1179 0,1179 ๏ฟฝฬ‚๏ฟฝ 0,1180 0,1179 ๏ฟฝฬ‚๏ฟฝ 0,0108 0,3696 ๐‘ฃ 0,1180 0,1179 ๏ฟฝฬ‚๏ฟฝ 10,9071 0,3191 ๏ฟฝฬ‚๏ฟฝ 0,9999 0,9494 ๐‘ƒ๐ถ 0,11790 0,11799 based on the results in table 4, it can be seen that the estimated frequency of claims in the next period assuming the data is negative binomial and 2-poisson distribution is 0.11790 and 0.11799, respectively. this means that in the negative binomial model it is estimated that there will be 11.79% of policyholders who will make insurance claims in the bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 501 next period, while in the 2-poisson model it is estimated that there will be 11.799% of policyholders who will make insurance claims. the two models give fairly close results, this is because the bรผhlmann's credibility factor for the two distribution models is quite large, namely each 0.9999 and 0.9494. conclusions bรผhlmann's credibility formula has been given for data with negative binomial and 2poisson distribution. both distributions are mixed distributions. mixed distributions are quite well used in determining premiums with credibility. this is because in a mixed distribution, the distribution of claim frequency often depends on the distribution of risk. the simulation on the data shows that the premium value obtained is very good with high credibility for both distributions modeled. references [1] t. futami, matematika asuransi jiwa. tokyo: kyoei life insurance, 1993. [2] a. k. mutaqin, a. kudus, and y. karyana, โ€œmetode parametrik untuk menghitung premi program asuransi usaha tani padi di indonesia,โ€ ethos (jurnal penelit. dan pengabdi. masyarakat), vol. 4, no. 2, pp. 318โ€“326, 2016, doi: 10.29313/ethos.v0i0.1656. [3] h. bรผhlmann and a. gisler, a course in credibility theory and its applications. berlin: springer, 2005. [4] i. maulidi and v. apriliani, โ€œmodel kredibilitas bรผhlmann dengan frekuensi klaim berdistribusi binomial negatif-lindley,โ€ limits j. math. its appl., vol. 18, no. 1, pp. 71โ€“ 78, 2021, doi: 10.12962/limits.v18i1.6690. [5] t. m. karina, s. nurrohmah, and i. fithriani, โ€œbuhlmann credibility model in predicting claim frequency that follows heterogeneous weibull count distribution,โ€ in journal of physics: conference series, 2019, vol. 1218, no. 1, p. 012041. doi: 10.1088/1742-6596/1218/1/012041. [6] l. m. wen, w. wang, and j. l. wang, โ€œthe credibility premiums for exponential principle,โ€ acta math. sin. engl. ser., vol. 27, no. 11, pp. 2217โ€“2228, 2011, doi: 10.1007/s10114-011-9198-4. [7] a. hassan zadeh and d. a. stanford, โ€œbayesian and bรผhlmann credibility for phasetype distributions with a univariate risk parameter,โ€ scand. actuar. j., vol. 2016, no. 4, pp. 338โ€“355, 2016, doi: 10.1080/03461238.2014.926977. [8] a. k. mutaqin and k. komarudin, โ€œperhitungan premi untuk asuransi kendaraan bermotor berdasarkan sejarah frekuensi klaim pemegang polis menggunakan analisis bayes,โ€ pythagoras j. pendidik. mat., vol. 4, no. 1, pp. 47โ€“55, 2008, doi: 10.21831/pg.v4i1.686. [9] s. a. thamrin, a. lawi, and r. mahmudah, โ€œsimulasi penaksiran parameter distribusi weibull campuran untuk data survival heterogen dengan pendekatan bayesian,โ€ indoms j. stat., vol. 2, no. 2, pp. 37โ€“46, 2014. [10] a. palmisano, โ€œpoisson and binomial distribution,โ€ the encyclopedia of archaeological sciences, no. june. pp. 1โ€“4, 2018. doi: 10.1002/9781119188230.saseas0467. [11] i. maulidi, w. erliana, a. d. garnadi, s. nurdiati, and i. g. p. purnaba, โ€œpenghitungan kredibilitas dengan pustaka actuar dalam r,โ€ j. math. its appl., vol. 16, no. 2, pp. 45โ€“ 52, 2017, doi: 10.29244/jmap.16.2.45-52. bรผhlmann's credibility model with claims of negative binomial and 2-poisson distribution ikhsan maulidi 502 [12] s. ghahramani, fundamentals of probability. new york (us): prentice hall, 2005. [13] j. zhao, f. zhang, c. zhao, g. wu, h. wang, and x. cao, โ€œthe properties and application of poisson distribution,โ€ in journal of physics: conference series, 2020, vol. 1550, no. 3, p. 032109. doi: 10.1088/1742-6596/1550/3/032109. [14] l. j. bain and m. engelhardt, introduction to probability and mathematical statistics. california: duxbury press, 1992. [15] d. lord and s. r. geedipally, โ€œthe negative binomialโ€“lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros,โ€ accid. anal. prev., vol. 43, no. 5, pp. 1738โ€“1742, 2011, doi: 10.1016/j.aap.2011.04.004. [16] p. c. consul and g. c. jain, โ€œa generalization of the poisson distribution,โ€ technometrics, vol. 15, no. 4, pp. 791โ€“799, 1973, doi: 10.1080/00401706.1973.10489112. [17] s. e. robertson and s. walker, some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval, no. april. london, 1994. doi: 10.1007/978-1-4471-2099-5. [18] p. cholayudth, โ€œapplication of poisson distribution in establishing control limits for discrete quality attributes,โ€ j. valid. technol., vol. 13, no. 3, pp. 196โ€“205, 2007, [online]. available: https://www.ivtnetwork.com/sites/default/files/poisiondistrib_01.pdf [19] t. n. herzog, introduction to credibility theory. winsted (us): actex publications, 1999. [20] r. e. walpole, pengantar statistika. jakarta: gramedia pustaka utama, 1995. [21] s. wu, โ€œpoisson-gamma mixture processes and applications to premium calculation,โ€ commun. stat. methods, pp. 1โ€“29, 2020, doi: 10.1080/03610926.2020.1850791. [22] s. m. simanjuntak, โ€œbeberapa model banyaknya klaim dalam sistem bonus malus,โ€ ipb university, 2017. issn 2086-0382 e-issn 2477-3344 cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 cauchy vol. 6 no. 4 pages: 162 โ€“ 308 malang may 2021 issn 2086-0382 e-issn 2477-3344 ๐œ’ cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 cauchy is a mathematical journal published twice a year on may and november by the mathematics department, faculty of science and technology, universitas islam negeri maulana malik ibrahim malang. this journal includes research papers, literature studies, analysis, and problem solving in mathematics (algebra, analysis, statistics, computing and applied mathematics). editorial board editor in chief : dr. sri harini, m.si, maulana malik ibrahim state islamic university of malang, indonesia. managing editor : mohammad jamhuri, m.si, maulana malik ibrahim state islamic university of malang, indonesia. juhari, m.si, maulana malik ibrahim state islamic university of malang, indonesia. 1. editorial board : prof hadi susanto, department of mathematical sciences, university of 2. essex and department of mathematics of khalifa university, united kingdom mario rosario guarracino, computational and data science laboratory high performance computing and networking institute national research council of italy, italy kartick chandra mondal, jadavpur university, salt lake campus, india rowena alma l. betty, university of the philippines diliman, philippines subanar seno, gadjah mada university, indonesia toto nusantara, state university of malang, indonesia edy tri baskoro, institut teknologi bandung, indonesia eridani eridani, airlangga university, indonesia abdul halim abdullah, university of technology malaysia, malaysia kusno, university of jember, indonesia slamin, university of jember, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia abdussakir, maulana malik ibrahim state islamic university of malang, indonesia javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/272712') cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 editorial board ari kusumastuti, maulana malik ibrahim state islamic university of malang, indonesia fachrur rozi, maulana malik ibrahim state islamic university of malang, indonesia elly susanti, universitas islam negeri maulana malik ibrahim malang, indonesia assistant editor : mohammad nafie jauhari, m.si, maulana malik ibrahim state islamic university of malang, indonesia. editorial office mathematics department, maulana malik ibrahim state islamic university of malang gajayana st. 50 malang, east java, indonesia 65144 phone (+62) 81336397956, faximile (+62) 341 558933 e-mail: cauchy@uin-malang.ac.id cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 focus and scope cauchy-jurnal matematika murni dan aplikasi is a mathematical journal published twice a year in may and november by the mathematics department, faculty of science and technology, maulana malik ibrahim state islamic university of malang. we we lc om e a u t h or s for original articles (research), review articles, interesting case reports, special articles illustrations that focus on the mathematics pure and applied. subjects suitable for publication include, but are not limited to the following fields of: 1. actuaria 2. algebra 3. analysis 4. applied 5. computing 6. econometry 7. statistics cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 indexing and abstracting cauchy-jurnal matematika murni dan aplikasi has been covered (indexed and abstracted) by following services: 1. doaj (2016-,)(https://doaj.org/toc/2477-3344) 2. d i m e n s i o n s 3. moraref (2015-,)-(http://moraref.or.id/index.php/browse/index/36) 4. onesearch indonesia (2015-,)-(http://onesearch.id/search/results?filter[]=repoid:ios2732) 5. mendeley (2013-,)-(https://www.mendeley.com/groups/5034091/cauchy/papers/) 6. indonesian scientific journal database (isjd) (2013-,)-(http://isjd.pdii.lipi.go.id/index.php/direktorijurnal.html) 7. google scholar (2009-,)-(https://scholar.google.co.id/citations?hl=en&view_op=list_works&gmla=ajsn f6omofbk7q0o2q-9 xuimca1zi8oz9lp2ehctubhl9dcisxnyh9saieau0g0udt8tym6jk3z666zu46vrsbyz6vjc2a_w&user=dr k-5hkaaaaj) 8. ipi (2009-,)-(http://id.portalgaruda.org/?ref=browse&mod=viewjournal&journal=5272) http://moraref.or.id/index.php/ http://onesearch.id/search/results http://www.mendeley.com/groups/5034091/cauchy/papers/ http://isjd.pdii.lipi.go.id/index.php/ http://id.portalgaruda.org/ cauchy jurnal matematika murni dan aplikasi volume 6, issue 4, may 2021 issn : 2086-0382 e-issn : 2477-3344 table of contents selection of specialization class using support vector machine (svm) method in sekolah menengah atas negeri 1 ambon ........................................................................ 162 โ€“ 168 optimizing the membership degree of fuzzy inference system (fis) and fuzzy clustering means (fcm) in weather data using firefly algorithm ....................... 169 โ€“ 180 learning interest of poliwangi students to learn mathematics engineering through moocs using dummy regression .................................................................... 181 โ€“ 187 stability analysis of hiv/aids model with educated subpopulation ......................... 188 โ€“ 199 trace of positive integer power of squared special matrix ............................................ 200 โ€“ 211 distance and areas weighting of gwr kriging for stunting cases in east java ..... 212 โ€“ 217 spatio temporal modelling for government policy the covid-19 pandemic in east java ........................................................................................................................................ 218 โ€“ 226 dynamical of ratio-dependent eco-epidemical model with prey refuge................. 227 โ€“ 237 poverty in central java using multivariate adaptive regression splines and bootstrap aggregating multivariate adaptive regression splines ........................ 238 โ€“ 245 invertibility of generalized space-time autoregressive model with random weight ............................................................................................................................................ 246 โ€“ 259 analysis of the rosenzweig-macarthur predator-prey model with anti-predator behavior ........................................................................................................................................ 260 โ€“ 269 bayesian generalized self method to estimate scale parameter of invers rayleigh distribution ............................................................................................................... 270 โ€“ 278 strongly summable vector-valued sequence spaces defined by 2-modular .......... 279 โ€“ 285 modeling plant stems using the deterministic lindenmayer system ........................ 286 โ€“ 295 regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) .......................................................................... 296 โ€“ 308 optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 173-185 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 23, 2021 reviewed: november 17, 2021 accepted: december 22, 2021 doi: http://dx.doi.org/10.18860/ca.v7i1.13184 optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi1,*, nursyiva irsalinda1, meksianis z. ndii2 1department of mathematics, faculty of applied science and technology, ahmad dahlan university, yogyakarta, indonesia 2department of mathematics, faculty of sciences and engineering, university of nusa cendana, indonesia *corresponding author email: yudi.adi@math.uad.ac.id* nursyiva.irsalinda@math.uad.ac.id, meksianis.ndii@staf.undana.ac.id abstract the existence of viral mutations in various infectious diseases can make it difficult to overcome outbreaks caused by these viruses. in this paper, we introduce an optimal control problem in a two-strain sir epidemic model with viral mutation and vaccine administration. the purpose of this study was to investigate the efficacy and cost-effectiveness of two disease prevention strategies, namely restriction of community mobility to prevent disease transmission and vaccine intervention. we consider the time-dependent control case, and we use pontryaginโ€™s maximum principle to derive necessary conditions for the optimal control of the disease. we also calculate the average cost-effectiveness ratio (acer) and the incremental cost-effectiveness ratio (icer) to investigate the cost-effectiveness of all possible strategies of the control measures. the results of this study indicate that the most cost-effective disease control strategy is a combination of mobility restriction and vaccination. keywords: epidemic model; cost-effectiveness analysis; numerical simulation; optimal control; viral mutation introduction epidemiological modeling is a field of mathematical modeling that studies the causes, patterns, and effects of disease on health in a population. the sir (susceptible, infected, recovered) compartment model that kermack-mckendrick first introduced in 1927 became the basis for developing models of the spread of infectious diseases. according to the characteristics of the disease, different epidemic models by adding or modifying compartments have been developed and studied. among them by adding a compartment vaccination [1],[2],[3], treatment [4], quarantine [5], viruses or bacteria that cause disease[6], disease-carrying vectors [7], and others. in various types of infectious diseases caused by viruses, viruses mutations make the epidemic difficult to overcome immediately. the emergence of new variants of this virus increased the length of the epidemic period. such conditions are also currently happening in various parts of the world, namely the covid-19 pandemic. especially in http://dx.doi.org/10.18860/ca.v7i1.13184 mailto:yudi.adi@math.uad.ac.id* mailto:nursyiva.irsalinda@math.uad.ac.id mailto:meksianis.ndii@staf.undana.ac.id optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 174 indonesia, after experiencing a decline in cases for about nine months since the beginning of the pandemic in march 2020, the number of positive covid-19 cases again increased in mid-june 2021. the government has taken various policies to be able to end the spread of this covid-19 disease immediately. beside targeting vaccinations, the government is currently implementing community activity restrictions (ppkm) to control the spread of the covid-19 outbreak. many mathematical models of covid-19 have also been developed, as in [5], [8]โ€“[12]. in the last few decade, optimal control theory has developed rapidly, and its diverse applications are widely used in various scientific and engineering fields. this theory has proven to be effective in mathematical epidemiology when it comes to determining how to remove or reduce the number of cases at the lowest possible cost. the optimal control theory has been utilized to capture intervention strategies in many research, see for example [5], [7], [10], [13]โ€“[16] optimal control models involving vaccination strategies have also been developed, as in [3], [16], [17]. however, these models did not consider the presence of viral mutations that were presumed to be more virulent in the premutated viruses. as in 12 states across the united states, the more easily transmissible strain of sars-cov-2, b.1.1.7, has been found [18]. in this article, we will discuss the sir epidemic model by considering the presence of viral mutations. we are also considering vaccine intervention as one of prevention against diseases. motivated by this, in this article, we intend to modify the epidemic model with virus mutation and vaccine interventions studied in adi et al. [19]. instead of constant parameters of the intervention strategy, we use a control function to express the intervention strategy in this model. the goal is to find the best function for a given control measure by applying pontryaginโ€™s maximum principle [20]. this study also observes which control strategy is the most cost-effective, which is determined through the average cost-effectiveness ratio (acer) and the incremental cost-effectiveness ratio (icer), as defined in [21]โ€“ [24]. besides being applied to the spread of covid-19, the model can also be used for other diseases involving viral mutations. this paper's structure is as follows. the methodologies used in our research are discussed in the following section. after then, the model's analysis was discussed. finally, we will provide a brief summary of our work. methods the optimal control problem is analyzed by performing the following steps: 1. we consider a modified sir epidemic model taking into account the presence of viral mutations and vaccine intervention. 2. considering a time-dependent constant case-control and using pontryagin's maximum principle to obtain the necessary conditions for optimal disease control. 3. demonstrating the numerical result of the existence of the optimal control by implementing the forward-backward fourth-order runge-kutta method. 4. computing the average cost-effectiveness ratio (acer) and additional costeffectiveness ratio (icer) to investigate the cost-effectiveness of all possible control action strategies. optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 175 results and discussion formulation of the optimal control problem modifying the standard sir model, adi et al. [19] have developed an epidemic model taking into account the presence of viral mutations and vaccine interventions. mutations are recorded in terms that transfer an individual infected with one strain to an individual infected with another strain. the populations subdivided into five classes, which are; susceptible (๐‘†), infected by strain one (๐ผ1), infected by strain two (๐ผ2), vaccinated (๐‘‰), and recovered (๐‘…). the model is given in (1) below. ๐‘‘๐‘† ๐‘‘๐‘ก = ฮป โˆ’ ๐›ฝ1๐‘†๐ผ1 โˆ’ ๐›ฝ2๐‘†๐ผ2 โˆ’ ๐›พ๐‘† โˆ’ ๐œ‡๐‘†, ๐‘‘๐ผ1 ๐‘‘๐‘ก = ๐›ฝ1๐‘†๐ผ1 โˆ’ (๐œ” + ๐›ผ1 + ๐‘ + ๐œ‡)๐ผ1, ๐‘‘๐ผ2 ๐‘‘๐‘ก = ๐›ฝ2๐‘†๐ผ2 + ๐œ”๐ผ1 + (1 โˆ’ ๐œ€)๐‘‰๐ผ2 โˆ’ (๐›ผ2 + ๐‘‘ + ๐œ‡)๐ผ2, ๐‘‘๐‘‰ ๐‘‘๐‘ก = ๐›พ๐‘† โˆ’ (1 โˆ’ ๐œ€)๐‘‰๐ผ2 โˆ’ ๐œ‡๐‘‰, ๐‘‘๐‘… ๐‘‘๐‘ก = ๐›ผ1๐ผ1 + ๐›ผ2๐ผ2 โˆ’ ๐œ‡๐‘…. (1) the first four equations in the system (1) do not depend on ๐‘…, so to analyze the dynamics of the model, the fifth equation is neglected. please refer to [19] for details. next, paying attention only to the first four equations, we introduce a time-dependent control in the system (1). the purpose is to control the spread of disease and study strategies to eradicate epidemics in a community. we introduce two control functions, ๐‘ข1(๐‘ก) and ๐‘ข2(๐‘ก), which represent attempts to prevent disease transmission from both viral strains and vaccinations, respectively. the corresponding state system is given by: ๐‘‘๐‘† ๐‘‘๐‘ก = ฮป โˆ’ (1 โˆ’ ๐‘ข1(๐‘ก))(๐›ฝ1๐ผ1 + ๐›ฝ2๐ผ2)๐‘† โˆ’ ๐‘ข2(๐‘ก)๐‘† โˆ’ ๐œ‡๐‘†, ๐‘‘๐ผ1 ๐‘‘๐‘ก = (1 โˆ’ ๐‘ข1(๐‘ก))๐›ฝ1๐‘†๐ผ1 โˆ’ (๐œ” + ๐›ผ1 + ๐‘ + ๐œ‡)๐ผ1, ๐‘‘๐ผ2 ๐‘‘๐‘ก = (1 โˆ’ ๐‘ข1(๐‘ก))๐›ฝ2๐‘†๐ผ2 + ๐œ”๐ผ1 + (1 โˆ’ ๐œ€)๐‘‰๐ผ2 โˆ’ (๐›ผ2 + ๐‘‘ + ๐œ‡)๐ผ2, ๐‘‘๐‘‰ ๐‘‘๐‘ก = ๐‘ข2(๐‘ก)๐‘† โˆ’ (1 โˆ’ ๐œ€)๐‘‰๐ผ2 โˆ’ ๐œ‡๐‘‰, (2 ) where ๐‘ข1(๐‘ก) is a control strategy that maintains the state of the uninfected population in the susceptible class and reduces the rate at which individuals leave the susceptible class to the infected class, either by strain one or by strain two, and ๐‘ข2(๐‘ก) is a control strategy to increase the number of individuals vaccinated. medically, considering that both strategies have many limitations so that they are not fully effective, it is realistic to assume that 0 โ‰ค ๐‘ข๐‘– ๐‘š๐‘Ž๐‘ฅ < 1, ๐‘– = 1,2. hence, the bounded lebesgue measurable set of admissible control is represented as ๐›บ = {(๐‘ข1(๐‘ก), ๐‘ข2(๐‘ก))|0 โ‰ค ๐‘ข๐‘– (๐‘ก) โ‰ค ๐‘ข๐‘– ๐‘š๐‘Ž๐‘ฅ , ๐‘– = 1,2, ๐‘ก โˆˆ [0, ๐‘‡]}. (3) the aim is to gain the optimal value ๐‘ข๐‘– โˆ— of the control ๐‘ข๐‘– (๐‘ก) in the time interval [0, ๐‘‡], such that the associate state trajectories ๐‘‹โˆ— = (๐‘†โˆ—, ๐ผ1 โˆ—, ๐ผ2 โˆ—, ๐‘‰โˆ—) are solutions of the system (2) in the interval [0, ๐‘‡] with the initial conditions: optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 176 ๐‘†(0) โ‰ฅ 0, ๐ผ1(0) โ‰ฅ 0, ๐ผ2(0) โ‰ฅ 0, ๐‘‰(0) โ‰ฅ 0, (4) and ๐‘ข๐‘– โˆ— maximizes the objective function given by: ๐ฝ(๐‘ข1, ๐‘ข2) = โˆซ [๐‘ค1๐‘†(๐‘ก) + ๐‘ค2๐‘‰(๐‘ก) โˆ’ ๐‘ค3๐ผ1(๐‘ก) โˆ’ ๐‘ค4๐ผ2(๐‘ก) โˆ’ ๐ถ1๐‘ข1 2(๐‘ก) 2 โˆ’ ๐ถ2๐‘ข2 2(๐‘ก) 2 ] ๐‘‘๐‘ก ๐‘‡ 0 , (5) with ๐‘ค1, ๐‘ค2, ๐‘ค3, ๐‘ค4, ๐ถ1, ๐ถ2 are positive weight constant where we want to maximize the susceptibles ๐‘†(๐‘ก), and vaccinated individuals ๐‘‰(๐‘ก), and to minimize both infected individuals by strain one ๐ผ1(๐‘ก) and by strain two ๐ผ2(๐‘ก) (negative sign means maximizing) while keeping prevention cost ๐‘ข1(๐‘ก) and vaccination cost ๐‘ข2(๐‘ก) low. the cost of the prevention program could come from the implementation of the restriction of citizen mobilization, quarantine, or local lockdowns. at the same time, the cost of vaccination comes from everything needed to implement the vaccination program. our optimal control problem is to determining (๐‘†โˆ—, ๐ผ1 โˆ—, ๐ผ2 โˆ—, ๐‘‰โˆ—) related to an admissible control ๐‘ข๐‘– โˆ— on the time interval [0, ๐‘‡] satisfying equation (2) and the initial condition of (4) and maximizing the cost functional of equation (5) such that ๐ฝ(๐‘ข1 โˆ— , ๐‘ข2 โˆ— ) = max ฯ‰ ๐ฝ(๐‘ข1, ๐‘ข2). (6) here, we consider that the objective function as a function of ๐‘ข1 and ๐‘ข2, so it is concave with respect to the control ๐‘ข๐‘– . from this property and noting that the control system also satisfies the lipschitz property corresponding to the state variables (๐‘†, ๐ผ1 , ๐ผ2 , ๐‘‰), it is ensured that the optimal control u of the optimal control problem in equation (4) exists. hence, the maximum value can be obtained [25]โ€“[27]. characteristic of the optimal controls in order to take advantage the pontryagin's maximal principle, the system (4) and the objective functional (5) need to be converted into a pointwise hamiltonian, โ„‹ with respect to (๐‘ข1, ๐‘ข2), and we get โ„‹ = ๐‘ค1๐‘†(๐‘ก) + ๐‘ค2๐‘‰(๐‘ก) โˆ’ ๐‘ค3๐ผ1(๐‘ก) โˆ’ ๐‘ค4๐ผ2(๐‘ก) โˆ’ ๐ถ1๐‘ข1 2 2 โˆ’ ๐ถ2๐‘ข2 2 2 + ๐œ†1[ฮป โˆ’ (1 โˆ’ ๐‘ข1)(๐›ฝ1๐ผ1 + ๐›ฝ2๐ผ2)๐‘† โˆ’ ๐‘ข2๐‘† โˆ’ ๐œ‡๐‘†] + ๐œ†2[(1 โˆ’ ๐‘ข1)๐›ฝ1๐‘†๐ผ1 โˆ’ (๐œ” + ๐›ผ1 + ๐‘ + ๐œ‡)๐ผ1] + ๐œ†3[(1 โˆ’ ๐‘ข1)๐›ฝ2๐‘†๐ผ2 + ๐œ”๐ผ1 + (1 โˆ’ ๐œ€)๐‘‰๐ผ2 โˆ’ (๐›ผ2 + ๐‘‘ + ๐œ‡)๐ผ2] + ๐œ†4[๐‘ข2๐‘† โˆ’ (1 โˆ’ ๐œ€)๐‘‰๐ผ2 โˆ’ ๐œ‡๐‘‰]. (7) where ๐œ†1, ๐œ†2, ๐œ†3, ๐œ†4 are the costate variables or adjoint variables associated with the state variables ๐‘†, ๐ผ1, ๐ผ2, ๐‘‰. we summarize the necessary conditions for the optimal control ๐‘ข๐‘– โˆ—, ๐‘– = 1,2 in theorem 1 below. theorem 1. there is an optimal control ๐‘ข๐‘– โˆ—, ๐‘– = 1,2 corresponding to the optimal solution (๐‘†โˆ—, ๐ผ1 โˆ—, ๐ผ2 โˆ—, ๐‘‰โˆ—) that maximizes the objective functional ๐ฝ(๐‘ข1, ๐‘ข2) over ฯ‰. moreover, there exist costate variables or adjoint variables, ๐œ†๐‘— , ๐‘— = 1,2,3,4 that satisfies ๐‘‘๐œ†๐‘— ๐‘‘๐‘ก = โˆ’ ๐œ•โ„‹ ๐œ•๐‘‹ with transversality condition ๐œ†๐‘— (๐‘‡) = 0, ๐‘— = 1,2,3,4. furthermore, the associated optimal control ๐‘ข๐‘– โˆ—, ๐‘– = 1,2 are given by optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 177 ๐‘ข1 โˆ— = min {max {0, (๐œ†1 โˆ’ ๐œ†2)๐›ฝ1๐ผ1 โˆ—๐‘†โˆ— + (๐œ†1 โˆ’ ๐œ†3)๐›ฝ2๐ผ2 โˆ—๐‘†โˆ— ๐ถ1 } , ๐‘ข1 ๐‘š๐‘Ž๐‘ฅ }, ๐‘ข2 โˆ— = min {max {0, (๐œ†4 โˆ’ ๐œ†1)๐‘† โˆ— ๐ถ2 } , ๐‘ข2 ๐‘š๐‘Ž๐‘ฅ }. (8) proof. the adjoint system is derived by taking the partial derivative of the hamiltonian โ„‹ with respect to the associated state variables so that ๐‘‘๐œ†1 ๐‘‘๐‘ก = โˆ’ ๐œ•โ„‹ ๐œ•๐‘† = โˆ’๐‘ค1 + (๐œ†1 โˆ’ ๐œ†2)(1 โˆ’ ๐‘ข1)๐›ฝ1๐ผ1 + (๐œ†1 โˆ’ ๐œ†3)(1 โˆ’ ๐‘ข1)๐›ฝ2๐ผ2 +(๐‘ข2 + ๐œ‡)๐œ†2 โˆ’ ๐œ”๐œ†3, ๐‘‘๐œ†2 ๐‘‘๐‘ก = โˆ’ ๐œ•โ„‹ ๐œ•๐ผ1 = ๐‘ค3 + (๐œ†1 โˆ’ ๐œ†2)(1 โˆ’ ๐‘ข1)๐›ฝ1๐‘† + (๐œ” + ๐›ผ1 + ๐‘ + ๐œ‡)๐œ†2 โˆ’ ๐œ”๐œ†3, ๐‘‘๐œ†3 ๐‘‘๐‘ก = โˆ’ ๐œ•โ„‹ ๐œ•๐ผ2 = ๐‘ค4 + (๐œ†1 โˆ’ ๐œ†3)(1 โˆ’ ๐‘ข1)๐›ฝ2๐‘† + (๐›ผ2 + ๐‘‘ + ๐œ‡)๐œ†3 +(๐œ†4 โˆ’ ๐œ†3)(1 โˆ’ ๐œ€)๐‘‰, ๐‘‘๐œ†4 ๐‘‘๐‘ก = โˆ’ ๐œ•โ„‹ ๐œ•๐‘‰ = โˆ’๐‘ค2 + (๐œ†4 โˆ’ ๐œ†3)(1 โˆ’ ๐œ€)๐ผ2 + ๐œ‡๐œ†4, (9) along with the transversality conditions ๐œ†๐‘— (๐‘‡) = 0, ๐‘— = 1,2,3,4. then, the optimal control ๐‘ข๐‘– โˆ— are defined by solving ๐œ•โ„‹ ๐œ•๐‘ข๐‘– = 0. this lead to the condition of optimal controls ๐œ•โ„‹ ๐œ•๐‘ข1 = โˆ’๐ถ1๐‘ข1 + (๐œ†1 โˆ’ ๐œ†2)๐›ฝ1๐ผ1 โˆ—๐‘†โˆ— + (๐œ†1 โˆ’ ๐œ†3)๐›ฝ2๐ผ2 โˆ—๐‘†โˆ— = 0, ๐œ•โ„‹ ๐œ•๐‘ข2 = โˆ’๐ถ2๐‘ข2 + (๐œ†4 โˆ’ ๐œ†1)๐‘† โˆ— = 0. hence, we have ๐‘ข1 = (๐œ†1 โˆ’ ๐œ†2)๐›ฝ1๐ผ1 โˆ—๐‘†โˆ— + (๐œ†1 โˆ’ ๐œ†3)๐›ฝ2๐ผ2 โˆ—๐‘†โˆ— ๐ถ1 , ๐‘ข2 = (๐œ†4 โˆ’ ๐œ†1)๐‘† โˆ— ๐ถ2 . (10) since ๐‘ข๐‘– โˆ—, ๐‘– = 1,2 must belong to ฯ‰, we get ๐‘ข1 โˆ— = { 0 (๐œ†1 โˆ’ ๐œ†2)๐›ฝ1๐ผ1 โˆ—๐‘†โˆ— + (๐œ†1 โˆ’ ๐œ†3)๐›ฝ2๐ผ2 โˆ—๐‘†โˆ— ๐ถ1 ๐‘ข1 ๐‘š๐‘Ž๐‘ฅ , if ๐‘ข1 โ‰ค 0 , if 0 < ๐‘ข1 < ๐‘ข1 ๐‘š๐‘Ž๐‘ฅ , if ๐‘ข1 โ‰ฅ ๐‘ข1 ๐‘š๐‘Ž๐‘ฅ , ๐‘ข2 โˆ— = { (๐œ†4 โˆ’ ๐œ†1)๐‘† โˆ— ๐ถ2 , if ๐‘ข2 โ‰ค 0 , if 0 < ๐‘ข2 < ๐‘ข2 ๐‘š๐‘Ž๐‘ฅ , if ๐‘ข2 โ‰ฅ ๐‘ข2 ๐‘š๐‘Ž๐‘ฅ . which can also be characterized by ๐‘ข1 โˆ— = min {max {0, (๐œ†1 โˆ’ ๐œ†2)๐›ฝ1๐ผ1 โˆ—๐‘†โˆ— + (๐œ†1 โˆ’ ๐œ†3)๐›ฝ2๐ผ2 โˆ—๐‘†โˆ— ๐ถ1 } , ๐‘ข1 ๐‘š๐‘Ž๐‘ฅ }, (11) optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 178 ๐‘ข2 โˆ— = min {max {0, (๐œ†4 โˆ’ ๐œ†1)๐‘† โˆ— ๐ถ2 } , ๐‘ข2 ๐‘š๐‘Ž๐‘ฅ }. this completes the proof. the following section provides numerical simulations of the optimality system, the control profile, and discussions. numerical results and discussion we observe the optimal trajectories of the optimal system through some numerical simulations. we applied the forward-backward sweep method described in [20], which is very commonly used in the literature of optimal control problems, as in the literature [9], [14], [23]. for numerical simulation, we use a set of parameter values as in [19] and take the weight factor ๐‘ค1, ๐‘ค2, ๐‘ค3, ๐‘ค4, equal to one ๐ถ1 = 2, and ๐ถ2 = 2 due to the lack of the available literature and data. it should be noted that the weight values selected for the simulation are only for the theoretical sense to describe the control strategy proposed in this model. for the maximum control, we set ๐‘ข1, ๐‘ข1 ๐‘š๐‘Ž๐‘ฅ = 0.5 under the assumption that it is difficult to maintain community discipline in implementing prevention of disease transmissions such as restrictions on community interaction/mobilization, local lockdown, and quarantine. as for the control with vaccination, ๐‘ข1 ๐‘š๐‘Ž๐‘ฅ = 0.7 was taken based on the assumption that the vaccine was not yet fully effective and the lack of awareness of the individual to be vaccinated. we will focus on comparing the three control strategies. ๏‚ท strategy i: combination of prevention of disease transmission and vaccination. in this case ๐‘ข1 and ๐‘ข2 are defined as control variables. ๏‚ท strategy ii: use restrictions on community interaction/mobilization as a control. in this case, only ๐‘ข1 is taken as a control variable. ๏‚ท strategy iii: vaccine intervention as the only control, so only ๐‘ข2 as the control variable. figure 1 shows the impact of implementing various strategies on the population size of ๐‘†(๐‘ก) (fig. 1a) and ๐‘‰(๐‘ก) (fig. 1b) for 50 days. it can be seen that without implementing the control strategy, the number of susceptible individuals and vaccinated individuals is lower than if the control strategy is applied. with optimal control strategies, most susceptible individuals will be protected or vaccinated against the virus, thus leading to higher individuals in the vaccinated class (fig. 1b) and ultimately resulting in fewer individuals being infected by either strain one or strain two see figure 2. optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 179 figure 1. simulation results without and with the implementation of various control strategies. (a) susceptible individuals, (b) vaccinated individuals. in figures 2(a) 2(d), we show the impact of using optimal control strategies on the number of individuals infected by strain one and strain two. this suggests that disease in infectious populations can be reduced more rapidly when both controls are applied (strategy i) compared to the situation without control or by using a single control, i.e., prevention of transmission only (strategy ii) or vaccination only (strategy iii). from the simulation results, the trajectories of optimal control show that the combination of two control strategies can lead to desired disease control. fig. 2(a) โ€“ 2(b) show a comparison of the number of individuals infected by strains one and by strain two using strategy i and strategy iii. figures 2(c) 2(d) show the situation of individuals infected by strain one and strain two by implementing strategy ii and without control strategy. based on the number of infected individuals, it appears that strategy i is the best strategy that can be applied to end the spread of the disease immediately. the corresponding timedependent controls ๐‘ข1(๐‘ก) and ๐‘ข2(๐‘ก) are depicted in figure 3. optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 180 figure 2. simulation results for individuals infected by strain one (a), (c) and infected individuals by strain two (b), (d) without and with the implementation of various control strategies. figure 3(a) tells us that strategy i can be implemented by maintaining preventive transmission control ๐‘ข1(๐‘ก) and vaccination ๐‘ข2(๐‘ก) at their upper bounds for about 30 days and 35 days, respectively, and gradually decreasing to their lower bounds. figure 3(b) illustrates the implementation of strategy ii, which shows that the control ๐‘ข1(๐‘ก) is kept at its upper bound over time. while figure 3(c) shows that if strategy iii is implemented, then the control ๐‘ข2(๐‘ก) should be maintained at its upper bound most of the time. when these controls are implemented on a broad scale, it is also critical to adopt an approach that provides optimal cost, i.e., less cost. as a result, we will look at the cost-effectiveness of these controls in the next section. optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 181 figure 3. control profile for each strategy. (a) strategy i, (b) strategy ii, (c) strategy iii. cost-effectiveness analysis in this section, we use the average cost-effectiveness ratio (acer) and the incremental cost-effectiveness ratio (icer) to carry out the cost-effectiveness analysis. the average cost-effective ratio (acer) is calculated as follows [21]: acer = the total cost (tc) total number of infections averted (ta) . (12) the total number of individuals infected averted during the intervention period t is obtained by using ta = โˆซ(๐ผ1 โˆ— + ๐ผ2 โˆ—)๐‘‘๐‘ก โˆ’ ๐‘‡ 0 โˆซ(๐ผ1 + ๐ผ2)๐‘‘๐‘ก, ๐‘‡ 0 (13) where ๐ผ1 โˆ—, ๐ผ2 โˆ— are the solution of infected classes by strain one and the infected classes by strain two without controls and ๐ผ1, ๐ผ2 are the optimal solution with controls. the total optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 182 cost implemented during the period t is calculated as follows: t๐‘ = โˆซ 1 2 (๐ถ1๐‘ข1 2 + ๐ถ2๐‘ข2 2)๐‘‘๐‘ก. ๐‘‡ 0 based on this cost analysis, the most cost-effective strategy is the one with the smallest acer value [23]. now, we calculate the total cost invested and total infected averted in each strategy to analyze the cost-effectiveness. using the formula (12), we find that strategy i has the smallest acer value and strategy ii has the largest acer value, as seen in figure 4. the results are also given in table 1. thus, according to the acer value, the most effective intervention strategy is strategy i. figure 4. average cost-effectiveness ratio (acer) results for strategy i โ€“ iii the icer, on the other hand, is calculated by dividing the cost difference between two feasible interventions by the difference in their effects. mathematically, it is expressed as [22], [24]: icer = difference in costs produced by strategies i and j difference in the total number of infection averted in strategies i and j . (14) the difference between the total number of infected individuals without controls and the total number of infected individuals with controls is used to compute the total number of averted infections. furthermore, we employed the cost functions ๐ถ1 2 ๐‘ข1 2 and ๐ถ2 2 ๐‘ข2 2 across time to calculate the total cost of the implemented strategies. we also used the parameter values from the preceding section to calculate the total cost and total infections averted, as shown in table 1, with total averted infections are ranked according to their increasing in order. then, the icer is calculated using the formula in (14). first, we computed for the competing strategies ii and iii as follows: icer (ii) = 989,582.93 โˆ’ 0 102,599,77 โˆ’ 0 = 9.6451, icer (iii) = 1,026,524.16 โˆ’ 989,582.93 112,334.16 โˆ’ 102,599,77 = 3.7949. the results of the icer computation (as shown in table 1) show that strategy ii has a 8,8 8,9 9 9,1 9,2 9,3 9,4 9,5 9,6 9,7 average cost-effective ratio (acer) strategi ii strategi iii strategi i optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 183 higher icer value than strategy iii. as a result, implementing prevention transmission control ๐‘ข1 alone is more expensive and ineffective than using vaccine intervention control ๐‘ข2. as a result, strategy ii is removed from the list of possible control strategies. the icer for strategies iii and i now need to be recalculated. the calculation is as follows: icer (iii) = 1,026,524.16 112,334.16 = 9.1381, icer (i) = 1,029,506.04 โˆ’ 1,026,524.16 112,886.09 โˆ’ 112,334.16 = 5.4026. table 2 summarizes the results of the calculations. table 1. strategies i โ€“ iii in order of increasing number of averted infected strategy total infected averted total cost acer icer strategy ii 102,599.77 989,582.93 9.6451 9.6451 strategy iii 112,334.16 1,026,524.16 9.1381 3.7949 strategy i 112,886.09 1,029,506.04 9.1199 table 2. comparison between strategies iii and i strategy total infected averted total cost icer strategy iii 112,334.16 1,026,524.16 9.1381 strategy i 112,886.09 1,029,506.04 5.4026 it is clearly shown from table 2 that strategy iii has an icer value greater than strategy i. therefore, due to its cost-effectiveness and health benefits, strategy i, that combination of prevention of disease transmission and vaccination, is the best of all possible options. conclusions this paper has presented and analyzed a modified sir epidemic model considering a time-dependent constant control that includes two control variables. the two control variables considered in this model are prevention of disease transmission, such as by restricting community interactions and administering vaccines. numerical simulation of the optimal control problem was carried out using three strategies. strategy i, a combination of prevention of disease transmission and vaccination, strategy ii, only prevention of disease transmission by restriction community interaction is taken as a control variable, and strategy iii, if the vaccine intervention is the only intervention carried out. all strategies show control profiles adjusted for the number of infected individuals in the community. stronger interventions are needed to substantially reduce the number of infected individuals and the cost of implementing the strategy. furthermore, analysis to determine the most cost-effective strategy was carried out using acer and icer. based on calculating acer and icer, we found that using both controls simultaneously was the most cost-effective method and vaccination was the most cost-effective method in a single intervention. when only one intervention is applied, our simulations reveal that vaccination is the best single intervention strategy. however, the combination of vaccination and the restriction of community interactions, i.e., strategy i, gave the best results in reducing the number of infected individuals with the cheapest cost compared to a single intervention strategy. we think that our work optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 184 will serve as a foundation for mathematical models that examine cost-effectiveness analyses using real-world data, especially on an epidemic model which considers viral mutation and vaccination. acknowledgments we thank ahmad dahlan university for supporting this work through fundamental research grant (no. pd-273/sp3/lppm-uad/vi/2021). references [1] s. ullah and m. a. khan, โ€œmodeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study,โ€ chaos, solitons and fractals, vol. 139, 2020, doi: 10.1016/j.chaos.2020.110075. [2] r. shi, y. li, and c. wang, โ€œstability analysis and optimal control of a fractionalorder model for african swine fever,โ€ virus res., vol. 288, no. july, p. 198111, 2020, doi: 10.1016/j.virusres.2020.198111. [3] z. zhang, s. kundu, j. p. tripathi, and s. bugalia, โ€œstability and hopf bifurcation analysis of an sveir epidemic model with vaccination and multiple time delays,โ€ chaos, solitons and fractals, vol. 131, 2020, doi: 10.1016/j.chaos.2019.109483. [4] m. a. kuddus, m. t. meeha, l. j. whit, e. s. mcbryd, and a. i. adekunl, โ€œmodeling drug-resistant tuberculosis amplification rates and intervention strategies in bangladesh,โ€ plos one, 2020, doi: 10.1371/journal.pone.0236112. [5] z. abbasi, i. zamani, a. hossein, a. mehra, and m. shafieirad, โ€œoptimal control design of impulsive sqeiar epidemic models with application to covid-19,โ€ interdiscip. j. nonlinear sci. nonequilibrium complex phenom., vol. 139, p. 110054, 2020, doi: 10.1016/j.chaos.2020.110054. [6] h. w. berhe, o. d. makinde, and d. m. theuri, โ€œoptimal control and costeffectiveness analysis for dysentery epidemic model,โ€ appl. math. inf. sci., vol. 1195, no. 6, pp. 1183โ€“1195, 2018. [7] s. k. biswas, u. ghosh, and s. sarkar, โ€œmathematical model of zika virus dynamics with vector control and sensitivity analysis,โ€ infect. dis. model., vol. 5, pp. 23โ€“41, 2020, doi: 10.1016/j.idm.2019.12.001. [8] m. zamir, z. shah, f. nadeem, a. memood, h. alrabaiah, and p. kumam, โ€œnon pharmaceutical interventions for optimal control of covid-19,โ€ comput. methods programs biomed., vol. 196, p. 105642, 2020, doi: 10.1016/j.cmpb.2020.105642. [9] r. resmawan and l. yahya, โ€œsensitifity analysis of mathematical model of coronavirus disease (covid-19) transmission,โ€ cauchy, vol. 6, no. 2, p. 91, 2020, doi: 10.18860/ca.v6i2.9165. [10] m. z. ndii and y. a. adi, โ€œmodelling the transmission dynamics of covid-19 under limited resources,โ€ commun. math. biol. neurosci., vol. 2020, pp. 1โ€“24, 2020, doi: 10.28919/cmbn/4912. [11] a. yousefpour, h. jahanshahi, and s. bekiros, โ€œoptimal policies for control of the novel coronavirus disease (covid-19) outbreak,โ€ chaos, solitons and fractals, vol. 136, p. 109883, 2020, doi: 10.1016/j.chaos.2020.109883. [12] y. a. adi and m. z. ndii, โ€œmodeling and prediction of covid-19 with a large scale social distancing,โ€ j. fourier, vol. 9, no. 1, pp. 1โ€“9, 2020, doi: 10.14421/fourier.2020.91.1-9. optimal control and cost-effectiveness analysis in an epidemic model with viral mutation and vaccine intervention yudi ari adi 185 [13] h. zhang, z. yang, k. a. pawelek, and s. liu, โ€œoptimal control strategies for a twogroup epidemic model with vaccination-resource constraints,โ€ appl. math. comput., vol. 371, p. 124956, 2020, doi: 10.1016/j.amc.2019.124956. [14] y. a. adi, โ€œa within-host tuberculosis model using optimal control,โ€ jtam (jurnal teor. dan apl. mat., vol. 5, no. 1, p. 162, 2021, doi: 10.31764/jtam.v5i1.3813. [15] j. jang, h. kwon, and j. lee, โ€œoptimal control problem of an sir reaction โ€“ diffusion model with inequality constraints,โ€ math. comput. simul., vol. 171, pp. 136โ€“151, 2020, doi: 10.1016/j.matcom.2019.08.002. [16] g. b. libotte, f. s. lobato, g. m. platt, and a. j. silva neto, โ€œdetermination of an optimal control strategy for vaccine administration in covid-19 pandemic treatment,โ€ comput. methods programs biomed., vol. 196, p. 105664, 2020, doi: 10.1016/j.cmpb.2020.105664. [17] m. z. ndii, a. r. mage, j. j. messakh, and b. s. djahi, โ€œoptimal vaccination strategy for dengue transmission in kupang city , indonesia,โ€ heliyon, vol. 6, no. october, p. e05345, 2020, doi: 10.1016/j.heliyon.2020.e05345. [18] p. radvak et al., โ€œsars-cov-2 b.1.1.7 (alpha) and b.1.351 (beta) variants induce pathogenic patterns in k18-hace2 transgenic mice distinct from early strains,โ€ nat. commun., vol. 12, no. 1, pp. 1โ€“15, 2021, doi: 10.1038/s41467-021-26803-w. [19] y. a. adi, n. irsalinda, a. wiraya, sugiyarto, and z. a. rafsanjani, โ€œan epidemic model with viral mutations and vaccine interventions,โ€ submitt. publ., 2021. [20] s. lenhart and j. t. workman, optimal control applied to biological models. chapman & hall/crc, 2007. [21] h. w. berhe, โ€œoptimal control strategies and cost-effectiveness analysis applied to real data of cholera outbreak in ethiopiaโ€™s oromia region,โ€ chaos, solitons and fractals, vol. 138, pp. 1โ€“14, 2020, doi: 10.1016/j.chaos.2020.109933. [22] j. k. asamoah et al., โ€œsensitivity assessment and optimal economic evaluation of a new covid-19 compartmental epidemic model with control interventions,โ€ chaos, solitons and fractals, vol. 146, 2021, doi: 10.1016/j.chaos.2021.110885. [23] d. aldila, โ€œcost-effectiveness and backward bifurcation analysis on covid-19 transmission model considering direct and indirect transmission,โ€ commun. math. biol. neurosci., pp. 1โ€“28, 2020. [24] fatmawati, u. dyah purwati, f. riyudha, and h. tasman, โ€œoptimal control of a discrete age-structured model for tuberculosis transmission,โ€ heliyon, 2020, doi: 10.1016/j.heliyon.2019.e03030. [25] l. cesari, optimization-theory and applications. new york, ny, usa: springer, 1983. [26] t. burden, j. ernstberger, and k. r. fister, โ€œoptimal control applied to immunotherapy,โ€ discret. contin. dyn. syst. ser. b, vol. 4, no. 1, pp. 135โ€“146, 2004, doi: 10.3934/dcdsb.2004.4.135. [27] c. campos, c. j. silva, and d. f. m. torres, โ€œnumerical optimal control of hiv transmission in octave/matlab,โ€ math. comput. appl., 2020, doi: 10.3390/mca25010001. on rainbow vertex antimagic coloring of graphs: a new notion cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 64-72 p-issn: 2086-0382; e-issn: 2477-3344 submitted: juni 30, 2021 reviewed: august 12, 2021 accepted: october 20. 2021 doi: https://doi.org/10.18860/ca.v7i1.12796 on rainbow vertex antimagic coloring of graphs: a new notion marsidi1, ika hesti agustin2, dafik3, elsa yuli kurniawati4 1department of mathematics education, universitas pgri argopuro jember, indonesia 2department of mathematics, university of jember, indonesia 3department of mathematics education, university of jember, indonesia 4cgant, university of jember, indonesia email: marsidiarin@gmail.com, ikahesti.fmipa@unej.ac.id, d.dafik@unej.ac.id, elsayuli@unej.ac.id abstract for a bijective function ๐‘”: ๐ธ(๐บ) โ†’ {1, 2,3, โ‹ฏ , |๐ธ(๐บ)|}, the associated weight of a vertex ๐‘ฃ โˆˆ ๐‘‰(๐บ) under ๐‘” is ๐‘ค๐‘”(๐‘ฃ) = ฯƒ๐‘’โˆˆ๐ธ(๐‘ฃ)๐‘”(๐‘’), where ๐ธ(๐‘ฃ) is the set of vertices incident to ๐‘ฃ. the function ๐‘” is called a vertex-antimagic edge labeling if every vertex has distinct weight. a path ๐‘ƒ in the edgelabeled graph ๐บ is said to be a rainbow path if for any two vertices ๐‘ฅ and ๐‘ฅโ€ฒ, all internal vertices in the path ๐‘ฅ โˆ’ ๐‘ฅโ€ฒ have different weight. if for every two vertices ๐‘ฅ and ๐‘ฆ of ๐บ, there exists a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path, then ๐‘” is called a rainbow vertex antimagic labeling of ๐บ. when we assign each edge ๐‘ฅ๐‘ฆ with the color of the vertex weight ๐‘ค๐‘”(๐‘ฃ), thus we say the graph ๐บ admits a rainbow vertex antimagic coloring. the smallest number of colors taken over all rainbow colorings induced by rainbow vertex antimagic labelings of ๐บ is called rainbow vertex antimagic connection number of ๐บ, denoted by ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐บ). in this paper, we initiate to determine the rainbow vertex antimagic connection number of graphs, namely path (๐‘ƒ๐‘›), wheel (๐‘Š๐‘› ), friendship (โ„ฑ๐‘›), and fan (๐น๐‘›). keywords: antimagic labeling; rainbow vertex coloring; rainbow vertex antimagic coloring; rainbow vertex antimagic connection number. introduction we consider a graph ๐บ(๐‘‰, ๐ธ) in this paper are simple, connected and un-directed graph, where ๐‘‰ and ๐ธ are respectively a vertex set and edge set of ๐บ [1]. the rainbow coloring problem has been studied by many researchers since many years ago. many good results has been published in some reputable journal [2]. thus, it has given many contributions in graph theory research of interest. there are many types of rainbow coloring, namely rainbow (edge) coloring, rainbow vertex coloring, strong rainbow edge/vertex coloring. the minimum number of colors for which an edge (vertex) coloring exists such that the graph ๐บ is rainbow connected is called the rainbow connection number, denoted by ๐‘Ÿ๐‘(๐บ) for edge coloring and the rainbow vertex connection number, denoted by ๐‘Ÿ๐‘ฃ๐‘(๐บ) for vertex coloring, see [3]โ€“[10] for detail. krivelevich and yuster [6] gave the lower bound for ๐‘Ÿ๐‘ฃ๐‘(๐บ), namely ๐‘Ÿ๐‘ฃ๐‘(๐บ) โ‰ฅ ๐‘‘๐‘–๐‘Ž๐‘š(๐บ) โ€“ 1, where ๐‘‘๐‘–๐‘Ž๐‘š(๐บ) is the diameter of graph ๐บ. an easy observation is that if ๐บ has an order n, then ๐‘Ÿ๐‘ฃ๐‘(๐บ) โ‰ค ๐‘› โˆ’ 2 and ๐‘Ÿ๐‘ฃ๐‘(๐บ) = 0 if and only if ๐บ is a complete graph. notice that ๐‘Ÿ๐‘ฃ๐‘(๐บ) โ‰ฅ ๐‘‘๐‘–๐‘Ž๐‘š(๐บ) โˆ’ 1 with equality if the diameter of ๐บ is 1 or 2. https://doi.org/10.18860/ca.v7i1.12796 mailto:marsidiarin@gmail.com mailto:ikahesti.fmipa@unej.ac.id mailto:d.dafik@unej.ac.id mailto:elsayuli@unej.ac.id on rainbow vertex antimagic coloring of graphs: a new notion marsidi 65 meanwhile, in 2003, hartsfield and ringel [11] defined antimagic graphs. a graph ๐บ is called antimagic if there exists a bijection ๐‘“: ๐ธ(๐บ) โ†’ {1,2, โ‹ฏ , ๐‘ž} such that the weights of all vertices are distinct [12] . the vertex weight of a vertex ๐‘ฃ under ๐‘“, ๐‘ค๐‘“ (๐‘ฃ), is the sum of labels of edges incident with ๐‘ฃ, that is, ๐‘ค๐‘“ (๐‘ฃ) = โˆ‘ ๐‘“(๐‘ข๐‘ฃ)๐‘ข๐‘ฃโˆˆ๐ธ(๐บ) . in this case, ๐‘“ is called an antimagic labeling. there many results were found for antimagicness of graph. there are extension types of vertex antimagic labeling, namely total vertex antimagic labeling, super total vertex antimagic labeling, (๐‘Ž, ๐‘‘)-vertex antimagic labeling, super (๐‘Ž, ๐‘‘)-vertex antimagic labeling. for detail, see galian dynamic survey of graph labeling [13] . in this study, we initiate to combine the two notion, namely rainbow coloring and antimagic labeling [14][15]. we name for this combination as rainbow vertex antimagic coloring. for a bijective function ๐‘”: ๐ธ(๐บ) โ†’ {1, 2,3, โ‹ฏ , |๐ธ(๐บ)|}, the associated weight of a vertex ๐‘ฃ โˆˆ ๐‘‰(๐บ) under ๐‘” is ๐‘ค๐‘”(๐‘ฃ) = ฯƒ๐‘’โˆˆ๐ธ(๐‘ฃ)๐‘”(๐‘’), where ๐ธ(๐‘ฃ) is the set of vertices incident to ๐‘ฃ. the function ๐‘” is called a vertex-antimagic edge labeling if every vertex has distinct weight. a path ๐‘ƒ in the edge-labeled graph ๐บ is said to be a rainbow path if for any two vertices ๐‘ฅ and ๐‘ฅโ€ฒ, all internal vertices in the path ๐‘ฅ โˆ’ ๐‘ฅโ€ฒ have different weight. if for every two vertices ๐‘ฅ and ๐‘ฆ of ๐บ, there exists a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path, then ๐‘” is called a rainbow vertex antimagic labeling of ๐บ. when we assign each edge ๐‘ฅ๐‘ฆ with the color of the vertex weight ๐‘ค๐‘”(๐‘ฃ), thus we say the graph ๐บ admits a rainbow vertex antimagic coloring. the rainbow vertex antimagic connection number of ๐บ, denoted by ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐บ), is the smallest number of colors taken over all rainbow colorings induced by rainbow vertex antimagic labelings of ๐บ. to determine the rainbow vertex antimagic connection number of any graph is considered to be hard problem. even, this study fall into np-hard problem. in this paper, we initiate to determine the rainbow vertex antimagic connection number of graphs, namely path (๐‘ƒ๐‘› ), wheel (๐‘Š๐‘›), friendship (โ„ฑ๐‘›), and fan (๐น๐‘› ) as well as fix the lower bound ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐บ) of any graph. methods this research includes deductive analytic methods. the procedures to obtain the rainbow vertex antimagic connection number of are as follows. 1. define a graph ๐บ. 2. determine the cardinality of graph ๐บ by obtaining the order and size of graph ๐บ. 3. determine the lower bound of ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐บ) by using the obtained remark of sharpest lower bound. 4. determine the upper bound of ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐บ) by constructing the bijective function, compute the vertex weight using ๐‘ค๐‘”(๐‘ฃ) = ฯƒ๐‘’โˆˆ๐ธ(๐‘ฃ)๐‘”(๐‘’), and show that every two different vertices of ๐บ satisfy the rainbow vertex antimagic coloring. 5. if the upper bound attains the lower bound, then we obtain the ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐บ). if the upper bound does not attain the lower bound, then we return to determine the upper bound of ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐บ). 6. finally we can construct a new theorem and its proof after we obtain the rainbow vertex antimagic connection number of graph ๐บ. on rainbow vertex antimagic coloring of graphs: a new notion marsidi 66 results and discussion in this section we have several theorems on the rainbow vertex antimagic coloring. we determine the minimum color taken to the graph such that it has rainbow vertex antimagic coloring. since we determine the minimum colors such that ๐บ has rainbow vertex antimagic coloring, then the lower bound of rainbow vertex antimagic connection number of graph is at least and equal to rainbow vertex connection number. the lower bound of rainbow vertex antimagic connection number of any graph is mathematically written in the remark 1. remark 1 let ๐บ be a connected graph, ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐บ) โ‰ฅ ๐‘Ÿ๐‘ฃ๐‘(๐บ). theorem 1 if ๐‘ƒ๐‘› be a path graph of order ๐‘› and ๐‘› โ‰ฅ 3, then ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘ƒ๐‘›) = { 3, ๐‘› = 3,4 ๐‘› โˆ’ 2, ๐‘› โ‰ฅ 5 proof. let ๐‘ƒ๐‘› be a path graph with vertex set ๐‘‰(๐‘ƒ๐‘›) = {๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3, โ‹ฏ , ๐‘ฃ๐‘› } and edge set ๐ธ(๐‘ƒ๐‘› ) = {๐‘ฃ๐‘– ๐‘ฃ{๐‘–+1}: 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1}. the diameter of ๐‘ƒ๐‘› is ๐‘› โˆ’ 1. we divide into two cases to prove the rainbow vertex antimagic connection number as follows. case 1. for ๐‘ƒ๐‘› , ๐‘› = 3,4 path graph ๐‘ƒ๐‘› , ๐‘› = 3 have two edges. if we give labels on it, it gives three different weights on its edges exactly. it concludes that the rainbow vertex antimagic connection number of ๐‘ƒ3 is 3. furthermore for ๐‘ƒ4, we determine the all permutation of edge labeling on ๐‘ƒ4. let ๐‘’1, ๐‘’2, ๐‘’3 are the edges of ๐‘ƒ4, thus there are six possibilities of edge labeling on ๐‘ƒ4 as follows. 1). if ๐‘’1 = 1, ๐‘’2 = 2, ๐‘’3 = 3, then ๐‘ค๐‘ก(๐‘ฃ1) = 1, ๐‘ค๐‘ก(๐‘ฃ2) = 3, ๐‘ค๐‘ก(๐‘ฃ3) = 5, ๐‘ค๐‘ก(๐‘ฃ4) = 3. 2). if ๐‘’1 = 1, ๐‘’2 = 3, ๐‘’3 = 2, then ๐‘ค๐‘ก(๐‘ฃ1) = 1, ๐‘ค๐‘ก(๐‘ฃ2) = 4, ๐‘ค๐‘ก(๐‘ฃ3) = 5, ๐‘ค๐‘ก(๐‘ฃ4) = 2. 3). if ๐‘’1 = 2, ๐‘’2 = 1, ๐‘’3 = 3, then ๐‘ค๐‘ก(๐‘ฃ1) = 2, ๐‘ค๐‘ก(๐‘ฃ2) = 3, ๐‘ค๐‘ก(๐‘ฃ3) = 4, ๐‘ค๐‘ก(๐‘ฃ4) = 3. 4). if ๐‘’1 = 2, ๐‘’2 = 3, ๐‘’3 = 1, then ๐‘ค๐‘ก(๐‘ฃ1) = 2, ๐‘ค๐‘ก(๐‘ฃ2) = 5, ๐‘ค๐‘ก(๐‘ฃ3) = 4, ๐‘ค๐‘ก(๐‘ฃ4) = 1. 5). if ๐‘’1 = 3, ๐‘’2 = 1, ๐‘’3 = 2, then ๐‘ค๐‘ก(๐‘ฃ1) = 3, ๐‘ค๐‘ก(๐‘ฃ2) = 4, ๐‘ค๐‘ก(๐‘ฃ3) = 3, ๐‘ค๐‘ก(๐‘ฃ4) = 2. 6). if ๐‘’1 = 3, ๐‘’2 = 2, ๐‘’3 = 1, then ๐‘ค๐‘ก(๐‘ฃ1) = 3, ๐‘ค๐‘ก(๐‘ฃ2) = 5, ๐‘ค๐‘ก(๐‘ฃ3) = 3, ๐‘ค๐‘ก(๐‘ฃ4) = 1. based on edge labelings and vertex weights above, it is easy to determine the rainbow vertex antimagic connection number of ๐‘ƒ4 at least 3. thus ๐‘Ž๐‘Ÿ๐‘ฃ๐‘(๐‘ƒ4) = 3. case 2. for ๐‘ƒ๐‘› , ๐‘› โ‰ฅ 5 based on remark 1, we have ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘ƒ๐‘›) โ‰ฅ ๐‘Ÿ๐‘ฃ๐‘(๐‘ƒ๐‘› ) = ๐‘‘๐‘–๐‘Ž๐‘š(๐‘ƒ๐‘› ) โˆ’ 1 = ๐‘› โˆ’ 1 โˆ’ 1 = ๐‘› โˆ’ 2. furthermore, to show the upper bound we construct the bijective function of edge labels. we have two conditions, namely for ๐‘› โ‰ก 1(mod 2) and ๐‘› โ‰ก 0(mod 2). for ๐‘› โ‰ก 1(mod 2), we have ๐‘”(๐‘ฃ1๐‘ฃ2) = 3 ๐‘”(๐‘ฃ2๐‘ฃ3) = 1 ๐‘”(๐‘ฃ3๐‘ฃ4) = 2 ๐‘”(๐‘ฃ๐‘›โˆ’1๐‘ฃ๐‘› ) = 4 ๐‘”(๐‘ฃ๐‘– ๐‘ฃ๐‘–+1) = ๐‘– + 1: 4 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 2 from the edge labels above, we have the vertex weight as follows. for ๐‘ƒ5, we have ๐‘ค(๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3, ๐‘ฃ4, ๐‘ฃ5) = (3,4,3,6,4). for ๐‘ƒ๐‘› : ๐‘› โ‰ฅ 6, we have on rainbow vertex antimagic coloring of graphs: a new notion marsidi 67 ๐‘ค(๐‘ฃ1) = 3 ๐‘ค(๐‘ฃ2) = 4 ๐‘ค(๐‘ฃ3) = 3 ๐‘ค(๐‘ฃ4) = 7 ๐‘ค(๐‘ฃ๐‘– ) = 2๐‘– + 1: 5 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 2 ๐‘ค(๐‘ฃ๐‘›โˆ’1) = ๐‘› + 3 ๐‘ค(๐‘ฃ๐‘›) = 4 for ๐‘› โ‰ก 0(mod 2), we have ๐‘”(๐‘ฃ1๐‘ฃ2) = 3 ๐‘”(๐‘ฃ2๐‘ฃ3) = 1 ๐‘”(๐‘ฃ3๐‘ฃ4) = 2 ๐‘”(๐‘ฃ๐‘– ๐‘ฃ๐‘–+1) = ๐‘–: 4 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 from the edge labels above, we have the vertex weights in the following: ๐‘ค(๐‘ฃ1) = 3 ๐‘ค(๐‘ฃ2) = 4 ๐‘ค(๐‘ฃ3) = 3 ๐‘ค(๐‘ฃ4) = 6 ๐‘ค(๐‘ฃ๐‘– ) = 2๐‘– โˆ’ 1: 5 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 ๐‘ค(๐‘ฃ๐‘›) = ๐‘› โˆ’ 1 from the vertex weight above, it is easy to see that the different weight is ๐‘› โˆ’ 2. it concludes that the rainbow vertex antimagic connection number of ๐‘ƒ๐‘› : ๐‘› = {3,4} is 3 and the rainbow vertex antimagic connection number of ๐‘ƒ๐‘› : ๐‘› โ‰ฅ 5 is ๐‘› โˆ’ 2. furthermore, we show that every two different vertices of ๐‘ƒ๐‘› is rainbow vertex antimagic coloring. suppose that ๐‘ฃ โˆˆ ๐‘‰(๐‘ƒ๐‘› ), refer to the vertex weight the rainbow vertex path is shown in table 1. table 1. the rainbow vertex path of ๐‘ƒ๐‘› case ๐’— ๐’— rainbow vertex coloring 1 ๐‘ฃ1 ๐‘ฃ๐‘› ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3, โ€ฆ , ๐‘ฃ๐‘– , โ€ฆ , ๐‘ฃ๐‘›โˆ’1 hence, the vertex coloring of ๐‘ƒ๐‘› is rainbow vertex antimagic coloring. thus, we obtain ๐‘Ž๐‘Ÿ๐‘ฃ๐‘(๐‘ƒ๐‘›) is 3 for ๐‘› = 3,4 and ๐‘Ž๐‘Ÿ๐‘ฃ๐‘(๐‘ƒ๐‘› ) is ๐‘› โˆ’ 2 for ๐‘› โ‰ฅ 5. โˆŽ theorem 2 if ๐‘Š๐‘› be a wheel graph of order ๐‘› + 1 and ๐‘› โ‰ฅ 3, then ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘Š๐‘›) = 2 if ๐‘› โ‰ก 1(mod 2) and 2 โ‰ค ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘Š๐‘›) โ‰ค 3 if ๐‘› โ‰ก 0(mod 2). proof. let ๐‘Š๐‘› be a wheel graph with vertex set ๐‘‰(๐‘Š๐‘›) = {๐ด, ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘›} and edge set ๐ธ(๐‘Š๐‘›) = {๐ด๐‘ฅ๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช {๐‘ฅ๐‘– ๐‘ฅ{๐‘–+1}: 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1} โˆช {๐‘ฅ๐‘›โˆ’1๐‘ฅ1}. the diameter of ๐‘Š๐‘› is 2. based on remark 1, we have ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘Š๐‘›) โ‰ฅ ๐‘Ÿ๐‘ฃ๐‘(๐‘Š๐‘›) = ๐‘‘๐‘–๐‘Ž๐‘š(๐‘Š๐‘›) โˆ’ 1 = 2 โˆ’ 1 = 1. since the vertex ๐ด has degree of much greater than the others, it must have a different vertex weight than the others. the vertex weight of ๐ด is the sum of labels of edges which incident to ๐ด. from this condition, such that we have ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘Š๐‘›) โ‰ฅ 2. we divide into two cases to show the upper bound of the rainbow vertex antimagic connection number of ๐‘Š๐‘› as follows. on rainbow vertex antimagic coloring of graphs: a new notion marsidi 68 case 1. for ๐‘Š๐‘›, ๐‘› โ‰ก 1(mod 2) to show the upper bound of (๐‘Š๐‘›): ๐‘› โ‰ก 1(mod 2) , we construct the bijective function of edge labels. ๐‘”(๐‘ฅ๐‘– ๐‘ฅ๐‘–+1) = { ๐‘– + 1 2 , if ๐‘– โ‰ก 1(mod 2) โŒˆ ๐‘› 2 โŒ‰ + ๐‘– 2 , if ๐‘– โ‰ก 0(mod 2) ๐‘”(๐ด๐‘ฅ๐‘– ) = 2๐‘› + 1 โˆ’ ๐‘– from the edge labels above, we have the vertex weights in the following: ๐‘ค(๐‘ฅ๐‘– ) = 2๐‘› + 1 + โŒˆ ๐‘› 2 โŒ‰ ๐‘ค(๐ด) = ๐‘› 2 (3๐‘› + 1) from the vertex weights above, it is easy to see that the different weight is 2. case 2. for ๐‘Š๐‘›, ๐‘› โ‰ก 0(mod 2) to show the upper bound of ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘Š๐‘›): ๐‘› โ‰ก 0(mod 2), we construct the bijective function of edge labels. ๐‘”(๐‘ฅ๐‘– ๐‘ฅ๐‘–+1) = { ๐‘– + 1 2 , if ๐‘– โ‰ก 1(mod 2) โŒˆ ๐‘› 2 โŒ‰ + ๐‘– 2 , if ๐‘– โ‰ก 0(mod 2) ๐‘”(๐ด๐‘ฅ๐‘– ) = 2๐‘› + 1 โˆ’ ๐‘– from the edge labels above, we have the vertex weights in the following. ๐‘ค(๐‘ฅ1) = 3๐‘› + 1 ๐‘ค(๐‘ฅ๐‘– ) = 2๐‘› + 1 + โŒˆ ๐‘› 2 โŒ‰ ๐‘ค(๐ด) = ๐‘› 2 (3๐‘› + 1) from the vertex weight above, it is easy to see that the different weight is 3. furthermore, we show that every two different vertices of ๐‘Š๐‘› is rainbow vertex antimagic coloring. suppose that ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰(๐‘Š๐‘›), refer to the vertex weight the rainbow vertex ๐‘ฅ โˆ’ ๐‘ฆ path is shown in table 2. table 2. the rainbow vertex of ๐‘ฅ โˆ’ ๐‘ฆ path of ๐‘Š๐‘› case ๐’™ ๐’š rainbow vertex coloring ๐’™ โˆ’ ๐’š 1 ๐‘ฅ๐‘– ๐ด ๐‘ฅ๐‘– , ๐ด 2 ๐‘ฅ๐‘– ๐‘ฅ๐‘– ๐‘ฅ๐‘– , ๐ด, ๐‘ฅ๐‘– hence, the vertex coloring of ๐‘Š๐‘› is rainbow vertex antimagic coloring. thus, we obtain ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘Š๐‘›) = 2 if ๐‘› โ‰ก 1(mod 2) and 2 โ‰ค ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐‘Š๐‘›) โ‰ค 3 if ๐‘› โ‰ก 0(mod 2). โˆŽ theorem 3 if โ„ฑ๐‘› be a friendship graph of order 2๐‘› + 1 and ๐‘› โ‰ฅ 3, then ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(โ„ฑ๐‘›) = 3. proof. let โ„ฑ๐‘› be a friendship graph with vertex set ๐‘‰(โ„ฑ๐‘›) = {๐ด} โˆช {๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ , ๐‘ฅ๐‘› } โˆช {๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3, โ€ฆ , ๐‘ฆ๐‘› } and edge set ๐ธ(โ„ฑ๐‘›) = {๐ด๐‘ฅ๐‘– ; 1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช {๐ด๐‘ฆ๐‘– ; 1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช {๐‘ฅ๐‘– ๐‘ฆ๐‘– ; 1 โ‰ค ๐‘– โ‰ค ๐‘›}. the diameter of โ„ฑ๐‘› is 2. based on remark 1, we have ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(โ„ฑ๐‘›) โ‰ฅ ๐‘Ÿ๐‘ฃ๐‘(โ„ฑ๐‘›) = ๐‘‘๐‘–๐‘Ž๐‘š(โ„ฑ๐‘›) โˆ’ 1 = 2 โˆ’ 1 = 1. since the vertex ๐ด has degree of much greater than the on rainbow vertex antimagic coloring of graphs: a new notion marsidi 69 others, it must have a different vertex weight than the others. the vertex weight of ๐ด is the sum of labels of edges which incident to ๐ด. in the other hand, the vertex ๐‘ฅ๐‘– and ๐‘ฆ๐‘– are adjacent, such that based on the edge labeling it can not receive the same weight. from this condition, such that we have ๐‘Ž๐‘Ÿ๐‘ฃ๐‘(โ„ฑ๐‘›) โ‰ฅ 3. furthermore, to show the upper bound we construct the bijective function of edge labels. ๐‘”(๐ด๐‘ฅ๐‘– ) = ๐‘– โˆถ 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘”(๐‘ฅ๐‘– ๐‘ฆ๐‘– ) = 2๐‘› + 1 โˆ’ ๐‘– โˆถ 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘”(๐ด๐‘ฆ๐‘– ) = 2๐‘› + ๐‘– โˆถ 1 โ‰ค ๐‘– โ‰ค ๐‘› from the edge labels above, we have the vertex weights in the following. ๐‘ค(๐‘ฅ๐‘– ) = 2๐‘› + 1 ๐‘ค(๐‘ฆ๐‘– ) = 4๐‘› + 1 ๐‘ค(๐ด) = 3๐‘›2 + ๐‘› from the vertex weight above, it is easy to see that the different weight is 3. furthermore, we show that every two different vertices of โ„ฑ๐‘›is rainbow vertex antimagic coloring. suppose that ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰(โ„ฑ๐‘›), refer to the vertex weight the rainbow vertex ๐‘ฅ โˆ’ ๐‘ฆ path is shown in table 3. table 3. the rainbow vertex of ๐‘ฅ โˆ’ ๐‘ฆ path of โ„ฑ๐‘› case ๐’™ ๐’š rainbow vertex coloring ๐’™ โˆ’ ๐’š 1 ๐‘ฅ๐‘– ๐‘ฅ๐‘– ๐‘ฅ๐‘– , ๐ด, ๐‘ฅ๐‘– 2 ๐‘ฅ๐‘– ๐‘ฆ๐‘– ๐‘ฅ๐‘– , ๐ด, ๐‘ฆ๐‘– 3 ๐‘ฆ๐‘– ๐‘ฆ๐‘– ๐‘ฆ๐‘– , ๐ด, ๐‘ฆ๐‘– 4 ๐‘ฆ๐‘– ๐‘ฅ๐‘– ๐‘ฆ๐‘– , ๐ด, ๐‘ฅ๐‘– hence, the vertex coloring of โ„ฑ๐‘› is rainbow vertex antimagic coloring. thus, we obtain ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(โ„ฑ๐‘›) is 3 . โˆŽ theorem 4 if ๐น๐‘› be a fan graph ๐‘›+1 and ๐‘› โ‰ฅ 3, then ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐น๐‘› ) = 2 if ๐‘› โ‰ก 1(mod 2) and 2 โ‰ค ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐น๐‘›) โ‰ค 3 if ๐‘› โ‰ก 0(mod 2). proof. let ๐น๐‘› be a fan graph with vertex set ๐‘‰(๐น๐‘› ) = {๐ด, ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, โ‹ฏ , ๐‘ฅ๐‘›} and edge set ๐ธ(๐น๐‘› ) = {๐ด๐‘ฅ๐‘– : 1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช {๐‘ฅ๐‘– ๐‘ฅ{๐‘–+1}: 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1}. the diameter of ๐น๐‘› is 2. based on remark 1, we have ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐น๐‘›) โ‰ฅ ๐‘Ÿ๐‘ฃ๐‘(๐น๐‘› ) = ๐‘‘๐‘–๐‘Ž๐‘š(๐น๐‘›) โˆ’ 1 = 2 โˆ’ 1 = 1. since the vertex ๐ด has degree of much greater than the others, it must have a different vertex weight than the others. the vertex weight of ๐ด is the sum of labels of edges which incident to ๐ด. from this condition, such that we have ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐น๐‘›) โ‰ฅ 2. we divide into two cases to show the upper bound of the antimagic rainbow connection number of ๐น๐‘› as follows. case 1. for ๐น๐‘› , ๐‘› โ‰ก 1(mod 2) to show the upper bound of ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐น๐‘›): ๐‘› โ‰ก 1(mod 2), we construct the bijective function of edge labels. ๐‘”(๐‘ฅ๐‘– ๐‘ฅ๐‘–+1) = { ๐‘– 2 , if ๐‘– โ‰ก 0(mod 2) ๐‘› + ๐‘– 2 , if ๐‘– โ‰ก 1(mod 2) on rainbow vertex antimagic coloring of graphs: a new notion marsidi 70 ๐‘”(๐ด๐‘ฅ๐‘– ) = { 2๐‘› โˆ’ 1, if ๐‘– = ๐‘› 2๐‘› โˆ’ ๐‘– โˆ’ 1, if 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 from the edge labels above, we have the vertex weights in the following. ๐‘ค(๐‘ฅ๐‘– ) = 5๐‘› โˆ’ 3 2 ๐‘ค(๐ด) = 3๐‘›2 โˆ’ ๐‘› 2 from the vertex weights above, it is easy to see that the different weight is 2. case 2. for ๐น๐‘› , ๐‘› โ‰ก 0(mod 2) to show the upper bound of ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐น๐‘›): ๐‘› โ‰ก 0(mod 2), we construct the bijective function of edge labels. ๐‘”(๐‘ฅ๐‘– ๐‘ฅ๐‘–+1) = { ๐‘– 2 , if ๐‘– โ‰ก 0(mod 2) ๐‘› + ๐‘– โˆ’ 1 2 , if ๐‘– โ‰ก 1(mod 2) ๐‘”(๐ด๐‘ฅ๐‘– ) = { 2๐‘› โˆ’ 1, if ๐‘– = ๐‘› 2๐‘› โˆ’ ๐‘– โˆ’ 1, if 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 from the edge labels above, we have the vertex weights in the following. ๐‘ค(๐‘ฅ๐‘– ) = { 3๐‘› โˆ’ 2, if ๐‘– = ๐‘› 5๐‘› 2 โˆ’ 2, if 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 ๐‘ค(๐ด) = 3๐‘›2 โˆ’ ๐‘› 2 from the vertex weight above, it is easy to see that the different weight is 3. furthermore, we show that every two different vertices of ๐น๐‘› is rainbow vertex antimagic coloring. suppose that๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰(๐น๐‘› ), refer to the vertex weight the rainbow vertex ๐‘ฅ โˆ’ ๐‘ฆ path is shown in table 4. table 4. the rainbow vertex of ๐‘ฅ โˆ’ ๐‘ฆ path of ๐น๐‘› case ๐’™ ๐’š rainbow vertex coloring ๐’™ โˆ’ ๐’š 1 ๐‘ฅ๐‘– ๐ด ๐‘ฅ๐‘– , ๐ด 2 ๐‘ฅ๐‘– ๐‘ฅ๐‘– ๐‘ฅ๐‘– , ๐ด, ๐‘ฅ๐‘– hence, the vertex coloring of ๐น๐‘› is rainbow vertex antimagic coloring. thus, we obtain ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐น๐‘›) = 2 if ๐‘› โ‰ก 1(mod 2) and 2 โ‰ค ๐‘Ÿ๐‘ฃ๐‘Ž๐‘(๐น๐‘› ) โ‰ค 3 if ๐‘› โ‰ก 0(mod 2). โˆŽ the illustration of antimagic rainbow edge labeling can be seen in figure 1. based on the figure 1, we know that wheel graph ๐‘Š17 satisfy the rainbow vertex antimagic coloring and rainbow vertex antimagic connection number of ๐‘Š17 is 2. on rainbow vertex antimagic coloring of graphs: a new notion marsidi 71 figure 2. the illustration rainbow vertex antimagic coloring of ๐‘Š17 conclusions we have obtained the exact values of rainbow vertex antimagic connection number of some connected graphs, namely path (๐‘ƒ๐‘› ), wheel (๐‘Š๐‘›), friendship (โ„ฑ๐‘›), and fan (๐น๐‘› ). however, since obtaining rainbow vertex antimagic connection number of graph is considered to be np-complete problem, the characterization of the exact value of ๐‘Ž๐‘Ÿ๐‘ฃ๐‘(๐บ) for any family graph is still widely open. therefore, we propose the following open problems as follows. 1. determine the exact value of rainbow vertex antimagic connection number of graphs apart from those families. 2. determine the exact value of rainbow vertex antimagic connection number of any operation graphs. acknowledgments we gratefully acknowledge to department of mathematics education, universitas pgri argopuro jember, cgant university of jember in 2021, and the reviewers who have make some corrections in completing this paper. references [1] g. chartrand, l. lesniak, and p. zhang, graphs & digraphs, fifth edition. 2010. [2] g. chartrand, g. l. johns, k. a. mckeon, and p. zhang, โ€œrainbow connection in graphs,โ€ math. bohem., vol. 133, pp. 85โ€“98, 2008. [3] g. chartrand, g. l. johns, k. a. mckeon, and p. zhang, โ€œthe rainbow connectivity of a graph,โ€ networks, 2009, doi: 10.1002/net.20296. [4] dafik, i. h. agustin, a. fajariyato, and r. alfarisi, โ€œon the rainbow coloring for some graph operations,โ€ vol. 020004, 2016, doi: 10.1063/1.4940805. [5] x. li and y. sun, โ€œan updated survey on rainbow connections of graphsa dynamic survey,โ€ theory appl. graphs, 2017, doi: 10.20429/tag.2017.000103. [6] m. krivelevich and r. yuster, โ€œthe rainbow connection of a graph is (at most) reciprocal to its minimum degree,โ€ j. graph theory, vol. 63, pp. 185โ€“191, 2010. [7] d. n. s. simamora and a. n. m. salman, โ€œthe rainbow (vertex) connection number on rainbow vertex antimagic coloring of graphs: a new notion marsidi 72 of pencil graphs,โ€ procedia comput. sci., vol. 74, pp. 138โ€“142, 2015, doi: 10.1016/j.procs.2015.12.089. [8] m. s. hasan, slamin, dafik, i. h. agustin, and r. alfarisi, โ€œon the total rainbow connection of the wheel related graphs,โ€ 2018. [9] p. heggernes, d. issac, j. lauri, p. t. lima, and e. j. van leeuwen, โ€œrainbow vertex coloring bipartite graphs and chordal graphs,โ€ leibniz int. proc. informatics, lipics, vol. 117, no. 83, pp. 1โ€“13, 2018, doi: 10.4230/lipics.mfcs.2018.83. [10] dafik, slamin, and a. muharromah, โ€œon the ( strong ) rainbow vertex connection of graphs resulting from edge comb product,โ€ 2018. [11] n. hartsfield and g. ringel, pearls in graph theory. 2003. [12] r. simanjuntak, f. bertault, and m. miller, โ€œtwo new (a, d)-antimagic graph labelings,โ€ proc. elev. australas. work. comb. algorithms 11, pp. 179โ€“189, 2000. [13] j. a. gallian, โ€œa dynamic survey of graph labeling,โ€ electron. j. comb., vol. 1, no. dynamicsurveys, 2018. [14] b. j. septory, m. i. utoyo, dafik, b. sulistiyono, and i. h. agustin, โ€œon rainbow antimagic coloring of special graphs,โ€ j. phys. conf. ser., vol. 1836, no. 1, 2021, doi: 10.1088/1742-6596/1836/1/012016. [15] h. s. budi, dafik, i. m. tirta, i. h. agustin, and a. i. kristiana, โ€œon rainbow antimagic coloring of graphs,โ€ j. phys. conf. ser., vol. 1832, no. 1, 2021, doi: 10.1088/17426596/1832/1/012016. a study of count regression models for mortality rate cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 142-151 p-issn: 2086-0382; e-issn: 2477-3344 submitted: october 16, 2021 reviewed: november 04, 2021 accepted: november 05, 2021 doi: https://doi.org/10.18860/ca.v7i1.13642 a study of count regression models for mortality rate anwar fitrianto department of statistics, faculty of mathematics and natural sciences, ipb university email: anwarstat@gmail.com abstract in this study, poisson regression model, negative binomial 1 regression model (negbin 1) and negative binomial regression 2 (negbin 2) model were proposed to fit mortality rate data. the method used is comparing the values of akaike information criterion (aic) and bayesian information criterion (bic) to find out which method suits the data the most. the results show that the data indeed display higher variability. among the three models, the model preferred is negbin 1 model. keywords: mortality; poisson; regression; binomial; overdispersion introduction count data contain variables that count how many times something has happened, such as the number of cases with a particular disease in epidemiology [1]. linear regression models have often been applied to handle this kind of data, but the results are inefficient, inconsistent, and biased. this type of data is considered as count data with variable offset. mortality data is considered as the amount of data that contains the offset variable. a study of mortality for middle-aged men on ischemic heart disease (ihd) that affects mortality has been conducted by [2]. the results showed that there were 46 of 109 deaths around 11.4 years of follow-up due to ihd. in addition to studies on causes of death other than ihd, [3] has researched the global impact of hiv/aids. another study on mortality was conducted by [4] about the diarrheal disease. it has been found that diarrhea causes 1 in 9 child deaths worldwide, the second leading cause among children under 5 years of age. in addition, [5] examined the global causes of death due to disease in children under 5 years. in their study, diarrhea remained the second leading cause of death in children from infection in the last 30 years. in addition, malnutrition is said to be one of the world's worrisome problems. it affects about 6 million child deaths every year. [6] studied that poor nutrition during fetal development can cause severe physical damage, and malnutrition always increases susceptibility to disease. a study conducted by [7] stated that malnutrition (measured as poor anthropometric status) accounted for nearly 50% of childhood deaths. regarding the problem of mortality due to disease, [8] stated that the trend of injuries and deaths from road traffic accidents (rta) is becoming severe in countries such as india. not a day goes by without an rta in india; many people die or become disabled. in https://doi.org/10.18860/ca.v7i1.13642 mailto:anwarstat@gmail.com a study of count regression models for mortality rate anwar fitrianto 143 addition, suicide is one of the factors that contribute to the death rate. in a study by [9], suicidal behavior has always been a major health problem in many countries, both developed and developing countries. poisson regression model is one of the general linear models for data with offset variables. it is also the standard model for calculating data and contingency tables. in this model, the response variable is assumed to have a poisson distribution. in addition to poisson regression, negative binomial regression is also a generalized linear model where the dependent variable is the number of events. the negative binomial distribution is a two-parameter distribution that is generally more flexible than the poisson model [2]. this model can also model scattered quantities, which the poisson model cannot. the negative binomial model can be derived from the poisson distribution and the generalized poisson distribution. [10] has discussed several other specific mortality measures, such as age-specific crude death rates, cause-specific mortality rates, and infant and maternal mortality rates. in the data collection process, there may be biased and inaccurate data measurements. the inaccuracy of this data collection will cause overdispersion. this study aims to identify the most suitable method when dealing with mortality data which usually has overdispersion. methods data the data used in this study is mortality rate data which is available in [11]. the data consists of 163 observations (countries) with seven independent variables, which are the number of people dying per 100,000 live births due to ihd (๐‘ฅ1), diarrheal disease (๐‘ฅ2), hiv/aids (๐‘ฅ3), malaria (๐‘ฅ4), malnutrition (๐‘ฅ5), road accidents (๐‘ฅ6), and suicides (๐‘ฅ7). count regression models according to [12], the count regression model has been suggested to be used to model over-dispersed and zero-inflated count response variables. poisson regression is the standard model for modeling count data, while the negative binomial regression model is often introduced to solve count data with overdispersion. meanwhile, the zero-inflated poisson model (zip) and the zero-inflated negative binomial model (zinb) are introduced to solve a zero-inflated variable in which the data contains many zeros. moreover, [13] found that zip and zinb can be obtained by mixing a distribution degenerate at zero with a poisson regression and negative binomial regression, respectively. the probability mass function of the zip is, ๐‘ƒ(๐‘Œ = ๐‘ฆ๐‘–) = { ๐œ”๐‘– + (1 โˆ’ ๐œ”๐‘–) ๐‘’๐‘ฅ๐‘( ๐œ†๐‘–), ๐‘ฆ๐‘– = 0 (1 โˆ’ ๐œ”๐‘–) ๐œ†๐‘– ๐‘ฆ๐‘–! ๐‘’๐‘ฅ๐‘( ๐œ†๐‘–), ๐‘ฆ๐‘– > 0 (1) meanwhile, the zinb's probability mass function can be formulated as: ๐‘ƒ(๐‘Œ = ๐‘ฆ๐‘–) = { ๐œ”๐‘– + (1 โˆ’ ๐œ”๐‘–) ( ๐œƒ ๐œƒ+๐œ†๐‘– ) ๐œƒ , ๐‘ฆ๐‘– = 0 (1 โˆ’ ๐œ”๐‘–) ๐›ค(๐‘ฆ๐‘–+๐œƒ) ๐‘ฆ๐‘–!๐›ค(๐œƒ) ( ๐œƒ ๐œƒ+๐œ†๐‘– ) ( ๐œ†๐‘– ๐œƒ+๐œ†๐‘– ) ๐‘ฆ๐‘– , ๐‘ฆ๐‘– > 0 (2) with ๐œ†๐‘– = ๐‘’๐‘ฅ๐‘( ๐‘ฅ๐‘–๐›ฝ). the 0's arise with probability ๐œ” from a second process. the function f that relates to the product ๐‘ฅ๐‘–๐›พ to the probability ๐œ”๐‘– is named as the zero-inflated link function, ๐œ”๐‘– = ๐น(๐‘ฅ๐‘–๐›พ). a study of count regression models for mortality rate anwar fitrianto 144 poisson regression model [14] studied about poisson regression model as the standard model for count data. a variable y is a count of events of poisson regression, and the marginal probability of poisson regression is written as: ๐‘ƒ(๐‘Œ = ๐‘ฆ๐‘–) = ๐‘’๐‘ฅ๐‘(โˆ’๐œ†๐‘–)๐œ†๐‘– ๐‘ฆ๐‘– ๐›ค(1+๐‘ฆ๐‘–) ; (3) with ๐œ†๐‘– = ๐‘’๐‘ฅ๐‘( ๐›ผ + ๐‘ฅ๐‘–๐›ฝ); ๐‘ฆ๐‘– = 0,1, . . . ๐‘. the rate parameter of poisson regression is ๐œ†๐‘– and it is also known as its expected count is formulated as: ๐œ†๐‘– = ๐‘’ ๐›ฝ0+๐›ฝ1๐‘ฅ1+...+๐›ฝ๐‘๐‘ฅ๐‘ . (4) based on equation (4), the log-linear model for mean rate is written as: ๐‘™๐‘œ๐‘”(๐œ†๐‘–) = ๐›ฝ0 + ๐›ฝ1๐‘ฅ1+. . . +๐›ฝ๐‘๐‘ฅ๐‘, (5) with p is the number of predictors or covariates in the model, ๐›ฝ0 is the intercept of the regression, ๐›ฝ๐‘ are the regression coefficients, and ๐‘ฅ๐‘– is the independent variable. [14] formulated maximum likelihood estimation (mle) of poisson regression. let y be a random variable with poisson distribution and with an unknown parameter value ๐œƒ. the probability mass function of y is obtained, which is ๐‘ƒ๐‘ฆ(๐‘ฆ; ๐œƒ) to emphasize the parameter ๐œƒ and n is the independent trials in order to get the data ๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3, . . . , ๐‘ฆ๐‘›. the joint probability mass function is as follows: ๐‘ƒ๐‘Œ...๐‘Œ๐‘›(๐‘ฆ1, . . . , ๐‘ฆ๐‘›; ๐œƒ) = ๐‘ƒ๐‘ฆ(๐‘ฆ1; ๐œƒ). . . . ๐‘ƒ๐‘ฆ(๐‘ฆ๐‘›; ๐œƒ). (6) the likelihood of ๐œƒ given data ๐‘ฆ1, . . . , ๐‘ฆ๐‘› can be obtained from equation (6) by applying the logarithm as follows: ๐ฟ(๐œƒ; ๐‘ฆ1, โ€ฆ , ๐‘ฆ1) = ๐‘ƒ๐‘Œ...๐‘Œ๐‘›1 (๐‘ฆ1, . . . , ๐‘ฆ๐‘›; ๐œƒ) = ๐‘ƒ๐‘ฆ(๐‘ฆ1; ๐œƒ). . . . ๐‘ƒ๐‘ฆ(๐‘ฆ๐‘›; ๐œƒ). (7) the estimated value maximizes the maximum likelihood estimates ๐œƒ = ๐œƒ. y follows a poisson distribution with unknown parameters, and the data is collected from the independent trials are of the form ๐‘Œ1 = ๐‘ฆ1, ๐‘Œ2 = ๐‘ฆ2, . . . , ๐‘Œ๐‘› = ๐‘ฆ๐‘›. on the other hand, the likelihood function of the poisson regression is written as: ๐ฟ = โˆ ๐‘’โˆ’๐œ†๐‘–๐œ† ๐‘– โˆ’๐‘ฆ๐‘– ๐‘ฆ๐‘–! ๐‘ ๐‘–=1 . (8) the log-likelihood function of poisson regression is obtained by applying the logarithm of equation (8), ๏€ฝl โˆ‘ ๐‘™๐‘œ๐‘” ( ๐‘’โˆ’๐œ†๐‘–๐œ† ๐‘– โˆ’๐‘ฆ๐‘– ๐‘ฆ๐‘–! )๐‘๐‘–=1 . the standard negative binomial regression model according to [1], in most applications, the mean of the data is usually greater than the variance. if otherwise, it is called overdispersion in the particular data. but, based on the study of [15], the poisson regression model is inefficient when dealing with overdispersed data. while in a study by [16], the negative binomial distribution is more flexible than poisson distribution as it is a two-parameter when modeling the data with overdispersion. particularly, negative binomial regression can model overdispersed counts. the negative binomial model can be derived as a mixture of the gamma-poisson model. starting from the conditional mean of the poisson model, ๐ธ(๐‘ฆ๐‘–|๐‘ฅ๐‘–. ๐œ€๐‘–) = ๐‘’๐‘ฅ๐‘( ๐›ผ + ๐‘ฅ๐‘–๐›ฝ + ๐œ€๐‘–) = โ„Ž๐‘–๐œ†๐‘–, (9) a study of count regression models for mortality rate anwar fitrianto 145 where โ„Ž๐‘– = ๐‘’๐‘ฅ๐‘(๐œ€๐‘–). in the case of the poisson-gamma distribution, ๐‘”(๐œƒ, ๐œƒ) is the poisson distribution while โ„Ž๐‘– = ๐‘’๐‘ฅ๐‘(๐œ€๐‘–) follows gamma distribution. the โ„Ž๐‘– is assumed to follow a two-parameter gamma distribution, ๐‘“(โ„Ž๐‘–) = ๐œƒ๐œƒ ๐‘’๐‘ฅ๐‘(โˆ’๐œƒโ„Ž๐‘–)โ„Ž๐‘– ๐œƒโˆ’1 ๐›ค(๐œƒ) . (10) once โ„Ž๐‘– has been integrated out from the joint distribution, then the marginal probability of negative binomial distribution is obtained as follows: ๐‘ƒ(๐‘Œ = ๐‘ฆ๐‘–|๐‘ฅ๐‘–) = ๐›ค(๐œƒ+๐‘ฆ๐‘–) ๐‘ฆ๐‘–!๐›ค(๐œƒ) ( ๐œƒ ๐œƒ+๐œ†๐‘– ) ๐œƒ ( ๐œ†๐‘– ๐œƒ+๐œ†๐‘– ) ๐‘ฆ๐‘– . (11) the mean of negative binomial is the same as poisson regression, which is written as ๐ธ(๐‘ฆ๐‘–|๐‘ฅ๐‘–) = ๐œ†๐‘– = ๐‘’ ๐‘ฅ๐‘–๐›ฝ and the variance of a negative binomial is written as: ๐‘‰๐‘Ž๐‘Ÿ(๐‘ฆ๐‘–|๐‘ฅ๐‘–) = ๐œ†๐‘– [1 + ( 1 ๐œƒ ) ๐œ†๐‘–] = ๐œ†๐‘–(1 + ๐‘˜๐œ†๐‘–), (12) where ๐‘˜ = ๐‘‰๐‘Ž๐‘Ÿ(โ„Ž๐‘–). moreover, the rate parameter of negative regression ๐œ†๐‘–, which is also known as its expected counts, is written as: ๐œ†๐‘– = ๐‘’ ๐›ฝ0+๐›ฝ1๐‘ฅ1+...+๐›ฝ๐‘๐‘ฅ๐‘ . (13) the log-linear model for the mean rate of negative binomial regression can be obtained by applying the logarithm of equation (13): ๐‘™๐‘œ๐‘”(๐œ†๐‘–) = ๐›ฝ0 + ๐›ฝ1๐‘ฅ1+. . . +๐›ฝ๐‘๐‘ฅ๐‘, (14) where p is the number of predictors or covariates in the model, ๐›ฝ0 is the intercept of the regression, ๐›ฝ๐‘ are the regression coefficients, and x's are the independent variables. [17] has discussed the mle of negative binomial regression in which random samples of n subjects are given. in a standard negative binomial model, the dependent variables ๐‘ฆ๐‘– and the predictor variables ๐‘ฅ1๐‘–, ๐‘ฅ2๐‘–, โ€ฆ , ๐‘ฅ๐‘๐‘– are included. predictor variables are combined to form the following matrix, ๐‘ฟ = [ 1 ๐‘ฅ11 โ€ฆ ๐‘ฅ1๐‘ 1 ๐‘ฅ12 โ‹ฏ ๐‘ฅ2๐‘ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ 1 ๐‘ฅ1๐‘› โ‹ฏ ๐‘ฅ๐‘›๐‘] . the ๐‘–๐‘กโ„Ž row of x is designated to be ๐‘ฅ๐‘– , from equation (11), the ๐œ†๐‘– in which is replaced by ๐‘’๐‘ฅ๐‘–๐›ฝ. the equation can be rewritten as, ๐‘ƒ(๐‘Œ = ๐‘ฆ๐‘–|๐‘ฅ๐‘–) = ๐›ค(๐œƒ+๐‘ฆ๐‘–) ๐‘ฆ๐‘–!๐›ค(๐œƒ) ( ๐œƒ ๐œƒ+๐‘’๐‘ฅ๐‘–๐›ฝ ) ๐œƒ ( ๐‘’๐‘ฅ๐‘–๐›ฝ ๐œƒ+๐‘’๐‘ฅ๐‘–๐›ฝ ) ๐‘ฆ๐‘– . (15) the likelihood function of negative binomial is stated as below, ๐ฟ = โˆ ฮณ(๐œƒ+๐‘ฆ๐‘–) ๐‘ฆ๐‘–!ฮณ(๐œƒ) ๐‘ ๐‘–=1 ( ๐œƒ ๐œƒ+๐‘’๐‘ฅ๐‘–๐›ฝ ) ๐œƒ ( ๐‘’๐‘ฅ๐‘–๐›ฝ ๐œƒ+๐‘’๐‘ฅ๐‘–๐›ฝ ) ๐‘ฆ๐‘– , (16) and the log-likelihood function of negative binomial regression is obtained by applying the logarithm to obtain the following equation: ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏ฑ๏ฑ ๏ฑ ๏ฑ๏ข ๏ฑ ๏ข ln1lnln1ln) 1 ln( 1 ๏€ญ๏€ซ๏‡๏€ญ๏€ซ๏‡๏€ซ๏ƒท๏ƒท ๏ƒธ ๏ƒถ ๏ƒง๏ƒง ๏ƒจ ๏ƒฆ ๏€ซ๏€ซ๏€ญ๏€ซ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ ๏ƒฅ ๏€ฝ ii i iii n i yy x yxyyl e . (17) a study of count regression models for mortality rate anwar fitrianto 146 negative binomial 1 model and negative binomial p model [18] have shown the equation (9) is considered as a negative binomial 2 (negbin 2) model. they re-parameterized the negbin 2 model, and it is labeled as specification negative binomial 1 (negbin 1), which is written as, ๐‘‰๐‘Ž๐‘Ÿ(๐‘ฆ๐‘–|๐‘ฅ๐‘–) = ๐œ†๐‘– + ๐‘˜๐œ†๐‘– = ๐‘‰๐‘Ž๐‘Ÿ(๐‘ฆ๐‘–|๐‘ฅ๐‘–) = ๐œ†๐‘–(1 + ๐‘˜). (18) the marginal probability of negbin 1 is obtained by replacing ๐›ณ with ๐›ณ๐œ†๐‘– in equation (11), ๐‘ƒ(๐‘Œ = ๐‘ฆ๐‘–|๐‘ฅ) = ฮณ(๐œƒ๐œ†๐‘–+๐‘ฆ๐‘–) ๐‘ฆ๐‘–!ฮณ(๐œƒ๐œ†๐‘–) ( ๐œƒ๐œ†๐‘– ๐œƒ๐œ†๐‘–+๐œ†๐‘– ) ๐œƒ ( ๐œ†๐‘– ๐œƒ๐œ†๐‘–+๐œ†๐‘– ) ๐‘ฆ๐‘– . (19) by replacing ๐œƒ with ๐œƒ๐œ†๐‘– 2โˆ’๐‘ƒ in equation 19, the negative binomial p (negbin p) model is written as: ๐‘ƒ(๐‘Œ = ๐‘ฆ๐‘–|๐‘ฅ๐‘–) = ๐›ค(๐œƒ๐œ†๐‘– 2โˆ’๐‘ƒ+๐‘ฆ๐‘–) ๐‘ฆ๐‘–!๐›ค(๐œƒ๐œ†๐‘– 2โˆ’๐‘ƒ) ( ๐œƒ๐œ†๐‘– 2โˆ’๐‘ƒ ๐œƒ๐œ†๐‘– 2โˆ’๐‘ƒ+๐œ†๐‘– ) ๐œƒ๐œ†๐‘– 2โˆ’๐‘ƒ ( ๐œ†๐‘– ๐œƒ๐œ†๐‘– 2โˆ’๐‘ƒ+๐œ†๐‘– ) ๐‘ฆ๐‘– . (20) overdispersion [19] have proposed that in almost the statistical study for the count data, it is always assumed that the dependent variable follows the poisson distribution. the mean is assumed to be equal to the variance. however, in real life, the variance is usually larger than the mean. [19] also stated that overdispersion indicates high variability around a model's fitted values in the poisson formulation. this case will lead to a negative binomial model as a proposal to correct this problem. when the data are over-dispersed, the variance is not the same as its mean, or ๐‘‰๐‘Ž๐‘Ÿ(๐‘ฅ๐‘–) = ๐œ‘๐œ†, where ๐œ† is the mean. if ๐œ‘ = 1, the poisson model is ordinary; if ๐œ‘ > 1, it means that the model is overdispersed model. consequently, [20] stated that a unique property of distributions in exponential families is the conditional variance equal the conditional mean. the dispersion parameter, ๐œ‘. in the poisson model, the dispersion parameter is set to constant value ๐œ‘ = 1. count data according to [16], count data indicates how many times or how frequent something happens. furthermore, [18] stated that an event outcome is the number of times an event occurs while an event count is a nonnegative random variable. the examples of count data included the number of patients hospitalized, the number of thieves arrested, and the number of natural disasters. in some cases of count, data have offset variables. [21] said that offset variable is always being analyzed by the generalized linear model (glm) and count regression model. the analysis is usually used whenever the data is recorded over an observed period. offset is used to denote the period observed in glm. other than that, offset is usually defined as a measure of exposure. the exposure can be the number of house years incurred, and the response will be the number of claims incurred. the log-linear mean rate for poisson regression and negative binomial model is, ๐‘™๐‘œ๐‘”(๐œ†๐‘–) = ๐›ฝ0 + ๐›ฝ1๐‘ฅ1+. . . +๐›ฝ๐‘๐‘ฅ๐‘, (21) when applying poisson regression or negative binomial regression, the offset variable, ๐‘™๐‘œ๐‘”(๐‘ก) is added a study of count regression models for mortality rate anwar fitrianto 147 ๐‘™๐‘œ๐‘”(๐œ†๐‘–) = ๐›ฝ0 + ๐›ฝ1๐‘ฅ1 + โ‹ฏ + ๐›ฝ๐‘๐‘ฅ๐‘ + ๐‘™๐‘œ๐‘”( ๐‘ก) (22) ๐‘™๐‘œ๐‘”(๐œ†๐‘–) โˆ’ ๐‘™๐‘œ๐‘”( ๐‘ก) = ๐›ฝ0 + ๐›ฝ1๐‘ฅ1+. . . +๐›ฝ๐‘๐‘ฅ๐‘ ๐‘™๐‘œ๐‘” ( ๐œ†๐‘– ๐‘ก ) = ๐›ฝ0 + ๐›ฝ1๐‘ฅ1+. . . +๐›ฝ๐‘๐‘ฅ๐‘. ๐‘™๐‘œ๐‘”(๐œ†๐‘–) โˆ’ ๐‘™๐‘œ๐‘”( ๐‘ก) = ๐›ฝ0 + ๐›ฝ1๐‘ฅ1+. . . +๐›ฝ๐‘๐‘ฅ๐‘ ๐‘™๐‘œ๐‘” ( ๐œ†๐‘– ๐‘ก ) = ๐›ฝ0 + ๐›ฝ1๐‘ฅ1+. . . +๐›ฝ๐‘๐‘ฅ๐‘, where p is the number of predictors or covariates in the model, ๐›ฝ0 is the intercept of the regression, ๐›ฝ๐‘ are the coefficients of the regression, ๐‘ฅ is the independent variable, t is the period observed (exposure), log (t) is the offset variable and ๐œ†๐‘– ๐‘ก is the rate. in this study, our interest is in modeling for the mortality data, which is count data. poisson regression and negative binomial regression are generally appropriate to deal with the count data. in this research, our interest is to find out which regression best fits the mortality data. modelling the mortality rate data poisson regression and negative binomial regression are the main study in this research in modeling the data. the model for poisson model and negative binomial model are written as equation (22), where p is the number of predictors or covariates in the model, ๐›ฝ0 is the intercept of the regression, ๐›ฝ๐‘ is the covariate coefficients, and ๐‘ฅ is the independent variable. the ๐‘™๐‘œ๐‘” ( ๐œ†๐‘– ๐‘ก ) represents the number of people dying per time unit and the function ฮฒx is the relationship of death rate changes as a function of subject covariates. the null hypothesis states the slope is equal to zero, whereas the alternative hypothesis indicates the slope is not equal to zero. goodness-of-fit test deviance and person's chi-square will be carried out to check if the data has overdispersion or under-dispersion. the results of deviance and pearson's chi-square that are divided by the degree of freedom (df) should be approximately equal to one. if the values are more than one, this indicates that the data is overdispersion. goodness-of-fit is performed by using the proc genmod statement in sas. deviance for fitted poisson regression and negative binomial regression is written as: ๐ท = 2 โˆ‘ {๐‘ฆ๐‘–๐‘™๐‘œ๐‘” ( ๐‘ฅ๐‘– ๐‘ฆ๐‘– ) โˆ’ (๐‘ฅ๐‘– โˆ’ ๐œ†๐‘–)} ๐‘› ๐‘–=1 . (23) and the pearsonโ€™s chi-square is defined as, ๐œ’2 = โˆ‘ (๐‘ฅ๐‘–โˆ’๐œ†๐‘–) 2 ๐‘‰๐‘Ž๐‘Ÿ(๐‘ฅ๐‘–) ๐‘› ๐‘–=1 , (24) where ๐œ†๐‘– = ๐‘’ ๐›ฝ0+๐›ฝ1๐‘ฅ1+...+๐›ฝ๐‘๐‘ฅ๐‘ . a study of count regression models for mortality rate anwar fitrianto 148 results and discussion mortality rate data models proc genmod statement in sas version 9.4 was used to run the poisson regression analysis. at 5% level of significance, all independent variables contributed significantly to the mortality rate with the following estimated poisson regression model (table 1): ( ๐‘™๐‘œ๐‘”(๐œ†๐‘–) ๐‘ก ) ฬ‚ =6.5834 + 0.0008๐‘ฅ1+ 0.0039๐‘ฅ2+0.0010๐‘ฅ3+0.004๐‘ฅ4-0.003๐‘ฅ5โ€“ 0.0123๐‘ฅ6+0.0081๐‘ฅ7 table 1. analysis of maximum likelihood parameter estimates for poisson regression parameter degree of freedom estimate standard error chi-square pr > chisquare intercept 1 6.5834 0.0083 6255069.00 <.0001 ๐‘ฅ1 1 0.0008 0.0000 507.71 <.0001 ๐‘ฅ2 1 0.0039 0.0002 312.25 <.0001 ๐‘ฅ3 1 0.0010 0.0000 1787.60 <.0001 ๐‘ฅ4 1 0.0046 0.0002 529.74 <.0001 ๐‘ฅ5 1 -0.0032 0.0003 95.57 <.0001 ๐‘ฅ6 1 -0.0123 0.0004 1092.88 <.0001 ๐‘ฅ7 1 0.0081 0.0004 463.89 <.0001 the estimated poisson model, along with the standard error of each estimated coefficient and p values, indicated that the ihd, diarrheal disease, aids/hiv, malaria, malnutrition, road accidents and suicides were significant predictors contributing to the mortality rate. as an alternative to the poisson regression model, the data were also analyzed using the negative binomial model. table 2 displays the result of the analysis based on maximum likelihood estimation for the negative binomial regression. table 2. analysis of maximum likelihood parameter estimates for negative binomial regression parameter degree of freedom estimate standard error chi-square pr > chi square intercept 1 6.5602 0.00875 5616.57 <.0001 ๐‘ฅ1 1 0.0008 0.0004 4.02 0.0451 ๐‘ฅ2 1 0.0046 0.0026 3.16 0.0755 ๐‘ฅ3 1 0.0011 0.0003 13.13 0.0003 ๐‘ฅ4 1 0.0054 0.0022 5.95 0.0147 ๐‘ฅ5 1 -0.0041 0.0038 1.19 0.2750 ๐‘ฅ6 1 -0.0138 0.0037 13.88 0.0002 ๐‘ฅ7 1 0.0112 0.0045 6.13 0.0133 fitting the data using the negative binomial regression model found that all independent variables are except ๐‘ฅ2 (diarrheal disease) and ๐‘ฅ5(malnutrition) contribute significantly to the mortality rate. both variables have a more considerable p value (0.0755 for diarrheal diseases and 0.2750 for malnutrition). hence, diarrheal disease and malnutrition were not significant predictors, while the other variables ihd, aids/hiv, malaria, road accidents, and suicides, were the significant predictors. the predicted model using the negative binomial regression model for the mortality rate data is written as, ( ๐‘™๐‘œ๐‘”(๐œ†๐‘–) ๐‘ก ) ฬ‚ =6.5602+0.0008๐‘ฅ1+0.0046๐‘ฅ2+0.0011๐‘ฅ3+0.0054๐‘ฅ4-0.0041๐‘ฅ5-.0138๐‘ฅ6+0.0112๐‘ฅ7 a study of count regression models for mortality rate anwar fitrianto 149 descriptive statistics of the variables for checking overdispersion when the variance of a particular variable is higher than its mean, it indicates that the data has overdispersion. in this study, the dependent variable's mean and variance were 824.0061 and 105125.22, respectively, indicating overdispersion. table 3 displays the means and variances of all the variables in the study. all the variables were overdispersed and more considerable variability was given around a model's fitted values in poisson regression, ๐‘‰๐‘Ž๐‘Ÿ(๐‘ฅ๐‘–) =๐œ‘๐œ†, ๐œ‘ >1. as a consequence, the negative binomial regression was the better approach for modeling over-dispersed count data. table 3. the mean and the variance for each variable variable mean variance mortality 824.0061 105125.22 ihd 114.5747 6031.84 diarrhoel disease 22.0791 1118.02 aids/hiv 46.6652 11754.18 malaria 11.5688 481.2379 malnutrition 12.7489 477.6099 road accidents 17.2767 91.6093 suicides 10.0120 52.6231 goodness-of-fit test for poisson regression and negative binomial regression the main purpose of the goodness-of-fit test is to determine a more appropriate model. table 4 presents the deviance and pearson's chi-square to observe whether the deviance and pearson's chi-square obtained close to one. table 4. goodness-of-fit test for poisson regression and negative binomial regression model criterion df value value/df poisson regression deviance 155 15081.6228 97.3008 pearson's chi-square 155 14196.5148 91.5904 negative binomial regression deviance 155 167.1663 1.0785 pearson's chi-square 155 131.1002 0.8458 the value/df column of deviance and pearson's chi-square for the poisson model were 97.3008 and 91.5904, respectively, which were remarkably higher than one. the poisson model did not correctly describe the data. there was more significant variability among counts than will be expected for poisson distribution. this situation arises because repeated subjects may not be independent. one of the possible reasons for the overdispersion is that experimental conditions are not under control, hence ๐œ†๐‘– varies with uncontrolled factors. the table shows that the negative binomial regression was the better alternative to model the mortality rate. the value/df of the deviance and pearson's chi-square were 1.0785 and 0.8458, respectively. both values were closer to one as compared to the corresponding values in the poisson regression model. comparison between poisson regression, negative binomial 1 and negative binomial 2. comparisons between all the three proposed models for the mortality data were given in table 5. the aic for poisson regression was larger compared to the other two. the aic value for negbin 1 was slightly smaller than the one for negbin 2. it indicated that negbin l was a better fit than poisson regression and negbin 2. on the other hand, the bic values for the three regressions were 16501, 2345, and 2347, respectively, for a study of count regression models for mortality rate anwar fitrianto 150 poisson, negbin 1, and negbin 2. the bic value for poisson regression was much higher when compared to the negative binomial regressions. thus, with lower aic and bic values, the negbin 1 was the better approach for the mortality rate data since it can explain more variation with the same number of independent variables.. table 5. aic and bic values between fifferent regression models regressions aic bic poisson 16476 16501 negbin 1 2317 2315 negbin 2 2319 2347 conclusions the analysis was conducted to compare the performance of three models: poisson regression, negbin 1 and negbin 2. the negbin 1 has been proven that it is the most appropriate model for overdispersed data. the mean and the variance were calculated to ensure that data has overdispersion. since the data were overdispersed, the results of deviance and pearson's chi-square showed that negative binomial was a better model for the data. then, the performance of aic and bic showed that negbin 1 is a better model, followed by negbin 2 and poisson regression. references [1] tutz, g. regression for categorical data, cambridge university press, new york, 2012. [2] kumpusalo, e., lakka, h.n., laaksomen, d.e., lakka, t.a., niskanen, l.k., salonen, j.t. and tuomilehto, j., "the metabolic syndrome and total and cardiovascular disease mortality in middle-age men", journal of american medical association, vol. 288, no. 3, pp. 2708-2716, 2002. [3] gayle, h.d. and hill, g.l. "global impact of human immunodeficiency virus and aids". clinical microbiology reviews, vol. 14, no. 2, pp. 327 โ€“ 335, 2001. [4] breman, j.g., jamison, d.t., and measam, a.r., disease control priorities in developing countries 2nd edition: worldbank, washington (dc), 2006. [5] claudio f. lanata, christa l. fischer-walker and ana c. olascoaga, carla x. torres, martin j. aryee, robert e. black, "global causes of diarrheal disease mortality in children <5 years of age: a systematic review", plos one. vol. 8, no.9, pp. 1-11, 2013. [6] bassett, l. and levinson, f.j. malnutrition is still a major contributor to child death. population reference bureau, boston, 2007. [7] black, r.e., hyder, a., sacco, l. and rice, a.l., malnutrition as an underlying cause of childhood deaths associated with infectious diseases in developing countries. world health organization. bulletin of the world health organization, 2000. [8] gopalakrishnan, s. , "a public health perspective of road traffic accidents", journal of family medicine and primary care, vol. 1, no. 2, pp. 144โ€“150, 2012. [9] wasserman, d., cheng, q., and jiang, g.x., "global suicide rates among young people age 15 โ€“ 19", world psychiatry, vol. 4, no. 2, pp. 114 โ€“120, 2005. a study of count regression models for mortality rate anwar fitrianto 151 [10 sheil, d, alder, d., and burshem, d., "the interpretation and misinterpretation of mortality rate measures", journal of ecology, vol. 83, no. 2, pp. 331โ€“333, 1995. [11] koontz, d, life expectancy,, http://www.worldlifeexpectancy.com/life-expectancyresearch (accessed 12 august 2021), 2021. [12] รถzmen, i. and fayome, f., "count regressions model with an application to zoological data containing structural zero", journal of data science, vol. 5, no. 4, pp. 491-502, 2007. [13] ismail, n. and zamani, h.,"estimation of claim count data using negative binomal, generalized poisson, zero-inflated negative binomial and zero-inflated generalized poisson model", casualty acturial society e-form. vol. 41, no. 20, pp. 1-28, 2013. [14] greene, w. functional form and heterogeneity in models for count data, now publisher inc, 2008. [15] gourieroux, c., monfort, a., and trognon, a. , "pseudo maximum likelihood methods", econometrica, vol. 52, no. 3,pp. 681-700, 1984. [16] long, j. s. and freese, j., regression models for categorical dependent variables using stata, second edition, college station, tx: stata press, 2006. [17] zwilling, m.l., "negative binomial regression", the mathematical journal, vol. 15, no. 1, pp. 1-18, 2013. [18] cameron, c.a. and trivedi, p.k., regression aof count data, cambridge university press, cambridge, 2013. [19] berk, r and macdonald, j., "overdispersion and poisson regression", journal of quantitative criminology, vol. 24, no. 3, pp. 269-284. [20] turner, h., introduction to generalized linear model, esrc national centre for research method, 2008. [21] yan, j., guszcza, j., flynn, m., and wu, c.s., "applications of the offset in propertycasualty predictive modeling", casualty actuarial society e-forum, vol. 1, no. 1., pp. 366-385. http://www.worldlifeexpectancy.com/lifeon the study of rainbow antimagic coloring of special graphs cauchy โ€“jurnal matematika murni dan aplikasi volume 7(4) (2023), pages 585-596 p-issn: 2086-0382; e-issn: 2477-3344 submitted: october 19, 2022 reviewed: february 20, 2023 accepted: march 20, 2023 doi: http://dx.doi.org/10.18860/ca.v7i4.17836 on the study of rainbow antimagic coloring of special graphs dafik1,2,*, riniatul nur wahidah 1,2, ermita rizki albirri 1,2 , sharifah kartini said husain 3 1mathematics edu. depart. university of jember, indonesia 2pui-pt combinatorics and graph, cgant, university of jember, indonesia 3institute for mathematical research, university putra malaysia, malaysia email: d.dafik@unej.ac.id abstract let ๐บ be a connected graph with vertex set ๐‘‰(๐บ) and edge set ๐ธ(๐บ). the bijective function ๐‘“:๐‘‰(๐บ) โ†’ {1,2,โ€ฆ,|๐‘‰(๐บ)|} is said to be a labeling of graph where ๐‘ค(๐‘ฅ๐‘ฆ) = ๐‘“(๐‘ฅ) + ๐‘“(๐‘ฆ) is the associated weight for edge ๐‘ฅ๐‘ฆ โˆˆ ๐ธ(๐บ). if every edge has different weight, the function ๐‘“ is called an edge antimagic vertex labeling. a path ๐‘ƒ in the vertex-labeled graph ๐บ, with every two edges ๐‘ฅ๐‘ฆ,๐‘ฅโ€ฒ๐‘ฆโ€ฒ โˆˆ ๐ธ(๐‘ƒ) satisfies ๐‘ค(๐‘ฅ๐‘ฆ) โ‰  ๐‘ค(๐‘ฅโ€ฒ๐‘ฆโ€ฒ) is said to be a rainbow path. the function ๐‘“ is called a rainbow antimagic labeling of ๐บ, if for every two vertices ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐บ), there exists a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. graph ๐บ admits the rainbow antimagic coloring, if we assign each edge ๐‘ฅ๐‘ฆ with the color of the edge weight ๐‘ค(๐‘ฅ๐‘ฆ). the smallest number of colors induced from all edge weights of edge antimagic vertex labeling is called a rainbow antimagic connection number of ๐บ, denoted by ๐‘Ÿ๐‘Ž๐‘(๐บ). in this paper, we study rainbow antimagic connection numbers of octopus graph ๐‘‚๐‘›, sandat graph ๐‘†๐‘ก๐‘›, sun flower graph ๐‘†๐‘“๐‘›, volcano graph ๐‘‰๐‘› and semi jahangir graph ๐ฝ๐‘›. copyright ยฉ 2023 by authors, published by cauchy group. this is an open access article under the cc by-sa license (https://creativecommons.org/licenses/by-sa/4.0/) keywords: antimagic labeling; rainbow coloring; rainbow antimagic connection number; special graphs introduction the definition of graph used in this paper follows from chartrand and zhang [9]. in the latest days, graph theory has many applications, one of them is graph coloring. the application of graph coloring can be found in many area, such as data mining, image segmentation, clustering, image capturing, networking. chartrand, et al. [10] extended the graph coloring concept into a rainbow coloring of graph. let ๐‘:๐ธ(๐บ) โ†’ {1,2, . . . ,๐‘˜},๐‘˜ โˆˆ โ„• be the edge coloring of a connected graph where the two adjacent edges may have the same color. if for every two vertices ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐บ), there exists a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path, if no two edges of the ๐‘ฅ โˆ’ ๐‘ฆ path are the same color, then the path is called a rainbow path. a coloring of graph ๐บ is said to be rainbow connection, if for every two vertices ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐บ) have a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. the edge colored ๐บ which every two different vertices have a rainbow connection is called rainbow coloring of graph, see [10]. some results in regards to the concept of rainbow coloring of graphs can been found by nabila, et al [21] and ma, et al. [19]. some other type of rainbow coloring are rainbow vertex coloring and rainbow total coloring. some relevant results of rainbow vertex coloring can be found in lie. h, et al. [15], http://dx.doi.org/10.18860/ca.v7i4.17836 https://creativecommons.org/licenses/by-sa/4.0/ on the study of rainbow antimagic coloring of special graphs dafik 586 bustan et al. [8] and li. x et al. [17], while some results of total rainbow coloring can be found results in lie. h et al. [16] and ma. y et al.[20]. furthermore, the other concepts in graph theory is graph labeling, one of the concept of graph labeling is an antimagic labeling of graph ๐บ, defined by hartsfield and ringel [13]. baca et al. has found some antimagic labeling results in [4], [5], [6]. moreover, some results on antimagic labeling have been contributed by dafik ๐‘’๐‘ก ๐‘Ž๐‘™. in [11]. in addition, the research on antimagic labeling can also be found in several papers [2], [22], [25]. arumugam et al. [3], defined a new concept by combining graph coloring and graph labeling. the bijective function ๐‘“ โˆถ ๐ธ(๐บ) โ†’ {1,2, . . . , |๐ธ(๐บ)|}, the vertex weight of the vertex ๐‘ฅ is ๐‘ค(๐‘ฅ) = โˆ‘ ๐‘“(๐‘ฅ๐‘ฆ) ๐‘ฅ๐‘ฆโˆˆ๐ธ(๐‘ฅ) and ๐ธ(๐‘ฅ) is the set of edges incident to ๐‘ฅ for every ๐‘ฅ โˆˆ ๐‘‰(๐บ). if for every two adjacent vertices ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰ (๐บ),๐‘ค(๐‘ฅ) โ‰  ๐‘ค(๐‘ฆ), then the bijective function ๐‘“ is called a local antimagic labeling. so, each local antimagic label is a vertex coloring in ๐บ with vertex ๐‘ฅ colored with ๐‘ค(๐‘ฅ). based on the definition of arumugam [3], dafik ๐‘’๐‘ก ๐‘Ž๐‘™. [12] defined the combination of the concepts of antimagic labeling and rainbow coloring into a new concept called rainbow antimagic coloring. in this study, we will study the combination of rainbow coloring and antimagic labeling, and it tends to the new notion, namely a rainbow antimagic coloring. the lower bound of the rainbow antimagic connection number has been determined in septory et al. stated in the following lemma. lemma 1. let ๐บ be any connected graph. let ๐‘Ÿ๐‘(๐บ) and ฮด(๐บ) be the rainbow connection number of ๐บ and the maximum degree of ๐บ, ๐‘Ÿ๐‘Ž๐‘(๐บ) โ‰ฅ ๐‘š๐‘Ž๐‘ฅ {๐‘Ÿ๐‘(๐บ),ฮด(๐บ)}. while dafik et al. also characterised the existence of rainbow ๐‘ข โˆ’ ๐‘ฃ path of any graph of ๐‘‘๐‘–๐‘Ž๐‘š(๐บ) โ‰ค 2 in the following theorem. theorem 1. let ๐บ be a connected graph of diameter ๐‘‘๐‘–๐‘Ž๐‘š(๐บ) โ‰ค 2. let ๐‘“ be any bijective function from ๐‘‰(๐บ) to the set {1,2,โ€ฆ, |๐‘‰(๐บ)| }, there exists a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. some other results in regards on this notion can be read on [1], [7], [12], [14], [23] and [24]. in this paper, we will study the rainbow antimagic connection number of octopus graph ๐‘‚๐‘›, sandat graph ๐‘†๐‘ก๐‘›, sun flower graph ๐‘†๐‘“๐‘›, volcano graph ๐‘‰๐‘› and semi jahangir graph ๐‘†๐ฝ๐‘›. method to determine the number of rainbow antimagic coloring of graph, we use the following steps: 1. for any graph ๐บ, identify the set of vertices ๐‘‰(๐บ) and set of edges ๐ธ(๐บ). 2. analyze the lower bound of rainbow antimagic connection number (๐‘Ÿ๐‘Ž๐‘) based on lemma: ๐‘Ÿ๐‘Ž๐‘(๐บ) โ‰ฅ max {๐‘Ÿ๐‘(๐บ),ฮด(๐บ)}. 3. label the vertices of the graph ๐บ with the function: ๐‘‰(๐บ) โ†’ {1,2,3, . . . , |๐‘‰(๐บ)|}. 4. determine the edge weight based on the sum of vertex label which incident with the edge. to calculate edge weight we give the function, ๐‘ค(๐‘ข๐‘ฃ) = ๐‘“(๐‘ข) + ๐‘“(๐‘ฃ) for ๐‘ข,๐‘ฃ ๐œ– ๐‘‰(๐บ). 5. verify that every two vertex in the graph ๐บ have rainbow paths. if not, repeat the step 3. 6. determine the upper bound of ๐‘Ÿ๐‘Ž๐‘(๐บ) from the number of different edge weight. 7. the exact value of rainbow antimagic connection number can be determined if lower on the study of rainbow antimagic coloring of special graphs dafik 587 bound is the same with upper bound of rainbow antimagic connection number. on the study of rainbow antimagic coloring of special graphs dafik 588 results and discussion in this section, we will show our new results on those graph above stated in a theorem. we start to write the theorem, provide the cardinality of the graph, obtain lower and upper bound, establish the rainbow antimagic connection number and show the existence of rainbow path for any to vertices and finally conclude the proof. theorem 2. for ๐‘› โ‰ฅ 3 , ๐‘Ÿ๐‘Ž๐‘(๐‘‚๐‘›) = 2๐‘› . ๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“. the octopus graph ๐‘‚๐‘› is a graph with vertex set ๐‘‰( ๐‘‚๐‘› ) = {๐‘ฅ} โˆช { ๐‘ฆ๐‘–, ๐‘ง๐‘–,1 โ‰ค ๐‘— โ‰ค ๐‘›}, and edge set ๐ธ(๐‘‚๐‘›) = {๐‘ฅ๐‘ฆ๐‘–,๐‘ฅ๐‘ง๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช {๐‘ฆ๐‘–๐‘ฆ๐‘–+1, 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1}. the cardinality of vertex set is |๐‘‰(๐‘‚๐‘›)| = 2๐‘› + 1 and the cardinality of edge set is |๐ธ(๐‘‚๐‘›)| = 3๐‘› โˆ’ 1. based on definition of octopus graph, the graph ๐‘‚๐‘› has maximum degree of ฮด (๐‘‚๐‘›) = 2๐‘›. to prove the rainbow antimagic connection number of ๐‘‚๐‘›, the first step is to determine the lower bound of ๐‘Ÿ๐‘Ž๐‘(๐‘‚๐‘›). based on lemma 1. we have ๐‘Ÿ๐‘Ž๐‘(๐‘‚๐‘›) โ‰ฅ ฮด(๐‘‚๐‘›). since, the labels of the vertices with the bijection ๐‘“:๐‘‰(๐‘‚๐‘›) โ†’ {1,2,โ€ฆ,|๐‘‰(๐‘‚๐‘›)|}, we have ๐‘“(๐‘ข) โ‰  ๐‘“(๐‘ฃ) for every vertex ๐‘ข,๐‘ฃ โˆˆ ๐‘‰ (๐บ). it implies for each edge ๐‘ข๐‘ฅ,๐‘ฃ๐‘ฅ โˆˆ ๐ธ (๐บ),๐‘ค (๐‘ข๐‘ฅ) โ‰  ๐‘ค (๐‘ฃ๐‘ฅ). thus ๐‘Ÿ๐‘Ž๐‘ (๐‘‚๐‘›) โ‰ฅ 2๐‘›. the second step is to determine the upper bound of ๐‘Ÿ๐‘Ž๐‘(๐‘‚๐‘›). define the vertex labeling ๐‘“ โˆถ ๐‘‰(๐‘‚๐‘›) โ†’ {1,2, . . . ,2๐‘› + 1 } as follows. ๐‘“(๐‘ฅ) = 1 ๐‘“(๐‘ฆ๐‘–) = { 3+๐‘– 2 , for ๐‘– is odd 3+๐‘›+๐‘– 2 , for ๐‘– is even,๐‘› is odd 2+๐‘›+๐‘– 2 , for ๐‘– is even,๐‘› is even ๐‘“(๐‘ง๐‘–) = ๐‘› + ๐‘– + 1 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› the edge weight ๐‘“ can be expressed as ๐‘ค(๐‘ฅ๐‘ง๐‘–) = 2 + ๐‘› + ๐‘– , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘ค(๐‘ฅ๐‘ฆ๐‘–) = { 5+๐‘– 2 , for ๐‘– is odd 5+๐‘›+๐‘– 2 , for ๐‘– is even,๐‘› is odd 4+๐‘›+๐‘– 2 , for ๐‘– is even,๐‘› is even ๐‘ค(๐‘ฆ๐‘–๐‘ฆ๐‘–+1) = { 7+2๐‘–+๐‘› 2 , for 1 โ‰ค ๐‘– โ‰ค ๐‘›,๐‘› is odd 6+2๐‘–+๐‘› 2 , for 1 โ‰ค ๐‘– โ‰ค ๐‘›,๐‘› is even the next step is to count the number of different edge weights inducing the rainbow antimagic coloring on the graph ๐‘‚๐‘›. the edge weights are included in the sets ๐‘ค(๐‘ฅ๐‘ฆ๐‘–) = {3,4,5,โ€ฆ,๐‘› + 2} and ๐‘ค(๐‘ฅ๐‘ง๐‘–) = {๐‘› + 3,๐‘› + 4,๐‘› + 5,โ€ฆ,2๐‘› + 2}. the number of distinct colors of ๐‘ค(๐‘ฅ๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘ฅ๐‘ง๐‘–) is 2๐‘›. to prove this number, we use the formula of an arithmetic sequence formula. the following is an illustration of determining the number of distinct colors. ๐‘ˆ๐‘  = ๐‘Ž + (๐‘  โˆ’ 1)๐‘‘ 2๐‘› + 2 = 3 + (๐‘  โˆ’ 1)1 2๐‘› + 2 = 3 + ๐‘  โˆ’ 1 ๐‘  = 2๐‘› on the study of rainbow antimagic coloring of special graphs dafik 589 it implies that the edge weight ๐‘“ โˆถ ๐‘‰(๐‘‚๐‘›) โ†’ {1,2, . . . ,2๐‘› + 1} induces a rainbow antimagic coloring of 2๐‘› colors. therefore ๐‘Ÿ๐‘Ž๐‘ (๐‘‚๐‘› ) โ‰ค 2๐‘›. combining two bounds, we have the exact value of ๐‘Ÿ๐‘Ž๐‘ (๐‘‚๐‘›) = 2๐‘›. the last is to show the existence of the rainbow ๐‘ฅ โˆ’ ๐‘ฆ path of ๐‘‚๐‘›. according to the theorem 2, since ๐‘‘๐‘–๐‘Ž๐‘š(๐‘‚๐‘›) = 2, for every two vertices of the ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐บ) there is a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. it completes the proof. the illustration of a rainbow antimagic coloring of octopus graph ๐‘‚๐‘› can be seen in figure 1. figure 1. the illustration of rainbow antimagic coloring of octopus graph ๐‘‚7 theorem 3. for ๐‘› โ‰ฅ 3, ๐‘Ÿ๐‘Ž๐‘(๐‘†๐‘ก๐‘›) = 3๐‘› . ๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“. the sandat graph ๐‘†๐‘ก๐‘› is a graph with vertex set ๐‘‰( ๐‘†๐‘ก๐‘› ) = {๐‘Ž} โˆช { ๐‘ฅ ๐‘–,๐‘ฆ๐‘–,๐‘ง๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘›} and edge set ๐ธ(๐‘†๐‘ก๐‘›) = {๐‘Ž๐‘ฅ๐‘–,๐‘Ž๐‘ฆ๐‘–,๐‘Ž๐‘ง๐‘–,๐‘ฅ๐‘–๐‘ฆ๐‘–,๐‘ฆ๐‘–๐‘ง๐‘– 1 โ‰ค ๐‘– โ‰ค ๐‘›}. the cardinality of vertex set is |๐‘‰(๐‘†๐‘ก๐‘›)| = 3๐‘› + 1 and the cardinality of edge set is |๐ธ(๐‘†๐‘ก๐‘›)| = 5๐‘›. based on definition of sandat graph, the graph ๐‘†๐‘ก๐‘› has maximum degree of ฮด (๐‘†๐‘ก๐‘›) = 3๐‘›. to prove the rainbow antimagic connection number of ๐‘†๐‘ก๐‘› , the first step is to determine the lower bound of ๐‘Ÿ๐‘Ž๐‘(๐‘†๐‘ก๐‘›). based on lemma 1. we have ๐‘Ÿ๐‘Ž๐‘(๐‘†๐‘ก๐‘›) โ‰ฅ ฮด(๐‘†๐‘ก๐‘›). since, the labels of the vertices with the bijection ๐‘“:๐‘‰(๐‘†๐‘ก๐‘›) โ†’ {1,2,โ€ฆ,|๐‘‰(๐‘†๐‘ก๐‘›)|}, we have ๐‘“(๐‘ข) โ‰  ๐‘“(๐‘ฃ) for every vertex ๐‘ข,๐‘ฃ โˆˆ ๐‘‰ (๐บ). it implies for each edge ๐‘ข๐‘ฅ,๐‘ฃ๐‘ฅ โˆˆ ๐ธ (๐บ),๐‘ค (๐‘ข๐‘ฅ) โ‰  ๐‘ค (๐‘ฃ๐‘ฅ). thus ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐‘ก๐‘›) โ‰ฅ 3๐‘›. the second step is to determine the upper bound of ๐‘Ÿ๐‘Ž๐‘(๐‘†๐‘ก๐‘›). define the vertex labeling ๐‘“ โˆถ ๐‘‰(๐‘†๐‘ก๐‘›) โ†’ {1,2, . . . ,3๐‘› + 1 } as follows. ๐‘“(๐‘Ž) = 2 ๐‘“(๐‘ฅ๐‘–) = 3๐‘› + 3 โˆ’ 2๐‘– , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘“(๐‘ฆ๐‘–) = { 1 , for ๐‘– = ๐‘› ๐‘– + 1 , for โ‰ค ๐‘– โ‰ค ๐‘› ๐‘“(๐‘ง๐‘–) = 3๐‘› + 2 โˆ’ 2๐‘– , for 1 โ‰ค ๐‘– โ‰ค ๐‘› the edge weight ๐‘“ can be expressed as ๐‘ค(๐‘Ž๐‘ฅ๐‘–) = 3๐‘› + 5 โˆ’ 2๐‘– , for 1 โ‰ค ๐‘– โ‰ค ๐‘› on the study of rainbow antimagic coloring of special graphs dafik 590 ๐‘ค(๐‘Ž๐‘ฆ๐‘–) = { 3 , for i = 1 ๐‘– + 3 , for 2 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘ค(๐‘Ž๐‘ง๐‘–) = 3๐‘› + 4 โˆ’ 2๐‘– , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) = { 3๐‘› + 2 , for ๐‘– = 1 3๐‘› + 4 โˆ’ ๐‘– , for 2 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘ค(๐‘ฆ๐‘–๐‘ง๐‘–) = { 3๐‘› + 1 , for ๐‘– = 1 3๐‘› + 3 โˆ’ ๐‘– , for 2 โ‰ค ๐‘– โ‰ค ๐‘› the next step is to count the number of different edge weights inducing the rainbow antimagic coloring on the graph ๐‘†๐‘ก๐‘›. the edge weights are included in the sets ๐‘ค(๐‘Ž๐‘ฅ๐‘–) โˆช ๐‘ค(๐‘Ž๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘Ž๐‘ง๐‘–) โˆช ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘ฆ๐‘–๐‘ง๐‘–) = {5,6,7,โ€ฆ,3๐‘› + 3 }. the number of distinct colors of ๐‘ค(๐‘Ž๐‘ฅ๐‘–) โˆช ๐‘ค(๐‘Ž๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘Ž๐‘ง๐‘–) โˆช ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘ฆ๐‘–๐‘ง๐‘–) is 3๐‘›. based on edge weights the number of edge wights is determined in the same way in theorem 2. it implies that the edge weight ๐‘“ โˆถ ๐‘‰(๐‘†๐‘ก๐‘›) โ†’ {1,2, . . . ,3๐‘› + 1} induces a rainbow antimagic coloring of 3๐‘› colors. therefore ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐‘ก๐‘› ) โ‰ค 3๐‘›. combining two bounds, we have the exact value of ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐‘ก๐‘›) = 3๐‘›. the last is to show the existence of the rainbow ๐‘ฅ โˆ’ ๐‘ฆ path of ๐‘†๐‘ก๐‘›. according to the theorem 1, since ๐‘‘๐‘–๐‘Ž๐‘š(๐‘†๐‘ก๐‘›) = 2, for every two vertices of the ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐บ) there is a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. it completes the proof. the illustration of a rainbow antimagic coloring of sandat graph ๐‘†๐‘ก๐‘› can be seen in figure 2. figure 2. the illustration of rainbow antimagic coloring of sandat graph ๐‘†๐‘ก6. theorem 4. for ๐‘› โ‰ฅ 4, ๐‘Ÿ๐‘Ž๐‘(๐‘†๐‘“๐‘›) = 3๐‘› . ๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“. the sunflower graph ๐‘†๐‘“๐‘› is a graph with vertex set ๐‘‰( ๐‘†๐‘“๐‘› ) = {๐‘} โˆช { ๐‘ฅ ๐‘–,๐‘ฆ๐‘–,๐‘ง๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘›} and edge set ๐ธ(๐‘†๐‘“๐‘›) = {๐‘๐‘ฅ๐‘–,๐‘๐‘ฆ๐‘–,๐‘๐‘ง๐‘–,๐‘ฆ๐‘–๐‘ง๐‘–,๐‘ง๐‘–๐‘ง๐‘–+1,1 โ‰ค ๐‘– โ‰ค ๐‘›}. the cardinality of vertex set is |๐‘‰(๐‘†๐‘“๐‘›)| = 3๐‘› + 1 and the cardinality of edge set is |๐ธ(๐‘†๐‘“๐‘›)| = 5๐‘›. based on definition of sunflower graph, the graph ๐‘†๐‘“๐‘› has maximum degree of ฮด (๐‘†๐‘“๐‘›) = 3๐‘›. to prove the rainbow antimagic connection number of ๐‘†๐‘“๐‘› , the first step is to determine the lower bound of ๐‘Ÿ๐‘Ž๐‘(๐‘†๐‘“๐‘›). based on lemma 1. we have ๐‘Ÿ๐‘Ž๐‘(๐‘†๐‘“๐‘›) โ‰ฅ ฮด(๐‘†๐‘“๐‘›). since, the labels of the vertices with the bijection ๐‘“:๐‘‰(๐‘†๐‘“๐‘›) โ†’ {1,2,โ€ฆ,|๐‘‰(๐‘†๐‘“๐‘›)|}, we have on the study of rainbow antimagic coloring of special graphs dafik 591 ๐‘“(๐‘ข) โ‰  ๐‘“(๐‘ฃ) for every vertex ๐‘ข,๐‘ฃ โˆˆ ๐‘‰ (๐บ). it implies for each edge ๐‘ข๐‘ฅ,๐‘ฃ๐‘ฅ โˆˆ ๐ธ (๐บ),๐‘ค (๐‘ข๐‘ฅ) โ‰  ๐‘ค (๐‘ฃ๐‘ฅ). thus ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐‘“๐‘›) โ‰ฅ 3๐‘›. the second step is to determine the upper bound of ๐‘Ÿ๐‘Ž๐‘(๐‘†๐‘“๐‘›). define the vertex labeling ๐‘“ โˆถ ๐‘‰(๐‘†๐‘“๐‘›) โ†’ {1,2, . . . ,3๐‘› + 1 } as follows. ๐‘“(๐‘) = 1 ๐‘“(๐‘ฅ๐‘–) = 2๐‘› + ๐‘– + 1 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘“(๐‘ฆ๐‘–) = 2๐‘› โˆ’ ๐‘– + 2 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘“(๐‘ง๐‘–) = ๐‘– + 1 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› the edge weight ๐‘“ can be expressed as ๐‘ค(๐‘๐‘ฅ๐‘–) = 2๐‘› + ๐‘– + 2 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘ค(๐‘๐‘ฆ๐‘–) = 2๐‘› โˆ’ ๐‘– + 3 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘ค(๐‘๐‘ง๐‘–) = ๐‘– + 2 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘ค(๐‘ฆ๐‘–๐‘ง๐‘–) = 2๐‘›+3 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› ๐‘ค(๐‘ง๐‘–๐‘ง๐‘–+1) = { 2๐‘– + 3 , for 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 ๐‘› + 3 , for ๐‘– = ๐‘› the next step is to count the number of different edge weights inducing the rainbow antimagic coloring on the graph ๐‘†๐‘“๐‘›. the edge weights are included in the sets ๐‘ค(๐‘๐‘ฅ๐‘–) โˆช ๐‘ค(๐‘๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘๐‘ง๐‘–) = {3,4,5,โ€ฆ,3๐‘› + 2 },๐‘ค(๐‘ฆ๐‘–๐‘ง๐‘–) = {2๐‘› + 3} and ๐‘ค(๐‘ง๐‘–๐‘ง๐‘–+1) = {๐‘› + 3} โˆช {5,7,9,โ€ฆ2๐‘› + 1}. the number of distinct colors of ๐‘ค(๐‘๐‘ฅ๐‘–) โˆช ๐‘ค(๐‘๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘๐‘ง๐‘–) โˆช ๐‘ค(๐‘ฆ๐‘–๐‘ง๐‘–) โˆช ๐‘ค(๐‘ง๐‘–๐‘ง๐‘–+1) is 3๐‘›. based on edge weights the number of edge wights is determined in the same way in theorem 2. it implies that the edge weight ๐‘“ โˆถ ๐‘‰(๐‘†๐‘“๐‘›) โ†’ {1,2, . . . ,3๐‘› + 1} induces a rainbow antimagic coloring of 3๐‘› colors. therefore ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐‘“๐‘› ) โ‰ค 3๐‘›. combining two bounds, we have the exact value of ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐‘“๐‘›) = 3๐‘›. the last is to show the existence of the rainbow ๐‘ฅ โˆ’ ๐‘ฆ path of ๐‘†๐‘“๐‘›. according to the theorem 1, since ๐‘‘๐‘–๐‘Ž๐‘š(๐‘†๐‘“๐‘›) = 2, for every two vertices of the ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐บ) there is a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. it completes the proof. the illustration of a rainbow antimagic coloring of sunflower graph ๐‘†๐‘“๐‘› can be seen in figure 3. on the study of rainbow antimagic coloring of special graphs dafik 592 figure 3. the illustration of rainbow antimagic coloring of sunflower graph ๐‘†๐‘“6. theorem 5. for ๐‘› โ‰ฅ 3, ๐‘Ÿ๐‘Ž๐‘(๐‘‰๐‘›) = ๐‘› + 2 . ๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“. the volcano ๐‘‰๐‘› is a graph with vertex set ๐‘‰( ๐‘‰๐‘› ) = {๐‘ฅ1,๐‘ฅ2,๐‘ฅ3} โˆช {๐‘ฆ๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘›} and edge set ๐ธ(๐‘‰๐‘›) = {๐‘ฅ1๐‘ฅ2,๐‘ฅ2๐‘ฅ3,๐‘ฅ3๐‘ฅ1} โˆช {๐‘ฅ๐‘–๐‘ฆ๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘›}. the cardinality of vertex set is |๐‘‰(๐‘‰๐‘›)| = ๐‘› + 3 and the cardinality of edge set is |๐ธ(๐‘‰๐‘›)| = ๐‘› + 3. based on definition of volcano graph, the graph ๐‘‰๐‘› has maximum degree of ฮด (๐‘‰๐‘›) = ๐‘› + 2. to prove the rainbow antimagic connection number of ๐‘‰๐‘› , the first step is to determine the lower bound of ๐‘Ÿ๐‘Ž๐‘(๐‘‰๐‘›). based on lemma 1. we have ๐‘Ÿ๐‘Ž๐‘(๐‘‰๐‘›) โ‰ฅ ฮด(๐‘‰๐‘›). since, the labels of the vertices with the bijection ๐‘“:๐‘‰(๐‘‰๐‘›) โ†’ {1,2,โ€ฆ, |๐‘‰(๐‘‰๐‘›)|}, we have ๐‘“(๐‘ข) โ‰  ๐‘“(๐‘ฃ) for every vertex ๐‘ข,๐‘ฃ โˆˆ ๐‘‰ (๐บ). it implies for each edge ๐‘ข๐‘ฅ,๐‘ฃ๐‘ฅ โˆˆ ๐ธ (๐บ),๐‘ค (๐‘ข๐‘ฅ) โ‰  ๐‘ค (๐‘ฃ๐‘ฅ). thus ๐‘Ÿ๐‘Ž๐‘ (๐‘‰๐‘›) โ‰ฅ ๐‘› + 2. the second step is to determine the upper bound of ๐‘Ÿ๐‘Ž๐‘(๐‘‰๐‘›). define the vertex labeling ๐‘“ โˆถ ๐‘‰(๐‘‰๐‘›) โ†’ {1,2, . . . ,๐‘› + 3 } as follows. ๐‘“(๐‘ฅ1) = 1 ๐‘“(๐‘ฅ2) = 2 ๐‘“(๐‘ฅ3) = 3 ๐‘“(๐‘ฆ๐‘–) = ๐‘– + 3 the edge weight ๐‘“ can be expressed as ๐‘ค(๐‘ฅ1๐‘ฅ2) = 3 ๐‘ค(๐‘ฅ2๐‘ฅ3) = 5 ๐‘ค(๐‘ฅ1๐‘ฅ3) = 4 ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) = ๐‘– + 4 the next step is to count the number of different edge weights inducing the rainbow antimagic coloring on the graph ๐‘‰๐‘›. the edge weights are included in the sets on the study of rainbow antimagic coloring of special graphs dafik 593 ๐‘ค(๐‘ฅ1๐‘ฅ2) โˆช ๐‘ค(๐‘ฅ2๐‘ฅ3) โˆช ๐‘ค(๐‘ฅ1๐‘ฅ3) = {3,4,5 } and ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) = {5,6,7,โ€ฆ,๐‘› + 4}. the number of distinct colors of ๐‘ค(๐‘ฅ1๐‘ฅ2) โˆช ๐‘ค(๐‘ฅ2๐‘ฅ3) โˆช ๐‘ค(๐‘ฅ1๐‘ฅ3) โˆช ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) is ๐‘› + 2. based on edge weights the number of edge wights is determined in the same way in theorem 2. it implies that the edge weight ๐‘“ โˆถ ๐‘‰(๐‘‰๐‘›) โ†’ {1,2, . . . ,๐‘› + 3} induces a rainbow antimagic coloring of ๐‘› + 2 colors. therefore ๐‘Ÿ๐‘Ž๐‘ (๐‘‰๐‘› ) โ‰ค ๐‘› + 2. combining two bounds, we have the exact value of ๐‘Ÿ๐‘Ž๐‘ (๐‘‰๐‘›) = ๐‘› + 2. the last is to show the existence of the rainbow ๐‘ฅ โˆ’ ๐‘ฆ path of ๐‘‰๐‘›. according to the theorem 1, since ๐‘‘๐‘–๐‘Ž๐‘š(๐‘‰๐‘›) = 2, for every two vertices of the ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐บ) there is a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. it completes the proof. the illustration of a rainbow antimagic coloring of volcano graph ๐‘‰๐‘› can be seen in figure 4. figure 4. the illustration of rainbow antimagic coloring of volcano graph ๐‘‰7. theorem 6. for ๐‘› โ‰ฅ 3, ๐‘Ÿ๐‘Ž๐‘(๐‘†๐ฝ๐‘›) = ๐‘› . ๐‘ƒ๐‘Ÿ๐‘œ๐‘œ๐‘“. the semi jahangir graph ๐‘†๐ฝ๐‘› is a graph with vertex set ๐‘‰( ๐‘†๐ฝ๐‘› ) = {๐‘Ž} โˆช { ๐‘ฅ๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช { ๐‘ฆ๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1} and edge set (๐‘†๐ฝ๐‘›) = {๐‘Ž๐‘ฅ๐‘–,1 โ‰ค ๐‘– โ‰ค ๐‘›} โˆช {๐‘ฅ๐‘–๐‘ฆ๐‘–,๐‘ฆ๐‘–๐‘ฅ๐‘–+1,1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1}. the cardinality of vertex set is |๐‘‰(๐‘†๐ฝ๐‘›)| = 2๐‘› and the cardinality of edge set is |๐ธ(๐‘†๐ฝ๐‘›)| = 3๐‘› โˆ’ 2. based on definition of semi jahangir graph, the graph ๐‘†๐ฝ๐‘› has maximum degree of ฮด (๐‘†๐ฝ๐‘›) = ๐‘›. to prove the rainbow antimagic connection number of ๐‘†๐ฝ๐‘› , the first step is to determine the lower bound of ๐‘Ÿ๐‘Ž๐‘(๐‘†๐ฝ๐‘›). based on lemma 1. we have ๐‘Ÿ๐‘Ž๐‘(๐‘†๐ฝ๐‘›) โ‰ฅ ฮด(๐‘†๐ฝ๐‘›). since, the labels of the vertices with the bijection ๐‘“:๐‘‰(๐‘†๐ฝ๐‘›) โ†’ {1,2,โ€ฆ,|๐‘‰(๐‘†๐ฝ๐‘›)|}, we have ๐‘“(๐‘ข) โ‰  ๐‘“(๐‘ฃ) for every vertex ๐‘ข,๐‘ฃ โˆˆ ๐‘‰ (๐บ). it implies for each edge ๐‘ข๐‘ฅ,๐‘ฃ๐‘ฅ โˆˆ ๐ธ (๐บ),๐‘ค (๐‘ข๐‘ฅ) โ‰  ๐‘ค (๐‘ฃ๐‘ฅ). thus ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐ฝ๐‘›) โ‰ฅ ๐‘›. the second step is to determine the upper bound of ๐‘Ÿ๐‘Ž๐‘(๐‘†๐ฝ๐‘›). define the vertex labeling ๐‘“ โˆถ ๐‘‰(๐‘†๐ฝ๐‘›) โ†’ {1,2, . . . ,2๐‘›} as follows. ๐‘“(๐‘Ž) = { ๐‘› , for ๐‘› is odd ๐‘› + 1 , for ๐‘› is even ๐‘“(๐‘ฅ๐‘–) = { 2 , for ๐‘– = 1 2๐‘– + 2 , for 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 4 , for ๐‘– = ๐‘› ๐‘“(๐‘ฆ๐‘–) = { 2๐‘› โˆ’ 2๐‘– + 1 , for 1 โ‰ค ๐‘– โ‰ค โŒˆ ๐‘› 2 โŒ‰ โˆ’ 1 2๐‘› โˆ’ 2๐‘– โˆ’ 3 , for โŒˆ ๐‘› 2 โŒ‰ โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 2 on the study of rainbow antimagic coloring of special graphs dafik 594 ๐‘“(๐‘ฆ๐‘›โˆ’1) = { ๐‘– โˆ’ 1 , for ๐‘› is odd ๐‘– , for ๐‘› is even the edge weight ๐‘“ can be expressed as ๐‘ค(๐‘Ž๐‘ฅ๐‘–) = { ๐‘› + 2 , for ๐‘› is odd ๐‘› + 3 , for ๐‘› is even ๐‘ค(๐‘Ž๐‘ฅ๐‘–) = { ๐‘› + 2๐‘– + 2 , for ๐‘› is odd,2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 ๐‘› + 2๐‘– + 3 , for ๐‘› is even,2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 ๐‘ค(๐‘Ž๐‘ฅ๐‘›) = { ๐‘› + 4 , for ๐‘› is odd ๐‘› + 5 , for ๐‘› is even ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) = { 2๐‘› + 1 , for ๐‘– = 1 2๐‘› + 3 , for 2 โ‰ค ๐‘– โ‰ค โŒˆ ๐‘› 2 โŒ‰ โˆ’ 1 2๐‘› โˆ’ 1 , for โŒˆ ๐‘› 2 โŒ‰ โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 2 ๐‘ค(๐‘Ž๐‘ฅ๐‘›โˆ’1๐‘ฆ๐‘›โˆ’1) = { 3๐‘› โˆ’ 2 , for ๐‘› is odd 3๐‘› โˆ’ 1 , for ๐‘› is even ๐‘ค(๐‘ฆ๐‘–๐‘ฅ๐‘–+1) = { 2๐‘› + 5 , for 2 โ‰ค ๐‘– โ‰ค โŒˆ ๐‘› 2 โŒ‰ โˆ’ 1 2๐‘› + 1 , for โŒˆ ๐‘› 2 โŒ‰ โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 2 2๐‘› โˆ’ 5 , for ๐‘– = ๐‘› โˆ’ 1 the next step is to count the number of different edge weights inducing the rainbow antimagic coloring on the graph ๐‘†๐ฝ๐‘›. the edge weights are included in the sets ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘ฆ๐‘–๐‘ฅ๐‘–+1) = {2๐‘› + 1,2๐‘› + 3,2๐‘› + 5 } and ๐‘ค(๐‘Ž๐‘ฅ๐‘–) = {๐‘› + 3,๐‘› + 4,๐‘› + 5,โ€ฆ,3๐‘› + 1}. the number of distinct colors of ๐‘ค(๐‘ฅ๐‘–๐‘ฆ๐‘–) โˆช ๐‘ค(๐‘ฆ๐‘–๐‘ฅ๐‘–+1) โˆช ๐‘ค(๐‘Ž๐‘ฅ๐‘–) is ๐‘›. based on edge weights the number of edge wights is determined in the same way in theorem 2. it implies that the edge weight ๐‘“ โˆถ ๐‘‰(๐‘†๐ฝ๐‘›) โ†’ {1,2, . . . ,3๐‘› โˆ’ 2} induces a rainbow antimagic coloring of ๐‘› colors. therefore ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐ฝ๐‘› ) โ‰ค ๐‘›. combining two bounds, we have the exact value of ๐‘Ÿ๐‘Ž๐‘ (๐‘†๐ฝ๐‘›) = ๐‘›. the last is to show the existence of the rainbow ๐‘ฅ โˆ’ ๐‘ฆ path of ๐‘†๐ฝ๐‘›. suppose we take any ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐‘†๐ฝ๐‘›), there are two possibilities for ๐‘ฅ,๐‘ฆ, namely: ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐‘†๐ฝ๐‘›) where ๐‘‘(๐‘ฅ,๐‘ฆ) โ‰ค 2 or ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐‘†๐ฝ๐‘›) where ๐‘‘(๐‘ฅ,๐‘ฆ) โ‰ฅ 3. suppose ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐‘†๐ฝ๐‘›) where ๐‘‘(๐‘ฅ,๐‘ฆ) โ‰ค 2, based on theorem 1, we must have the rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. for ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐‘†๐ฝ๐‘›) where ๐‘‘(๐‘ฅ,๐‘ฆ) โ‰ฅ 3, we have two case: first case for path ๐‘ฅ๐‘– โˆ’ ๐‘ฆ๐‘— we use the path ๐‘ฅ๐‘–,๐‘Ž,๐‘ฅ๐‘—,๐‘ฆ๐‘— or ๐‘ฅ๐‘–,๐‘Ž,๐‘ฅ๐‘—+1,๐‘ฆ๐‘—. second case for path ๐‘ฆ๐‘– โˆ’ ๐‘ฆ๐‘— we use the path ๐‘ฆ๐‘–,๐‘ฅ๐‘–,๐‘Ž,๐‘ฅ๐‘—,๐‘ฆ๐‘— or ๐‘ฆ๐‘–,๐‘ฅ๐‘–,๐‘Ž,๐‘ฅ๐‘—+1,๐‘ฆ๐‘— or ๐‘ฆ๐‘–,๐‘ฅ๐‘–+1,๐‘Ž,๐‘ฅ๐‘—,๐‘ฆ๐‘— or ๐‘ฆ๐‘–,๐‘ฅ๐‘–+1,๐‘Ž,๐‘ฅ๐‘—+1,๐‘ฆ๐‘—. thus, for ๐‘ฅ,๐‘ฆ โˆˆ ๐‘‰(๐‘†๐ฝ๐‘›) there is a rainbow ๐‘ฅ โˆ’ ๐‘ฆ path. it completes the proof.the illustration of a rainbow antimagic coloring of semi jahangir graph ๐‘†๐ฝ๐‘› can be seen in figure 5. on the study of rainbow antimagic coloring of special graphs dafik 595 figure 5. the illustration of rainbow antimagic coloring of semi jahangir graph ๐‘†๐ฝ6. concluding remarks based on these results, the authors get the results of the rainbow antimagic connection number on several graphs. the authors finds the exact value of the octopus graph ๐‘‚๐‘›, sandat graph ๐‘†๐‘ก๐‘›, sunflower graph ๐‘†๐‘“๐‘›, volcano graph ๐‘‰๐‘› and semi jahangir graph ๐‘†๐ฝ๐‘›. based on the results of this study, this study raises an open problem. determine the exact value of the rainbow antimagic connection number of operation of graphs. references [1] al jabbar z l, dafik adawiyah r, albirri e r, agustin i h, on rainbow antimagic coloring of some special graph, journal of physics: conference series. 1465 (1) (2020). [2] arumugam s, miller m, phanalasy o, ryan j, antimagic labeling of generalized pyramid graphs, acta mathematica sinica, english series. 30 (2) (2014), 283โ€“290. [3] arumugam s, premalatha k, baห‡ca m, semaniห‡covยดa-feห‡novห‡cยดฤฑkovยดa a, local antimagic vertex coloring of a graph, graphs combin. 33 (2017), 275-285. [4] baห‡ca m, antimagic labelings of antiprisms, journal of combinatorial mathematics and combinatorial computing. 35 (2000), 217-224. [5] baห‡ca m, baskoro e t, jendrol s, miler m, antimagic labelings of hexagonal plane maps, utilitas mathematica. 66 (2004), 231-238. [6] baห‡ca m, phanalasy o, ryan j, semanicovยดa-fenoห‡cยดฤฑkovยดa a, antimagic labelings of joint graphs, mathematics in computer science. 9 (2) (2015), 139โ€“143. [7] budi h s, dafik, tirta i m, agustin i h, kristiana a i, on rainbow antimagic coloring of graphs, journal of physics: conf. series, 1832 (2021), 012016. [8] bustan a w, salman a n m, the rainbow vertex connection number of star wheel graphs, aip conference proceedings. (2019), 112โ€“116. [9] chartrand g, lesniak l, zhang p, graphs & digraphs, sixth ed., taylor & francis group, new york, 1 (2016). [10] chartrand g, johns g l, mckeon k a, zhang p, rainbow connection in graphs, math. bohemica 133 (2008), 85-98. on the study of rainbow antimagic coloring of special graphs dafik 596 [11] dafik, miler m, ryan j, baห‡ca m, antimagic labeling of the union of two stars, australasian journal of combinatorics. 42 (2018), 35-44. [12] dafik, susanto f, alfarisi r, septory b j, agustin i h, venkatachalam m, on rainbow antimagic coloring of graphs. advanced mathematical models and aplication. 6 (3) (2021) 278-291. [13] hartsfield n, ringel g, pearls in graph theory, academic press, san diego, 1990. [14] joedo j c, dafik, kristiana a i, agustin i h, nisviasari r, on the rainbow antimagic coloring of vertex almagamation of graphs, journal of physics: conf. series 2157 (2022), 012014. [15] lei h, liu h, magnant c, shi y, total rainbow connection of digraphs, discrete applied mathematics. 236 (2018), 288โ€“305. [16] lei h, li s, liu h, shi y, rainbow vertex connection of digraphs, journal of combinatorial optimization. 35 (1)(2018), 86โ€“107. [17] li x, liu s (n.d.), rainbow vertex-connection number of 2-connected graphs. arxiv:1110v1[math.co]. [18] ma y, total rainbow connection number and complementary graph, results in mathematics, 70 (1โ€“2) (2016), 173โ€“182. [19] ma y, lu z, rainbow connection numbers of cayley graphs, journal of combinatorial optimization,34 (1) (2017), 182โ€“193. [20] ma y, nie k, jin f, wang c, total rainbow connection numbers of some special graphs, applied mathematics and computation,360 (2019), 213โ€“220. [21] nabila s, salman a n m, the rainbow connection number of origami graphs and pizza graphs, procedia computer science, 74 (1) (2015), 162โ€“167. [22] ryan j, phanalasy o, miller m, rylands l, on antimagic labeling for generalized web and flower graphs, lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 6460 lncs (2011), 303โ€“313. [23] sulistiyono b, slamin, dafik, agustin i h, alfarisi r, on rainbow antimagic coloring of some graphs, journal of physics: conference series. 1465 (1) (2020). [24] septory b j, utoyo m i, dafik, sulistiyono b, agustin i h, on rainbow antimagic coloring of special graphs. journal of physics: conference series. 1836 (2021) 012016. [25] wang t m, zhang g h, on antimagic labeling of regular graphs with particular factors, journal of discrete algorithms, 23 (2013), 76โ€“82. super total labeling (a,d)-edge antimagic on the firecracker graph cauchy โ€“jurnal matematika murni dan aplikasi volume 6(3) (2020), pages 133-139 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 18, 2020 reviewed: october 01, 2020 accepted: november 10, 2020 doi: http://dx.doi.org/10.18860/ca.v6i3.10145 super total labeling (a,d)-edge antimagic on the firecracker graph juhari mathematics department, universitas islam negeri maulana malik ibrahim malang email: juhari@uin-malang.ac.id abstract an an (a, d)-edge antimagic total labeling on (p, q)-graph g is a one-to-one map f from v (g) โˆช e(g) onto the integers 1, 2, . . ., p + q with the property that the edge-weights, w(uv) = f (u) + f(v) + f(uv) where uv โˆˆ e(g), form an arithmetic progression starting from a and having common difference d. such labeling is called super if the smallest possible labels appear on the vertices. in this paper, we investigate the existence of super (a, d)-edge antimagic total labeling of firecracker graph. keywords: super (a, d)-edge-antimagic total labeling; firecracker graph (fn, k) introduction the first label appears in the middle of the year 1960 it started by a ringel and rosa hypotheses [1]. in 1967 rosa called this label as liberation ฮฒ-valuation from a graph with e side, if there is the function that mapping one to one from the set of points ๐‘‰(๐บ) to set of integers 0,1,2, โ€ฆ . , ๐‘’, so every side xy in graph g gets a different label |๐‘“(๐‘ฅ) โˆ’ ๐‘“(๐‘ฆ)| for every edges in graph g. one type of graf liberation is super total labeling (๐‘Ž, ๐‘‘)-antimagic edge (seatl), where a smallest side dan d different value. this liberation introduced by simanjutak, bertault and miller in the year 2000 [1], [2], [3]. the entire release (๐‘Ž, ๐‘‘)-edge antimagic is total labeling in some kinds of graf g that started by labeling all of the graphs first with consecutive original numbers, then proceed with buying all sides of the map such that the side weights form an arithmetic sequence with the first term and different d [4], [5]. the type of star graph, the super total labeling (๐‘Ž, ๐‘‘)-edge antimagic (seatl) not yet found one of which is a graph firecracker that hasn't been labelled previously. this prompted the writer to examine how super total labeling (๐‘Ž ๐‘‘)-edge antimagic (seatl) on the firecracker graph (fn, k). some of the problems formulated are as follows: (1) the upper limit d, so the firecracker graph has super total labeling (a, d)-edge antimagic? and (2) how bijective function of super total labeling (๐‘Ž, ๐‘‘)-edge antimagic the firecracker graph? in order not to be widespread, this research needs to be done, and this research needs to be done on total labeling (๐‘Ž, ๐‘‘)-edge antimagic the firecracker graph (fn, k) with n โ‰ฅ 2; k โ‰ฅ 3. in this session, n and k are a provision of the definition firecracker graph. super total labeling (๐’‚, ๐’…)-edge antimagic. a graph is said to have total labeling (๐‘Ž, ๐‘‘)-edge antimagic if there is a one-to-one mapping of one ๐‘‰(๐บ) โˆช ๐ธ(๐บ) to integers. 1,2,3, โ€ฆ , ๐‘ + ๐‘ž so the set of side weight ๐‘ค(๐‘ข๐‘ฃ) = ๐‘“(๐‘ข) + http://dx.doi.org/10.18860/ca.v6i3.10145 mailto:juhari@uin-malang.ac.id super total labeling (a,d)-edge antimagic on the firecracker graph juhari 134 ๐‘“(๐‘ฃ) + ๐‘“(๐‘ข๐‘ฃ) on all edge g is ๐‘Ž, ๐‘Ž + ๐‘‘, โ€ฆ , ๐‘Ž + (๐‘ž โˆ’ 1)๐‘‘ for ๐‘Ž > 0 and ๐‘‘ >0 both integers [6]. the total labeling (๐‘Ž, ๐‘‘)-edge antimagic called super total labeling (๐‘Ž, ๐‘‘)edge antimagic if ๐‘“(๐‘‰) = {1,2,3, . . , ๐‘} and ๐‘“(๐ธ) = {๐‘ + 1, ๐‘ + 2, ๐‘ + 3, โ€ฆ , ๐‘ + ๐‘ž}. to search upper limit different value d super total slowly (๐‘Ž, ๐‘‘)-edge antimagic can certain by lemma [1], [7]: lemma 1 if a graph (p, q) is super total labeling (a,d)-edge antimagic so ๐‘‘ โ‰ฅ 2๐‘+๐‘žโˆ’5 ๐‘žโˆ’1 prove. ๐‘“(๐‘‰) = {1,2,3, . . , ๐‘} and ๐‘“(๐ธ) = {๐‘ + 1, ๐‘ + 2, ๐‘ + 3, โ€ฆ , ๐‘ + ๐‘ž} for example, graph (๐‘, ๐‘ž) is super total labeling (๐‘Ž, ๐‘‘)-edge antimagic by mapping ๐‘“: ๐‘‰(๐บ) โˆช ๐ธ(๐บ) โ†’ {1,2,3, โ€ฆ , ๐‘ + ๐‘ž}. the minimum value that possible from the smallest weight side ๐›ผ(๐‘ข) + ๐›ผ(๐‘ข๐‘ฃ) + ๐›ผ(๐‘ฃ) = 1 + (๐‘ + 1) + 2 = ๐‘ + 4 and can be written: ๐‘ + 4 โ‰ค ๐›ผ. while on the other side, t h e maximum value that possible from the biggest weight side gained by the sum of 2 smallest labels and biggest label or can be written (๐‘ โˆ’ 1) + (๐‘ + ๐‘ž) + ๐‘ = 3๐‘ + ๐‘ž โˆ’ 1. result: ๐‘Ž + (๐‘ž โˆ’ 1) ๐‘‘ โ‰ค 3๐‘ + ๐‘ž โˆ’ 1 ๐‘‘ โ‰ค 3๐‘ + ๐‘ž โˆ’ 1 โˆ’ (๐‘ + 4) ๐‘ž โˆ’ 1 ๐‘‘ โ‰ค 2๐‘ + ๐‘ž โˆ’ 5 ๐‘ž โˆ’ 1 the equation above has proved and got value๐‘‘ โ‰ฅ 2๐‘+๐‘žโˆ’5 ๐‘žโˆ’1 from many kinds or graph family. firecracker graph firecracker graph is a graph that gets by star graph combination exactly one leaf of each graph is connected [8], [9], [10], usually symbolized ๐น๐‘›,๐‘˜ where n is the number of merged star graphs, while k is the number of points of each connected star graph. methods this research uses axiomatic descriptive method, which is by decreasing the existing axioms or theorems [11], [12], then applied in super total labeling (๐‘Ž, ๐‘‘)-edge antimagic on the firecracker graph ๐น๐‘›,๐‘˜ . in addition, some systematic research techniques are as follows: (1) count the number of points v and side e on the firecracker graph ๐น๐‘›,๐‘˜ ; (2) determine the upper limit of the different d values in the firecracker graph ๐น๐‘›,๐‘˜ in accordance with the lemma 1; (3) determine or find eavl label (edge-antimagic vertex labeling) or labeling points (๐‘Ž, ๐‘‘)edge antimagic of the firecracker graph ๐น๐‘›,๐‘˜ ; (4) determine the algorithm of the functional function eavl ๐‘“(๐‘ฅ๐‘–.๐‘™ ) on the firecracker graph ๐น๐‘›,๐‘˜ by looking at the labeling pattern on the graph firecracker ๐น๐‘›,๐‘˜ which has been found then grouping the numbers on the label of points that form arithmetic rows ; (5) determine the algorithm for the functional function of side weights eavl (๐‘ค) on the firecracker graph ๐น๐‘›,๐‘˜ by looking at the firecracker graph labeling pattern;(6) label the sides of the firecracker graph ๐น๐‘›,๐‘˜ with seatl (super edge antimagic total labeling) or super total labeling (๐‘Ž, ๐‘‘)-edge antimagic for each corresponding different value d;(7) determine the bijective function on the firecracker graph ๐น๐‘›,๐‘˜ ; and (8) write a conclusion. super total labeling (a,d)-edge antimagic on the firecracker graph juhari 135 results and discussion the first step in determining the labeling of super total (๐‘Ž, ๐‘‘)-edge antimagic is to determine the number of points and the number of edges on the graph under study, in this case, firecracker graph. after that, select the value of d in the labeling that will be examined using lemma 1. the labeling pattern can be determined by detecting the way (pattern recognition) after labeling a specific firecracker graph. next, to determine patterns in general, the objective function is found by using the principle of an arithmetic sequence. the following will be presented lemma and theorems that have been found. lemma 2. there is a point labeling (๐‘Ž, 1)edge antimagic on the firecracker graph ๐น๐‘›,๐‘˜ if n odd, n โ‰ฅ 2, and k โ‰ฅ 3. prove. first defined ๐‘ฅ๐‘–.๐‘™ is the point in the graph component of the firecracker ๐น๐‘›,๐‘˜ ,where 1 โ‰ค i โ‰ค n and 0 โ‰ค l โ‰ค k โˆ’ 1. based on research results,if ๐›ผ: ๐‘‰(๐น๐‘›,๐‘˜ ) โ†’ {1,2, โ€ฆ , ๐‘›๐‘˜} so ๐›ผ labelation can be written as follow: ๐‘–; if i odd (1 โ‰ค ๐‘– โ‰ค ๐‘›), and l=0 (๐‘› + ๐‘–); if i even (2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1), and l=0 ๐‘–; if i even (12 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1), and l=1 (๐‘› + ๐‘–); if i odd (1 โ‰ค ๐‘– โ‰ค ๐‘›), and l=1 ๐‘›(๐‘™ + 1) โˆ’ ๐‘–โˆ’1 2 ; if i odd (1 โ‰ค ๐‘– โ‰ค ๐‘›), and (2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1) (๐‘™๐‘› + ๐‘›โˆ’๐‘–โˆ’1 2 ) + 1; if i even (2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1), and (2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1) from the equation above ๐›ผ(๐‘ฅ๐‘–,๐‘™ ) is an objective function that maps ๐‘‰(๐น๐‘›,๐‘˜ ) = {๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3, โ€ฆ , ๐‘ฃ๐‘›๐‘˜ } to the set of integers {1,2, โ€ฆ , ๐‘›๐‘˜}. if ๐‘ค๐›ผ is defindes as the weight edge of the labeling point ฮฑ, so ๐‘ค๐›ผ is formulated: ๐‘ค๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (๐‘› + 2๐‘–) ; 1 โ‰ค ๐‘– โ‰ค ๐‘›, and ๐‘™ = 1 ๐‘ค๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) = (๐‘› + 2๐‘– + 1) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, and ๐‘™ = 1 ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (๐‘™ + 1)๐‘› + (๐‘–+1) 2 ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘ค๐›ผ4(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (๐‘™ + 1)๐‘› + (๐‘›+๐‘–+1) 2 ; if i even, 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 theorem 1. there is super total labeling (2๐‘›๐‘˜ + ๐‘› + 1,0)-edge antimagic on the firecracker graph ๐น๐‘›,๐‘˜ if n odd, n โ‰ฅ 2, and k โ‰ฅ 3. prove. first define the edge label ๐‘“๐›ผ : ๐ธ(๐น๐‘›,๐‘˜ ) = {๐‘’1, ๐‘’2, . . . , ๐‘’๐‘›๐‘˜โˆ’1} โ†’ {๐‘›๐‘˜ + 1, ๐‘›๐‘˜ + 2, โ€ฆ , 2๐‘›๐‘˜ โˆ’ 1}, so the edge label ๐‘“๐›ผ for super total labeling (๐‘Ž, 0)edge antimagic on the graph ๐น๐‘›,๐‘˜ can be formulated as follows: ๐‘“๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = 2(๐‘›๐‘˜ โˆ’ ๐‘–) + 1 ; 1 โ‰ค ๐‘– โ‰ค ๐‘› and ๐‘™ = 1 ๐‘“๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) = 2(๐‘›๐‘˜ โˆ’ ๐‘–) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 and ๐‘™ = 1 ๐‘“๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (2๐‘˜ โˆ’ ๐‘™)๐‘› + (1โˆ’๐‘–) 2 ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘“๐›ผ4(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (2๐‘˜ โˆ’ ๐‘™)๐‘› + (โˆ’2๐‘›โˆ’๐‘–+6) 2 ; if i even, 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 next, if there is wฮฑ even that defined as weight of super total labeling ๐›ผ(๐‘ฅ๐‘–,๐‘™ ) = = super total labeling (a,d)-edge antimagic on the firecracker graph juhari 136 ๐›ผ(๐‘ฅ๐‘–,๐‘™ ), ๐›ผ(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0), and ๐›ผ(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ), so wฮฑ can be obtained by adding up the edge weight formula eavl ๐‘ค๐›ผ and the formula of edge label ๐‘“๐›ผ with the terms of boundaries i and l which correspond and can be stated as follows: ๐‘Š๐›ผ1 = ๐‘ค๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) + ๐‘“๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) ; 1 โ‰ค ๐‘– โ‰ค ๐‘›, and ๐‘™ = 1 ๐‘Š๐›ผ2 = ๐‘ค๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) + ๐‘“๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, and ๐‘™ = 1 ๐‘Š๐›ผ3 = ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) + ๐‘“๐›ผ3 (๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘Š๐›ผ4 = ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) + ๐‘“๐›ผ3 (๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ; if i even, 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1,and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 by substituting the equation above is obtained: ๐‘Š๐›ผ1 = (๐‘› + 2๐‘–) + 2(๐‘›๐‘˜ โˆ’ ๐‘–) + 1 = 2๐‘›๐‘˜ + ๐‘› + 1 ๐‘Š๐›ผ2 = 2(๐‘›๐‘˜ โˆ’ ๐‘–) + (๐‘› + 2๐‘– + 1) = 2๐‘›๐‘˜ + ๐‘› + 1 ๐‘Š๐›ผ3 = (2๐‘˜ โˆ’ ๐‘™)๐‘› + (1โˆ’๐‘–) 2 + (๐‘™ + 1)๐‘› + (๐‘–+1) 2 = 2๐‘›๐‘˜ + ๐‘› + 1 ๐‘Š๐›ผ4 = (2๐‘˜ โˆ’ ๐‘™)๐‘› + (โˆ’2๐‘›โˆ’๐‘–+6) 2 + (๐‘™ + 1)๐‘› + (๐‘›+๐‘–+1) 2 = 2๐‘›๐‘˜ + ๐‘› + 1 based on the equation above, the set of total labeling edge weights can be written as ๐‘Š๐›ผ = {๐‘Š๐›ผ1, ๐‘Š๐›ผ2, ๐‘Š๐›ผ3, ๐‘Š๐›ผ4}. it can also be seen that ๐‘Š๐›ผ1 = ๐‘Š๐›ผ2 = โ‹ฏ = ๐‘Š๐›ผ4 = 2๐‘›๐‘˜ + ๐‘› + 1 or can be written as follows: โ‹ƒ 4๐‘ก=1 ๐‘Š๐›ผ๐‘ก = {2๐‘›๐‘˜ + ๐‘› + 1,2๐‘›๐‘˜ + ๐‘› + 1, โ€ฆ , 2๐‘›๐‘˜ + ๐‘› + 1}. from this it can be concluded that the firecracker graph ๐น๐‘›,๐‘˜ have super (2๐‘›๐‘˜ + ๐‘› + 1,0)edge antimagic if n odd, n โ‰ฅ 2, and k โ‰ฅ 3. theorem 2. there are super total labeling ((๐‘˜ + 1)๐‘› + 3,2)-edge antimagic on the graph firecracker ๐น๐‘›,๐‘˜ if n odd (๐‘› โ‰ฅ 2), and ๐‘˜ โ‰ฅ 3. prove. first define the edge label ๐‘“๐›ผ : ๐ธ(๐น๐‘›,๐‘˜ ) = {๐‘’1, ๐‘’2, . . . , ๐‘’๐‘›๐‘˜โˆ’1} โ†’ {๐‘›๐‘˜ + 1, ๐‘›๐‘˜ + 2, โ€ฆ , 2๐‘›๐‘˜ โˆ’ 1}, so edge label ๐‘“๐›ผ for super total labeling (๐‘Ž, 2)edge antimagic on the graph ๐น๐‘›,๐‘˜ can be formulated as follows: ๐‘“๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (๐‘›๐‘˜ + 2๐‘– โˆ’ 1) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› and ๐‘™ = 1 ๐‘“๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) = (๐‘›๐‘˜ + 2๐‘–) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 and ๐‘™ = 1 ๐‘“๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (๐‘˜ + ๐‘™)๐‘› + (๐‘–โˆ’1) 2 ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘“๐›ผ4(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (๐‘˜ + ๐‘™)๐‘› + (๐‘›+๐‘–โˆ’1) 2 ; if i even, 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 next, wฮฑ defined as weight of super total labeling edge ๐›ผ(๐‘ฅ๐‘–,๐‘™ ), ๐›ผ(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0), and ๐›ผ(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ๐‘Š๐›ผ1 = ๐‘ค๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) + ๐‘“๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) ; 1 โ‰ค ๐‘– โ‰ค ๐‘›, and ๐‘™ = 1 ๐‘Š๐›ผ2 = ๐‘ค๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) + ๐‘“๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, and ๐‘™ = 1 ๐‘Š๐›ผ3 = ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) + ๐‘“๐›ผ3 (๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘Š๐›ผ4 = ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) + ๐‘“๐›ผ3 (๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ; if i even, 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1,and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 by substituting the equation above is obtained: ๐‘Š๐›ผ1 = (๐‘› + 2๐‘–) + (๐‘›๐‘˜ + 2๐‘– โˆ’ 1) = (๐‘˜ + 1)๐‘› + 4๐‘– โˆ’ 1 ๐‘Š๐›ผ2 = (๐‘› + 2๐‘– + 1) + (๐‘›๐‘˜ + 2๐‘–) = (๐‘˜ + 1)๐‘› + 4๐‘– + 1 ๐‘Š๐›ผ3 = (๐‘™ + 1)๐‘› + (๐‘–+1) 2 + (๐‘˜ + ๐‘™)๐‘› + (๐‘–โˆ’1) 2 super total labeling (a,d)-edge antimagic on the firecracker graph juhari 137 = (๐‘˜ + 2๐‘™ + 1)๐‘› + ๐‘– ๐‘Š๐›ผ4 = (๐‘™ + 1)๐‘› + (๐‘›+๐‘–+1) 2 + (๐‘˜ + ๐‘™)๐‘› + (๐‘›+๐‘–โˆ’1) 2 = (๐‘˜ + 2๐‘™ + 2)๐‘› + ๐‘– based on the equation above, the set of total labeling edge weights can be written as ๐‘Š๐›ผ = {๐‘Š๐›ผ1, ๐‘Š๐›ผ2, ๐‘Š๐›ผ3, ๐‘Š๐›ผ4}. it can also be seen that ๐‘Š๐›ผ1 = ๐‘Š๐›ผ2 = โ‹ฏ = ๐‘Š๐›ผ4 = 2๐‘›๐‘˜ + ๐‘› + 1 or can be written as follows: โ‹ƒ 4๐‘ก=1 ๐‘Š๐›ผ๐‘ก = {(๐‘˜ + 1)๐‘› + 3, (๐‘˜ + 1)๐‘› + 5, โ€ฆ , (3๐‘˜ + 1)๐‘› โˆ’ 1}. from this it can be concluded that the firecracker graph ๐น๐‘›,๐‘˜ have super ((๐‘˜ + 1)๐‘› + 3,2)edge antimagic if n odd, n โ‰ฅ 2, and k โ‰ฅ 3. theorem 3. there is super total labeling (2๐‘›๐‘˜ + 1,1)-edge antimagic on the graph firecracker ๐น๐‘›,๐‘˜ if n even (๐‘› โ‰ฅ 2), and ๐‘˜ โ‰ฅ 3. prove. to determine the total super labeling (๐‘Ž, 1)โ€“edge antimagic, defined first ๐‘“๐‘Ž : ๐ธ(๐น๐‘›,๐‘˜ ) = {๐‘’1, ๐‘’2, โ€ฆ , ๐‘’๐‘›๐‘˜โˆ’1} โ†’ {๐‘›๐‘˜ + 1, ๐‘›๐‘˜ + 2, โ€ฆ ,2๐‘›๐‘˜ โˆ’ 1}which is the labeling edge label and can be formulated: ๐‘“๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (2๐‘›๐‘˜ โˆ’ 4๐‘– + 2) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› and ๐‘™ = 1 ๐‘“๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) = (2๐‘›๐‘˜ โˆ’ 4๐‘–) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 and ๐‘™ = 1 ๐‘“๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (2๐‘˜ โˆ’ ๐‘™)๐‘› + 3๐‘› โˆ’ ๐‘– ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘“๐›ผ4(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (2๐‘˜ โˆ’ ๐‘™)๐‘› + 2๐‘› โˆ’ 1 ; if i even, 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 if ๐‘Š๐›ผ defined as the total labeling edge weight ๐›ผ(๐‘ฅ๐‘–,๐‘™ ), ๐›ผ(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0), and ๐›ผ(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ). ๐‘Š๐›ผ1 = ๐‘ค๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) + ๐‘“๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) ; 1 โ‰ค ๐‘– โ‰ค ๐‘›, and ๐‘™ = 1 ๐‘Š๐›ผ2 = ๐‘ค๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) + ๐‘“๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, and ๐‘™ = 1 ๐‘Š๐›ผ3 = ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) + ๐‘“๐›ผ3 (๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘Š๐›ผ4 = ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) + ๐‘“๐›ผ3 (๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ; if i even, 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1,and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 by substituting the equation above is obtained: ๐‘Š๐›ผ1 = (๐‘› + 2๐‘–) + (2๐‘›๐‘˜ โˆ’ 4๐‘– + 2) = ( 2๐‘›๐‘˜ + ๐‘› โˆ’ 2๐‘– + 2 ) ๐‘Š๐›ผ2 = (2๐‘›๐‘˜ โˆ’ 4๐‘–) + (๐‘› + 2๐‘– + 1) = ( 2๐‘›๐‘˜ + ๐‘› โˆ’ 2๐‘– + 1 ) ๐‘Š๐›ผ3 = (2๐‘˜ โˆ’ ๐‘™)๐‘› + 3๐‘› โˆ’ ๐‘– + (๐‘™ + 1)๐‘› + (๐‘–+1) 2 = ( 2๐‘›๐‘˜ + 4๐‘› + (๐‘–+1) 2 ) ๐‘Š๐›ผ4 = (2๐‘˜ โˆ’ ๐‘™)๐‘› + 2๐‘› โˆ’ ๐‘– + (๐‘™ + 1)๐‘› + (๐‘›+๐‘–+1) 2 = ( 2๐‘›๐‘˜ + 7๐‘›+1โˆ’๐‘– 2 ) based on the equation above, the set of total labeling edge weights can be witten with ๐‘Š๐›ผ = {๐‘Š๐›ผ1, ๐‘Š๐›ผ2, ๐‘Š๐›ผ3, ๐‘Š๐›ผ4}. it can also be seen that the smalest edge lies in ๐‘Š๐›ผ2 and the biggest edge weights lies in ๐‘Š๐›ผ1, can be stated that ๐‘Š๐›ผ forming arithmetic lines with initial term 2๐‘›๐‘˜ + 1 and different 1 (one), or can be written โ‹ƒ 4๐‘ก=1 ๐‘Š๐›ผ๐‘ก = {2๐‘›๐‘˜ + 1,2๐‘›๐‘˜ + 2,2๐‘›๐‘˜ + 3, โ€ฆ , ((3๐‘›๐‘˜ โˆ’ 1) + ๐‘–)}. so, can be conclude that the firecracker graph ๐น๐‘›,๐‘˜ have super (2๐‘›๐‘˜ + 1,1)-eat; n even (๐‘› โ‰ฅ 2), and ๐‘˜ โ‰ฅ 3. super total labeling (a,d)-edge antimagic on the firecracker graph juhari 138 theorem 4. there is super total labeling {๐‘›๐‘˜ + ๐‘› + 4,3} โ€“edge antimagic on the combination of firecracker graph ๐‘š๐น๐‘›๐‘˜ if ๐‘š โ‰ฅ 2, n even (๐‘› โ‰ฅ 2), and ๐‘› โ‰ฅ 3. prove. to determine the total super labeling (๐‘Ž, 1)-edge antimagic, defined first ๐‘“๐‘Ž : ๐ธ(๐น๐‘›,๐‘˜ ) = {๐‘’1, ๐‘’2, โ€ฆ , ๐‘’๐‘›๐‘˜โˆ’1} โ†’ {๐‘›๐‘˜ + 1, ๐‘›๐‘˜ + 2, โ€ฆ ,2๐‘›๐‘˜ โˆ’ 1} which is the edge label and can be formulated: ๐‘“๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (๐‘›๐‘˜ + 4๐‘– โˆ’ 2) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› and ๐‘™ = 1 ๐‘“๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) = (๐‘›๐‘˜ + 4๐‘–) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 and ๐‘™ = 1 ๐‘“๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (2๐‘˜ โˆ’ ๐‘™)๐‘› + ๐‘– โˆ’ 1 ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›,and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘“๐›ผ4(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) = (2๐‘˜ โˆ’ ๐‘™)๐‘› + ๐‘› + ๐‘– โˆ’ 1 ; if i even, 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1,and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 if ๐‘Š๐›ผ defined as the total edge labeling weights ๐›ผ(๐‘ฅ๐‘–,๐‘™ ), ๐›ผ(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0), and ๐›ผ(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ). ๐‘Š๐›ผ1 = ๐‘ค๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) + ๐‘“๐›ผ1(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) ; 1 โ‰ค ๐‘– โ‰ค ๐‘›, and ๐‘™ = 1 ๐‘Š๐›ผ2 = ๐‘ค๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) + ๐‘“๐›ผ2(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–,0) ; 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1, and ๐‘™ = 1 ๐‘Š๐›ผ3 = ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) + ๐‘“๐›ผ3 (๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ; if i odd, 1 โ‰ค ๐‘– โ‰ค ๐‘›, and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 ๐‘Š๐›ผ4 = ๐‘ค๐›ผ3(๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) + ๐‘“๐›ผ3 (๐‘ฅ๐‘–,๐‘™ ๐‘ฅ๐‘–+1,๐‘™ ) ; if i even, 2 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1,and 2 โ‰ค ๐‘™ โ‰ค ๐‘˜ โˆ’ 1 by substituting the equation above is obtained: ๐‘Š๐›ผ1 = (๐‘› + 2๐‘–) + (๐‘›๐‘˜ + 4๐‘– + 2) = ( ๐‘›๐‘˜ + ๐‘› + 6๐‘– + 2 ) ๐‘Š๐›ผ2 = (๐‘›๐‘˜ + 2๐‘– + 1) + (๐‘›๐‘˜ + 4๐‘–) = ( 2๐‘›๐‘˜ + ๐‘› + 6๐‘– + 1 ) ๐‘Š๐›ผ3 = (๐‘™ + 1)๐‘› + (๐‘–+1) 2 + (2๐‘˜ โˆ’ ๐‘™)๐‘› + ๐‘– โˆ’ 1 = ( 2๐‘›๐‘˜ + ๐‘› + (1โˆ’๐‘–) 2 ) ๐‘Š๐›ผ4 = (2๐‘˜ โˆ’ ๐‘™)๐‘› + ๐‘› โˆ’ ๐‘– + 1 + (๐‘™ + 1)๐‘› + (๐‘›+๐‘–+1) 2 = ( 2๐‘›๐‘˜ + 5๐‘›+2๐‘–โˆ’1 2 ) based on the equation above, the set of total labeling edge weights can be written with ๐‘Š๐›ผ = {๐‘Š๐›ผ1, ๐‘Š๐›ผ2, ๐‘Š๐›ผ3, ๐‘Š๐›ผ4}. it can also be seen that the smalest edge lies in ๐‘Š๐›ผ1 and the biggest edge weights lies in ๐‘Š๐›ผ2, can be stated that ๐‘Š๐›ผ forming arithmetic lines with initial term ๐‘›๐‘˜ + ๐‘› + 4 and different 3 (one), or can be written โ‹ƒ 4๐‘ก=1 ๐‘Š๐›ผ๐‘ก = {๐‘›๐‘˜ + ๐‘› + 4, ๐‘›๐‘˜ + ๐‘› + 7, ๐‘›๐‘˜ + ๐‘› + 10, โ€ฆ , ((3๐‘›๐‘˜ + 1)๐‘› + ๐‘–)}. so, can be conclude that the firecracker graph ๐น๐‘›,๐‘˜ have super (2๐‘›๐‘˜ + 1,1)-eat; n even (๐‘› โ‰ฅ 2), and ๐‘˜ โ‰ฅ 3. conclusions based on the result, can be concluded that firecracker graph ๐น๐‘›,๐‘˜ have super total labeling (๐‘Ž, ๐‘‘)-edge antimagic, with ๐‘‘ โˆˆ {0,1,2,3} and bijective function in some of lemma and theorem show about super complete labeling (๐‘Ž, ๐‘‘)-edge antimagic on the firecracker graph. the bijective function for each liberation with d different value have shown in equation (1),(2),(3) until (10) above. open problem: super total labeling (๐‘Ž, ๐‘‘)-edge antimagic on the firecracker graph ๐น๐‘›,๐‘˜ for d=0 and d=2 where n even and ๐‘˜ โ‰ฅ 3; super total labeling d=1 and d=3 where n odd and ๐‘˜ โ‰ฅ 3. super total labeling (a,d)-edge antimagic on the firecracker graph juhari 139 references [1] dafik, โ€œstructural properties and labeling of graphs statement of authorship,โ€ no. november, pp. 1โ€“139, 2007. [2] m. baca, l. brankovic, m. lascsakova, o. phanalasy, and a. semanicovaโ€“ fenovcฤฑkova, โ€œon d-antimagic labelings of plane graphs,โ€ electron. j. graph theory appl., vol. 1, no. 1, pp. 28โ€“39, 2013. [3] m. a. muttaqien and a. suyitno, โ€œpelabelan total sisi ajaib pada graf double star dan graf sun,โ€ unnes j. math., vol. 2, no. 2, 2013. [4] r. h. utomo, h. tjahjana, b. irawanto, and l. ratnasari, โ€œpelabelan total super trimagic sisi pada beberapa graf,โ€ j. fundam. math. appl., vol. 1, no. 1, p. 52, jun. 2018. [5] t. utomo and n. riskiana dewi, โ€œdimensi metrik graf amal (nkm),โ€ limits j. math. its appl., vol. 15, no. 1, p. 71, mar. 2018. [6] v. swaminathan and p. jeyanthi, "super edge-magic strength of firecrackers, banana trees and unicyclic graphs," discrete math., vol. 306, no. 14, pp. 1624โ€“ 1636, 2006. [7] s. chattopadhyay and p. panigrahi, โ€œsome structural properties of power graphs and k -power graphs of finite semigroups,โ€ j. discret. math. sci. cryptogr., vol. 20, no. 5, pp. 1101โ€“1119, jul. 2017. [8] y.-n. chen, w.-c.; lu, h.-i; and yeh, โ€œoperations of interlaced trees and graceful trees,โ€ southeast asian bull. math, vol. 21, pp. 337โ€“348, 1997. [9] j. a. gallian, "a dynamic survey of graph labeling," electron. j. comb., vol. 1, no. dynamicsurveys, pp. 1โ€“256, 2018. [10] k. a. sugeng and d. r. silaban, "on b-edge consecutive edge labeling of some regular tree," indones. j. comb., vol. 4, no. 1, p. 76, 2020. [11] i. halikin, โ€œpelabelan lokal titik graf hasil diagram lattice subgrup zn,โ€ alkhwarizmi j. pendidik. mat. dan ilmu pengetah. alam, vol. 6, no. 1, pp. 47โ€“56, mar. 2018. [12] a. s. meliana deta anggraeni, mulyono, โ€œpelabelan l(3,2,1) dan pembentukan graf middle pada beberapa graf khusus,โ€ vol. 2, no. 1, pp. 76โ€“83, 2013. supplier selection analysis using minmax multi choice goal programming model cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 97-104 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 16, 2021 reviewed: september 02, 2021 accepted: november 01, 2021 doi: https://doi.org/10.18860/ca.v7i1.12944 supplier selection analysis using minmax multi choice goal programming model novi rustiana dewi1, eka susanti2, bambang suprihatin3, endro setyo cahyono4, anggun permata5, nurul fadhila yanita6 1,2,3,4,5,6 department of mathematics, universitas sriwijaya email: novirustiana@unsri.ac.id, eka_susanti@mipa.unsri.ac.id, endrosetyo_c@yahoo.co.id, bambangs@unsri.ac.id abstract production control, inventory and distribution is an important factor in trading activities. these three factors are discussed in a system called supply chain management (scm). procurement of goods from a company or trading business related to suppliers. in some cases, there are several suppliers that can be assessed by considering certain factors. in certain cases, the data from several factors that are considered are uncertainty, so the fuzzy approach can be used. the minmax multi choice goal programming model can be used to solve fuzzy supplier selection problems with linear membership function. it can be applied to selecting supplier of brastagi oranges. there are four suppliers, namely jaya, mako, baros. gina. there are three factor to consider, cost, quality and delivery. the decision maker selects the best supplier for ordering 17000 kg brastagi oranges. the results, the best supplier is gina with an order quantity of 10000 kg and mako with a total order of 7000 kg. keywords: fuzzy; minmax multi choice goal programming; supply chain management; supplier selection introduction supply chain management has three main components, namely the process of obtaining suppliers of raw materials, the process of changing raw materials into finished products and the product distribution process. the first stage in the supply chain is supplier selection. selection of suppliers aims to get products with good quality and competitive prices. supplier selection is related to the process of procuring goods to meet customer demands. price and quality, time of delivery is a consideration in supplierโ€™s selection, especially for perishable products. fruit is a type of product that does not last long if not stored in the refrigerator. research related to supply chains with application in various fields and solutions have been carried out with several approaches. the application of fuzzy topsis in supplier selection was introduced by [1]. the fuzzy approach is also used by [2] in the selection of suppliers in manufacturing companies. the application of the supply chain concept to inventory control and supplier selection for planning new product production in several planning horizons was carried out by [3]. discussion of supply chain problems https://doi.org/10.18860/ca.v7i1.12944 mailto:novirustiana@unsri.ac.id mailto:eka_susanti@mipa.unsri.ac.id mailto:endrosetyo_c@yahoo.co.id mailto:bambangs@unsri.ac.id supplier selection analysis using minmax multi choice goal programming model novi rustiana dewi 98 by considering price, supply and demand factors is carried out by [4] and an efficient lagrangian relaxation algorithm is proposed to solve the model. a discussion of bioethanol supply chain network problems with a robust approach was introduced [5]. a deterministic approach to solving the supply chain problem of food product distribution is discussed by [6]. the application of the mix integer programming model to the distribution and supply chain problems of liquid helium is given by [7]. the research of the [8] is combines the concepts of siting, inventory and routing in the supply chain. there are two main studies related to the supplier selection model to be used, namely the concept of fuzzy and fuzzy goal programming. the goal programming (gp) model is used in problems with several objectives to be achieved simultaneously. the gp model with fuzzy numbers is called the fuzzy goal programming (fgp) model. the concept of fgp with random variables was introduced by [9]. fuzzy and probabilistic approaches to the fgp model are discussed by [10]. completion of the fgp model with a genetic algorithm is discussed by [11]. research [12] uses a multi-choice goal programming model to determine energy renewal facilities. [13] used the fgp model in production planning. the choice of waste transportation mode using the fgp model was introduced by [14]. the application of the weighted goal programming model in the urban planning process is given by [15]. the application of the gp model in capital management is given by [16]. the use of the fgp model in transportation problems with several modes of transportation is given by [17]. the research that has been mentioned is the implementation of the supply chain concept to supplier, inventory and distribution components. this research will discuss the problem of selecting suppliers of brastagi oranges using minmax multi choice goal programming models (minmax mcgp). the research focus is on component suppliers. this research is a basic research by developing the minmax multi choice goal programming introduced by [2]. in [2], the fuzzy number used is the trapezoid fuzzy number by considering the factors of price, quality and technology offered. in this study, price, quality and time of delivery are considering. linear membership function is used to define these tree factor. methods the steps for completing the supplier selection using the minmax mcgp method are: 1. data collection and description the data used in this study is primary, consist of data on the purchase with the parameters of cost, quality and delivery. the data collection period is from 18 february to 18 march 2020. 2. determine the fuzzy triangular membership value for the goal of price, quality and delivery. following are given fuzzy membership functions for the respective three goals, in order of price, quality and timeliness of delivery which are formulated based on the data in step 1. the restriction value of variable ๐‘, ๐‘˜, ๐‘‘ is determined based on the data in step 1. ๐œ‡(๐‘) = { 1, ๐‘ โ‰ค 7800 1 โˆ’ [ (๐ถโˆ’๐‘†๐ฟ1(๐‘)) ๐‘†๐ฟ2(๐‘)โˆ’๐‘†๐ฟ1(๐‘) ] , 7800 โ‰ค ๐‘ โ‰ค 10000 0, ๐‘ โ‰ฅ 10000 (1) supplier selection analysis using minmax multi choice goal programming model novi rustiana dewi 99 ๐œ‡(๐‘˜) = { 1, ๐‘˜ โ‰ฅ 100. ๐‘˜ ๐‘†๐ฟ2(๐‘˜) , 0 < ๐‘˜ โ‰ค 100. 0, ๐‘˜ โ‰ค 0. (2) ๐œ‡(๐‘‘) = { 1, ๐‘‘ โ‰ฅ 100. ๐‘‘ ๐‘†๐ฟ2(๐‘‘) , 0 < ๐‘‘ โ‰ค 100. 0, ๐‘‘ โ‰ค 0. (3) where ๐œ‡(๐‘) is the membership function for the cost. ๐œ‡(๐‘˜) is the membership function for the quality. ๐œ‡(๐‘‘) is membership function for delivery ๐‘˜ is the percentage of average supplier quality. ๐‘†๐ฟ1(๐‘) is satisfaction level lower bound for the unit cost. ๐‘†๐ฟ2(๐‘) is satisfaction level upper bound for the unit cost. ๐‘†๐ฟ2(๐‘˜) is satisfaction level upper bound for the unit quality. ๐‘†๐ฟ2(๐‘‘)is satisfaction level upper bound for the unit delivery. 3. the minmax mcgp model formulation based on the membership function values defined in step 2. the following is the minmax mcgp model introduced by [2]. min ๐ท subject to ๐ท โ‰ฅ ๐›ผ๐‘– ๐‘‘๐‘– + + ๐›ฝ๐‘– ๐‘‘๐‘– โˆ’, ๐‘– = 1,2, โ€ฆ ๐‘š, ๐ท โ‰ฅ ๐›ฟ๐‘– (๐‘’๐‘– + + ๐‘’๐‘– โˆ’), ๐‘– = 1,2, โ€ฆ ๐‘š, (4) ๐œ‡(๐‘ฅ๐‘– ) โˆ’ ๐‘‘๐‘– + + ๐‘‘๐‘– โˆ’ = ๐‘ฆ๐‘– , ๐‘– = 1,2, โ€ฆ ๐‘š, ๐‘ฆ๐‘– โˆ’ ๐‘’๐‘– + + ๐‘’๐‘– โˆ’ = ๐‘”๐‘–,๐‘š๐‘Ž๐‘ฅ , ๐‘– = 1,2, โ€ฆ , ๐‘š, ๐‘”๐‘–,๐‘š๐‘–๐‘› โ‰ค ๐‘ฆ๐‘– โ‰ค ๐‘”๐‘–,๐‘š๐‘Ž๐‘ฅ , ๐‘– = 1,2, โ€ฆ , ๐‘š, ๐‘‘๐‘– +, ๐‘‘๐‘– โˆ’, ๐‘’๐‘– +, ๐‘’๐‘– โˆ’ โ‰ฅ 0, ๐‘– = 1,2, โ€ฆ , ๐‘š, where ๐ท : the deviation variable of the objective function ๐›ผ๐‘– and ๐›ฝ๐‘– : weight of the positive deviation penalty in the objective function ๐‘‘๐‘– + and ๐‘‘๐‘– โˆ’ : positive and negative deviation of the objective function ๐›ฟ๐‘– : the sum of the deviation in the objective function ๐‘’๐‘– + and ๐‘’๐‘– โˆ’ : positive and negative deviation on |๐‘ฆ๐‘– โˆ’ ๐‘”๐‘–,๐‘š๐‘Ž๐‘ฅ |. ๐‘ฆ๐‘– : continuous variable with a range of interval value ๐‘”๐‘–,๐‘š๐‘–๐‘› and ๐‘”๐‘–,๐‘š๐‘Ž๐‘ฅ : minimum and maximum ๐‘ฆ๐‘– value ๐œ‡(๐‘ฅ๐‘– ) : membership function for the supplier to i 4. completion of the model obtained in step (4) uses lingo 13.0 software 5. analyses and conclusion supplier selection analysis using minmax multi choice goal programming model novi rustiana dewi 100 results and discussion this research discusses supplier selection problem of citrus fruits for the type of brastagi oranges. the data used are primary data with a data collection period of 30 ordering periods. the research was conducted at a fruit shop in palembang . the following is given the research data. table 1. ordering the data for each supplier no supplie r name ordering delivery on time deliv ery price offered prece ntage of qualit y (%) date month date month cost (@kg) total 1 jaya 21 feb 21 feb โˆš 8500 45900000 80 2 mako 21 feb 21 feb โˆš 8000 43200000 85 3 baros 22 feb 24 feb โˆš 8500 45900000 80 4 gina 22 feb 22 feb โˆš 9000 48600000 95 5 jaya 23 feb 23 feb โˆš 8500 45900000 85 6 mako 24 feb 24 feb โˆš 8500 45900000 90 7 baros 25 feb 25 feb โˆš 8000 43200000 80 8 mako 25 feb 25 feb โˆš 9000 48600000 90 9 gina 26 feb 26 feb โˆš 9000 48600000 90 10 mako 27 feb 28 feb โˆš 8000 43200000 85 11 jaya 27 feb 27 feb โˆš 8500 45900000 85 12 baros 28 feb 28 feb โˆš 8000 43200000 85 13 mako 29 feb 1 maret โˆš 9000 48600000 85 14 gina 29 feb 29 feb โˆš 9500 51300000 90 15 jaya 1 maret 2 maret โˆš 8500 45900000 85 16 mako 1 maret 1 maret โˆš 9000 48600000 95 17 baros 2 maret 2 maret โˆš 9000 48600000 80 18 mako 3 maret 3 maret โˆš 9000 48600000 85 19 gina 4 maret 4 maret โˆš 9500 51300000 85 20 jaya 5 maret 6 maret โˆš 9000 48600000 85 21 baros 5 maret 5 maret โˆš 9000 48600000 80 22 mako 6 maret 6 maret โˆš 9000 48600000 90 23 gina 7 maret 7 maret โˆš 9500 51300000 95 24 jaya 8 maret 10 maret โˆš 9000 48600000 80 25 baros 8 maret 8 maret โˆš 9000 48600000 85 26 gina 9 maret 9 maret โˆš 9500 51300000 95 27 mako 9 maret 9 maret โˆš 9000 48600000 90 28 jaya 10 maret 12 maret โˆš 8500 45900000 85 29 baros 10 maret 10 maret โˆš 9000 48600000 80 30 gina 11 maret 11 maret โˆš 9500 51300000 85 31 jaya 12 maret 13 maret โˆš 9000 48600000 80 32 mako 13 maret 13 maret โˆš 9000 48600000 85 33 jaya 13 maret 14 maret โˆš 9000 48600000 90 supplier selection analysis using minmax multi choice goal programming model novi rustiana dewi 101 34 gina 14 maret 14 maret โˆš 9500 51300000 90 35 baros 15 maret 16 maret โˆš 8500 45900000 85 36 mako 15 maret 15 maret โˆš 9000 48600000 90 37 gina 16 maret 16 maret โˆš 9500 51300000 90 38 jaya 16 maret 18 maret โˆš 8500 45900000 85 39 mako 17 maret 17 maret โˆš 9000 48600000 90 40 gina 19 maret 18 maret โˆš 9000 48600000 95 41 baros 19 maret 19 maret โˆš 8500 45900000 90 42 jaya 19 maret 20 maret โˆš 8500 45900000 80 43 mako 19 maret 21 maret โˆš 8500 45900000 80 44 gina 20 maret 20 maret โˆš 9000 48600000 90 45 jaya 20 maret 22 maret โˆš 8000 43200000 80 46 baros 21 maret 21 maret โˆš 8500 45900000 90 47 mako 21 maret 22 maret โˆš 8500 45900000 85 (source : pd wibowo, 21 februari until maret 2020) table 1 can determine the percentage of on-time delivery, the variable price offered, and the varying percentage of quality citrus in good condition with the total of all oranges sent by the supplier. the price value of each supplier is obtained by adding up each price in purchases divided by the number of investments, determined the average value for each data cost, quality, and timeliness. the calculation results are given in table 2 below. table 2. value percentage criteria from four suppliers supplier ๐’™๐’Š cost (rp) quality (%) delivery (%) total order (kg) jaya ๐’™๐Ÿ 8625 83,33 25,00 64800 mako ๐’™๐Ÿ 8750 87,50 71,43 75600 baros ๐’™๐Ÿ‘ 8600 83,50 80,00 54000 gina ๐’™๐Ÿ’ 9318 90,91 90,91 59400 determined the degree of membership for the level of satisfaction of the decision maker (dm) of each goal using (1), (2), (3). the calculation results are given in table 3 below: table 3. degree of membership for dm satisfaction level of each goal decision lowest highest ๐’„: cost > 10000 8465.4 8243.6 8021.8 7800 sl(c), satisfaction level c 0 0,7 0,8 0,9 1 ๐’Œ : kualitas 0 40 60 80 100 sl(k), satisfaction level k 0 0,4 0,6 0,8 1 ๐’… : ketepatan waktu 0 40 60 80 100 sl(d), satisfaction level d 0 0,4 0,6 0,8 1 the value of the level of satisfaction is in the interval [0,1]. based on table 3, it is known that for the lowest decision value, dm gives a satisfaction level value of 0. for the highest decision value, dm gives a satisfaction level value 1. the level of satisfaction for each goal of cost, quality, and time delivery is determined based on equations (1), (2), and (3). the results are given in table 4 below. supplier selection analysis using minmax multi choice goal programming model novi rustiana dewi 102 table 4. membership function value for each goal supplier amount of order cost quality delivery jaya ๐’™๐Ÿ 0,625 0,83 0,25 mako ๐’™๐Ÿ 0,568 0,88 0,71 baros ๐’™๐Ÿ‘ 0,636 0,84 0,8 gina ๐’™๐Ÿ’ 0,31 0,91 0,91 average 0,53 0,865 0,6675 maximum value 0,636 0,91 0,91 the lower bound for the price goal is determined based on the average price value multiplied by the minimum order. the upper price is the product of the maximum value of the price times the maximum order. the same calculation is done for quality goals and on time delivery. we obtained a lower bound and an upper bound for the goal value of price, quality and on time delivery respectively 28876,5; 48081,6; 49013,2; 70308; 36045; 68796. the formulation of the minmax mcgp model (4) the problem of supplierโ€™s selection of brastagi oranges with a maximum order quantity for each supplier of 10000 kg, minimum order of 15000 kg and a maximum of 17000 kg is given as follows. minimum d subject to ๐ท โ‰ฅ 3๐‘‘1 + + ๐‘‘1 โˆ’ ๐ท โ‰ฅ ๐‘’1 + + ๐‘’1 โˆ’ ; ๐ท โ‰ฅ ๐‘‘2 + + 5๐‘‘2 โˆ’ ๐ท โ‰ฅ ๐‘’2 + + ๐‘’2 โˆ’; ๐ท โ‰ฅ ๐‘‘3 + + 3๐‘‘3 โˆ’ ; ๐ท โ‰ฅ ๐‘’3 + + ๐‘’3 โˆ’ (5) 0,625๐‘ฅ1 + 0,568๐‘ฅ2 + 0,636๐‘ฅ3 + 0,31๐‘ฅ4 โˆ’ ๐‘‘1 + + ๐‘‘1 โˆ’ = ๐‘ฆ1 ๐‘ฆ1 โˆ’ ๐‘’1 + + ๐‘’1 โˆ’ = 48081,6 28876,5 โ‰ค ๐‘ฆ1 โ‰ค 48081,6 0,83๐‘ฅ1 + 0,88๐‘ฅ2 + 0,84๐‘ฅ3 + 0,91๐‘ฅ4 โˆ’ ๐‘‘2 + + ๐‘‘2 โˆ’ = ๐‘ฆ2 ๐‘ฆ2 โˆ’ ๐‘’2 + + ๐‘’2 โˆ’ = 70308 49013,2 โ‰ค ๐‘ฆ2 โ‰ค 70308 0,25๐‘ฅ1 + 0,71๐‘ฅ2 + 0,8๐‘ฅ3 + 0,91๐‘ฅ4 โˆ’ ๐‘‘3 + + ๐‘‘3 โˆ’ = ๐‘ฆ3 ๐‘ฆ3 โˆ’ ๐‘’3 + + ๐‘’3 โˆ’ = 68796 36045 โ‰ค ๐‘ฆ3 โ‰ค 68796 ๐‘ฅ1 โ‰ค 10000; ๐‘ฅ2 โ‰ค 10000 ; ๐‘ฅ3 โ‰ค 10000 ; ๐‘ฅ4 โ‰ค 10000 ๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 โ‰ฅ 15000 ; ๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 โ‰ค 17000 ๐‘‘1 +, ๐‘‘1 โˆ’, ๐‘’1 +, ๐‘’1 โˆ’, ๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3 โ‰ฅ 0 solving the linear model (5) uses lingo 13 software and the solution is obtained in table 5 below. supplier selection analysis using minmax multi choice goal programming model novi rustiana dewi 103 table 5. minmax mcgp model solution for citrus fruit supplier selection no variable value 1. ๐‘ฅ1 0 2. ๐‘ฅ2 7000 3. ๐‘ฅ3 0 4. ๐‘ฅ4 10000 5. ๐‘ฆ1 39463.88 6. ๐‘ฆ2 28876.50 7. ๐‘ฆ3 36764.17 8. ๐ท1 + 0 9. ๐ท1 โˆ’ 32387.88 10. ๐‘’1 + 0 11. ๐‘’1 โˆ’ 8617.725 12. ๐ท2 + 0 13. ๐ท2 โˆ’ 13616.5 14. ๐‘’2 + 0 15. ๐‘’2 โˆ’ 39919.50 16. ๐ท3 + 0 17. ๐ท3 โˆ’ 22694.17 18. ๐‘’3 + 0 19. ๐‘’3 โˆ’ 32031.83 20. ๐ท 68082.50 in table 5, for a maximum total order of 17000 kg, an order is recommended for ๐‘ฅ2 (supplier mako) and ๐‘ฅ4 (supplier gina). the values of ๐‘ฆ1 (aspiration rate g1) = 39463.88, ๐‘ฆ2 (aspiration rate g2) = 28876.50, ๐‘ฆ3 (aspiration rate g3) = 36764.17, and other deviations are given in table 5. the values of ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, and ๐‘ฅ4 are 0, 7000, 0, 10000, respectively. it can be concluded that the order for selecting the best supplier is supplier gina with an order quantity of 10000 kg, supplier mako with an order quantity of 7000 kg. conclusions the results obtained the best supplier for orders of a maximum of 17000 kg are gina supplier with a total order of 1000 kg of brastagi oranges and mako supplier with a maximum order of 7000 kg. the best supplier order is obtained by looking at the difference in the value of the deviation from the target for each goal of price, quality and delivery. the difference in goal value results in a different order of supplier selection. acknowledgments this research is supported by universitas sriwijaya through sains teknologi dan seni (sateks) research scheme with the number of the research assignment contract number 0163.177/un9/sb3.lppm.pt/2020. references [1] r. kiani, m. goh, and n. kiani, โ€œsupplier selection with shannon entropy and fuzzy topsis in the context of supply chain risk management,โ€ procedia soc. behav. sci., vol. 235, no. october, pp. 216โ€“225, 2016. [2] h. ho, โ€œthe supplier selection problem of a manufacturing company using the weighted multi-choice goal programming and minmax multi-choice goal supplier selection analysis using minmax multi choice goal programming model novi rustiana dewi 104 programming,โ€ appl. math. model., vol. 75, pp. 819โ€“836, 2019. [3] a. negahban and m. dehghanimohammadabadi, โ€œoptimizing the supply chain configuration and production-sales policies for new products over multiple planning horizons,โ€ int. j. prod. econ., vol. 196, pp. 150โ€“162, 2018. [4] a. ahmadi-javid and p. hoseinpour, โ€œa location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints,โ€ transp. res. part e, vol. 82, pp. 238โ€“255, 2015. [5] h. ghaderi, a. moini, and m. s. pishvaee, โ€œa multi-objective robust possibilistic programming approach to sustainable switchgrass-based bioethanol supply chain network design,โ€ j. clean. prod., vol. 179, pp. 368โ€“406, 2018. [6] j. h. m. manders, m. c. j. caniรซls, and p. w. th, โ€œexploring supply chain fl exibility in a fmcg food supply chain,โ€ j. purch. supply manag., vol. 22, no. 3, pp. 181โ€“195, 2016. [7] e. malinowski, m. h. karwan, j. m. pinto, and l. sun, โ€œa mixed-integer programming strategy for liquid helium global supply chain planning,โ€ transp. res. part e, vol. 110, no. july 2017, pp. 168โ€“188, 2018. [8] x. zheng, m. yin, and y. zhang, โ€œintegrated optimization of location , inventory and routing in supply chain network design,โ€ transp. res. part b, vol. 121, pp. 1โ€“20, 2019. [9] z. qin, โ€œuncertain random goal programming,โ€ fuzzy optim. decis. mak., vol. 17, no. 4, pp. 375โ€“386, 2018. [10] s. . barik, โ€œprobabilistic fuzzy goal programming problem involving pareto distributionโ€ฏ: some additive approaches,โ€ fuzzy inf. eng., vol. 7, pp. 227โ€“244, 2015. [11] p. biswas, โ€œfuzzy goal programming approach to solve linear multilevel programming problems using genetic algorithm,โ€ int. j. comput. appl., vol. 115, no. 3, pp. 10โ€“19, 2015. [12] c. chang, โ€œmulti-choice goal programming model for the optimal location of renewable energy facilities,โ€ renew. sustain. energy rev., vol. 41, pp. 379โ€“389, 2015. [13] l. chen, w. ko, and f. yeh, โ€œapproach based on fuzzy goal programming and quality function deployment for new product planning,โ€ eur. j. oper. res., vol. 259, no. 2, pp. 654โ€“663, 2016. [14] e. susanti, o. dwipurwani, and e. yuliza, โ€œoptimasi kendaraan pengangkut sampah menggunakan model fuzzy goal programming,โ€ j. mat., vol. 7, no. 2, pp. 119โ€“123, 2017. [15] r. jayaraman, c. colapinto, d. la, and t. malik, โ€œa weighted goal programming model for planning sustainable development applied to gulf cooperation council countries,โ€ appl. energy, vol. 185, no. 2, 1 january 2017, pp. 1931โ€“1939, 2016. [16] m. dash and r. hanuman, โ€œa goal programming model for working capital,โ€ j. manag. sci., vol. 5, no. 1, pp. 7โ€“16, 2015. [17] l. chen, j. peng, and b. zhang, โ€œuncertain goal programming models for bicriteria solid transportation problem,โ€ appl. soft comput. j., 2016. 1a sampul depan identifikasi struktur dependensi dengan copula (aplikasi pada data klimatologi) mutiah salamah1 dan heri kuswanto2 1,2jurusan statistika, institut teknologi sepuluh nopember (its) surabaya e-mail: 1mutiah_s@statistika.its.ac.id, 2heri_k@statistika.its.ac.id abstract paper ini mendiskusikan peranan copula dalam memodelkan struktur dependensi antara dua variabel iklim, yaitu kecepatan angin dan rata-rata tekanan udara permukaan laut. kedua variabel iklim tersebut mempunyai distribusi marginal yang berbeda yang mana kecepatan angin tidak berdistribusi normal dengan kecenderungan heavy-tailed, sedangkan tekanan laut berdistribusi normal. oleh karena itu dependensi keduanya tidak bisa diwakili dengan menggunakan korelasi pearson. masalah ini bisa diatasi dengan copula. hasil analisis menunjukkan bahwa copula-t adalah model terbaik untuk menjelaskan struktur dependensi ataran kedua variabel yang dibahas. keywords: copula, struktur dependensi , heavy-tailed pendahuluan analisis dependensi antara dua atau lebih variabel merupakan subjek penting dalam aplikasi sehari-hari misalnya marketing, percobaan klinis, ekonomi dan bisnis. analisis standar biasanya ditampilkan dalam bentuk satu nilai tingkat korelasi, yang kemudian memberikan petunjuk kepada praktisi mengenai kebijakan yang harus diambil. karena kebijakan yang salah akan mengakibatkan kerugian yang signifikan, maka analisis harus dilakukan secara benar dan teliti. paper ini menyajikan suatu metode yang mendapatkan banyak perhatian dalam beberapa tahun terakhir dalam ilmu statistika yaitu pemodelan copula. ini merupakan suatu metode statistika yang diperuntukkan untuk memodelkan struktir dependensi antara dua atau lebih variabel, dan mempunyai kemampuan untuk mengeksplorasi lebih banyak informasi tentang dependensi daripada korelasi pearson, kendall atau spearman. dalam prakteknya, seringkali prakstisi mengabaikan atau bahkan tidak mengetahui distribusi marginal dari variabel yang dianalisis. korelasio pearson seringkali enjadi pilihan paling mudah dan sederhana untuk mengukur dependensinya. peranan copula menjdi penting ketika satu atau kedua variabel mempunyai distribusi marginal yang tidak normal atau mempunyai tail dependensi. sebagaimana yang kita ketahui, korelasi pearson diperkenalkan dengan mengasusmsikan bahwa variablenya berdistribusi normal. banyak distribusi bivariat atau multivariat yang dikembangkan sebagai alternativ untuk mengatasi kasus ketidaknormalan pada distribusi marginal seperti bivariate gamma (moran (1969), nadarajah dan gupta (2006)), farlie-gumbel-morgenster (conway (1979), bivariate exponential distribution (gumbel (1960)), dan sebagainya. namun, distribusi-distribusi tersebut terbatas pada marginal yang sama, dan mempunyai struktur yang komplek pada fungsi densitas pribabilitas-nya (termasuk struktur dependensiya) yang tentunya tidak disukai dalam praktek. copula datang dengan kefleksibilitasannya, dimana distribusi marginal dari variabel bisa berbeda atau bahkan tidak diketahui. copula telah dapat diaplikasikan dengan baik pada banyak bidang seperti hidrologi (favre et. al. (2004), salvadori dan de michele (2007), genest et. al. (2007)), finance dan asuransi (cerubini et. al .(2004), denuit et. al. (2005), mcneil et.al. (2005)) dan masih banyak lagi. akhir-akhir ini, copula telah dikembangkan pada bidang ekonometrik dan time series seperti pada patton (2002;2009) dan lainnya. paper ini membahas aplikasi copula dalam memodelkan struktur dependensi antara dua variabel iklim yaitu kecepatan angin dan tekanan udara permukaan laut. aplikasi coopula dalam bidang meteorologi masih sangat sedikit dan tergolong masih baru. beberapa diantaranya adalah de michele dan salvadori (2003), vannitsem (2007), vrac et. al. (2005) and schรถlzel dan friedrich (2008). identifikasi struktur dependensi dengan copula jurnal cauchy โ€“ issn: 2086-0382 79 konsep dasar copula bagian ini menjelaskan secara singkat tentang konsep dasar copula. deskripsi yang diberikan terbatas pada dua variabel random atau kasus bivariat. theori yang digambarkan disini tentu saja dapat dikembangkanuntuk kasus multivaiat dengan duaatau lebih variabel random. misalkan kita punya 2 vektor random x dengan kumulatif distribusi marginal ๏ฟฝ๏ฟฝ๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ, maka berdasarkan teorema sklar (1959), distribusi bersama dari vektorl random dapat dituliskan sebagai fungsi dari marginal distribusinya sebagai berikut ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2๏ฟฝ๏ฟฝ dimana ๏ฟฝ: ๏ฟฝ0,1๏ฟฝ ๏ฟฝ ๏ฟฝ0,1๏ฟฝ ๏ฟฝ ๏ฟฝ0,1๏ฟฝ adalah fungsi distribusi bersama dari variabel random yang ditransformasi ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ untuk ๏ฟฝ ๏ฟฝ 1,2. transformasi ini menghasilkan distribusi marginal uniform ๏ฟฝ๏ฟฝ. ๏ฟฝ adalah fungsi copula dengan densitasnya adalah ๏ฟฝ๏ฟฝ. teorema sklar dia atas mempunyai dua implikasi penting, yaitu probabilitas desitas bersama dapat di ekspresikan sebagai perkalian antara densitas marginal dan densitas copula sebagai berikut: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2๏ฟฝ.๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ berbagai fungsi copula telah dikembangkan sejauh ini. namun, kita batasi diskusi dalam paper ini pada tiga copula yang terkait dengan kasus yang kita bahas. mengenai teori copula lebih detail bisa ditemukan pada genest dan favre (2007), nielsen (1999) atau joe (1997). a. copula gumbel dan clayton copula gumbel dan clayton termasuk dalam copula archimedian, yang memungkinkan mempunyai struktur dependensi yang lebih luas. dengan copula archimedian, beberapa copula dapat di bangiktan dengan fungsi generator. dalam bentuk umum, copula archimedian mempunyai bentuk sebagai berikut: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ dimana ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ adalah fungsi generator. ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ adalah fungsi tidak turun yang memetakan ๏ฟฝ0,1๏ฟฝ ke dalam sehingga ๏ฟฝ๏ฟฝ0๏ฟฝ ๏ฟฝ โˆž and ๏ฟฝ๏ฟฝ1๏ฟฝ ๏ฟฝ 0. copula gumbel mempunya fungsi generator sebagai berikut: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ log๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ$ ,%โ‰ฅ1 sedangkan copula clayton ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ$ 1 % ,% & 0. kedua copula di atas memepunyai perilaku tail yang berbeda. copula clayton mempunyai tail dependensi bawah sedangkan copula gumbel mempunyai tail dependensi atas. b. copula-t copula-t termasuk dalam copula elips sebagaimana copula gaussian (copula dengan marginal normal). namun tidak seperti copula normal yang simetri, copula-t mempunyai potensi untuk membangkitkan nilai ekstrim karena t adalah distribusi ynag skew. copula-t didefinisikan sebagai berikut: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ'๏ฟฝ(,ฯƒ๏ฟฝ ๏ฟฝ'๏ฟฝ(๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ'๏ฟฝ(๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ dimana ๏ฟฝ' mendefinisikan cdf dari distribusi t dengan derajat bebas v. copula digunakan secara bersamaan dengan korelasi tau kendall dan spreamann correlation. ini karena kedua korelasi tersebut diurunkan dari rank, yang sesuai dengan teori copula. copula sendiri tidak berubah dengan adanya transformasi. deskripsi data dan pentingnya mempelajari variabel yang dibahas dalam paper ini kita tertarik untuk mengaplikasikan metode copula pada kasus klimatologi. kita tertarik untuk mempelajari struktur dependensi antara kecepatan angin dengan rata-rata tekanan udara permukaan laut (mslp). data diperoleh dari stasiun surabaya / juanda. kita menganalisa data harian selama 9 tahun antara tahun 2000 sampai 2009. ada beberapa pengamatan yang missing dan mereka dihilangkan dari analisis. jumlah data keseluruhan sebanyak 1400 data berpasangan. kecepatan angin diukur dengan km/jam sedangkan mslp diukur dalam mbar. sekarang kita mendiskusikan pentingnya menganalisis kedua variabel tersebut. kecepetan angin (bersamaan dengan arah angin) merupakan variabel penting d alam beberapa disiplin ilmu seperti meteorologi, penerbangan, kelautan, konstruksi dan lain sebagainya. kecepatan angin yang tinggi mempunyai hubungan dengan petir yang hebat serta angin puting beliung yang bis amenyebabkan kerusakan fatal dan kerugian dalam hidup. ini juga merupakan input utama dari pembangkit tenaga angin. berbagai penelitian dalam klimatologi dan meteorologi ditujukan untuk memprediksi kecepatan angin. mempelajari mslp sangat penting terutama untuk bidang yang sensitif terhadap cuaca, seperti pilot, petani, pelaut, dan sebagainya. kecepatan angin dan mutiah salamah dan heri kuswanto 80 volume 1 no. 2 mei 2010 mslp merupakan suatu indikator penting dalam perubahan iklim (harrison dan larkin (1997). mempelajari struktur dependensi antara kedua variabel tersebut juga subjek yang penting. mengembangkan sistem peramalan (model) untuk kecepatan angin membutuhkan mslp sebagai salah satu input. selanjutnya, kedua variabel ini juga merupakan input untuk peramalan variabel iklim yang lain seperti curah hujan, presipitasidan petir sebagaimana diuraikan dalam qian et al. (2000), murphree and van den dool (1988), kutiel (2004). dengan mempertimbangkan struktur dependensi antar variabel tersebut akan dapat memperoleh peramalan yangg lebih reliabel. sebaliknya, mengabaikannya akan menghasilkan analisis yang salah. aplikasi dan pembahasan gambar berikut menampilkan scatter plot antara variabel yang dibahas dalam skala alsinya. kita tidak melihat adanya trend atau tendensi tertentu dari plot. untuk menyimpulkan apakah kedua variabel berkorelasi atau tidak sangat sulit jika kita hany amenggunakan scatter plot. salah satu informasi penting yang bisa dibaca dari gambar 1 adalah, bahwa plot-plotnya terkonsentrasi pada interval tertentu, yang mengindikasikan dependensi atara kedua variabel tersebut. gambar 1. scatter plot antara kecepatan angin dan mslp dalam skala asli gambar 2. histogram (distribusi marginal) dari masing-masing variabel 1004 1006 1008 1010 1012 1014 0 5 1 0 1 5 2 0 2 5 mslp w in d histogram of mslp mslp f re q u e n cy 1004 1006 1008 1010 1012 1014 1016 0 2 0 0 4 0 0 6 0 0 8 0 0 histogram of wind wind f re q u e n cy 0 5 10 15 20 25 30 0 2 0 0 4 0 0 6 0 0 8 0 0 identifikasi struktur dependensi dengan copula jurnal cauchy โ€“ issn: 2086-0382 81 meskipun pengetahuan tentang distribusi marginal tidak disyaratkan dalam pemodelan copula, informasi tentang distribusi marginal bermanfaat untuk menjamin bahwa copula memang diperlukan. jika kedua variabel mempunyai marginal normal, maka korelasi pearson dapat diaplikasikan dengan mudah. kita dapat mengduga distribusi marginal secara empiris dengan menggunakan histogram. (gambar 2). histogram sebelah kiri menggambarkan histogram dari mslp dan sebelah kanan mewakili histogram dari kecepatan angin. dari gambar, terlihat bahwa mslp sepertinya simetri dan berdistribusi normal, sedangkan kecepatan angin tidak simetri dan mempunyai tail yang panjang. kenyataan bahwa salah satu variabel tidak berdistribusi normal menyebabkan struktur dependensi dari kedua variabel itu tidak dapat diwakili oleh korelasi pearson. sebagaimana yang dijelaskan sebelumnya, copula mempunyai kemampuan untuk mendeskripsikan struktur dependensi antara variabel dengan marginal yang berbeda dan memodelkan dependensi tailnya. langkah pertama dalam analisis dengan copula adalah mentransformasi variable ke dalam distribusi marginal yang uniform. scatter plot pada gambar 1 kemudian di transformasi ke domain [0,1], seperti yang bisa dilihat pada gambar berikut: gambar 3. scatter plot antara kecepatan angin dan mslp dalam skala transformasi (uniform ๏ฟฝ0,1๏ฟฝ) plot dalam gambar mengkonfirmasi bahwa kedua variabel saling berhubungan, meskipun derajat hubungannya sangat rendah. ini tampak jelas dari plot-plot yang terpusat pada pojok, namun tidak jelas apakan pojok bawah atau atas. bagaimanapun juga, ini suatu indikasi dari dependensi tail. seperti yang didiskusikan sebelumnya, paling tidak ada 3 copula yang mempunyai karakteristik seperti ini yaitu copulat, clayton dan gumbel. gambar 4 mengilustrasikan suatu kasus ideal dengan plot yang dibangkitkan dari 5000 pengamatan. dari plot tersebut, nampak jelas bahwa copula mempunyai karakteristik sendiri terkait dengan dependensi tail. untuk meyakinkan copula mana yang cocok dengan kasus kita, seleksi model perlu dilakukan. 0.0 0.2 0.4 0.6 0.8 1.0 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 u v mutiah salamah dan heri kuswanto 82 volume 1 no. 2 mei 2010 (a) (b) (c) gambar 4. sampel plot untuk (a)copula-t, (b) clayton, dan (c) gumbel 0.0 0.2 0.4 0.6 0.8 1.0 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 t-copula u v 0.0 0.2 0.4 0.6 0.8 1.0 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 clayton-copula u v 0.0 0.2 0.4 0.6 0.8 1.0 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 gumbel-copula u v identifikasi struktur dependensi dengan copula jurnal cauchy โ€“ issn: 2086-0382 83 sebelum kita melangkah pada penaksiran model copula, perlu ditampilkan koefisien korelasi hasil estimasi dengan 3 metode yaitu pearson, kendall and spearman. tabel 1. koefisien korelasi pearson kendall spearmann correlation 0.09399 0.1228 0.1793 ketiga ukuran tersebut memberikan nilai yang sangat kecil. khususnya korelasi pearson, nilai korelasiny apaling kecil diantara yang lain. menggunakan ukuran korelasi ini akan mengakibatkan kesimpulan yang bias, yaitu kedua variabel yang dianalisis tidak berhubungan. dalam praktek, kondisi ini akan menyarankan untuk mengabaikan korelasi antara keduanya (jika digunakan sebagai model input dalam peramalan klimatologi) atau mengeluarkan mslp sebagai variabel independen dari kecepatan angin (jika kita ingin meramalkan kecepatan angin). perlu dicatat bahwa korelasi yang lain dihitung dari data yang sudah ditransformasi, dan memberikan nilai yang lebih besar secraa signifikan daripada korelasi pearson. untuk meyakinkan apakah nilai korelasi tersebut signifikan atau tidak, perlu dilakukan pengujian hipotesa. hasil pengujian menujukkan bahwa kedua variabel tersebut berkorelasi secar asignifikan (dengan 95% confidence interval) dengan p-value < 2.2e-16 untuk kendall dan spearmann. oleh karena itu, kita harus mempertimbangkan korelasi tersebut. yang belum teridentifikasi adalah tentang peranan copula dan copula mana yang mewakili struktur dependensi dengan baik. berikut hasil estimasi parameter copula untuk tiga macam copula:. tabel 2. estimasi model copula copula estimasi z log likelihood t 0.1585 9.514 41.76 gumbel 1.0795 93.56 21.48 clayton 0.1644 8.4185 29.754 statistik z menyarankan bahwa parameter dari ketiga copula tersebut signifikan. estimasinya ditampilkan dengan tau kendall. model terbaik akan diseleksi berdasarkan nilai log-likelihood. karena nilai ini mewakili kemungkinan maksimum bahwa model yang diestimasi akan cocok dengan model sebenarnya, maka semakin besar log likelihood akan semakin baik modelnya. dari tabel, copula-t memeberikan nilai paling tinggi. oleh karena itu, kita menyimpulkan bahwa struktur dependensi antara kecepatan angin dan mslp lebih bagus diwakili oleh copula-t dengan parameter 0.1585 bersesuaian dengan 0.1228. hasil ini menyarankan bahw akita harus memperhatikan nilai ekstrim (atas atau bawah). kedua variabel secra asignifikan saling bergantung pada kondisi ekstrim rendah atau tinggi. pengujian kesesuaian model tidak dibahas dalam paper ini. penutup kita telah menujukkan aplikasi copula untuk memodelkan struktur dependensi antara kecepatan angin dengan mslp. korelasi pearson tidak lagi dapat dipakai karena distribusi marginal dari keduanya berbeda. copula dapat menangkap dependensi tail antara kedua variabel dan menyarankan copula-t sebagai model terbaik. hasil yang ditampilkan dalam paper ini adalah kasus khusus per stasiun. oleh sebab itu, stasiun lain mungkin akan mempunyai struktur dependensi yang berbeda. daftar pustaka [1] cherubini, u., luciano, e. and vecchiato, w. (2004).copula methods in finance, wiley. [2] conway, d.a. (1979). farlie-gumbelmorgenstern distributions. in: encyclopedia of statistical sciences, 3, s.kotz and n.l. johnson, editors (john wiley & sons, new york), 28-31. [3] de michele, c. and salvadori, g .(2003). a generalized pareto intensity duration model of storm rainfall exploiting 2-copulas, j. geophys. res., 108(d2); 4067. [4] denuit, m., dhaene, j., goovaerts, m. and kaas, r. (2005). actuarial theory for dependent risks. measures, orders and models. wiley, chichester. [5] embrechts, p., lindskog, f., and mcneil, a.(2001). modelling dependence with copulas and applications to risk management, in: handbook of heavy tailed distributions in finance, edited by: rachev, s., 329โ€“384. [6] genest, c. and favre, a.-c.(2007). everything you always wanted to know about copula modeling but were afraid to ask, j. hydrol.eng.; 12;347โ€“368. [7] genest, c., favre, a.-c., beliveau, j., and jacques, c. (2007). metaelliptical copulas and their use in frequency analysis of multivariate hydrological data, water resour. res., 43; w09401 mutiah salamah dan heri kuswanto 84 volume 1 no. 2 mei 2010 [8] gumbel, e.j. (1960). bivariate exponential distributions. journal of the american statistical association; 55; 698-707. [9] harrison, d. e. and larkin, n. k. (1997). darwin sea level pressure: 1876-1996 : evidence for climate change? geophysical research letters, 24(14); 1779-1782. [10] joe, h. (1997), multivariate models and dependence concepts. chapman and hall, london. [11] kutiel, t. (1991). recent spatial and temporal variations in mean sea level pressure over europe and the middle east, and their influence on the rainfall regime in the galilee, israel. theoretical and applied climatology, 44(3-4). [12] mcneil, a.j., frey, r. and embrechts, p. (2005). quantitative risk management: concepts,techniques, tools. princeton university press, princeton. [13] moran, p. a. p. (1969). statistical inference with bivariate gamma distributions, biometrika; 54; 385โ€“394. [14] murphree, t., and van den dool, h., (1988). calculating tropical winds from time mean sea level pressure fields. journal of the atmospheric sciences, 45; 3269-3282 [15] nadarajah, s. and gupta, a. k. (2006). some bivariate gamma distributions, applied mathematics letters;19(8); 767-774. [16] patton a. j. (2002). applications of copula theory in financial econometrics, june ph.d. dissertation department of economics, university of california, san diego [17] patton, a. j. (2009) . copula-based models for financial time series, 2009, in t.g. andersen, r.a. davis, j.-p. kreiss and t. mikosch (eds.) handbook of financial time series, springer verlag [18] nelsen, r.b. (1999), an introduction to copulas. lecture notes in statistics 139, springer-verlag, new york. [19] qian, b., cortereal, j. and xu, h. (2000). nonseasonal variability of monthly mean level pressure and precipitation variability over europe. physics and chemistry of the earth, part b: hydrology, oceans and atmosphere; 25(2);177-181. [20] salvadori , g. and de michele, c. (2007), on the use of copulas in hydrology: theory and practice. journal of hydrologic engineering, 12(4); 369โ€“380 [21] schรถlzel, c. and friedrich, p. (2008). multivariate non-normally distributed randomvariable in climate research โ€“ introduction to the copula approach. nonlinear process geophys.;25;761-772. [22] sklar, a. (1959). fonctions de repartition an dimensions et leurs marges. publ. inst. statist. univ. paris 8, 229-231. [23] vannitsem, s. (2007). statistical properties of the temperature maxima in an intermediate order quasi-geostrophic model, tellus a; 59; 80โ€“95. [24] vrac, m., chedin, a., and diday, e.(2005). clustering a global field of atmospheric profiles by mixture decomposition of copulas, j. atmos. ocean. tech.; 22; 1445โ€“ 1459. strongly summable vector valued sequence spaces defined by 2 modular cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 279-285 p-issn: 2086-0382; e-issn: 2477-3344 submitted: january 23, 2021 reviewed: march 29, 2021 accepted: april 07, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.11484 strongly summable vector valued sequence spaces defined by 2 modular b. a. nurnugroho1, p.w. prasetyo2 1,2departement of mathematical education, universitas ahmad dahlan, yogyakarta, indonesia email: burhanudin@pmat.uad.ac.id abstract summability is an important concept in sequence spaces. one summability concept is strongly cesaro summable. in this paper, we study a subset of the set of all vector-valued sequence in 2modular space. some facts that we investigated in this paper include linearity, the existence of modular and completeness with respect to these modular. keywords: strongly; summable; sequence spaces; 2-modular introduction summability is an important concept in sequence spaces. the familiar example of sequence spaces that using the summability concept is โ„“๐‘ spaces. in [1], it is explained that kutner discusses spaces of strongly cesaro summable sequences, and furthermore, maddox generalizes this concept. if ๐œ” denote the set of all infinite sequence of real/complex numbers, then the set ๐‘ค = {(๐‘ฅ๐‘˜ ) โˆˆ ๐œ”: โˆƒ๐ฟ, โˆ‹ lim ๐‘›โ†’โˆž 1 ๐‘› โˆ‘|๐‘ฅ๐‘˜ โˆ’ ๐ฟ| = 0 ๐‘› ๐‘˜=1 }, denote the space of strongly cesaro summable sequence [2] [3]. let ๐‘‹ be a real linear space of dimension ๐‘‘ โ‰ฅ 2. a 2-norm on ๐‘‹ is a function โ€–. , . โ€–: ๐‘‹ ร— ๐‘‹ โ†’ โ„ , where for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹, satisfy (i) โ€–๐‘ฅ, ๐‘ฆโ€– = 0 if and only if ๐‘ฅ and ๐‘ฆ are linearly dependent (ii) โ€–๐‘ฅ, ๐‘ฆโ€– = โ€–๐‘ฆ, ๐‘ฅโ€– (iii) โ€–๐›ผ๐‘ฅ, ๐‘ฆโ€– = |๐›ผ|โ€–๐‘ฅ, ๐‘ฆโ€–, ๐›ผ โˆˆ โ„ (iv) โ€–๐‘ฅ + ๐‘ฆ, ๐‘งโ€– โ‰ค โ€–๐‘ฅ, ๐‘งโ€– + โ€–๐‘ฆ, ๐‘งโ€–. the pair (๐‘‹, โ€–. , . โ€–) is then called a 2-normed space [4]. the concept is initially introduced by gahler [5] in the middle of 1963. furthermore, in 1989, misiak generalized the 2normed concept to be n-normed [6]. since then, many kinds research on 2-normed (nnormed) spaces, include research on strongly cesaro summable vector-valued sequences or the generalize in 2-normed (n-normed) spaces [7] [8] [9] [10] [11]. in 1950, nakano developed modular function and it was generalized by musielak and orlicz [12] [13]. modular is the generalization of the norm. let ๐‘Œ be a real linear space, a functional ๐‘”: ๐‘Œ โ†’ โ„โˆ— is said tobe modular if it satisfies the following conditions: (i) ๐‘”(๐‘ฅ) = 0 if and if ๐‘ฅ = 0 (ii) ๐‘”(โˆ’๐‘ฅ) = ๐‘”(๐‘ฅ) (iii) ๐‘”(๐›ผ๐‘ฅ + ๐›ฝ๐‘ฆ) โ‰ค ๐‘”(๐‘ฅ) + ๐‘”(๐‘ฆ), every ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘Œ, ๐›ผ, ๐›ฝ โ‰ฅ 0, ๐›ผ + ๐›ฝ = 1. http://dx.doi.org/10.18860/ca.v6i4.11484 mailto:burhanudin@pmat.uad.ac.id strongly summable vector valued sequence spaces defined by 2 modular b. a. nurnugroho 280 the pair (๐‘Œ, ๐‘”) is then called a modular space. following the 2-norm (n-norm) concept, k. nourouzi and s. shabanian in 2009 initially introduced the n-modular concept [14] [15]. let ๐‘‹ be a real linear space of dimension ๐‘‘ โ‰ฅ 2. a 2-modular on ๐‘‹ is a function ๐œŒ(. , . ): ๐‘‹ ร— ๐‘‹ โ†’ โ„โˆ— where for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹, satisfy (i) ๐œŒ(๐‘ฅ, ๐‘ฆ) = 0 if and only if ๐‘ฅ and ๐‘ฆ are linearly dependent (ii) ๐œŒ(๐‘ฅ, ๐‘ฆ) = ๐œŒ(๐‘ฆ, ๐‘ฅ) (iii) ๐œŒ(โˆ’๐‘ฅ, ๐‘ฆ) = ๐œŒ(๐‘ฅ, ๐‘ฆ), (iv) ๐œŒ(๐›ผ๐‘ฅ + ๐›ฝ๐‘ฆ, ๐‘ง) โ‰ค ๐œŒ(๐‘ฅ, ๐‘ง) + ๐œŒ(๐‘ฆ, ๐‘ง), every ๐›ผ, ๐›ฝ โ‰ฅ 0, ๐›ผ + ๐›ฝ = 1. the pair (๐‘‹, โ€–. , . โ€–) is then called a 2-modular space. the 2-modular space, with ๐œŒ satisfies ฮด2-condition, if there exist ๐ฟ > 0, such that ๐œŒ(2๐‘ฅ, ๐‘ฆ) โ‰ค ๐ฟ๐œŒ(๐‘ฅ, ๐‘ฆ), for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. a sequence (๐‘ฅ๐‘˜ ) in ๐‘‹ is said to be 2-modular convergent to ๐‘ฅ0 โˆˆ ๐‘‹ if lim ๐‘˜โ†’โˆž ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) = 0, โˆ€๐‘ฆ โˆˆ ๐‘‹. it means that for every ๐œ– > 0, there exists an ๐‘˜0 โˆˆ โ„•, such that for any ๐‘˜ โˆˆ โ„•, ๐‘˜ โ‰ฅ ๐‘˜0, we have ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) < ๐œ–, โˆ€๐‘ฆ โˆˆ ๐‘‹. furthermore, a sequence (๐‘ฅ๐‘˜ ) in ๐‘‹ is called 2-modular cauchy sequence if, for all ๐‘ฆ โˆˆ ๐‘‹, we have lim ๐‘˜,๐‘™โ†’โˆž ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ๐‘™ , ๐‘ฆ) = 0. the standard example of a 2-modular space is ๐‘‹ = โ„2, with 2-modular on โ„2 define by ๐œŒ(๏ฟฝฬ…๏ฟฝ, ๏ฟฝฬ…๏ฟฝ) = โˆš|det ( ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 )|, where ๏ฟฝฬ…๏ฟฝ = (๐‘ฅ1, ๐‘ฅ2), ๏ฟฝฬ…๏ฟฝ = (๐‘ฆ1, ๐‘ฆ2) โˆˆ โ„ 2. clearly that ๐œŒ satisfies ฮด2-condition and the sequence (( 1 ๐‘› , 0)) in โ„2 is 2-modular convergent to (0,0) โˆˆ โ„2. this paper will be constructed t spaces of strongly cesaro summable vector-valued sequences in 2-modular spaces based on the facts presented above. methods let (๐‘‹, ๐œŒ) be a 2-modular space, with ๐œŒ satisfies ฮด2-condition and the dimension of ๐‘‹ greater than one. we define ๐‘‹๐œŒ = {๐‘ฅ โˆˆ ๐‘‹: ๐œŒ(๐‘ฅ, ๐‘ฆ) < โˆž, โˆ€๐‘ฆ โˆˆ ๐‘‹}. because ๐œŒ satisfies ฮด2-condition, then there exists ๐พ > 0, such that for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹๐œŒ, ๐‘ง โˆˆ ๐‘‹ and ๐›ผ โˆˆ โ„, we have ๐œŒ(๐‘ฅ + ๐‘ฆ, ๐‘ง) = ๐œŒ ( 2๐‘ฅ + 2๐‘ฆ 2 , ๐‘ง) โ‰ค ๐œŒ(2๐‘ฅ, ๐‘ง) + ๐œŒ(2๐‘ฆ, ๐‘ง) โ‰ค ๐พ๐œŒ(๐‘ฅ, ๐‘ง) + ๐พ๐œŒ(๐‘ฆ, ๐‘ง) < โˆž based on archimedean property, there exists ๐‘›0 โˆˆ โ„•, such that ๐›ผ โ‰ค 2 ๐‘›0 ๐œŒ(๐›ผ๐‘ฅ, ๐‘ง) โ‰ค ๐œŒ(2๐‘›0 ๐‘ฅ, ๐‘ง) โ‰ค ๐พ๐‘›0 ๐œŒ(๐‘ฅ, ๐‘ง) < โˆž. hence, we have that ๐‘‹๐œŒ is a subspace linear of ๐‘‹. furthermore (๐‘‹๐œŒ, ๐œŒ) is a 2-modular space too. the notation ๐œ”(๐‘‹๐œŒ) will donate as the set of all sequences in ๐‘‹๐œŒ strongly summable vector valued sequence spaces defined by 2 modular b. a. nurnugroho 281 ๐œ”(๐‘‹๐œŒ) = {(๐‘ฅ๐‘˜ ): ๐‘ฅ๐‘˜ โˆˆ ๐‘‹, ๐‘˜ โˆˆ โ„•} (1) where linear space operations are defined coordinatewise, (๐‘ฅ๐‘˜ ) + (๐‘ฆ๐‘˜ ) = (๐‘ฅ๐‘˜ + ๐‘ฆ๐‘˜ ), ๐›ผ(๐‘ฅ๐‘˜ ) = (๐›ผ๐‘ฅ๐‘˜ ) for all (๐‘ฅ๐‘˜ ), (๐‘ฆ๐‘˜ ) โˆˆ ๐œ”(๐‘‹๐œŒ) and ๐›ผ โˆˆ โ„. the goal of this paper is that we want to extend the concept of strongly cesaro summable to 2-modular spaces valued sequences, defined as ๐‘ค0 ๐œŒ (๐‘‹๐œŒ) = {(๐‘ฅ๐‘˜ ) โˆˆ ๐œ”(๐‘‹๐œŒ): ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ฆ) ๐‘› ๐‘˜=1 = 0, โˆ€๐‘ฆ โˆˆ ๐‘‹๐œŒ } (2) ๐‘ค ๐œŒ(๐‘‹๐œŒ ) = {(๐‘ฅ๐‘˜ ) โˆˆ ๐œ”(๐‘‹๐œŒ): โˆƒ๐‘ฅ0 โˆˆ ๐‘‹๐œŒ, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) ๐‘› ๐‘˜=1 = 0, โˆ€๐‘ฆ โˆˆ ๐‘‹๐œŒ } (3) furthermore, we also studied the properties of ๐‘ค0 ๐œŒ (๐‘‹๐œŒ) and ๐‘ค ๐œŒ(๐‘‹๐œŒ). results and discussion henceforth, if not specified then ๐‘‹ is a 2-modular space with 2-modular ๐œŒ, that satisfies the ฮด2-conditions. first, we will prove that the mean cesaro theorem applies to 2-modular space. theorem 1. let sequence (๐‘ฅ๐‘˜ ) in ๐‘‹๐œŒ 2-modular convergent to ๐‘ฅ0 โˆˆ ๐‘‹๐œŒ, then lim ๐‘›โ†’โˆž 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) ๐‘› ๐‘˜=1 = 0, โˆ€๐‘ฆ โˆˆ ๐‘‹๐œŒ proof. since the sequence (๐‘ฅ๐‘˜ ) in ๐‘‹๐œŒ 2-modular convergent to ๐‘ฅ0 โˆˆ ๐‘‹๐œŒ, then for all ๐œ– > 0, there exists ๐‘›๐œ– โˆˆ โ„•, such that for all ๐‘˜ โ‰ฅ ๐‘›๐œ– , we have ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) < ๐œ– 2 , for all ๐‘ฆ โˆˆ ๐‘‹. note that, for all ๐‘› โ‰ฅ ๐‘›๐œ– , we have 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) = 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) ๐‘›๐œ– ๐‘˜=1 + 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) ๐‘› ๐‘˜=๐‘›๐œ–+1 ๐‘› ๐‘˜=1 โ‰ค 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)1โ‰ค๐‘˜โ‰ค๐‘›๐œ– ๐‘š๐‘Ž๐‘ฅ ๐‘›๐œ– ๐‘˜=1 + 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)๐‘›๐œ–+1โ‰ค๐‘˜โ‰ค๐‘› ๐‘š๐‘Ž๐‘ฅ ๐‘› ๐‘˜=๐‘›๐œ–+1 = ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)1โ‰ค๐‘˜โ‰ค๐‘›๐œ– ๐‘š๐‘Ž๐‘ฅ ๐‘› โˆ‘ 1 ๐‘›๐œ– ๐‘˜=1 + ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)๐‘›๐œ–+1โ‰ค๐‘˜โ‰ค๐‘› ๐‘š๐‘Ž๐‘ฅ ๐‘› โˆ‘ 1 ๐‘› ๐‘˜=๐‘›๐œ–+1 = ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)1โ‰ค๐‘˜โ‰ค๐‘›๐œ– ๐‘š๐‘Ž๐‘ฅ ๐‘›๐œ– ๐‘› + ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)๐‘›๐œ–+1โ‰ค๐‘˜โ‰ค๐‘› ๐‘š๐‘Ž๐‘ฅ ๐‘› โˆ’ ๐‘›๐œ– ๐‘› = ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)1โ‰ค๐‘˜โ‰ค๐‘›๐œ– ๐‘š๐‘Ž๐‘ฅ ๐‘›๐œ– ๐‘› + ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)๐‘›๐œ–+1โ‰ค๐‘˜โ‰ค๐‘› ๐‘š๐‘Ž๐‘ฅ = ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)1โ‰ค๐‘˜โ‰ค๐‘›๐œ– ๐‘š๐‘Ž๐‘ฅ ๐‘›๐œ– ๐‘› + ๐œ– 2 . strongly summable vector valued sequence spaces defined by 2 modular b. a. nurnugroho 282 by archimedean property, there exists ๐‘›โ€ฒ โ‰ฅ ๐‘›๐œ– , such that for all ๐‘› โ‰ฅ ๐‘›โ€ฒ, we have ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ)1โ‰ค๐‘˜โ‰ค๐‘›๐œ– ๐‘š๐‘Ž๐‘ฅ ๐‘›๐œ– ๐‘› < ๐œ– 2 . hence, for all ๐‘› โ‰ฅ ๐‘›โ€ฒ, we have 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) ๐‘› ๐‘˜=1 < ๐œ–. in other words, the proof is complete. โˆŽ based on theorem 1, we can say that for all 2-modular convergent sequence (๐‘ฅ๐‘˜ ) in ๐‘‹๐œŒ is an element of ๐‘ค ๐œŒ(๐‘‹๐œŒ). theorem 2. the set ๐‘ค ๐œŒ(๐‘‹๐œŒ) is a linear subspace of ๐œ”(๐‘‹๐œŒ). proof. note that for all (๐‘ฅ๐‘˜ ), (๐‘ฆ๐‘˜ ) โˆˆ ๐‘ค ๐œŒ(๐‘‹๐œŒ) and ๐›ผ โˆˆ โ„, there exsist ๐‘ฅ0, ๐‘ฆ0 โˆˆ ๐‘‹๐œŒ so that for all ๐‘ฆ โˆˆ ๐‘‹๐œŒ, we have lim ๐‘›โ†’โˆž 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ x0, ๐‘ฆ) ๐‘› ๐‘˜=1 = 0, and lim ๐‘›โ†’โˆž 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ y0, ๐‘ฆ) ๐‘› ๐‘˜=1 = 0. therefore, ๐œŒ satisfy ฮด2-condition, then there exists ๐ฟ > 0 and ๐‘›0 โˆˆ โ„• so that 0 โ‰ค ๐œŒ((๐‘ฅ๐‘˜ + ๐‘ฆ๐‘˜ ) โˆ’ (๐‘ฅ0 + ๐‘ฆ0), ๐‘ฆ) = ๐œŒ((๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0) + (๐‘ฆ๐‘˜ โˆ’ ๐‘ฆ0), ๐‘ฆ) โ‰ค ๐œŒ(2(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0), ๐‘ฆ) + ๐œŒ(2(๐‘ฆ๐‘˜ โˆ’ ๐‘ฆ0), ๐‘ฆ) โ‰ค ๐ฟ๐œŒ((๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0), ๐‘ฆ) + ๐ฟ๐œŒ((๐‘ฆ๐‘˜ โˆ’ ๐‘ฆ0), ๐‘ฆ) and 0 โ‰ค ๐œŒ(๐›ผ๐‘ฅ๐‘˜ โˆ’ ๐›ผ๐‘™, ๐‘ฆ) = ๐œŒ(๐›ผ(๐‘ฅ๐‘˜ โˆ’ ๐‘™), ๐‘ฆ) โ‰ค ๐œŒ(2๐‘›0 (๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0), ๐‘ฆ) โ‰ค ๐ฟ๐‘›0 ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ). hence, we have lim ๐‘›โ†’โˆž 1 ๐‘› โˆ‘ ๐œŒ((๐‘ฅ๐‘˜ + ๐‘ฆ๐‘˜ ) โˆ’ (๐‘ฅ0 + ๐‘ฆ0), ๐‘ฆ) ๐‘› ๐‘˜=1 = 0 and lim ๐‘›โ†’โˆž 1 ๐‘› โˆ‘ ๐œŒ(๐›ผ๐‘ฅ๐‘˜ โˆ’ ๐›ผ๐‘ฅ0, ๐‘ฆ) ๐‘› ๐‘˜=1 = 0. in other words (๐‘ฅ๐‘˜ ) + (๐‘ฆ๐‘˜ ), ๐›ผ(๐‘ฅ๐‘˜ ) โˆˆ ๐‘ค ๐œŒ(๐‘‹๐œŒ), and we proof that ๐‘ค ๐œŒ(๐‘‹๐œŒ) is a subspace linear of ๐œ”(๐‘‹๐œŒ).โˆŽ theorem 3. if (๐‘ฅ๐‘˜ ) โˆˆ ๐‘ค ๐œŒ(๐‘‹๐œŒ), then for all ๐‘ฆ โˆˆ ๐‘‹๐œŒ, ( 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ฆ) ๐‘› ๐‘˜=1 ) is a bounded sequence of real numbers. proof. if (๐‘ฅ๐‘˜ ) โˆˆ ๐‘ค ๐œŒ(๐‘‹๐œŒ), then there exist ๐‘ฅ0 โˆˆ ๐‘‹๐œŒ, such that for all ๐‘ฆ โˆˆ ๐‘‹๐œŒ, we have lim nโ†’โˆž 1 n โˆ‘ ฯ(xk โˆ’ ๐‘ฅ0, y) n k=1 = 0. hence, there exist ๐‘›0 โˆˆ โ„•, such that for all ๐‘› โˆˆ โ„•, with ๐‘› โ‰ฅ ๐‘›0 we have strongly summable vector valued sequence spaces defined by 2 modular b. a. nurnugroho 283 1 n โˆ‘ ฯ(xk โˆ’ ๐‘ฅ0, y) n k=1 โ‰ค 1. since ๐œŒ satisfies the ฮด2-conditions, there exist ๐ฟ > 0, for all ๐‘ฆ โˆˆ ๐‘‹๐œŒ, we have ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ฆ) = ๐œŒ ( 2(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0) 2 + 2๐‘ฅ0 2 , ๐‘ฆ) โ‰ค ๐ฟ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) + ๐ฟ๐œŒ(๐‘ฅ0, ๐‘ฆ). it implies, 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ฆ) ๐‘› ๐‘˜=1 โ‰ค ๐ฟ ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ โˆ’ ๐‘ฅ0, ๐‘ฆ) ๐‘› ๐‘˜=1 + ๐ฟ๐œŒ(๐‘ฅ0, ๐‘ฆ). if we set ๐‘€ = sup {๐œŒ(๐‘ฅ1 โˆ’ ๐‘ฅ0, ๐‘ฆ), 1 2 โˆ‘ ๐œŒ(xk โˆ’ ๐‘ฅ0, y), โ‹ฏ , 1 n0 โˆ’ 1 โˆ‘ ฯ(x1 โˆ’ ๐‘ฅ0, y) n0โˆ’1 k=1 , 1 2 k=1 } then it follows that we have ๐พ = ๐ฟ(๐‘€ + ๐œŒ(๐‘ฅ0, ๐‘ฆ)), such that 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ฆ) โ‰ค ๐พ, ๐‘› ๐‘˜=1 for all ๐‘› โˆˆ โ„•. this implies that for all ๐‘ฆ โˆˆ ๐‘‹๐œŒ, ( 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ฆ) ๐‘› ๐‘˜=1 ) is a bounded sequence. โˆŽ theorem 4. function ๐‘”((๐‘ฅ๐‘˜ )) = sup { 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ง) ๐‘› ๐‘˜=1 , โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ} (5) is a modular on ๐‘ค ๐œŒ(๐‘‹๐œŒ). proof. if (๐‘ฅ๐‘˜ ) = ๐ŸŽ is the zero sequence. then it is clear that ๐‘”((๐‘ฅ๐‘˜ )) = 0. conversely, if ((๐‘ฅ๐‘˜ )) = 0, then we have sup { 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ง) ๐‘› ๐‘˜=1 , โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ} = 0. hence, it implies for all ๐‘› โˆˆ โ„• and ๐‘ง โˆˆ ๐‘‹๐œŒ, we have 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ฆ๐‘˜ ) ๐‘› ๐‘˜=1 = 0 โ‡” ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ง) = 0 โ‡” ๐‘ฅ๐‘˜ = 0, โˆ€๐‘˜ โˆˆ โ„•. thus, it is evident that (๐‘ฅ๐‘˜ ) = ๐ŸŽ. since ๐œŒ(โˆ’๐‘ฅ, ๐‘ฆ) = ๐œŒ(๐‘ฅ, ๐‘ฆ) applies, for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹๐œŒ, consequently, it is clear that ๐‘”(โˆ’(๐‘ฅ๐‘˜ )) = ๐‘”((๐‘ฅ๐‘˜ )). finally, for all ๐›ผ, ๐›ฝ โ‰ฅ 0 with ๐›ผ + ๐›ฝ = 1, the for all (๐‘ฅ๐‘˜ ), (๐‘ฆ๐‘˜ ) โˆˆ ๐‘ค ๐œŒ(๐‘‹๐œŒ) we have, ๐‘”(๐›ผ(๐‘ฅ๐‘˜ ) + ๐›ฝ(๐‘ฆ๐‘˜ )) = sup { 1 ๐‘› โˆ‘ ๐œŒ(๐›ผ๐‘ฅ๐‘˜ + ๐›ฝ ๐‘ฆ๐‘˜ , ๐‘ง) ๐‘› ๐‘˜=1 , โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ} = sup { 1 ๐‘› โˆ‘( ๐œŒ(๐‘ฅ๐‘˜ , z) + ๐œŒ(๐‘ฆ๐‘˜ , ๐‘ง)) ๐‘› ๐‘˜=1 , โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ} strongly summable vector valued sequence spaces defined by 2 modular b. a. nurnugroho 284 โ‰ค sup { 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ง) ๐‘› ๐‘˜=1 , โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ} + sup { 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฆ๐‘˜ , ๐‘ง ) ๐‘› ๐‘˜=1 , โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ} = ๐‘”((๐‘ฅ๐‘˜ )) + ๐‘”((๐‘ฆ๐‘˜ )). this completes the proof. โˆŽ theorem 5. if ๐‘‹๐œŒ 2-modular complete, then (๐‘ค ๐œŒ(๐‘‹๐œŒ), ๐‘”) is a modular complete. proof. let ๐‘› โˆˆ โ„• and (๐‘ฅ๐‘– ) be a 2-modular cauchy sequence in ๐‘ค ๐œŒ(๐‘‹๐œŒ), where ๐‘ฅ ๐‘– = (๐‘ฅ๐‘˜ ๐‘– ), for all ๐‘– โˆˆ โ„•. hence, for all ๐œ– > 0, there exists ๐‘›0 โˆˆ โ„•, such that for all ๐‘–, ๐‘— โˆˆ โ„•, with ๐‘–, ๐‘— โ‰ฅ ๐‘›0, we have ๐‘”(๐‘ฅ๐‘– โˆ’ ๐‘ฅ ๐‘— ) = sup { 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ ๐‘— , ๐‘ง) ๐‘› ๐‘˜=1 , โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ} < ๐œ–. it implies that, for all ๐‘–, ๐‘— โ‰ฅ ๐‘›0, we have 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ ๐‘— , ๐‘ง) ๐‘› ๐‘˜=1 < ๐œ–, โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ, or โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ ๐‘— , ๐‘ง) ๐‘› ๐‘˜=1 < ๐‘›๐œ–, โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ, such that, ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ ๐‘— , ๐‘ง) < ๐‘›๐œ–, โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ. hence, for all ๐‘˜ โˆˆ โ„•, (๐‘ฅ๐‘˜ ๐‘– ) is a ๐œŒ-cauchy sequence in ๐‘‹๐œŒ. since ๐‘‹๐œŒ complete 2-modular, then (๐‘ฅ๐‘˜ ๐‘– ) is 2-modular convergent in ๐‘‹๐œŒ, for all ๐‘˜ โˆˆ โ„•. therefore, for ๐‘˜ โˆˆ โ„•, there exist ๐‘ฅ๐‘˜ โˆˆ ๐‘‹๐œŒ , such that for all ๐‘ง โˆˆ ๐‘‹๐œŒ, we have lim ๐‘–โ†’โˆž ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ , ๐‘ง) = 0. since, for all ๐‘–, ๐‘— โ‰ฅ ๐‘›0, we have 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ , ๐‘ง) ๐‘› ๐‘˜=1 = lim ๐‘—โ†’โˆž 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ ๐‘— , ๐‘ง) ๐‘› ๐‘˜=1 < ๐œ–, โˆ€๐‘ง โˆˆ ๐‘‹๐œŒ, then ๐‘” ((๐‘ฅ๐‘˜ ๐‘– ) โˆ’ (๐‘ฅ๐‘˜ )) = sup ( 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ , ๐‘ง) ๐‘› ๐‘˜=1 ) < ๐œ–, for all ๐‘– โ‰ฅ ๐‘›0, such that ๐œŒ(๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ , ๐‘ง) < ๐‘›๐œ–, for all ๐‘– โ‰ฅ ๐‘›0 therefore (๐‘ฅ๐‘– ) modular convergent to (๐‘ฅ๐‘˜ ), and (๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ ) โˆˆ ๐‘ค(๐‘‹๐œŒ). since (๐‘ฅ๐‘˜ ๐‘– ) โˆˆ ๐‘ค(๐‘‹๐œŒ) and ๐‘ค(๐‘‹๐œŒ) is a linear spaces, so we have (๐‘ฅ๐‘˜ ) = (๐‘ฅ๐‘˜ ๐‘– ) โˆ’ (๐‘ฅ๐‘˜ ๐‘– โˆ’ ๐‘ฅ๐‘˜ ) โˆˆ ๐‘ค(๐‘‹๐œŒ). this complete the proof that (๐‘ค ๐œŒ(๐‘‹๐œŒ), ๐‘”) is a complete modular (๐œŒ-complete). โˆŽ conclusions if (๐‘‹, ๐œŒ) is a 2-modular space, with ๐œŒ satisfies ฮด2-condition, then we can construct ๐‘ค ๐œŒ(๐‘‹๐œŒ) โŠ‚ ๐‘ค(๐‘‹๐œŒ) is the space of strongly cesaro summable vector-valued sequences in 2-modular (๐‘‹๐œŒ, ๐œŒ). it certainly can be shown that ๐‘ค ๐œŒ(๐‘‹๐œŒ) is a linear space. furthermore, if (๐‘ฅ๐‘˜ ) โˆˆ ๐‘ค ๐œŒ(๐‘‹๐œŒ), then we can prove that for all ๐‘ฆ โˆˆ ๐‘‹๐œŒ, ( 1 ๐‘› โˆ‘ ๐œŒ(๐‘ฅ๐‘˜ , ๐‘ฆ) ๐‘› ๐‘˜=1 ) is a bounded strongly summable vector valued sequence spaces defined by 2 modular b. a. nurnugroho 285 sequence of real numbers. this fact provides a guarantee for us to be able to build a modular ๐‘” on ๐‘ค ๐œŒ(๐‘‹๐œŒ). finally, we proved that (๐‘ค ๐œŒ(๐‘‹๐œŒ), ๐‘”) is modular complete, if (๐‘‹๐œŒ, ๐œŒ) is a 2-modular complete. acknowledgments the author would like to thank lppm uad for funding this research references [1] t. bilgin, "on strong a-summability defined by a modulus," chinese journal of mathematics, vol. 24, no. 2, pp. 159-166, 1996. [2] f. nuray and b. aydin, "strongly summable and statistically convergent,," informacinฤ—s technologijos ir valdymas, vol. 1, no. 30, pp. 74-76, 2004. [3] j. connor, "on strong matrix summability with respect to a modulus and statistical convergence," canad. math. bull., vol. 32, no. 2, pp. 194-198, 1989. [4] h. gunawan and m. , "on finite dimensional 2-normed spaces," soochow j. math, vol. 27, no. 3, pp. 321-329, 2001. [5] s. gรคhler, " 2metrische raume und ihre topologishe struktur, math.," math. nachr, vol. 26, no. 1-4, pp. 115-148, 1963. [6] a. misiak, "n-inner product spaces," math. narchr, vol. 140, no. 1, pp. 299-319, 1989. [7] h. dutta, b. s. reddy and s. s. cheng, "strongly summable sequences defined over real n-normed spaces," applied mathematics e-notes, vol. 10, pp. 199-209, 2010. [8] k. raj and s. k. sharma, "some sequence spaces in 2-normed spaces defined by musielak-orlicz function," acta univ. sapientiae, mathematica, vol. 3, no. 1, pp. 97109, 2011. [9] r. anand and k. raj, "complete paranormed orlicz lorentz sequence spaces over nnormed," journal of the egyptian mathematical society, vol. 25, pp. 151-154, 2017. [10] d. hemen, "on n-normed linear space valued strongly (c,1)-summable difference sequences," asian-european journal of mathematics, vol. 3, no. 4, pp. 565-575, 2010. [11] m. mursaleen, s. k. sharma and a. kilicman, "sequence spaces defined by musielakorlicz function over ๐‘›-normed spaces," abstract and applied analysis, vol. 2013, 2013. [12] l. maligranda, "hidegoro nakano (1909โ€“1974) โ€“ on the centenary of his birth," in proceedings of the international symposium on banach and function spaces iii, kitakyushu, japan, 2009. [13] j. musielak and w. orlicz, "on modular spaces," studia mathematica, vol. 18, no. 1, pp. 49-65, 1959. [14] k. nourouzi and s. shabania, "operators defined on n-modular spaces," mediterr. j. math., vol. 6, pp. 431-446, 2009. [15] b. a. nurnugroho, s. and a. zulijanto, "2-linear operator on 2-modular spaces," far east journal of mathematical sciences , vol. 102, no. 12, pp. 3193-3210, 2017. the generalized star modeling with heteroscedastic effects cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 158-172 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 05, 2021 reviewed: august 20, 2021 accepted: december 20, 2021 doi: http://dx.doi.org/10.18860/ca.v7i1.13097 the generalized star modeling with heteroscedastic effects utriweni mukhaiyar1,*, syahri ramadhani2 1statistics research division, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia 2undergraduate programme in mathematics, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia *corresponding author email: utriweni@math.itb.ac.id abstract most of the generalized space time autoregressive (gstar) models assume the constant error variance. in fact, there are many space-time observations whose variability is changing over the times. in this study, a gstar model is built with an error variance that is not constant or has a heteroscedasticity effect, namely the combination of gstarโ€“autoregressive conditional heteroscedasticity (arch). the parameters of the gstarโ€“arch model are estimated using the generalized least square (gls) method to obtain the efficient parameter estimation. as a case study, the gstarโ€“arch model is applied to the daily mean wind speed data of new orleans, florida and mississippi, in order to predict the occurrence of hurricane katrina that occurred in 2005. it is obtained that the heteroscedastic involvement in gstar modeling gives the better results in predictions, compared to the homoscedastics approach. furthermore, as the order of model is higher, the gstar model performances is better, which is shown by the least mean squared errors (mse) and mean absolute percentage error (mape). the obtained results show that the gstar model (3;0,0,1)โ€“arch(1) predicts the hurricane katrina better than the gstar(3;0,0,1) and gstar(1;1)โ€“arch(1) models. keywords: gstar; arch; conditional variance; generalized least squares; heteroskedasticity introduction a hurricane is a natural phenomenon in the form of wind gusts with a speed exceeding 119 km/hour. hurricanes are a type of tropical cyclone that usually forms on warm sea surfaces around the equator. the wind speed at one location is influenced by the wind speed of the previous time at that location and also influenced by the average wind speed at other locations. this means that the wind speed can be modeled with space-time models such as starma(p,q), star(p), stma(q), gstar(p,q) and starmag(p,q). the model used in this study is the gstar model which uses a certain weight matrix according to the location conditions. http://dx.doi.org/10.18860/ca.v7i1.13097 mailto:utriweni@math.itb.ac.id the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 159 the arrival of a storm which is usually predicted by weather satellites will be predicted using the gstar model. by using the daily average wind speed data one year before the storm, it is hoped that the arrival of the storm can be predicted earlier and reduce the number of victims, both property and life, due to the storm. however, a large increase in wind speed when a storm occur, causes the data to have heteroscedastic effect, so that the error generated by the gstar model has a non-constant variance. it makes the estimation of the initial model parameters being no longer efficient, thus a model that explains the variance of the error is not constant, namely the arch model is should be developed. the use of the arch is to model the variance of errors, such that it is expected to eliminate heteroscedastic elements and more efficient parameters can be produced. the development of gstar model in indonesia is very fast, both theoretically and in application. theoretically, it includes the stationary properties of the process using the inverse autocovariance matrix [1] as well as the kernel approach [2, 3] and minimum spanning tree approach [4], gstar with correlated errors [5, 6], gstar with outliers [7], gstar for discrete data [8], and invertibility of kernel gstar model [9]. the application of the gstar model has been carried out on economic data [10], tea plantations [11], palm oil production [12], red chili commodity prices [13], number of dengue fever cases [14], predictions of robbery cases in medan, north sumatra [15], the spread of covid-19 cases in java [16], and copper and gold grades vertical distribution [17]. on the other hand, the arch model, which accommodates the element of heteroscedasticity and exogenous variable which make the high volatility of process, is widely developed in economic problems. the impact of covid-19 as the exogenous factor to the economic sector be explored by [18]. sometimes the exogeneous factor cause a point of change happen and it should be detected [19]. however, its application has also been carried out to predict electric current [20], caterpillar pests in oil palm plantations [21], and rice prices [22]. the development of the gstar model with an error variance by considering the heteroscedasticity effect, has been investigated by [23] on the gstar(1,1) model with application to stock prices. the contruction of gstar model with the arch effect and estimate the parameters using the maximum likelihood method approach be explored by [24]. in this study, the gstarโ€“arch model was developed by estimating the parameters using the generalized least square (gls) approach. methods generalized star model the gstar model is a generalization of the star model where the model parameters for each location that were initially considered homogeneous can be different. an observation at location i at time t are expressed as ๐‘๐‘–,๐‘ก . if the observations between locations are related, then these observations can be modeled using the gstar model. the general form of gstar is, ๐’๐‘ก = โˆ‘ โˆ‘ ๐šฝ๐‘—๐‘™ ฮป๐‘˜ โ„“=0 ๐‘˜ ๐‘—=1 ๐‘พ(๐“ต)๐’๐‘กโˆ’๐‘— + ๐’†๐‘ก the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 160 with ๐’๐‘ก is a n-dimensional column vector ( ๐‘1,๐‘ก , ๐‘2,๐‘ก , โ€ฆ , ๐‘๐‘,๐‘ก )โ€ฒ, ๐‘พ (๐“ต) is a n-dimensional weight matrix for spatial lag-โ„“๐‘กโ„Ž , ๐šฝ๐‘—๐‘™ is n-dimensional matrix of autoregressive parameters for spatial lag โ„“ and time lag j, and ๐’†๐‘ก is a n-dimensional vector of errors respective to the observations inside vector ๐’๐‘ก . for homoscedastic gstar, the ๐’†๐‘ก is a white noise vector whose mean and variance are constant, and follows normal multivariate distribution, meanwhile for heteroscedastics case, the variance is not constant. the gstar modeling stage follows the box-jenkins iteration [1], consist of model identification, parameter estimation and diagnostic checking. before doing gstar modeling, the data of process must have stationary properties. if it is not stationary, a differentiation process should be performed on the data until the data is stationary. in estimating the parameters of the gstar model, it can be done using the ordinary least square (ols) method by constructing the gstar model into a linear form ๐’€ = ๐—๐œท + ๐’†, so that the ols estimator obtained is ๏ฟฝฬ‚๏ฟฝ = (๐—โ€ฒ๐—)โˆ’1๐—โ€ฒ๐’€ [1] arch(1) model consider a process {yt} which follows ar(p) model such that can be written as: ๐‘Œ๐‘ก = ๐œ™0 + ๐œ™1๐‘Œ๐‘กโˆ’1 + โ‹ฏ + ๐œ™๐‘๐‘Œ๐‘กโˆ’๐‘ + ๐‘’๐‘ก which ๐‘’๐‘ก is uncorrelated errors but has inconstant variance or depend on time. based on engle (1982), the error ๐‘’๐‘ก can be expressed as, ๐‘’๐‘ก = ๐‘Ž๐‘ก ๐œŽ๐‘ก (1) with ๐‘Ž๐‘ก is random sample which independent and has identical standard normal distribution, and ๐œŽ๐‘ก 2 = ๐›ผ0 + ๐›ผ1๐‘’๐‘กโˆ’1 2 + โ‹ฏ + ๐›ผ๐‘๐‘’๐‘กโˆ’๐‘ 2 (2) if the erros are known until (t-1) the the conditional variance of ๐‘’๐‘ก is stated as: ๐‘‰๐‘Ž๐‘Ÿ๐‘กโˆ’1(๐‘’๐‘ก ) = ๐ธ๐‘กโˆ’1[๐‘’๐‘ก 2] = ๐ธ[๐‘’๐‘ก 2|๐‘’๐‘กโˆ’1 2 , ๐‘’๐‘กโˆ’2 2 , โ€ฆ ] = ๐œŽ๐‘ก 2 from eq. (2), it can be said that the conditional variance of ๐‘’๐‘ก depends on squares of the past errors and inconstant. tthis condition is named as arch(p) model [25]. the simplest form of the arch(p) model and used in this study is the arch(1) model. in this model, the error variance at time t is affected by the square of the error of the previous one time lag. the arch(1) model is formulated as: ๐‘’๐‘ก = ๐‘Ž๐‘ก ๐œŽ๐‘ก and ๐œŽ๐‘ก 2 = ๐›ผ0 + ๐›ผ1๐‘’๐‘กโˆ’1 2 with ๐›ผ0 and ๐›ผ1 are non-negative parameters of arch(1) model. the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 161 the variance of arch(1) errors is, var(๐‘’t) = ๐ธ[๐‘’๐‘ก 2] โˆ’ (๐ธ[๐‘’๐‘ก ]) 2 = ๐ธ[๐‘’๐‘ก 2] = ๐ธ[๐‘Ž๐‘ก 2]๐ธ[๐œŽ๐‘ก 2] = ๐ธ[๐›ผ0 + ๐›ผ1๐‘’๐‘กโˆ’1 2 ] = ๐ธ[๐›ผ0] + ๐ธ[๐›ผ1๐‘’๐‘กโˆ’1 2 ] = ๐›ผ0 + ๐›ผ1var(๐‘’๐‘ก ) then it is obtained, var(๐‘’๐‘ก ) = ๐›ผ0 1โˆ’๐›ผ1 (3) since the variance is positive then, based on eq. (3), ๐›ผ0 > 0 and 0 โ‰ค ๐›ผ1 < 1, be the stationary condition of arch(1) model. gstar(1;1) โ€“ arch (1) model consider ๐’๐‘ก = (๐‘1,๐‘ก , ๐‘2,๐‘ก , . . . , ๐‘๐‘,๐‘ก )โ€ฒ as a vector of observations in n location at time t, can be modeled as gstar(1;1)โ€“arch(1), if it can be expressed as: ๐’๐‘ก = (๐œฑ๐ŸŽ + ๐œฑ๐Ÿ๐‘พ)๐’๐‘กโˆ’1 + ๐’†๐‘ก (4) where ๐’†๐‘ก ~ ๐‘(๐ŸŽ, ฯ‰t), is vector of errors which follows normal distribution with zero mean and inconstant variance over the time. the covariance matrix ฯ‰t is defined as ฯ‰t = diag(h1,t, h2,t, . . . , hn,t) and hi,t is a vector of erros variance on location i at time t, which can be modeled as arch(1), that is ๐’‰๐‘–,๐‘ก = ๐œถ0๐‘– + ๐œถ1๐‘– ๐’†๐‘–,๐‘กโˆ’1 ๐Ÿ with ๐œถ๐‘˜๐‘– is parameter of model for location i and k = 0, 1. the assumption used in this model is that the errors between locations are uncorrelated with each other so that the error variance at location i at time t is affected by the square of the errors on that location at time (t โ€“ 1) , but is not affected by the errors on the other locations. meanwhile, the observation value of location i is influenced by the observations on that location and also the neighbor locations. the method used to estimate this model is the generalized least square (gls) method. suppose that the matrix ฯ‰ has eigenvalues, ๐œ†1, ๐œ†2, โ€ฆ , ๐œ†๐‘‡ . by cholesky's decomposition, it can be written as ๐›€ = ๐‚๐šฒ๐‚โ€ฒ, with ๐šฒ = diag(๐œ†1, ๐œ†2, โ€ฆ , ๐œ†๐‘‡ ) is a diagonal matrix, and c is an orthogonal matrix. consider the matrix ๐‚ = ๐โˆ’1๐šฒ โˆ’ 1 2 , with ๐šฒ 1 2 = diag(โˆš๐œ†1, โˆš๐œ†2, โ€ฆ , โˆš๐œ†๐‘‡ ). thus , ๐›€โˆ’1 = ๐โˆ’1๐šฒโˆ’1(๐โ€ฒ)โˆ’1 = ๐โˆ’1๐šฒ โˆ’ 1 2๐šฒโ€ฒ โˆ’ 1 2(๐โ€ฒ)โˆ’1 = ๐‚๐‚โ€ฒ. let the transformed linear model, ๐’€โˆ— = ๐—โˆ—๐œท + ๐’†โˆ— be defined with ๐’€โˆ— = ๐‚๐’€, ๐—โˆ— = ๐‚๐—, and ๐’†โˆ— = ๐‚๐’†. then, unbiased estimator of gstarโ€“arch model parameters are presented as: ๏ฟฝฬ‚๏ฟฝgls = (๐— โ€ฒ๐›€โˆ’1๐—)โˆ’1๐—โ€ฒ๐›€โˆ’1๐’€ (5) the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 162 with ๐›€ = diag(โ„Ž1(1), โ€ฆ , โ„Ž1(๐‘‡), โ€ฆ , โ„Ž๐‘ (1), โ€ฆ , โ„Ž๐‘ (๐‘‡)) is nt-dimentional of diagonal [26]. furthermore, the stages of gstar-arch modeling is illustrated in a flow chart as presented in fig. 1. figure 1. flowchart of the gstar-arch modeling stage. modeling is carried out to obtain a homoscedastic error. the equation for the mean is modeled by the gstar model while the variance is modeled by the arch model. results and discussion as a case study, the data used are the average daily wind speed in three states of the united states (n = 3) from september 1, 2004 to august 24, 2005 (t = 358) obtained from the national oceanic and atmospheric administration (noaa) that belongs to the united states. geographically, the united states is located around the equator, so some areas of the country are often hit by storms. hurricane katrina was one of the deadliest hurricanes that occurred in 2005. according to the united states department of oceanic and atmospheric research, the total loss caused by hurricane katrina was over a terdapat efek arch space-time data data plot data is stationary no yes gstar model identification difference parameter estimation arch effect test for errors no yes gstar model identify arch model parameter estimation of arch parameter estimation of gstar arch diagnostics tes of model homoscedastic of errors yes no short-time forecasting finish is there arch effect? the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 163 thousand million dollars and more than 1,800 people died. the states of interest are new orleans (louisiana), florida, and mississippi, each of which can be seen in fig. 2. the modeling is carried out with the help of the r application. the data will be modeled with the space-time model and must meet the stationary properties first. the stationary data can be seen from the plot of the row of observations at each location as in fig. 3(a). from the figure, it can be seen that there are several wind speed values that are higher than other observations. in addition, there is also a slight downward and rising pattern, which indicates a data pattern that is not stationary on average. therefore, the data differentiation is done first. the series plot after one-time differentiation can be seen in fig. 3(b). the stationary data is then centered so that it has a zero mean (centralized process). the process variability which occasionally increases, indicates that the variance is not constant. this will be accomodated in the modeling with heteroscedastic effect. in gstar modeling, one of the important elements that characterizes the relationship between locations is the presence of a weight matrix. the weight matrix has entries ๐‘ค๐‘–๐‘— , which represents the weight of location-j to location-i. this matrix has zeros entries in the main diagonal and the total weight in one row is equal to one. in this study, the weight matrix used is uniform and binary weights. the spatial lag used is limited to only one spatial lag. for simplicity, the uniform and binary weight matrix be used, respectively, are ๐‘พ(๐Ÿ) = ( 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0 ) and ๐‘พ(๐Ÿ) = ( 0 0 1 1 0 0 1 0 0 ) figure 2. map of the united states and the states where the observations are located (source: https://greatpersie.wordpress.com). new orleans (louisiana), florida, and mississippi are referred to as location 1, location 2, and location 3, respectively (1) (2) (3) the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 164 figure 3. plot series for each location, (a) before differentiation and (b) after differentiation by one time lag. after differentiation, the data become centered with a more stationary pattern in the mean the first stage in the modeling is model identification with the help of space-time acf and pacf plots, called stacf and stpacf. however, because the model has been determined at the beginning, namely the gstar(1;1) model, the model identification stage can be skipped. the stacf and stpacf plots obtained are used to see whether there is a relationship between time and location from the daily average wind rate data. the plots of stacf and stpacf can be seen in fig. 4. from fig. 4 it can be seen that the data have time and spatial dependence, although the gstar(1;1) model is not very appropriate to model this data. from the stpacf plot, the best possible model for the data is gstar(3;0,0,1). thus, the modeling be considered are gstar(1;1) and gstar(3;0,0,1) model. first, the obtained estimated parameters using ordinary least squares (ols) method for the gstar(1;1) model can be seen in table 1. table 1. the ols parameter estimation of gstar(1;1) model parameter ๐“๐ŸŽ๐Ÿ ๐“๐Ÿ๐Ÿ ๐“๐ŸŽ๐Ÿ ๐“๐Ÿ๐Ÿ ๐“๐ŸŽ๐Ÿ‘ ๐“๐ŸŽ๐Ÿ‘ estimation -0.15 0.08 -0.08 -0.04 -0.28 0.20 (a) (b) the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 165 the next step is to test the presence of the arch effect on the error of each location. the existence of the arch effect can be detected from the plot of the squared error of each location which can be seen in fig. 5. figure 4. stacf (left) and stpacf (right) plot based on uniform weight matrix. the stacf has more patterned values than stpacf. thus the autoregressive model is more appropriate figure 5. the square errors plot of the gstar(1;1) model. it can be seen that the error variance is not constant, indicating the presence of the arch the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 166 to confirm the existence of the arch effect, the arch-lm test will be used (engle, 1982). the presence of arch effect on the error is indicated by the p-value which is smaller than 1% โ‰ค ฮฑ โ‰ค 10%. the arch-lm test results for the first six time lags in table 2, show that the p-value is smaller in almost all locations and time lags. so it can be concluded that there is an arch effect on the gstar(1;1) model, means that the variance of errors is not constant over time. a slight difference found at location 2, florida. the p-values obtained are less than 9.2% until the third time lag, indicates that the wind speed value in this area tends to be more constant in average and variance than the other two observation locations. at a time lag of more than three, the wind speed in florida did not show any arch effect on the process. however, the presence of heteroscedasticity effects in two other locations, also in florida until the first three-time lags, be the reason to consider the inconstant variance in this case. table 2. the p-values of heteroscedastic effect existence using arch-lm test time lag new orleans (ร— 10โˆ’4) florida mississippi (ร— 10โˆ’2) 1 0.0019 0.0304 0.0300 2 0.0085 0.0731 0.0980 3 0.0067 0.0917 0.2000 4 0.0224 0.1550 0.4300 5 0.0666 0.2170 0.8000 6 0.1490 0.2950 0.9300 next, the inconstant erros variance of gstar(1;1) be modeled by arch(1). the obtained parameter estimation of model arch(1) model using maximum likelihood (ml) method, can be seen in tabel 3. table 3. the ml parameter estimation of arch(1) model. the i-th parameter of locationj is presented by ๐œถ๐‘–๐‘— for ๐‘– = 0,1 and ๐‘— = 1,2,3. parameter ๐œถ๐ŸŽ๐Ÿ ๐œถ๐Ÿ๐Ÿ ๐œถ๐ŸŽ๐Ÿ ๐œถ๐Ÿ๐Ÿ ๐œถ๐ŸŽ๐Ÿ‘ ๐œถ๐Ÿ๐Ÿ‘ estimation 1.01 0.25 0.66 0.18 0.60 0.30 thus, the variances of errors for each location are obtained as:: ๐œŽ1,๐‘ก 2 = 1.01 + 0.25๐‘’1,๐‘กโˆ’1 2 ๐œŽ2,๐‘ก 2 = 0.66 + 0.18๐‘’2,๐‘กโˆ’1 2 ๐œŽ3,๐‘ก 2 = 0.60 + 0.30๐‘’3,๐‘กโˆ’1 2 furthermore, the variances of errors of each location, for t=1,2,..., t be the entries of ๐‘๐‘‡ dimenstional of diagonal matrix, ฯ‰(t) = diag(๐œŽ1,๐‘ก 2 , ๐œŽ2,๐‘ก 2 , ๐œŽ3,๐‘ก 2 ). this matrix is used for parameter estimation of gstar(1;1) โ€“ arch (1) model by using the gls mehod. the estimated parameters are presented in table 4. the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 167 table 4. the gls parameter estimation of gstar(1;1) model with the errors variance follows arch(1) model parameter ๐“๐ŸŽ๐Ÿ ๐“๐Ÿ๐Ÿ ๐“๐ŸŽ๐Ÿ ๐“๐Ÿ๐Ÿ ๐“๐ŸŽ๐Ÿ‘ ๐“๐ŸŽ๐Ÿ‘ estimation -0.11 0.08 -0.05 -0.05 -0.27 0.22 the estimated parameters of the model obtained using the gls method in table 4, are not much different from the estimated parameters obtained using the ols method in table 1. this is probably because the arch(1) model is not the right model to model the error variance of the gstar(1;1) model. for comparison, the modeling with the same steps was carried out again using a binary weight matrix and a weight matrix based on wind direction. determination of the best model is done by comparing the value of the mean squared error (mse) of each model. from table 5 it can be concluded that the use of a uniform weight matrix in the gstar(1;1)โ€“arch (1) modeling is slightly better than the binary weight matrix. the three locations involved in modeling give the composition of the uniform and binary weight matrix are quite similar. table 5. the mse values of gstar(1;1) โ€“ arch(1) model with two types of thw weight matrix. the results using uniform weight matrix is slightly better than binary, although the difference is not significant weight matrix mse uniform 0.975 binary 0.978 the comparison between the original and estimated data using the gstar(1;1)โ€“ arch(1) model can be seen in fig. 6. from this figure, it can be seen that there is a big difference between the original data and estimated results. this is because the stpacf plot in fig. 4 indicates that the gstar(1;1) model is not appropriate for the data. from the stpacf plot, the possible next space-time model is the gstar (3;0,0,1) with a fixed error variance be modeled by the arch(1) model. this model explains that the condition of location i at t is influenced by its own condition at-(t โ€“ 1), (t โ€“ 2), (t โ€“ 3) and the conditions of other locations which are its closest neighbors at (t โ€“ 3). the modeling is carried out following the similar steps in modeling gstar(1;1) โ€“ arch (1) until the parameters are obtained before and after the arch element is calculated. the estimation parameter results can be seen in table 6. the estimation parameters obtained from the gstar(3;0,0,1) modeling are not much different from the gstar estimation parameters gstar (3;0,0,1)โ€“arch(1) so that the estimation results obtained will also not far different. the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 168 figure 6. plot of original series (red) and estimation (blue, green) using gstar(1;1) โ€“ arch(1) model. the large errors indicate that the gstar(1;1) model is not suitable. table 6. the comparison of gstar(3;0,0,1) parameter estimation before and after the errors variance be modeled by arch(1). generally, there is no difference of both models. parameter ๐“๐Ÿ๐ŸŽ ๐Ÿ ๐“๐Ÿ๐ŸŽ ๐Ÿ ๐“๐Ÿ‘๐ŸŽ ๐Ÿ ๐“๐Ÿ‘๐Ÿ ๐Ÿ ๐“๐Ÿ๐ŸŽ ๐Ÿ ๐“๐Ÿ๐ŸŽ ๐Ÿ ๐“๐Ÿ‘๐ŸŽ ๐Ÿ ๐“๐Ÿ‘๐Ÿ ๐Ÿ ๐“๐Ÿ๐ŸŽ ๐Ÿ‘ ๐“๐Ÿ๐ŸŽ ๐Ÿ‘ ๐“๐Ÿ‘๐ŸŽ ๐Ÿ‘ ๐“๐Ÿ‘๐Ÿ ๐Ÿ‘ before -0.24 -0.40 -0.15 -0.07 -0.17 -0.32 -0.27 -0.02 -0.31 -0.37 -0.13 -0.07 after -0.21 -0.36 -0.13 -0.09 -0.13 -0.33 -0.24 -0.03 -0.30 -0.34 -0.10 -0.03 the comparison of the original and estimated data using the gstar(3;0,0,1)โ€“ arch(1) model can be seen in fig. 7. by comparing the plots in fig. 6 and fig. 7, it can be seen that the estimation results generated by this model are better than the gstar(1;1)โ€“arch(1) model. the gstar(3;0,0,1)โ€“arch(1) model can capture the pattern of process variability. however, this model is not the best model for the data. from fig. 7 it can be seen that the estimation results cannot reach the very high either low value of the original data. this may be due to the inaccurate selection of the arch(1) model as a model that explains the error variance for each location. the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 169 figure 7. plot of the original series (red) and estimation (green) gstar(3;0,0,1) โ€“ arch(1) model the mse value for the gstar(3;0,0,1)โ€“arch(1) model is 0.875. this value is smaller than the mse value of the gstar(1;1)โ€“arch (1) model, so the model that will be used for short-term prediction is the gstar(3;0,0,1)โ€“arch(1) model. to make sure the selection of the gstar(3;0,0,1)โ€“arch(1) model, a comparison was made with the gstar(3;0,0,1) model without the effect of heteroscedasticity. table 7 shows the comparison of mse, mad and mape values for the two models. although those values were not significant different, the model used for short-term prediction is the gstar(3;0,0,1)โ€“arch(1) model, since it is slightly better. table 7. the comparison of gstar(3;0,1,1) and gstar(3;0,0,1)โ€“arch(1) model from table 8, it can be concluded that the gstar (3;0,0,1)โ€“arch (1) model is not very good for estimating the changes in the daily average wind speed, which are too large. in a relatively short period of time, august 25 โ€“ 29, 2005, there was an increase in the daily average wind speed. if this speed increase is assumed to be the beginning of hurricane katrina, then hurricane katrina is expected to hit new orleans and mississippi on september 1, 2005, which is three days later than the actual time of hurricane landfall in new orleans and mississippi. gstar(3;0,0,1) gstar(3;0,0,1)โ€“arch(1) mse 0.88 0.86 mad 0.70 0.70 mape 7.48 6.86 the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 170 table 8. the comparison of real data and its estimation using gstar(3;0,0,1)โ€“arch(1) model conclusions the daily average wind speed data in new orleans, florida, and mississippi of the united states are not only influenced by the wind speed at the previous days in the same location, but the influenced of the wind speed in neighbor states can not be ignored. through the previous modeling, it was found that the gstar(3;0,0,1)โ€“arch(1) model is a better model than the gstar(3;0,0,1) model. it means that, the wind speed in threeprevious days of the closest neighbors will influence todayโ€™s wind speed in the reference location. this model can capture the pattern of the wind speed volatilities compare to other observed models. however, the gstar(3;0,0,1)โ€“arch(1) model is still not good enough to predict wind speeds that are extrme high nor low. this can be caused because the arch(1) model is not the right model to model the model error variance. further analysis of the error variance model such as garch(p,q) is also needed so that the error variance can be modeled better. as for the application of the gstar model with the arch effect, it can also be developed in weather cases in indonesia, as well as in other fields of science. acknowledgments this research is supported by p3mi 2020 and p2mi 2021 research grant of itb. references [1] u. mukhaiyar, and u.s. pasaribu, a new procedure for generalized star modeling using iacm approach. itb j. sci 44(2) : 179-192, 2012. https://journals.itb.ac.id/index.php/jmfs/article/view/106 [2] yundari, u.s. pasaribu, u. mukhaiyar, m.n. heriawan, spatial weight determination of gstar(1;1) model by using kernel function, journal of physics: conference series 1028 (012223): 1-8, 2018. https://iopscience.iop.org/article/10.1088/1742-6596/1028/1/012223 [3] yundari, n.m. huda, u. mukhaiyar, u.s. pasaribu, and k.n. sari, stationary process in gstar(1;1) through kernel function approach: aip conference proceedings, 2268, 020010, 2020. https://aip.scitation.org/doi/10.1063/5.0016808 year 2005 new orleans florida mississippi est. real est. real est. real 25 aug 6.55 6.26 15.09 15.43 2.67 4.25 26 aug 7.05 7.61 15.73 12.08 3.15 5.59 27 aug 7.06 10.96 17.04 9.17 3.54 6.49 28 aug 7.04 25.05 17.53 5.59 3.82 13.87 29 aug 7.024 47.65 16.90 2.68 3.43 28.19 the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 171 [4] u. mukhaiyar, b. i. bilad, and u. s. pasaribu, the generalized star modelling with minimum spanning tree approach of weight matrix for covid-19 case in java island, journal of physics: conference series, 2084 012003, 2021. [5] d. masteriana, and u. mukhaiyar, monte carlo simulation of error assumptions in generalized star(1;1) model. proceedings on the jangjeon mathematical society 22(1) : 43-50, 2019. doi: 10.17777/pjms2019.22.1.43 [6] yundari, u.s. pasaribu, u. mukhaiyar, error assumptions on generalized star model, journal of mathematical and fundamental sciences 49(2): 136-155, 2017. https://journals.itb.ac.id/index.php/jmfs/article/view/3285 [7] u. mukhaiyar, n.m. huda, k.n. sari, and u.s. pasaribu, analysis of generalized space time autoregressive with exogenous variable (gstarx) model with outlier factor, journal of physics: conference series, 1496(1), 012004, 2020. doi: 10.1088/1742-6596/1496/1/012004 [8] n.m. huda, u. mukhaiyar, and u.s. pasaribu, the approximation of gstar model for discrete cases through inar model: journal of physics: conference series, 1722(1), 012100, 2021. https://iopscience.iop.org/article/10.1088/17426596/1722/1/012100/pdf [9] yundari and s.w. rizki, invertibility of generalized space-time autoregressive model with random weight, cauchy, 6(4):246-259, 2021. doi: 10.18860/ca.v6i4.11254 [10] n. nurhayati, u.s. pasaribu, and o. neswan, application of generalized star model on gdp data in west european countries. j. of probability and statistics 2012 : 1-16, 2012. https://www.hindawi.com/journals/jps/2012/867056/ [11] u. mukhaiyar, the goodness of generalized star in spatial dependency observations modeling,. aip conf. proc. 1692 (020012), 2015. https://aip.scitation.org/doi/abs/10.1063/1.4936436 [12] r.f. nugraha, s. setyowati, u. mukhaiyar, prediction of oil palm production using the weighted average of fuzzy sets concept approach. aip conf. proc. 1692 (020008), 2015. https://aip.scitation.org/doi/abs/10.1063/1.4936440 [13] n.f.i. fadlilah, u. mukhaiyar, f. fahmi, the generalized star(1;1) modeling with time correlated errors to red-chili weekly prices of some traditional markets in bandung, west java. aip conf. proc. 1692(020014), 2015. https://iopscience.iop.org/article/10.1088/1742-6596/1722/1/012100 [14] u. mukhaiyar, n.m. huda, k.n. sari, and u.s. pasaribu, modeling dengue fever cases by using gstar(1;1) model with outlier factor: journal of physics: conference series, 1366(1), 012122, 2019. https://iopscience.iop.org/article/10.1088/1742-6596/1366/1/012122 [15] d. masteriana, m.i. riani, and u. mukhaiyar, generalized star (1;1) model with outlier case study of begal in medan, north sumatera: journal of physics: conference series, 12456(1), 012046, 2019. https://iopscience.iop.org/article/10.1088/1742-6596/1245/1/012046/pdf [16] u.s. pasaribu, u. mukhaiyar, n.m. huda, k.n. sari, and s.w. indratno, modelling covid-19 growth cases of provinces in java island by modified spatial weight matrix gstar through railroad passengerโ€™s mobility: heliyon, 7(2), e06025, 2021. https://www.sciencedirect.com/science/article/pii/s2405844021001304 http://dx.doi.org/10.17777/pjms2019.22.1.43 http://dx.doi.org/10.1088/1742-6596/1496/1/012004 http://dx.doi.org/10.18860/ca.v6i4.11254 https://www.sciencedirect.com/science/article/pii/s2405844021001304 the generalized star modeling with heteroscedastic effects utriweni mukhaiyar 172 [17] pasaribu u s, mukhaiyar u, heriawan m n and yundari 2021 generalized spacetime autoregressive modeling of the vertical distribution of copper and gold grades with a porphyry-deposit case study ijaseit 11(6) (to be published) [18] u. mukhaiyar, d. widyanti, and s. vantika, the time series regression analysis in evaluating the economic impact of covid-19 cases in indonesia. journal of model assisted statistics and applications, 16(3), 2021a. https://ieeexplore.ieee.org/document/7005725 [19] s.s. sholihat, s.w. indratno, and u. mukhaiyar, the role of parameters in bayesian online change point detection: detecting early warning of mount merapi eruptions, heliyon, e07482, 2021. https://doi.org/10.1016/j.heliyon.2021.e07482 [20] u.s. pasaribu, u. mukhaiyar, s. setiyowati, an arch model the electric power of extra high voltage (ehv) transmission substation forecasting in cawang, jakarta, indonesia:the proceedings of ieee inagentsys, 1589, 484, 2014. [21] s. setiyowati, r.f. nugraha, u. mukhaiyar, non-stationary time series modeling on caterpillars pest of palm oil for early warning system, aip conference proceedings 1692, 020011, 2015, doi: 10.1063/1.4936439 [22] s. setiyowati, u.s. pasaribu, and u. mukhaiyar, non-stationary model for rice prices in bandung, indonesia: the proceedings of 2012 ieee conference on control, system & industrial informatics, (ica2013), 2013. [23] s. borovkova, svetlana and r. lopuhaa, spatial garch: a spatial approach to multivariate volatility modeling (november 9, 2012). available at ssrn: https://ssrn.com/abstract=2176781 or http://dx.doi.org/10.2139/ssrn.217 6781. [24] n. nainggolan, and j. titaley, development of generalized space time autoregressive (gstar) model, aip conference proceedings 1827, 020034, 2017. https://doi.org/10.1063/1.4979450 [25] r.f. engle, autoregressive conditional heteroskedasticity with estimates of the variance of united kingdom inflation, econometrica, vol 50 (4), pp. 987-1007, 1982. https://www.jstor.org/stable/1912773 [26] s. ramadhani, prakiraan kedatangan badai katrina dengan model ruang waktu gstar(p; ฮป1, ฮป2, โ€ฆ , ฮปp)-arch(1), laporan tugas akhir, institut teknologi bandung, 2016. https://www.iospress.nl/journal/model-assisted-statistics-and-applications/ https://www.iospress.nl/journal/model-assisted-statistics-and-applications/ https://doi.org/10.1016/j.heliyon.2021.e07482 https://ssrn.com/abstract=2176781 https://dx.doi.org/10.2139/ssrn.2176781 https://dx.doi.org/10.2139/ssrn.2176781 https://doi.org/10.1063/1.4979450 spatial autoregressive to model tuberculosis cases in central java province in 2019 cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 240-248 p-issn: 2086-0382; e-issn: 2477-3344 submitted: september 29, 2021 reviewed: december 09, 2021 accepted: december 14, 2021 doi: http://dx.doi.org/10.18860/ca.v7i1.13451 spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua1, i gede nyoman mindra jaya2* 1 post-graduate program in applied statistics, faculty of mathematics and natural sciences, universitas padjadjaran, indonesia 2 department of statistics, faculty of mathematics and natural sciences, universitas padjadjaran, indonesia *corresponding author email: mindra@unpad.ac.id*, hasrat20001@mail.unpad.ac.id abstract tuberculosis is an infectious disease caused by the bacterium mycobacterium tuberculosis. central java is one of the three provinces with the highest tuberculosis cases in indonesia. some of the risk factors used in this research are the spatial lag of the number of tuberculosis cases representing the agent component, the morbidity rate representing the host component, population density, proper sanitation, and proper drinking water which represent environmental components. this study aims to model the tuberculosis cases in central java province using the spatial autoregressive (sar) model. the sar model is a regression model where the response variable has a spatial correlation. the estimation method usually used in sar model is maximum likelihood. the moran's i on the number of tuberculosis cases in central java shows a positive spatial autocorrelation. the model was chosen based on the lm test and aic. the best model is the sar model. the results show that the greater the number of tuberculosis cases is influenced by the number of tuberculosis cases in the neighbouring areas. proper sanitation has a negative effect, on the contrary, the dense population has a positive effect on the number of tuberculosis cases in the province of central java. keywords: maximum likelihood; sar; spatial; tuberculosis introduction tuberculosis is an infectious disease caused by infection with the bacterium mycobacterium tuberculosis [1]. tuberculosis can be transmitted from human to human through the splash of the saliva of tuberculosis sufferers which spreads into the air when coughing or sneezing. single cough or sneeze can produce up to 3000 splashes of saliva [2]. an infection occurs when other people breathe air containing these droplets. this disease usually affects the lungs, but can also affect other parts of the body. according to who [3], in 2019 around 10 million people were infected with tuberculosis and 11,4 million of them died. in 2016, 45 percent of the estimated tuberculosis cases were in southeast asia http://dx.doi.org/10.18860/ca.v7i1.13451 mailto:mindra@unpad.ac.id mailto:email1@gmail.com spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua 241 and indonesia is one of them. indonesia is the third country with the highest tuberculosis cases in the world after china and india with an estimated 845 thousand cases. during tuberculosis endemic in indonesia, the spread of tuberculosis is still very high. central java is one of the three provinces with the highest tuberculosis cases in indonesia, with 73,171 cases in 2019 [4]. tuberculosis prevention and control efforts have been carried out such as the bacille calmette guerin (bcg) vaccine in infants [5], increasing the number of case finding and treatment success in healthcare facilities. the biggest challenge in controlling tuberculosis is that there are many missing cases (unreported) which will further increase the transmission process due to patient ignorance. from an epidemiological perspective, the incidence of tuberculosis is an interaction between three components, namely the agent, host, and environment [1]. from the agent's side, intensive interactions between patients and other people can facilitate the transmission. the duration of contact time or the intensity of contact with people with tuberculosis can cause a person to be more easily exposed [6]. the host side (i.e., a person's susceptibility to tuberculosis) is strongly influenced by his body's resistance. as stated by pangaribuan et al [7] the factors that are related from the host side are age, gender, race, socioeconomic, living habits, marital status, occupation, heredity, nutrition, and immunity. in terms of the environment, arinil, et al [8] stated that environmental factors such as the physical environment of the house (occupancy density, ventilation, sanitation) and weather climate (temperature, humidity) were closely related to tuberculosis. prevention of tuberculosis transmission certainly requires control of these three components. identifying area with a high risk of tuberculosis transmission is important to know to see the inter-regional linkages. analytical tool for spatial data to model the number of cases of tuberculosis that occur is needed. in spatial epidemiology, the use of maps as a visualization method is needed to see the distribution of disease by geographic area [9]. several risk factors used in this research are the spatial lag of the number of tuberculosis cases representing the agent component, the morbidity rate representing the host component, population density, proper sanitation, and proper drinking water representing the environmental component. one of the spatial models that can be used is the spatial autoregressive (sar) model. the sar model is a regression model with a spatial correlation in the response variable. using cross-section data, this model combines a linear regression model with a spatial lag of the response variable [10]. the use of the sar model in infectious diseases, especially tuberculosis in central java, is due to agent factors that have high mobility from district to other districts, besides that there are other factors, namely host and environment that can be used as covariates. the estimation method usually used in the sar model is maximum likelihood. therefore, the purpose of this study was to model the sar of the number of tuberculosis cases in central java province using the maximum likelihood approach. in this case, we will use a standardized weighting matrix using the queen contiguity. methods data and variables this study used data from the publication of the health profile of the central java province [4] and the central bureau of statistics of the central java province [11]. the units of analysis are 35 districts/cities in central java. the variables used in this study are shown in table 1: spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua 242 table 1. variables and data sources notation variable source ๐‘ฆ number of confirmed cases of tuberculosis health profile of the central java province ๐‘ฅ1 proper sanitation ๐‘ฅ2 eligible drinking water facilities ๐‘ฅ3 population density central bureau of statistics of the central java province ๐‘ฅ4 morbidity rate moranโ€™s i moran's i is the value of the test statistic used to determine whether there is spatial autocorrelation or spatial dependence in the data. moran's i has global and local measures. moran's i values range from -1 and 1. the global measure is used to measure the overall autocorrelation and the local is used to identify the autocorrelation on each unit. global moran's i can be seen in the following formula [12]: ๐ผ = ๐‘› โˆ‘ โˆ‘ ๐‘ค๐‘–๐‘— ๐‘› ๐‘—=1 ๐‘› ๐‘–=1 โˆ‘ โˆ‘ (๐‘ฆ๐‘– โˆ’ ๏ฟฝฬ…๏ฟฝ)(๐‘ฆ๐‘— โˆ’ ๏ฟฝฬ…๏ฟฝ) ๐‘› ๐‘—=1 ๐‘› ๐‘–=1 โˆ‘ (๐‘ฆ๐‘– โˆ’๏ฟฝฬ…๏ฟฝ) 2๐‘› ๐‘–=1 (1) with, n : number of spatial units ๏ฟฝฬ…๏ฟฝ : mean of n locations ๐‘ฆ๐‘– : observation variable at location i ๐‘ฆ๐‘— : observation variable at location j ๐‘ค๐‘–๐‘— : elements of the spatial weight matrix w and the local moran's i can be seen in the following formula: ๐ผ๐‘– = (๐‘ฆ๐‘– โˆ’ ๏ฟฝฬ…๏ฟฝ) โˆ‘ (๐‘ฆ๐‘˜ โˆ’ ๏ฟฝฬ…๏ฟฝ) 2/๐‘›๐‘›๐‘˜=1 โˆ‘ (๐‘ฆ๐‘— โˆ’ ๏ฟฝฬ…๏ฟฝ) ๐‘› ๐‘—=1 (2) the null hypothesis for autocorrelation is ๐ผ = ๐ธ(๐ผ) no spatial dependence. the formula of test statistics can be written as follows: ๐‘(๐ผ) = ๐ผ โˆ’ ๐ธ(๐ผ) โˆš๐‘‰๐ด๐‘…(๐ผ) ~๐‘(0,1) (3) with, ๐ธ(๐ผ) = โˆ’ 1 ๐‘› โˆ’ 1 ๐‘‰๐ด๐‘…(๐ผ) = ๐‘›2๐‘†1 โˆ’ ๐‘›๐‘†2 + 3๐‘†0 2 (๐‘›2 โˆ’ 1)๐‘†0 2 โˆ’ [๐ธ(๐ผ)]2 ๐‘†0 = โˆ‘ โˆ‘ ๐‘ค๐‘–๐‘— ๐‘› ๐‘—=1 ๐‘› ๐‘–=1 ; ๐‘†1 = 1 2 โˆ‘ โˆ‘ (๐‘ค๐‘–๐‘— + ๐‘ค๐‘—๐‘–) 2๐‘› ๐‘—=1 ๐‘› ๐‘–=1 ; ๐‘†2 = โˆ‘ (โˆ‘ ๐‘ค๐‘–๐‘— ๐‘› ๐‘— ๐‘› ๐‘–=1 + โˆ‘ ๐‘ค๐‘—๐‘– ๐‘› ๐‘— ) 2. lagrange multiplier (lm) test the lagrange multiplier (lm) test is used to determine whether there is a spatial dependence are not. there are two types of lm tests that have been developed, namely the spatial dependence of the dependent variable and the spatial error dependence. lm test statistics on the spatial dependence (๐ฟ๐‘€๐ฟ๐ด๐บ) of the dependent variable are as follows [13]: ๐ฟ๐‘€๐ฟ๐ด๐บ = [(๐‘’๐‘‡๐‘Š๐ด๐‘ฆ)/(๐‘’ ๐‘‡๐‘’/๐‘›)]2 [(๐‘Š๐ด๐‘‹๏ฟฝฬ‚๏ฟฝ) 2 ๐‘€(๐‘Š๐ด๐‘‹๏ฟฝฬ‚๏ฟฝ)/(๐‘’ ๐‘‡๐‘’/๐‘›)] + [๐‘ก๐‘Ÿ(๐‘Š๐ด ๐‘‡๐‘Š๐ด + ๐‘Š๐ด 2)] ~๐œ’(1โˆ’๐›ผ);๐‘‘๐‘“=1 2 (4) if the test statistic value is greater than the chi-square value (reject h0), then the model spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua 243 made is the spatial autoregressive (sar) model. lm test statistics for the dependence of spatial error (๐ฟ๐‘€๐ธ๐‘…๐‘…) can be seen in the following formula: ๐ฟ๐‘€๐ธ๐‘…๐‘… = [(๐‘’๐‘‡๐‘Š๐ด๐‘’)/(๐‘’ ๐‘‡๐‘’/๐‘›)]2 ๐‘ก๐‘Ÿ(๐‘Š๐ด ๐‘‡๐‘Š๐ด + ๐‘Š๐ด 2) ~๐œ’(1โˆ’๐›ผ);๐‘‘๐‘“=1 2 (5) if the test statistic value is greater than the chi-square value (reject h0), then the model made is the spatial error model (sem). meanwhile, if the ๐ฟ๐‘€๐ฟ๐ด๐บ and ๐ฟ๐‘€๐ธ๐‘…๐‘… values are both significant, the best model can be chosen by comparing the akaike information criterion (aic). model with the smaller aic value is the best model. spatial autoregressive (sar) model the sar model is a combination of a linear regression model with a spatial lag of the response variable using cross-section data. in general, the sar model can be written as follows [14]: ๐ฒ = ฯ๐–๐ฒ + ๐—๐›ƒ+ ๐›†; ๐›†~mvn(0,ฯƒ๐œ€ 2in) (6) with: ๐ฒ : continuous response variable ฯ : autoregressive coefficient ๐– : spatial weight matrix ๐›ƒ : intercept and regression coefficient ๐— : predictor variable ๐›† : error this model assumes that the autoregressive process is only found in the response variable. maximum likelihood is one of the most commonly used estimators because it can provide the best linear unbiased estimation (blue) and overcome endogeneity in the sar model. the estimated parameters using the maximum likelihood method are as follows: ๏ฟฝฬ‚๏ฟฝ๐‘€๐ฟ = (๐‘ฟ ๐‘ป๐‘ฟ)โˆ’1๐‘ฟ๐‘ป๐’šโŸ ๏ฟฝฬ‚๏ฟฝ๐‘‚๐ฟ๐‘† โˆ’ ๐œŒ(๐‘ฟ๐‘ป๐‘ฟ)โˆ’1๐‘ฟ๐‘ป๐‘พ๐†๐’šโŸ ๏ฟฝฬ‚๏ฟฝ๐ฟ = ๏ฟฝฬ‚๏ฟฝ๐‘‚๐ฟ๐‘† โˆ’ ๐œŒ๏ฟฝฬ‚๏ฟฝ๐ฟ (7) where ๏ฟฝฬ‚๏ฟฝ๐ฟ is an estimator of regression parameters that depends on the spatial autocorrelation ฯ and the weight matrix (w). however, this form cannot be solved directly because the value of ฯ is unknown. to be able to estimate the regression parameters, it can be done using a concentrated log-likelihood function (๐ฟ๐‘) which is a function of the mle residual which is defined as follows: ln๐ฟ๐‘(๐œŒ) = ๐ถ โˆ’ ๐‘› 2 ln[ 1 ๐‘› (๐’†๐ŸŽ โˆ’ ๐œŒ๐’†๐‘ณ) ๐‘‡(๐’†๐ŸŽ โˆ’ ๐œŒ๐’†๐‘ณ)] + ln |๐‘ฐ โˆ’๐œŒ๐‘พ๐œŒ| (8) the formula cannot be solved analytically so a numerical method is needed to find the estimated ฯ parameter of the equation. results and discussion the case notification rate (cnr) of tuberculosis in central java province is 211, which means that there are 211 cases of tuberculosis being treated and reported among 100,000 residents in central java. judging from the number of cases of tuberculosis in central java there were as many as 73,171 cases during 2019. tuberculosis cases are a disease that is spread throughout the district in central java province. the lowest number of cases was in karanganyar regency with 514 cases and cilacap regency with the highest number of 4,703 cases. however, when viewed from the district/city cnr, spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua 244 the highest cnr is tegal city at 832.5 per 100,000 population and the lowest cnr is temanggung regency at 45.72 per 100,000 [4]. the map of the distribution of tuberculosis cases in central java can be seen in figure 1. figure 1. map of tuberculosis case quantile in central java province in 2019 figure 1 shows that areas with a large number of cases (in solid red) tend to be close to areas with a large number of cases. areas with a small number of cases (in faded red) also tend to be adjacent to areas with a small number of cases. this indicates that there is a spatial dependence between regions. before conducting sar modeling, it is necessary to test the classical assumptions of multiple linear regression and moran's i tests. table 2. the statistic test result of classic assumptions and moranโ€™s i statistic test p-value normality (shapiro-wilk) 0.9821 nonautocorrelation (durbin-watson) 0.4893 nonmulticolinierity (vif) 1.138817(x1); 1.049796(x2); 1.065710(x3); 1.074787(x4) homoscedasticity (breusch-pagan) 0.9749 moranโ€™s i 0.000 (i= 0.4991) table 2 shows that all assumptions in multiple linear regression have been fulfilled. the results of the moran's i value using a spatial weight matrix based on queen contiguity on the number of tuberculosis cases in the province of central java is 0.499 with a p-value <0.05 (reject h0) which means there is a positive spatial autocorrelation. high tuberculosis cases areas will be surrounded by high areas as well, and low tuberculosis cases areas will be surrounded by low areas as well. for local moran's i values will produce different values for each location. there are several significant areas in local moran's i which is divided into two parts. first, the high-high areas include cilacap, banyumas, brebes, tegal, puralingga, and tegal city. this indicates that districts/cities in high-high areas have a high number of tuberculosis cases and the surrounding areas are also high, which is possible due to the transmission spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua 245 of tuberculosis to the surrounding area. second, in the low-low area, there are magelang, boyolali, sragen, and karanganyar. this shows that in the low-low area the number of tuberculosis cases is low and the surrounding area is also low. for other regions, the local moranโ€™s i is not significant. moran's i local results can be seen in figure 2: figure 2. local moran's i of tuberculosis case in central java province in 2019 the selection of the spatial model was carried out through the lagrange multiplier (lm) test as an initial identification. lm test is used to determine the spatial dependence more specifically whether the dependency on a response variable (lag), dependency on other variables that are not studied (error), or both (lag and error). the results of the lm test carried out can be seen in table 3. table 3. lm test results model lm-test value p-value aic sar ๐ฟ๐‘€๐ฟ๐ด๐บ 12,635 0.000378 52.72579 sem ๐ฟ๐‘€๐ธ๐‘…๐‘… 8,973 0.002739 53.10059 from table 2 it can be seen that the spatial dependence in lag and error is significant because the p-value is smaller than alpha (0.05). the sar model will be applied in this study due to the aic value is smaller than the sem model. the sar model is a spatial regression model that involves spatial lag in the response variable. the estimation results of the sar model using the maximum likelihood method and using a spatial weight matrix based on queen contiguity can be seen in table 4. table 4. sar parameter estimation results estimate std. error z-value p-value (intercept) 3.383100 1.346100 2.51318 0.01196 proper sanitation (๐‘ฅ1) -0.010300 0.005600 -1.85760 0.06322 eligible drinking water facilities (๐‘ฅ2) 0.006170 0.005800 1.06111 0.28864 population density (๐‘ฅ3) 0.000094 0.000029 3.20521 0.00134 morbidity rate (๐‘ฅ4) -0.003020 0.020255 -0.14910 0.88147 spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua 246 estimate std. error z-value p-value rho: 0.58787, lr test value: 11.396, p-value: 0.000 asymptotic standard error: 0.14246 z-value: 4.1267, p-value: 0.000 wald statistic: 17.03, p-value: 0.000 aic: 52.726 the spatial lag variable (rho) has a positive and significant coefficient in influencing the number of tuberculosis cases in central java province. this means that the greater the number of tuberculosis cases is influenced by a large number of tuberculosis cases in the surrounding area. this is in accordance with the research of mindra, et al [15] in the city of bandung. the variable of proper sanitation has a negative regression coefficient value and significantly influences the number of tuberculosis cases in central java province. this means that the more families that have access to proper sanitation (healthy latrines), the number of tuberculosis cases will decrease with the assumption that the other variables are constant. the population density variable has a positive and significant regression coefficient value in influencing the number of tuberculosis cases in central java province. this means that the denser the population of an area, the number of tuberculosis cases will increase with the assumption that the other variables are constant. variables eligible drinking water facilities and morbidity rates have no significant effect on tuberculosis cases in central java province. in the sar model, the covariate impact can be categorized in three types, namely direct impact, indirect impact, and total impact which can be seen in table 5. table 5. direct and indirect impact measure of sar model variable direct indirect total proper sanitation (๐‘ฅ1) -0.0116 -0.0135 -0.0251 eligible drinking water facilities (๐‘ฅ2) 0.0069 0.0080 0.0149 population density (๐‘ฅ3) 0.0001 0.0001 0.0002 morbidity rate (๐‘ฅ4) -0.0034 -0.0039 -0.0073 the direct impact is an impact that occurs locally in an area as a result of changes in predictor variables. the indirect impact is a spillover effect, which is the impact that occurs when the predictor variable is in the surrounding area. the total impact is a change that occurs in an area as a result of changes in the area and its surroundings. to find out whether the obtained sar model is good, it is necessary to carry out a diagnostic check, including assumptions of normality, non-autocorrelation, and homogeneity. the results of the diagnostic check performed in table 6 show that these assumptions have been fulfilled. table 6. diagnostic check of sar model statistic test p-value normality (shapiro-wilk) 0.2812 lm test for residual autocorrelation 0.4840 homoscedasticity (breusch-pagan) 0.7637 based on table 6, it can be seen that the p-value for the assumption of normality using the shapiro-wilk test is 0.2821 which is greater than alpha (0.05), which means the residuals are normally distributed. in the autocorrelation test, it was found that the p-value was also greater than alpha (0.05), which means that the residuals meet the non-autocorrelation assumption. likewise, in the homoscedasticity test using the spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua 247 breusch-pagan test, it was found that the p-value was also greater than alpha (0.05) so that the assumption of homogeneity was also fulfilled. conclusions tuberculosis cases in central java province showed a positive spatial autocorrelation. it supports the hypothesis that tuberculosis cases are spatially dependent and that a spatial econometrics model should be considered. the best spatial econometrics model was chosen based on the lm test and the aic. the best model is the spatial autoregressive (sar) model. the estimation results of the sar show that the number of tuberculosis cases is influenced by a large number of tuberculosis cases in the neighbouring areas. proper sanitation (ownership of healthy latrines) has a negative effect on the number of tuberculosis cases, on the other hand, the dense population has a positive influence on the number of tuberculosis cases in the province of central java. references [1] k. ri, "pusat data dan informasi kementrian kesehatan ri tuberkolosis," kementrian kesehatan republik indonesia, jakarta, 2018. [2] k. ri, "pedoman nasional pengendalian tuberkolosis," jakarta, 2014. [3] w. h. organization, "global tuberculosis report 2020," geneva, 2020. [4] d. k. p. j. tengah, "profil kesehatan provinsi jawa tengah tahun 2019," semarang, 2020. [5] m. dara, c. d. acosta, v. rusovich, j. p. zellweger, r. centis and g. b. migliori, "bacille calmetteโ€“guรฉrin vaccination: the current situation in europe," european respiratory journal, vol. 43, no. 1, pp. 24-35, 2014. [6] t. d. kristini and r. hamidah, "potensi penularan tuberculosis paru pada anggota keluarga penderita," jurnal kesehatan lingkungan indonesia, vol. 15, no. 1, 2020. [7] l. pangaribuan, kristina, d. pangaribuan, t. tejayanti and d. b. lolong, "faktorfaktor yang mempengaruhi kejadian tuberkulosis pada umur 15 tahun ke atas di indonesia (analisis data survei prevalensi tuberkulosis (sptb) di indonesia 20132014)," vol. 23, no. 1, 2020. [8] a. haq, u. f. achmadi and d. susanna, "analisis spasial (topografi) tuberkulosis paru di kota pariaman, bukittinggi, dan dumai tahun 2010-2016," jurnal ekologi kesehatan, vol. 18, no. 3, p. 149 โ€“ 158, 2020. [9] m. souris, epidemiology and geography principles, methods and tools of spatial analysis, great britain and the united states: iste ltd and john wiley & sons, inc, 2019. [10] j. lesage and r. k. pace, introduction to spatial econometrics, london: chapman and hall/crc, 2009. [11] b. p. s. p. j. tengah, "provinsi jawa tengah dalam angka," badan pusat statistik, semarang, 2020. [12] g. grekousis, spatial analysis methods and practice, cambridge: cambridge university press, 2020. [13] l. anselin, "lagrange multiplier test diagnostics for spatial dependence and spatial spatial autoregressive to model tuberculosis cases in central java province in 2019 hasrat ifolala zebua 248 heterogeneity," geographical analysis,, vol. 20, pp. 1-17, 2010. [14] i. g. n. m. jaya and y. andriyana, analisis data spasial perspektif bayesian, sumedang: alqaprint jatinangor, 2020. [15] i. g. n. jaya and e. al, "metode bayesian dalam penaksiran model spasial autoregressive (sar) (studi kasus pemodelan penyakit tb paru di kota bandung)," jurnal euclid, vol. 4, no. 2, 2017. m farhan q misklasifikasi mahasiswa baru dengan analisis regresi logistik _7_ misklasifikasi mahasiswa baru f saintek uin sunan kalijaga jalur tes tulisโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 175 misklasifikasi mahasiswa baru f saintek uin sunan kalijaga jalur tes tulis dengan analisis regresi logistik mohammad farhan qudratullah program studi matematika fakultas sains dan teknologi universitas islam negeri sunan kalijaga yogyakarta, indonesia e-mail: aching_lo@yahoo.com abstrak pada tahun ajaran 2008/ 2009, uin sunan kalijaga membuka 2 (dua) jalur penerimaan mahasiswa baru, yaitu jalur reguler yang meliputi tes tulis dan seleksi (seleksi khusus dan mahasiswa berprestasi), serta jalur snmptn. selama ini, penerimaan mahasiswa baru melalui jalur tes tulis hanya berdasarkan pilihan saat mendaftar dan hasil ujian tulis tanpa mempertimbangkan variabel lain seperti nilai uan/ uas. penelitian ini bertujuan untuk mengetahui variabel apa saja (nilai tes tulis dan nilai uan/uas) yang mampu membedakan karakteristik mahasiswa program studi yang satu dengan yang lainnya, sehingga memungkinkan untuk mengetahui besar tingkat misklasifikasi yang terjadi pada program studi cluster sains fakultas saintek. adapun alat analisis yang digunakan adalah analisis regresi logistik multinomial. pada tingkat kepercayaan 90% diperoleh bahwa dari 7 (tujuh) variabel independen yang digunakan, terdapat 5 (lima) variabel yang mampu membedakan karakteristik mahasiswa baru program studi yang satu dengan yang lainnya, yaitu nilai tes numerik (nt_numerik), nilai tes spasial (nt_spasial), nilai uan matematika (uanmat), nilai uas fisika (uanfis), dan nilai uas kimia (uaskim), sedangkan 2 (dua) variabel lainnya yaitu: nilai tes verbal (nt_verbal) dan nilai uas biologi (uasbio) tidak signifikan. misklasifikasi mahasiswa baru jalur tes cukup tinggi, yaitu mancapai 35,1%. misklasifikasi dari yang paling rendah berturut-turut adalah program studi matematika 17,7%, program studi kimia 33,3%, program studi biologi 47,7%, dan yang paling tinggi program studi fisika mencapai 50%. sehingga proses penerimaan mahasiswa baru pada keempat program studi pada umumnya perlu mempertimbahkan nilai uan/ uas. kata kunci: analisis regresi logistik multinomial, mahasiswa baru, misklasifikasi pendahuluan di era globalisasi yang bercirikan high competition ini, tuntutan terhadap perguruan tinggi bukan hanya sebatas kemampuan untuk menghasilkan lulusan yang diukur secara akademik, melainkan keseluruhan program dari lembaga-lembaga perguruan tinggi tersebut harus mampu membuktikan kualitas yang tinggi demi terciptanya manusia indonesia seutuhnya, yaitu menguasai ilmu pengetahuan dan teknologi (iptek), estetika (seni), moral dan etika. di indonesia, tingkat human development index (hdi) yang mengukur pembandingan antara life expectancy, literacy, education, dan standard of living belum beranjak naik secara signifikan, rangking ini tidak berbeda jauh dengan negara vietnam yang baru merdeka (tabel 1), sementara akses pendidikan bagi usia 19-24 tahun yang terdaftar sebagai mahasiswa di indonesia juga belum menggembirakan yaitu sebesar 14 persen. kondisi partisipasi untuk melanjutkan di perguruan tinggi ini masih rendah apabila dibandingkan dengan negara malaysia (38 persen) atau mesir (30 persen). universitas islam negeri (uin) sunan kalijaga hadir untuk memenuhi tuntutan masyarakat dan dunia kerja terhadap lembaga pendidikan tinggi yang dapat mengintegrasikan keislaman dan keilmuan serta bermanfaat bagi peradaban. uin sunan kalijaga diharapkan dapat menghasilkan pekerja yang profesional, intelektual yang agamis, dan pemimpin bangsa yang moralis. tabel 1. posisi kualitas sumberdaya manusia tahun 1995, 2000, 2002, 2006 berdasarkan hdi. negara tahun 1995 2000 2002 2006 china 111 99 96 81 thailand 58 76 70 74 philipina 100 77 77 84 malaysia 59 61 59 61 indonesia 104 109 110 108 vietnam 120 108 109 109 sumber: undp berbagai edisi kehadiran uin sunan kalijaga merupakan perjuangan panjang umat islam indonesia, yang dimulai sejak tahun 1951. tranformasi iain sunan kalijaga menjadi uin sunan kalijaga secara de jure, ditandai dengan terbitnya keputusan presiden ri nomor 50 tahun 2004 tertanggal 21 juni 2004. implikasinya dalam aspek akademik, uin sunan kalijaga mohammad farhan qudratullah 176 volume 1 no. 4 mei 2011 mendapatkan ijin penyelenggaraan program studi โ€™umumโ€™ di luar ilmu-ilmu keislaman yang ditandai dengan berdirinya 2 (dua) fakultas baru, yaitu fakultas sains dan teknologi (f saintek) yang terdiri atas 10 program studi, yaitu matematika, biologi, kimia, fisika, pendidikan matematika, pendidikan biologi, pendidikan kimia, pendidikan fisika, teknologi informasi, dan teknologi industri.dan fakultas ilmu sosial dan himanora (f isoshum) yang terdiri atas 3 program studi yaitu psikologi, sosiologi, dan ilmu komunikasi. demi percepatan mewujudkan visi, misi, dan tujuan uin sunan kalijaga sebagai center for excellence dalam bidang pengembangan keilmuaan dan keislaman yang integratifinterkonektif, uin sunan kalijaga terus melakukan pembenahan diberbagai aspek. salah satunya adalah sistem penerimaan mahasiswa baru dengan melakukan revisi dan penambahan jalur penerimaan mahasiswa baru yang mampu menjaring mahasiswa baru yang berkualitas dan mampu mengakomodir semua program studi yang semakin beragam. pada tahun ajaran 2008/ 2009, uin sunan kalijaga membuka 2 (dua) jalur penerimaan mahasiswa baru, yaitu jalur reguler yang meliputi tes tulis dan seleksi (seleksi khusus dan mahasiswa berprestasi), serta jalur snmptn. jalur tes tulis diadakan sendiri oleh uin sunan kalijaga yang merupakan tes potensi akademik yang meliputi tes verbal, tes numerik, dan tes spasial. mahasiswa baru yang diterima adalah sejumlah mahasiswa yang dirangking berdasarkan hasil penjumlahan nilai ketiga tes tersebut yang disesuaikan dengan pilihannya. dengan kata lain, penerimaan mahasiswa baru hanya berdasarkan hasil ujian tulis tanpa mempertimbangkan prestasi akademik lainnya seperti nilai uan/ uas. serta belum diketahui apakah mahasiswa yang diterima telah masuk program studi yang sesuai atau tidak. penelitian ini akan mengidentifikasi faktor-faktor apasaja yang dapat dijadikan kriteria bahwa seorang mahasiswa telah masuk program studi yang sesuai dengan pilihannya atau tidak. penelitian ini bertujuan untuk mengetahui nilai-nilai apa saja (nilai tes tulis dan nilai uan/uas) yang membedakan karakteristik mahasiswa program studi yang satu dengan yang lainnya pada f saintek, khususnya program studi cluster sains (matematika, biologi, kimia, dan fisika), dan mendeteksi mahasiswamahasiswa yang kemungkinan memiliki karakteristik yang berbeda atau kemungkinan salah memilih program studi (misklasifikasi). sehingga hasil penelitian ini dapat dijadikan bahan evaluasi dalam sistem penerimaan mahasiswa baru uin sunan kalijaga, khususnya yang akan masuk pada program studi-program studi di f saintek yang jelas memiliki karakteristik berbeda dengan program studi yang lainnya. alat statistika yang akan digunakan adalah analisis regresi logistik dan data yang digunakan adalah data mahasiswa baru 4 (empat) program studi sains (matematika, biologi, kimia, dan fisika) angkatan 2008/ 2009 yang diterima melalui jalur tes tulis yang meliputi nilai tes potensi akademik (tes verbal, tes numerik, dan tes spasial) dan nilai uan/ uas untuk matapelajaran mipa (matematika, biologi, kimia, dan fisika). analisis regresi logistik analisis regresi logistik merupakan salah satu alat analisis dalam statistika yang merupakan bentuk khusus dari analisis regresi, yaitu variabel dependennya merupakan data skala nominal atau ordinal, sedangkan variabel independennya dapat berbentuk nominal, ordinal, skala, ataupun rasio. dinamakan regresi logistik, karena analisis regresi ini pembentukan modelnya didasarkan atas kurva logistik. nilai yang dihasilkan persamaan regresi logistik merupakan peluang kejadian yang digunakan sebagai ukuran untuk pengklasifikasian. jika variabel dependen terdiri atas 2 (dua) klasifikasi, maka disebut analisis regresi logistik biner. dan jika variabel dependen terdiri atas 3 (tiga) klasifikasi atau lebih, maka disebut analisis regresi logistik multinomial. model regresi logistik misalkan terdapat n hasil pengamatan ๏ฟฝ๏ฟฝ๏ฟฝ;๏ฟฝ๏ฟฝ๏ฟฝ;๏ฟฝ๏ฟฝ๏ฟฝ;โ€ฆ;๏ฟฝ๏ฟฝ , dengan ๏ฟฝ๏ฟฝ adalah variabel dependen yang dikotomi/biner subjek ke-i yang diberi kode 0 atau 1 dan ๏ฟฝ๏ฟฝ๏ฟฝ adalah variabel independen subjek ke-i sejumlah p variabel, i = 1, 2, โ€ฆ, n. maka model regresi logistik dapat ditulis: ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ (1) dimana ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ|๏ฟฝ๏ฟฝ dengan melakukan transformasi logit, ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ1 ๏ฟฝ ๏ฟฝ๏ฟฝ! diperoleh suatu fungsi penghubung untuk model regresi logistik berikut: ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ" ๏ฟฝ ๏ฟฝ๏ฟฝ1 ๏ฟฝ ๏ฟฝ๏ฟฝ# misklasifikasi mahasiswa baru f saintek uin sunan kalijaga jalur tes tulisโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 177 ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ $ %%& ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1๏ฟฝ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ' (() ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ *๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ (2) model regresi logistik multinomial merupakan perluasan dari model regresi logistik biner, misalkan variabel dependen terdiri atas 3 (tiga) kategori maka variabel dependen y dapat diberi kode 0, 1, atau 2, dimana y = 0 merupakan kategori acuan. pada model regresi logistik biner terdapat 1 (satu) fungsi logit y = 1 terhadap y = 0, maka pada model regresi logistik multinomial 3 (tiga) kategori terdapat 2 (dua) fungsi logit, yaitu fungsi logit y = 1 terhadap y = 0 dan fungsi logit y = 2 terhadap y = 0. misalkan ๏ฟฝ+ ๏ฟฝ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ -|๏ฟฝ๏ฟฝ dimana j = 0, 1, 2 dan mengikuti kaidah pada model regresi logistik biner, maka kedua fungsi logit dapat dirumuskan berikut: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ"๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ# ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ , ๏ฟฝ ๏ฟฝ 1|๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0|๏ฟฝ๏ฟฝ ! ๏ฟฝ ๏ฟฝ๏ฟฝ $ %%& ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1๏ฟฝ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ' (() ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ *๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ (3) ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ"๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ# ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ , ๏ฟฝ ๏ฟฝ 2|๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0|๏ฟฝ๏ฟฝ ! ๏ฟฝ ๏ฟฝ๏ฟฝ $ %%& ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1๏ฟฝ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ' (() ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ *๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ (4) sehingga diperoleh: , ๏ฟฝ ๏ฟฝ 1|๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ 0|๏ฟฝ๏ฟฝ.๏ฟฝ๏ฟฝ๏ฟฝ2๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ *๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ 3 , ๏ฟฝ ๏ฟฝ 2|๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ 0|๏ฟฝ๏ฟฝ.๏ฟฝ๏ฟฝ๏ฟฝ2๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ *๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ 3 karena ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ 1, maka dapat ditulis ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ 11 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ (5) ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ (6) ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ โˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ (7) berdasarkan hasil di atas, dapat digeneralisasikan (j-1) model regresi logistik multinomial untuk variabel independen terdiri atas j kategori adalah: ๏ฟฝ+ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ+ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ+๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ 1๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ+ ๏ฟฝโˆ‘ ๏ฟฝ๏ฟฝ+๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ 45๏ฟฝ+๏ฟฝ๏ฟฝ (8) dan fungsi logitnya adalah: ๏ฟฝ+ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ"๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ0 ๏ฟฝ๏ฟฝ# ๏ฟฝ ๏ฟฝ๏ฟฝ+ ๏ฟฝ *๏ฟฝ๏ฟฝ+๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ (9) dimana j = 1, 2, ... , j-1 metode dan teknik analisis estimasi parameter penaksiran parameter pada model regresi logistik dapat mengunakan metode maksimum likelihood estimator (mle). dengan menetapkan asumsi distribusi binomial dan setiap objek pengamatan saling independen, fungsi likelihood metode mle merupakan fungsi linear maka untuk memperoleh taksiran parameter dilakukan proses iterasi dengan metode newton-raphson, dengan menentukan nilai awal dari ฮฒ, yaitu ฮฒ0. estimasi maksimum likelihood merupakan pendekatan dari estimasi weighted least square, dimana matrik pembobotnya berubah setiap iterasi. proses menghitung estimasi maksimum likelihood ini disebut juga sebagai iteratif reweighted least square. uji serentak dalam uji serentak ini, digunakan likelihood-rasio test, metode ini merupakan metode pengujian model dengan membandingkan likelihood untuk model lengkap (l1) dan likelihood untuk model yang semua parameternya sama dengan nol (l0). h0 : ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ 6 ๏ฟฝ ๏ฟฝ ๏ฟฝ 0 h1 : minimal ada satu ๏ฟฝ+ 7 0, j =1, 2, โ€ฆ, p mohammad farhan qudratullah 178 volume 1 no. 4 mei 2011 statistik uji yang digunakan adalah: 8๏ฟฝ ๏ฟฝ 2๏ฟฝ๏ฟฝ"9091# (10) pada tingkat kepercayaan 1 :๏ฟฝ%, h0 ditolak jika 8๏ฟฝ < ฯ‡ =,?@๏ฟฝ๏ฟฝ atau p-value (sig.) a :. uji parsial uji parsial untuk menguji signifikasi setiap parameter dalam model yang dapat dilakukan dengan wald test. uji ini dilakukan untuk mengetahui apakah setiap variabel independen dapat diandalkan membangun model atau tidak dalam proses pengklasifikasian. h0 : ๏ฟฝ+ ๏ฟฝ 0 h1 : ๏ฟฝ+ 7 0 untuk j = 1, 2, โ€ฆ, p statistik uji yang digunakan adalah: b๏ฟฝ ๏ฟฝ ๏ฟฝ+๏ฟฝ๏ฟฝc๏ฟฝ๏ฟฝ๏ฟฝ+ ๏ฟฝ๏ฟฝ (11) pada tingkat kepercayaan 1 :๏ฟฝ%, h0 ditolak jika b๏ฟฝ < ฯ‡ =,?@๏ฟฝ๏ฟฝ atau p-value (sig.) a :. uji kesesuaian model uji kesesuaian model regresi logistik yang digunakan adalah chi-square test. h0 : model sesuai h1 : model tidak sesuai statistik uji yang digunakan adalah: ฯ‡๏ฟฝ ๏ฟฝ *๏ฟฝd+ ๏ฟฝ+๏ฟฝe+ ๏ฟฝ๏ฟฝ+๏ฟฝe+๏ฟฝ1 ๏ฟฝe+ f +๏ฟฝ๏ฟฝ (12) pada tingkat kepercayaan 1 :๏ฟฝ%, h0 ditolak jika ฯ‡๏ฟฝ < ฯ‡ =,?@๏ฟฝ๏ฟฝ atau p-value (sig.) a :. evaluasi model evaluasi fungsi klasifikasi (fungsi logistik) dilakukan dengan membuat tabulasi antara actual group dan predicted group yang diperoleh dari fungsi logistik. selanjutnya dihitung proporsi pengamatan yang benar klasifikasinya, diharapkan proporsi pengamatan yang benar diklasifikasikan tersebut sebesar mungkin atau proporsi pengamatan yang salah sekecil mungkin. data dan variabel data yang digunakan adalah data mahasiswa baru jalur tes tulis tahun ajaran 2008/ 2009 fakultas sains dan teknologi uin sunan kalijaga yang bersumber pada bagian akademik fakultas sains dan teknologi dan dapic teknologi uin sunan kalijaga yang terdiri atas 58 mahasiswa dengan perincian 12 mahasiswa program studi matematika, 6 mahasiswa program studi fisika, 22 mahasiswa program studi kimia, dan 15 mahasiswa program studi biologi. sesuai tujuan penelitian ini, maka variabel dependennya adalah variabel kelompok yaitu variabel yang berupa kategori program studi yang terdiri dari matematika (mat) dengan kode 1, fisika (fis) dengan kode 2, kimia(kim) dengan kode 3, dan biologi(bio) dengan kode 4. selanjutnya variabel independen yang digunakan dalam penelitian ini ada 7 (tujuh) variabel, yaitu: 1. nt_verbal : nilai hasil ujian tulis yakni tes verbal 2. nt_numerik : nilai hasil ujian tulis yakni tes numerik 3. nt_spasial : nilai hasil ujian tulis yakni tes spasial 4. uanmat : nilai uan bidang studi matematika 5. uasbio : nilai uas bidang studi biologi 6. uaskim : nilai uas bidang studi kimia 7. uasfis : nilai uas bidang studi fisika hasil dan pembahasan berikut adalah hasil analisis data yang proses analisisnya mengunakan bantuan software spss.15.0: tabel 1. hasil likelihood rasio test tahap awal model chi-kuadrat df sig keterangan keseluruhan 57,902 21 0,000 signifikan pervariabel 1. nt_verbal 0,836 3 0,841 tidak signifikan 2. nt_numerik 19,869 3 0,000 signifikan 3. nt_spasial 9,444 3 0,024 signifikan 4. uanmat 12,950 3 0,005 signifikan 5. uasfis 11,133 3 0,011 signifikan 6. uaskim 8,372 3 0,039 signifikan 7. uasbio 3,015 3 0,389 tidak signifikan misklasifikasi mahasiswa baru f saintek uin sunan kalijaga jalur tes tulisโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 179 tabel 2. hasil likelihood rasio test tahap akhir model chi-kuadrat df sig keterangan keseluruhan 61,690 15 0,000 signifikan pervariabel 1. nt_numerik 3 0,000 signifikan 2. nt_spasial 3 0,010 signifikan 3. uanmat 3 0,001 signifikan 4. uasfis 3 0,012 signifikan 5. uaskim 3 0,078 signifikan langkah awal dalam proses ini adalah memasukan semua variabel independen kedalam model dan ringkasan hasilnya disajikan dalam tabel 1. pada tabel 1 disajikan hasil uji serentak atau uji keseluruhan dari model, tampak bahwa nilai sig. = 0,000 < 0,10 yang berarti ho ditolak, yaitu minimal ada satu ๏ฟฝ 7 0. kemudian untuk pervariabel, tampak bahwa pada tingkat kepercayaan 90% terdapat 2 (dua) variabel independen tidak signifikan yaitu nt_verbal dan uasfis, maka perlu dilakukan analisis ulang dengan mengeluarkan variabel independen yang tidak signifikan (sig. < 0,10) satu demi satu dari model, mulai dari nt_verbal dan diperoleh bahwa uasfis masih belum signifikan sehingga harus dikeluarkan dari model dan ringkasannya disajikan dalam tabel 2, tampak bahwa semua variabel independen telah signifikan sehingga proses analisis selanjutnya, yaitu uji parsial mengunakan wald test. tabel 3. hasil estimasi parameter tahap akhir variabel b wald df sig exp(b) keterangan mat 0. intercept -13,061 2,861 1 0,091 1. nt_numerik 0,542 5,763 1 0,016 1,720 signifikan 2. nt_spasial -0,184 0,236 1 0,627 0,832 tidak signifikan 3. uanmat 1,589 7,202 1 0,007 4,900 signifikan 4. uasfis -0,371 0,299 1 0,585 0,690 tidak signifikan 5. uaskim -1,273 3,636 1 0,057 0,280 signifikan fis 0. intercept -2,561 0,167 1 0,683 1. nt_numerik -0,376 4,670 1 0,031 0,687 signifikan 2. nt_spasial 1,168 5,357 1 0,021 3,217 signifikan 3. uanmat 2,274 5,969 1 0,015 9,714 signifikan 4. uasfis -1,796 5,258 1 0,022 0,166 signifikan 5. uaskim -1,021 3,58 1 0,076 0,360 signifikan kim 0. intercept 5,103 2,342 1 0,126 1. nt_numerik -0,047 0,407 1 0,524 0,955 tidak signifikan 2. nt_spasial 0,269 1,732 1 0,188 1,308 tidak signifikan 3. uanmat 0,584 2,052 1 0,152 1,793 tidak signifikan 4. uasfis -1,084 6,101 1 0,014 0,338 signifikan 5. uaskim -0,402 1,249 1 0,264 0,669 tidak signifikan bio sebagai kelompok acuan berdasarkan nilai koefisien dari tabel 3 di atas, dapat disusun 3 (tiga) fungsi logit, yaitu: 1. fungsi logit program studi matematika dengan biologi sebagai acuan ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ 13,061 ๏ฟฝ0,542.nt_numerik* 0,184.nt_spasial ๏ฟฝ 1,589.uanmat* 0,371.uasfis 1,273.uaskim* (13) 2. fungsi logit program studi fisika dengan biologi sebagai acuan ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ 2,561 0,376.nt_numerik* ๏ฟฝ 1,168.nt_spasial* ๏ฟฝ 2,274.uanmat* 1,796.uasfis* 1,021.uaskim* (14) 3. fungsi logit program studi kimia dengan biologi sebagai acuan ๏ฟฝn ๏ฟฝ๏ฟฝ ๏ฟฝ 5,103 0,047.nt_numerik ๏ฟฝ 0,296.nt_spasial ๏ฟฝ 0,584.uanmat 1,084.uasfis* 0,402.uaskim (15) ket: * signifikan pada tingkat kepercayaan 90% mohammad farhan qudratullah 180 volume 1 no. 4 mei 2011 tampak bahwa pada tingkat kepercayaan 90% terdapat 3 (tiga) variabel independen yang membedakan mahasiswa yang memilih program studi matematika dan biologi, yaitu nt_numerik, uanmat, dan uaskim. nilai tes numerik dan nilai uas matematika mahasiswa program studi matematika cenderung lebih tinggi, sedangkan nilai uas kimianya cenderung lebih rendah dibanding program studi biologi. kemudian yang membedakan program studi fisika dan biologi adalah 5 (lima) variabel independen (nt_numerik, nt_spasial, uanmat, uasfis, dan uaskim). nilai ujian tes spatial, uan matematika mahasiswa program studi fisika cenderung lebih tinggi, sedangkan nilai tes numerik uas fisika dan uas kimia cenderung lebih rendah dibanding program studi biologi. selanjutnya yang membedakan mahasiswa program studi kimia dan program studi biologi hanya satu variabel independen, yaitu uasfis. nilai uas fisika mahasiswa program studi kimia cenderung lebih rendah dibanding program studi biologi. dari uraian di atas dapat dikembangkan dan disusun variabel-variabel independen yang membedakan karakteristik mahasiswa antara program studi yang selengkapnya disajikan dalam tabel 4 berikut: tabel 4. karakteristik 4 (empat) program studi program studi fis kim bio mat nt_numerik (+/-) nt_spasial (-/+) uasfis (+/-) nt_numerik (+/-) nt_spasial (-/+) uanmat (+/-) uasfis (+/-) uaskim (-/+) nt_numerik (+/-) uanmat (+/-) uaskim (-/+) fis nt_numerik (-/+) nt_spasial (+/-) uanmat (+/-) uaskim (-/+) nt_numerik (-/+) nt_spasial (+/-) uanmat (+/-) uasfis (-/+) uaskim (-/+) kim uasfis (-/+) +/: program studi pada baris nilainya > program studi pada kolom -/+ : program studi pada baris nilainya < program studi pada kolom tabel 5 merupakan ringkasan uji kesesuaian model mengunakan uji chi-kuadrat, tampak bahwa nilai sig. = 0,995 > 0,10, artinya pada tingkat kepercayaan 90% ho tidak ditolak atau dengan kata lain model sesuai dan dapat digunakan tabel 5. hasil uji kesesuaian model chikuadrat df sig keterangan pearson 111,564 153 0,995 model sesuai deviance 84,291 153 1,000 model sesuai sedangkan untuk mengevaluasi fungsi logistik, dari tabel 6 dapat dilihat bahwa 2 atau 16,7% mahasiswa matematika diprediksi masuk dalam program studi lain dalam hal ini kimia, 3 atau 50% mahasiswa fisika diprediksi masuk program studi lain, yaitu kimia, 8 atau 33,3% mahasiswa program studi kimia diprediksi masuk program studi lain, yaitu 2 program studi matematika, 1 program studi fisika, dan 5 program studi biologi, terakhir 7 atau 47,7% mahasiswa program studi biologi diprediksi masuk program studi lain, yaitu 1 program studi matematika, 2 program studi fisika, dan 4 program studi kimia. secara keseluruhan dari 58 mahasiswa baru f saintek yang diterima melalui ujian tulis terdapat 20 mahasiswa atau 35,1% yang misklasifikasi dalam pemilihan program studi, misklasifikasi terbesar adalah program studi fisika dan diikuti program studi biologi. tabel 6. hasil pengklasifikasian model prediksi % kebenaran data aktual mat fis kim bio prediksi mat 10 0 2 0 83,3 fis 0 3 3 0 50,0 kim 2 1 16 5 66,7 bio 1 2 4 8 53,3 % kebenaran prediksi (keseluruhan) 64,9 penutup dari uraian analisis data dan pembahasan di atas dapat ditarik beberapa kesimpulan sebagai berikut: 1. pada tingkat kepercayaan 90% dari 7 (tujuh) variabel independen yang digunakan, terdapat 5 (lima) variabel yang mampu membedakan karakteristik mahasiswa baru program studi yang satu dengan yang lainnya pada program studi cluster sains fakultas saintek, yaitu nilai tes numerik (nt_numerik), nilai tes spasial (nt_spasial), nilai uan matematika (uanmat), nilai uas misklasifikasi mahasiswa baru f saintek uin sunan kalijaga jalur tes tulisโ€ฆ jurnal cauchy โ€“ issn: 2086-0382 181 fisika (uanfis), dan nilai uas kimia (uaskim), sedangkan 2 (dua) variabel lainnya yaitu: nilai tes verbal (nt_verbal) dan nilai uas biologi (uasbio) tidak signifikan. 2. misklasifikasi mahasiswa baru jalur tes tulis 2008/ 2009 pada program studi cluster sains fakultas saintek cukup tinggi, yaitu mancapai 35,1%. misklasifikasi dari yang paling rendah berturut-turut adalah program studi matematika 17,7%, program studi kimia 33,3%, program studi biologi 47,7%, dan yang paling tinggi program studi fisika mencapai 50%. sehingga proses penerimaan mahasiswa baru pada keempat program studi pada umumnya perlu mempertimbahkan nilai uan/ uas. adapun beberapa saran untuk penelitian selanjutnya, yaitu: 1. pada penelitian ini program studi yang diteliti adalah program studi yang masuk dalam cluster sains di fakultas saintek. penelitian ini dapat diperluas dengan melibatkan semua program studi di fakultas saintek maupun semua fakultas serta penelitian bukan hanya melibatkan satu angkatan tapi beberapa angkatan. 2. variabel independen yang digunakan adalah nilai-nilai sebelum mahasiswa ikut perkuliahan, yaitu nilai tes tulis tulis (nilai tes verbal, nilai tes numerik, nilai tes spasial) dan nilai uan/ uas (matematika, fisika, kimia, biologi). variabel independen ini dapat diperluas dengan mempertimbangkan nilai matakuliah dasar pada semester awal, ipk, jalur masuk, dan lain sebagainya. 3. untuk menganalisis misklasifikasi mahasiswa baru dapat juga mengunakan alat statistika lain seperti analisis diskriminan, struktur equation modeling (sem), maupun mengunakan jaringan syaraf tiruan (jst) daftar pustaka [1] agresti, a. (2007). an introduction to categorical data analysis, second edition. new jersey: john wiley & sons, inc. [2] chatterjee, s. and hadi, a.s. (2006). regreeion analysis by example, fourth edition. new jersey: john willey & sons, inc. [3] hosmer, d.w. and lamenshow (1989). applied logistic regression. new york: willey and sons. [4] kleinbaum, d.g. (1994). logistic regression. springer-verlag, new york. [5] uin sunan kalijaga (2004). kerangka dasar keilmuan & pengembangan kurikulum uin. yogyakarta: pokja akademik uin sunan kalijaga [6] uin sunan kalijaga (2007). sistem penerimaan mahasiswa baru tahun ajaran 2008/ 2009 uin sunan kalijaga. yogyakarta: pokja akademik uin sunan kalijaga. cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 publication etics cauchy: jurnal matematika murni dan aplikasi is a peer-reviewed electronic national journal. this statement clarifies ethical behaviour of all parties involved in the act of publishing an article in this journal, including the author, the chief editor, the editorial board, the peer-reviewer and the publisher (mathematics department of maulana malik ibrahim state islamic university of malang). this statement is based on copeโ€™s best practice guidelines for journal editors. ethical guideline for journal publication the publication of an article in a peer-reviewed cauchy is an essential building block in the development of a coherent and respected network of knowledge. it is a direct reflection of the quality of the work of the authors and the institutions that support them. peer-reviewed articles support and embody the scientific method. it is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer, the publisher and the society. as publisher of pure and applied mathematics journal, we take our duties to back up over all stages of publishing seriously and we recognize our ethical and other responsibilities. we are committed to ensuring that advertising, reprint or other commercial revenue has no impact or influence on editorial decisions. publication decisions the editor of cauchy is responsible for deciding which of the articles submitted to the journal should be published. the validation of the work in question and its importance to researchers and readers must always drive such decisions. the editors may be guided by the policies of the journal's editorial board and constrained by such legal requirements as shall then be in force regarding libel, copyright infringement and plagiarism. the editors may confer with other editors or reviewers in making this decision. fair play an editor at any time evaluates manuscripts for their intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the authors. confidentiality the editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher, as appropriate. any manuscripts received for review must be treated as confidential documents. they must not be shown to or discussed with others except as authorized by the editor. disclosure and conflicts of interest unpublished materials disclosed in a submitted manuscript must not be used in an editor's own research without the express written consent of the author. cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 publication etics contribution to editorial decisions peer review assists the editor in making editorial decisions and through the editorial communications with the author may also assist the author in improving the paper. promptness any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse himself from the review process. standards of objectivity reviews should be conducted objectively. personal criticism of the author is inappropriate. referees should express their views clearly with supporting arguments. acknowledgement of sources reviewers should identify relevant published work that has not been cited by the authors. any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. a reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge. disclosure and conflict of interest privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers. reporting standards authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance. underlying data should be represented accurately in the paper. a paper should contain sufficient detail and references to permit others to replicate the work. fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. data access and retention authors are asked to provide the raw data in connection with a paper for editorial review and should be prepared to provide public access to such data (consistent with the alpspstm statement on data and databases), if practicable, and should in any event be prepared to retain such data for a reasonable time after publication. originality and plagiarism the authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted. cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 publication etics multiple, redundant or concurrent publication an author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. acknowledgement of sources proper acknowledgment of the work of others must always be given. authors should cite publications that have been influential in determining the nature of the reported work. authorship of the paper authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. all those who have made significant contributions should be listed as co-authors. where there are others who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. the corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. hazards and human or animal subjects if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. disclosure and conflicts of interest all authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. all sources of financial support for the project should be disclosed. fundamental errors in published works when an author discovers a significant error or inaccuracy in his/her own published work, it is the authorโ€™s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. cauchy jurnal matematika murni dan aplikasi volume 7, issue 2, may 2022 issn : 2086-0382 e-issn : 2477-3344 acknowledgment to reviewers in this issue contributions and valuable comments of the following reviewers in this issue was very appreciated bety hayat susanti, politeknik siber dan sandi negara, indonesia dian savitri, universitas negeri surabaya, indonesia meta kallista, universitas telkom, indonesia dani suandi, universitas bina nusantara, bandung, indonesia anwar fitrianto, department of statistics, ipb university, indonesia subanar seno, gadjah mada university, indonesia arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia sri harini, universitas islam negeri maulana malik ibrahim malang, indonesia heni widayani, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia corina karim, brawijaya uiversity fachrur rozi, universitas islam negeri maulana malik ibrahim malang, indonesia javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740595') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740557') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740556') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740541') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/736347') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/5964') comparisons between resampling techniques in linear regression: a simulation study cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 345-353 p-issn: 2086-0382; e-issn: 2477-3344 submitted: december 23, 2021 reviewed: may 25, 2022 accepted: july 24, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.14550 comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto1,*, punitha linganathan2 1,*department of statistics, ipb university, indonesia 2department of mathematics, universiti putra malaysia, malaysia email: anwarstat@gmail.com abstract parameter estimations in linear regression need to fulfill some assumptions. once the assumptions are not fulfilled, the conclusion is questionable. bootstraps and jackknife are resampling techniques that do not require assumptions in estimating the ๏ฟฝฬ‚๏ฟฝ. the study aims to compare resampling techniques in linear regression. the data used in the study is clean, without any influential observations, outliers, or leverage points. the ordinary least square method was used as the primary method to estimate the parameters and then compared with resampling techniques. the variance, p-value, bias, and standard error are used as a scale to estimate the best method among random bootstrap, residual bootstrap and delete-one jackknife. after all the analysis, it was found that random bootstrap did not perform well while residual and delete-one jackknife works quite well. random bootstrap, residual bootstrap, and jackknife estimate better than ordinary least square. the study also found that residual bootstrap works well in estimating the parameter in the small sample. at the same time, it is suggested to use jackknife when the sample size is big because jackknife is more accessible to apply than residual bootstrap and jackknife works well when the sample size is large. keywords: jackknife; linear; regression; resampling introduction regression analysis is a statistical analysis that constructs relationships between dependent or response variables ๐‘ฆ and independent or regressor variables (๐‘ฅ1,๐‘ฅ2, โ€ฆ, ๐‘ฅ๐‘˜). ordinary least square (ols) is a traditional way of finding parameter estimates, ๏ฟฝฬ‚๏ฟฝ but it relies strongly on assumptions [1]. the reliability and validity of the conclusion in regression analysis are essential ([2], [3]), and they depend on how far the data follows the assumption and on the sample size of the data. it is easier to find the estimated regression coefficient, ๏ฟฝฬ‚๏ฟฝ without any assumption or distribution. bootstrap and jackknife are resampling techniques that do not need any assumptions in estimating the ๏ฟฝฬ‚๏ฟฝ ,([4]โ€“[6]. sahinler and topuz [7] compared the bootstrap and jackknife methods. their research discussed strategies for building a regression model using the jackknife and bootstrap method. the four methods used in their research are bootstrap based on the resampling observations, bootstrap based on the resampling errors, delete-one jackknife regression and delete-d jackknife regression. these methods were used to find the parameter estimates, bias, standard errors, and confidence intervals. their research concluded that http://dx.doi.org/10.18860/ca.v7i3.14550 mailto:anwarstat@gmail.com comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto 346 large bootstrap replicates ensure that the parameter is close to the true parameter. they also suggested that bootstrap replicate is sufficient for estimating the variance and ๐ต = 1000 for estimating the standard errors. their research tests the accuracy of bootstrap and jackknife methods in estimating the distribution of regression parameters with various sample sizes and various bootstrap replicates. sahinler and topuz [7] and li et. al. [8] found that the bootstrap method is appropriate for linear regression and it is usable even when the error is not normally distributed. algamal and rasheed [9] further develop resampling in linear regression. the advantage of bootstrap approximations is that, in general, it needs a smaller sample than the ordinary least square for estimating the parameter. meanwhile, the disadvantages of bootstrap methods were discussed in ma et al., [10], wan et al., [11], [12], and phaladiganon et al., [13] a few of the disadvantages of the methods are as follows: a) bootstrap distribution of is not a good approximation of ๐น, if the sample size is small and with the existence of an outlier, b) bootstrap is not suggested to use in dependence structure case like time series, and c) it is not preferable to use residual bootstrap when the assumptions are violated. algamal and rasheed, [10] concluded that jackknife method perform quite well when the sample size is large enough (๐‘› โ‰ฅ 50). meanwhile, recent studies by shao, j., & tu, d., [14] and beyaztas, u., & alin, a., [15] discussed bootstrap and jackknife in linear regression. based on that, the study is aimed to compare parameter estimates of multiple linear regression based on several resampling methods. there are several methods to estimate the ๏ฟฝฬ‚๏ฟฝ in bootstrap and jackknife. the scope of this research is to investigate the bootstrap and jackknife method with different scenariosthis research considered random bootstrap, residual bootstrap, and jackknife delete-one observation. the study is limited to multiple linear regression model. first the sample size will be selected with different size and estimate the parameter. the bias and variance will be observed then the relationship between the bias and variance will be investigated. the distribution also will be observed by varying with the increase in the sample size. the value of bootstrap resampling with different bootstrap replicates and sample size gives less bias than ordinary least square. the jackknife coefficient is calculated by using, ๏ฟฝฬ‚๏ฟฝ๐‘— = 1 ๐‘› โˆ‘ ๏ฟฝฬ‚๏ฟฝ๐‘—๐‘– ๐‘› ๐‘–=๐‘› (1) where n is the sample size and ๏ฟฝฬ‚๏ฟฝ๐‘—๐‘– parameter estimate for each sample formed after deleting one of the observations. while the bootstrap coefficient is calculated from ๏ฟฝฬ‚๏ฟฝ๐‘ = 1 ๐ต โˆ‘๏ฟฝฬ‚๏ฟฝ๐‘๐‘Ÿ ๐ต ๐‘Ÿ=1 (2) ๏ฟฝฬ‚๏ฟฝ๐‘๐‘Ÿ = ๏ฟฝฬ‚๏ฟฝ๐‘œ๐‘™๐‘  + (๐‘ฅ โ€ฒ๐‘ฅ) โˆ’1 ๐‘ฅโ€ฒ๐‘’๐‘๐‘Ÿ (3) where ๐‘Ÿ = 1,2,โ€ฆ,๐ต is bootstrap replicate, ๐‘’๐‘๐‘Ÿ is error of the regression,๐‘ฅ is the independent variable and ๏ฟฝฬ‚๏ฟฝ๐‘œ๐‘™๐‘  is the parameter estimate from ordinary least square method. comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto 347 methods data the data used in this study is pressure-dropping data, which is available in montgomery et al., [16]. it has one dependent variable ๐‘ฆ, and four independent variables, that is ๐‘ฅ1,๐‘ฅ2,๐‘ฅ3 and ๐‘ฅ4. there are 62 observations in the data. the data was collected from research where the pressure drop was measured for two-phase flow through screen-plate bubble columns. the research was conducted to test the reason of the pressure drop through the bubble cap. a bubble column is used to observe the reaction between the gas and liquid. the first factor considered in that research is the superficial fluid velocity of the gas. the gas's speed and direction of motion are measured by flow in the column. the second factor is the kinematic viscosity. the friction caused by the thickness of gas when the gas moves through the liquid particles was calculated. then the distance across the space between two parallel threads was considered. the last factor used in research is the dimensionless number, which is not associated with the physical dimension. it is calculated to relate the gas's superficial fluid velocity and the liquid's superficial fluid velocity. for building the model, the dependent variable ๐‘ฆ denotes the dimensionless factor for the pressure drop through a bubble cap. the independent variables are ๐‘ฅ1 (superficial fluid velocity of the gas (๐‘๐‘š ๐‘ โ„ ), ๐‘ฅ2 (kinematic viscosity), ๐‘ฅ3 (mesh opening, cm), and ๐‘ฅ4 (dimensionless number relating the gas's superficial fluid velocity to the liquid's superficial fluid velocity). simulation study scenarios the original data will be analyzed using ordinary least square regression data. then assumptions checkings will be conducted using the residuals of the model. then, using the sampe original data, resampling techniques using the residuals and random bootstrap resampling will be conducted with four different sample sizes, which are 20, 40,50 and 62. each sample will be used in three different bootstrap replicates, namely 100, 1000 and 10000. for the delete-one jackknife bootstrap, the resampling will be conducted at different sample sizes, namely 20, 40, 50 and 62. the bias, variance, standard error and p-value will be calculated for each method. the best method among this three methods will be chosen according to the value of bias, variance, standard error and p-value. results and discussion in this study, full model was used for the reference, which means all independent variables were included in the model regardless the significance of the variables. the fitted full regression model which was obtained based on ordinary least square using sas software is written as follows: ๏ฟฝฬ‚๏ฟฝ = 5.88839 โˆ’ 0.48460๐‘ฅ1 + 0.18263โ€„๐‘ฅ2 + 35.39109๐‘ฅ3 + 5.92695๐‘ฅ4 random bootstrap approach random bootstrap technique was first used to analyze the data. the resampling was conducted at different sample size 20, 40, 50 and 62. the bootstrap replication were applied in every sample size, namely 100, 1000 and 1000. comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto 348 table 1. summary statistics for multiple linear regression using random bootstrap at different bootstrap replicates and sample sizes for ๐›ฝ0 and ๐›ฝ3 parameter estimate bootstrap replicate sample size bias variance p-value standard error ๏ฟฝฬ‚๏ฟฝ0 100 20 -2.2181 85.6307 0.0001 0.9254 40 3.3626 22.8120 <.0001 0.4776 50 1.5437 15.1000 <.0001 0.0469 62 -0.6707 19.9445 <.0001 0.4466 1000 20 -1.1044 83.9495 <.0001 0.2897 40 2.9549 34.4348 <.0001 0.0012 50 1.4503 18.4197 <.0001 0.1357 62 -0.8994 19.1731 <.0001 0.1385 10000 20 -1.2754 203.4686 <.0001 0.0108 40 2.6252 41.8398 <.0001 0.0647 50 1.3527 18.8707 <.0001 0.0434 62 -0.9042 4.9842 <.0001 0.0461 ๏ฟฝฬ‚๏ฟฝ3 100 20 2.6410 574.9345 <.0001 2.3978 40 -5.7656 111.8724 <.0001 1.0577 50 -5.3883 61.2876 <.0001 0.7829 62 1.0310 125.2369 <.0001 1.1191 1000 20 2.4814 629.8633 <.0001 0.7936 40 -5.4017 211.8649 <.0001 0.4603 50 -4.5249 73.4070 <.0001 0.2709 62 1.6356 116.7295 <.0001 0.3417 10000 20 3.1247 634.0890 <.0001 0.2518 40 -4.5548 261.6325 <.0001 0.1618 50 -4.2045 87.0297 <.0001 0.0933 62 1.8947 37.2858 <.0001 0.1146 table 1 shows the changes in ๏ฟฝฬ‚๏ฟฝ3 and ๏ฟฝฬ‚๏ฟฝ0 at different sample sizes and bootstrap replicates. for each parameter estimate, as the sample size changes, the bias changes. more specifically, the bias is getting smaller as the sample size increases. the variance of ๏ฟฝฬ‚๏ฟฝ3 decreases from 574.9345 when the sample is 20 to 61.2876 when the sample size is 50. but, the bias of ๏ฟฝฬ‚๏ฟฝ3 increases when the sample is 62 . it can be observed that as the sample size increased from 20 to 62, the variance of parameter estimates decreased. meanwhile, the bias decreases as the bootstrap replicate increases. for b was set to 100, the intercept shows bias as 1.5437. this value decreases to 1.4503 when the number of bootstrap replicates, b, increases to 1000. when the number of bootstrap replicates was increased to 10000, the bias decreases again to 1.3527. from the results, it can be observed that the bias decreases as the replicate increases. when the bootstrap replicate, b increases from 100 to 1000, the variance decreases from 125.2369 to 116.7295. it decreases further to 37.2858 when b is equal to 10000, which shows 70.23% difference when we compare to 125.2369. comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto 349 residual bootstrap approach the second resampling technique that has been used to analyze the data was residual bootstrap. this section displays some results such as parameter estimates, bias, and variances of the parameter estimates using residual bootstrap. the results of ๏ฟฝฬ‚๏ฟฝ0 and ๏ฟฝฬ‚๏ฟฝ1 are shown in table 2. in residual bootstrap, the results were more apparent than in random bootstrap. it shows a clear trend of parameter estimates, bias, and variance at different sample sizes and the number of bootstrap replicates. the bias decrease as the sample size increases. when ๐‘› = 20, the bias is 0.2307. then when the sample increased to 40 the bias became 0.2266 and bias is 0.0684 when the sample size is 50 and at last, when ๐‘› is 62 the bias became 0.01368. in general, there is a noticeable difference in bias when the sample size increases. table 2. summary statistics for multiple linear regression using residual bootstrap at different bootstrap replicates and sample sizes for ๐›ฝ0 and ๐›ฝ1 the resampling techniques in table 2 show a clear decrease of the variances when the sample size increases. letโ€™s consider the changes in the variance of ๏ฟฝฬ‚๏ฟฝ0 when the bootstrap replicate is 1000. when the sample size is 20 the variance is 28.6300, and the value parameter estimate bootstrap replicate sample size bias variance p-value standard error ๏ฟฝฬ‚๏ฟฝ0 100 20 1.5277 30.9685 <.0001 0.5565 40 2.6535 27.0046 <.0001 0.5197 50 1.5324 19.8861 <.0001 0.4459 62 -0.3345 15.4073 <.0001 0.3925 1000 20 0.9635 28.6300 <.0001 0.1692 40 2.3838 22.7581 <.0001 0.1509 50 2.0622 20.0467 <.0001 0.1416 62 0.0035 15.4785 <.0001 0.1244 10000 20 0.6704 30.9949 <.0001 0.0557 40 2.2883 24.0894 <.0001 0.0491 50 2.2491 20.2725 <.0001 0.0450 62 -0.0193 17.0400 <.0001 0.0413 ๏ฟฝฬ‚๏ฟฝ1 100 20 0.2307 0.2037 <.0001 0.0451 40 0.2266 0.1566 <.0001 0.0396 50 0.0684 0.1098 <.0001 0.0331 62 0.0137 0.0819 <.0001 0.0286 1000 20 0.1630 0.2196 <.0001 0.0148 40 0.2061 0.1612 <.0001 0.0127 50 0.0732 0.1322 <.0001 0.0115 62 -0.0066 0.1025 <.0001 0.0101 10000 20 0.1547 0.2103 <.0001 0.0046 40 0.2180 0.1579 <.0001 0.0040 50 0.0608 0.1338 <.0001 0.0037 62 -0.0024 0.1071 <.0001 0.0033 comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto 350 becomes 22.7581 when the sample size is 40. then the variance decrease as the sample size increases to 50 and 62 where the bias become 19.8861 and 15.4785, respectively. now letโ€™s observe the changes in bias caused by the bootstrap replicate, b, when it is increased from hundred to thousand then ten thousand. for the estimated constant, ๏ฟฝฬ‚๏ฟฝ0, when the sample size is 40 the bias changes from 2.6535 to 2.3838, then 2.2883 when b increases from 100 to 1000 then 10000, respectively. the variance also decreases when the bootstrap replicate increases. delete-one jackknife approach the third technique that was used in this research is jackknife delete-one. the method was applied with different sample sizes , which are 20, 40, 50 and 62. table 3 and figure 1 display the changes in bias of all parameters for delete-one jackknife. the bias decreases as the sample size increases. but when sample size equal to the population size the bias shows an increasing state. using the population as sample size might show this type of result. plot of variance versus sample size for all parameters are shown in figure 2. from the plot, it can be seen that the variance also shows a decreased state from sample 20 to sample 62. small variances give a better estimation in linear regression. the bias and variance also not interrelated in delete-one jackknife. the p-value also shows that all parameter estimates are significant. the standard error also clearly shows that the increase in sample size will give a better estimation. table 3. summary statistics for multiple linear regression using delete-one jackknife at different sample size . parameter estimate sample size bias variance p-value standard error ๏ฟฝฬ‚๏ฟฝ0 20 0.5586 2.9683 <.0001 0.3852 40 2.2937 0.7335 <.0001 0.1354 50 2.1648 0.3625 <.0001 0.0851 62 -3.1721 0.2212 <.0001 0.0597 ๏ฟฝฬ‚๏ฟฝ1 20 0.1617 0.0161 <.0001 0.0284 40 0.2182 0.0054 <.0001 0.0117 50 0.0662 0.0046 <.0001 0.0096 62 0.6613 0.0029 <.0001 0.0069 ๏ฟฝฬ‚๏ฟฝ2 20 0.0249 0.0001 <.0001 0.0017 40 0.0006 0.0000 <.0001 0.0007 50 -0.0045 0.0000 <.0001 0.0005 62 0.0054 0.0000 <.0001 0.0004 ๏ฟฝฬ‚๏ฟฝ3 20 -2.0491 18.1473 <.0001 0.9526 40 -7.3628 3.7708 <.0001 0.3070 50 -5.6852 1.4059 <.0001 0.1677 62 -3.7014 0.9218 <.0001 0.1219 ๏ฟฝฬ‚๏ฟฝ4 20 0.3589 1.9284 <.0001 0.3105 40 0.6624 0.4470 <.0001 0.1057 50 -0.0712 0.3889 <.0001 0.0882 62 0.7431 0.4339 <.0001 0.0837 comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto 351 figure 1. changes of bias in all parameter estimation when sample size increases in delete-one jackknife. figure 2. changes of variance in all parameter estimation when sample size increases in delete-one jackknife. the difference between residual bootstrap estimation and random bootstrap estimation is obvious when the sample size is 20 (small). the residual bootstrap provided better parameter estimation than random bootstrap in bias and variance. this shows that residual has a big influence in linear regression. but, as the sample size increases, both residual and random bootstrap methods show similar results. the increase in bootstraps replicates and sample size gave better parameter estimation in both methods. jackknife delete-one gave a small variance, but the value of the bias was big when the sample size was small. the bias and variance decrease as the sample size increases. conclusions residual bootstrap, random bootstrap, and delete-one jackknife were compared. jackknife is not advisable to use when the sample size is small. however, when the sample -7 -6 -5 -4 -3 -2 -1 0 1 2 3 20 40 50 62 b ia s sample size ฮฒ4 ฮฒ3 ฮฒ2 ฮฒ1 ฮฒ0 0 5 10 15 20 25 20 40 50 62 va ri a n ce sample size ฮฒ4 ฮฒ3 ฮฒ2 ฮฒ1 ฮฒ0 comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto 352 size is big enough which is near to population size, it will give better parameter estimation than random bootstrap and residual bootstrap. in a situation where the sample size is small due to cost consideration, it is better to use residual bootstrap than other methods in linear regression. in conclusion, it is advisable to use residual bootstrap when the sample is small. the bigger bootstrap replicates will give better parameter estimation. the jackknife can be used when the sample size is big enough. this method will be useful when the sample size is too big which may take time to process in both random and residual bootstrap. in the future, this research can be extended to observe how these methods react when there is an outlier, influential point or leverage point. moreover, the comparisons may involve other resampling techniques to compare which method works well in multiple linear regression. references [1] m. alrasheedi, โ€œparametric and non-parametric bootstrap: a simulation study for a linear regression with residuals from a mixture of laplace distributions,โ€ european scientific journal, vol. 9, no. 12, 2013. [2] r. f. gunst and r. l. mason, regression analysis and its application: a data-oriented approach. crc press, 2018. [3] a. althubaiti, โ€œinformation bias in health research: definition, pitfalls, and adjustment methods,โ€ j multidiscip healthc, vol. 9, p. 211, 2016. [4] m. r. chernick, โ€œresampling methods,โ€ wiley interdisciplinary reviews: data mining and knowledge discovery, vol. 2, no. 3, pp. 255โ€“262, 2012. [5] r. e. mcroberts, s. magnussen, e. o. tomppo, and g. chirici, โ€œparametric, bootstrap, and jackknife variance estimators for the k-nearest neighbors technique with illustrations using forest inventory and satellite image data,โ€ remote sensing of environment, vol. 115, no. 12, pp. 3165โ€“3174, 2011. [6] r. g. clark and s. allingham, โ€œrobust resampling confidence intervals for empirical variograms,โ€ mathematical geosciences, vol. 43, no. 2, pp. 243โ€“259, 2011. [7] s. sahinler and d. topuz, โ€œbootstrap and jackknife resampling algorithms for estimation of regression parameters,โ€ journal of applied quantitative methods, vol. 2, no. 2, pp. 188โ€“199, 2007. [8] x. li, w. wong, e. l. lamoureux, and t. y. wong, โ€œare linear regression techniques appropriate for analysis when the dependent (outcome) variable is not normally distributed?,โ€ invest ophthalmol vis sci, vol. 53, no. 6, pp. 3082โ€“3083, 2012. [9] z. y algamal and k. b rasheed, โ€œre-sampling in linear regression model using jackknife and bootstrap,โ€ iraqi journal of statistical sciences, vol. 10, no. 18, pp. 59โ€“73, 2010. [10] j. ma et al., โ€œprobabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the three gorges reservoir area, china,โ€ landslides, vol. 15, no. 6, pp. 1145โ€“1153, 2018. [11] c. wan, z. xu, y. wang, z. y. dong, and k. p. wong, โ€œa hybrid approach for probabilistic forecasting of electricity price,โ€ ieee transactions on smart grid, vol. 5, no. 1, pp. 463โ€“470, 2013. [12] g. a. nelson, โ€œcluster sampling: a pervasive, yet little recognized survey design in fisheries research,โ€ trans am fish soc, vol. 143, no. 4, pp. 926โ€“938, 2014. comparisons between resampling techniques in linear regression: a simulation study anwar fitrianto 353 [13] p. phaladiganon, s. b. kim, v. c. p. chen, j.-g. baek, and s.-k. park, โ€œbootstrap-based t 2 multivariate control charts,โ€ communications in statisticsโ€”simulation and computationยฎ, vol. 40, no. 5, pp. 645โ€“662, 2011. [14] j. shao and d. tu, the jackknife and bootstrap. springer science & business media, 2012. [15] u. beyaztas and a. alin, โ€œsufficient jackknife-after-bootstrap method for detection of influential observations in linear regression models,โ€ statistical papers, vol. 55, no. 4, pp. 1001โ€“1018, 2014. [16] d. c. montgomery, e. a. peck, and g. g. vining, introduction to linear regression analysis. john wiley & sons, 2021. multipolar intuitionistic fuzzy ideal in b-algebras cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 293-301 p-issn: 2086-0382; e-issn: 2477-3344 submitted: november 17, 2021 reviewed: december 10, 2021 accepted: january 20, 2022 doi: http://dx.doi.org/10.18860/ca.v7i1.14003 multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo*, noor hidayat, vira hari krisnawati department of mathematics, university of brawijaya, malang, indonesia *corresponding author email: amigo.royyan@yahoo.com* abstract b-algebra is an algebraic structure which combine some properties from ๐ต๐ถ๐พ-algebras and ๐ต๐ถ๐ผ-algebras. some researchers have investigated the concept of multipolar fuzzy ideals in ๐ต๐ถ๐พ/๐ต๐ถ๐ผ-algebras and multipolar intuitionistic fuzzy set in ๐ต-algebras. in this paper, we construct a new structure which is called a multipolar intuitionistic fuzzy ideal in ๐ต-algebras. this structure is a combination of three structures such as multipolar fuzzy ideals in ๐ต๐ถ๐พ/๐ต๐ถ๐ผ-algebras, fuzzy ๐ต-subalgebras in ๐ต-algebras, and multipolar intuitionistic fuzzy ๐ต-algebras. we investigated and proved some characterizes of the multipolar intuitionistic fuzzy ideal, such as a necessary condition and sufficient condition. keywords: b-algebras; multipolar fuzzy ideal; multipolar intuitionistic fuzzy set; multipolar intuitionistic fuzzy ideal introduction zadeh [1] introduced a new idea, namely a fuzzy set as a non-empty set with a degree of membership whose value in interval [0,1] in 1965. the degree of membership of each member of the set is determined by the membership function. that notion from zadeh became the basis for further researchers to develop fuzzy concepts in various fields such as graph theory, data analysis, decision making, and so on. a simple example of an algebraic structure is a group. not only groups, ๐ต๐ถ๐พ-algebras, ๐ต๐ถ๐ผ-algebras and ๐ต-algebras are also other examples of algebraic structures. imai and iseki [2] proposed the notion a new algebraic structure called ๐ต๐ถ๐พ-algebras in 1966. ๐ต๐ถ๐พ-algebras is an important class of algebraic structure which is constructed from two different fragments, set theory and propositional calculus. in the same year, iseki [3] continued his research to propose the notion of ๐ต๐ถ๐ผ-algebras which is generalization from ๐ต๐ถ๐พ-algebras. a new idea about algebraic structure is called ๐ตalgebras which satisfies some properties from ๐ต๐ถ๐พ-algebras and ๐ต๐ถ๐ผ-algebras was proposed by neggers and kim in [4]. they also investigated its properties. zhang [5] introduced the concepts of bipolar fuzzy sets which is the extension of fuzzy set. meng [6] studied about fuzzy implicative ideals in ๐ต๐ถ๐พ-algebras in 1997. moreover, muhiuddin and al-kadi [7] introduced bipolar fuzzy implicative ideals in ๐ต๐ถ๐พ-algebras. they discussed about the relationship between a bipolar fuzzy ideal and bipolar fuzzy implicative ideal. furthermore, chen et al. [8] introduced the concepts of multipolar fuzzy sets which is the extension of bipolar fuzzy set. kang et al. [9] proposed http://dx.doi.org/10.18860/ca.v7i1.14003 mailto:amigo.royyan@yahoo.com multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo 294 the concepts about multipolar intuitionistic fuzzy set with finite degree and its application in ๐ต๐ถ๐พ/๐ต๐ถ๐ผ-algebras. in 1999, attanasov [10] introduced the new notion about intuitionistic fuzzy set. jun et al. [11] defined fuzzy ๐ต-algebras. then, al-masarwah and ahmad [12] discussed about multipolar fuzzy ideals in ๐ต๐ถ๐พ/๐ต๐ถ๐ผ-algebras. ahn and bang [13] studied fuzzy ๐ต-subalgebras in ๐ต-algebras. recently, borzooei et al. [14] proposed the concept about multipolar intuitionistic fuzzy ๐ต-algebras and some properties. they constructed a simple multipolar fuzzy set. then, they also discussed about multipolar intuitionistic fuzzy subalgebras of ๐ต-algebras. in this paper, we construct a new structure which is called a multipolar intuitionistic fuzzy ideal in ๐ต-algebras. this structure is a combination of three structures which are the results of research by al-masarwah and ahmad [12], ahn and bang [13], and borzooei et al. [14]. next, we investigated and proved some necessary condition and sufficient condition of the multipolar intuitionistic fuzzy ideal. methods by using literary study and analogical related concepts from [12], [13] and [14], we propose the terminology of multipolar intuitionistic fuzzy ideal in ๐ต-algebras. we start to describe the structure of ๐ต-algebra, fuzzy ๐ต-algebra, and multipolar intuitionistic fuzzy sets. each structure is given its definition, examples, and some of its properties. definition 2.1 [15] ๐ต-algebra is a nonempty set ๐‘‹ with 0 as identity element (right) and a binary operation โˆ— satisfying the following axioms for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹: i. ๐‘ฅ โˆ— ๐‘ฅ = 0. ii. ๐‘ฅ โˆ— 0 = ๐‘ฅ. iii. (๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง = ๐‘ฅ โˆ— (๐‘ง โˆ— (0 โˆ— ๐‘ฆ)). for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, we define a partial ordering relation " โ‰ค " on ๐‘‹ by ๐‘ฅ โ‰ค ๐‘ฆ if and only if ๐‘ฅ โˆ— ๐‘ฆ = 0 ([14]). example 2.2 [15] let ๐‘‹ = {0, ๐‘Ž, ๐‘, ๐‘} be a set with cayley table as follows: table 1: cayley table for (๐‘‹;โˆ— ,0). โˆ— ๐ŸŽ ๐’‚ ๐’ƒ ๐’„ ๐ŸŽ 0 0 ๐‘ ๐‘ ๐’‚ ๐‘Ž 0 ๐‘ ๐‘ ๐’ƒ ๐‘ ๐‘ 0 0 ๐’„ ๐‘ ๐‘ ๐‘Ž 0 then, (๐‘‹;โˆ— ,0) is a ๐ต-algebra. example 2.3 [15] let (โ„ค; โˆ’,0) with โ€ฒโ€ฒ โˆ’ โ€ฒโ€ฒ be a substraction operation of integers โ„ค. then, (โ„ค; โˆ’,0) is a ๐ต-algebra. example 2.4 let (โ„+ โˆ’ {0};โˆ— ,1) with โ€ฒโ€ฒ โˆ— โ€ฒโ€ฒ be a binary operation of โ„+ โˆ’ {0} defined by ๐‘ฅ โˆ— ๐‘ฆ = ๐‘ฅ ๐‘ฆ . multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo 295 then, (โ„+ โˆ’ {0};โˆ— ,1) is a ๐ต-algebra. proposition 2.5 [16] if (๐‘‹;โˆ— ,0) is a ๐ต-algebra, then for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹ satisfies the following conditions. i. (๐‘ฅ โˆ— ๐‘ฆ) โˆ— (0 โˆ— ๐‘ฆ) = ๐‘ฅ. ii. ๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง) = (๐‘ฅ โˆ— (0 โˆ— ๐‘ง)) โˆ— ๐‘ฆ. iii. if ๐‘ฅ โˆ— ๐‘ฆ = 0 then ๐‘ฅ = ๐‘ฆ. iv. 0 โˆ— (0 โˆ— ๐‘ฅ) = ๐‘ฅ. v. (๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง) = ๐‘ฅ โˆ— ๐‘ฆ. vi. 0 โˆ— (๐‘ฅ โˆ— ๐‘ฆ) = ๐‘ฆ โˆ— ๐‘ฅ. vii. ๐‘ฅ โˆ— ๐‘ฆ = 0 if and only if ๐‘ฆ โˆ— ๐‘ฅ = 0. viii. if 0 โˆ— ๐‘ฅ = 0 then ๐‘‹ contains only 0. definition 2.6 [16] a ๐ต-algebra (๐‘‹;โˆ— ,0) is called commutative ๐ต-algebra if for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ satisfies: ๐‘ฅ โˆ— (0 โˆ— ๐‘ฆ) = ๐‘ฆ โˆ— (0 โˆ— ๐‘ฅ). example 2.7 let (โ„ค; โˆ’,0) with โ€ฒโ€ฒ โˆ’ โ€ฒโ€ฒ be a substraction operation of integers โ„ค. then, (โ„ค; โˆ’,0) is a commutative ๐ต-algebra. proposition 2.8 [16] if (๐‘‹;โˆ— ,0) is a commutative ๐ต-algebra, then for all ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐‘‹ satisfies the following rules. i. (0 โˆ— ๐‘ฅ) โˆ— (0 โˆ— ๐‘ฆ) = ๐‘ฆ โˆ— ๐‘ฅ. ii. (๐‘ง โˆ— ๐‘ฆ) โˆ— (๐‘ง โˆ— ๐‘ฅ) = ๐‘ฅ โˆ— ๐‘ฆ. iii. (๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง = (๐‘ฅ โˆ— ๐‘ง) โˆ— ๐‘ฆ. iv. (๐‘ฅ โˆ— (๐‘ฅ โˆ— ๐‘ฆ)) โˆ— ๐‘ฆ = 0. v. (๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ก) = (๐‘ก โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ฅ). definition 2.9 [15] let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. a nonempty subset ๐ผ of ๐‘‹ is called ideal of ๐‘‹ if it satisfies: i. 0 โˆˆ ๐ผ, ii. for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, if ๐‘ฆ โˆˆ ๐ผ and ๐‘ฅ โˆ— ๐‘ฆ โˆˆ ๐ผ then ๐‘ฅ โˆˆ ๐ผ. example 2.10 [15] let ๐ผ = โ„ค+ โ‹ƒ {0} be a subset of ๐ต-algebra (โ„ค; โˆ’,0), then ๐ผ is ideal of โ„ค. let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. a non empty subset ๐ผ of ๐‘‹ is called subalgebras (๐ต-subalgebras) of ๐‘‹ if for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐ผ satisfies 0 โˆˆ ๐ผ and ๐‘ฅ โˆ— ๐‘ฆ โˆˆ ๐ผ ([15]). definition 2.11 [11] let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. a fuzzy set ๐ด in ๐‘‹ is called fuzzy ๐ต-algebra if it satisfies the inequality for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, ๐œ‡๐ด(๐‘ฅ โˆ— ๐‘ฆ) โ‰ฅ min{๐œ‡๐ด(๐‘ฅ), ๐œ‡๐ด(๐‘ฆ)}. let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. a fuzzy set ๐ด in ๐‘‹ is called fuzzy ideal ๐ต-algebra ([17]) if it satisfies for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, ๐œ‡๐ด(0) โ‰ฅ ๐œ‡๐ด(๐‘ฅ), ๐œ‡๐ด(๐‘ฅ) โ‰ฅ min{๐œ‡๐ด(๐‘ฅ โˆ— ๐‘ฆ), ๐œ‡๐ด(๐‘ฆ)}. multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo 296 a ๐ต-algebra (๐‘‹;โˆ— ,0) in the example 2.2. if we define a fuzzy set ๐ด in ๐‘‹ by ๐œ‡๐ด(0) = ๐œ‡๐ด(๐‘) = 1 and ๐œ‡๐ด(๐‘Ž) = ๐œ‡๐ด(๐‘) = 0.5, then ๐ด is fuzzy ideal of ๐‘‹. moreover, a ๐ต-algebra (โ„+ โˆ’ {0};โˆ— ,1) in the example 2.4, if we define a fuzzy set ๐ด in โ„+ โˆ’ {0} by ๐œ‡๐ด(๐‘ฅ) = { 1 ๐‘–๐‘“ ๐‘ฅ = 1, 0.5 ๐‘–๐‘“ ๐‘ฅ โ‰  1, then ๐ด is fuzzy ideal of โ„+ โˆ’ {0}. let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. a multipolar intuitionistic fuzzy set over ๐‘‹ is a mapping (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) โˆถ ๐‘‹ โ†’ ([0,1] ร— [0,1])๐‘š ๐‘ฅ โ†ฆ (โ„“ฬ‚(๐‘ฅ), ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ)), where โ„“ฬ‚ โˆถ ๐‘‹ โ†’ [0,1]๐‘š and ๏ฟฝฬ‚๏ฟฝ โˆถ ๐‘‹ โ†’ [0,1]๐‘š are multipolar fuzzy sets over ๐‘‹ which is satisfies the condition for all ๐‘ฅ โˆˆ ๐‘‹, โ„“ฬ‚(๐‘ฅ) + ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค 1 where ๐œ‹๐‘– โˆถ [0,1] ๐‘š โ†’ [0,1] such that (๐œ‹๐‘– โˆ˜ โ„“ฬ‚)(๐‘ฅ) + (๐œ‹๐‘– โˆ˜ ๏ฟฝฬ‚๏ฟฝ)(๐‘ฅ) โ‰ค 1 for ๐‘– = 1,2, โ€ฆ , ๐‘š (see [14]). results and discussion in this section, we will describe the structure of multipolar intuitionistic fuzzy ideal in ๐ต-algebras. the description begins with the definition of the new structure, then examples are given, and its properties are determined and proven. definition 3.1 let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. a multipolar intuitionistic fuzzy set (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over ๐‘‹ is called multipolar intuitionistic fuzzy ideal in ๐‘‹ if it satisfies: i. (โˆ€๐‘ฅ โˆˆ ๐‘‹)(โ„“ฬ‚(0) โ‰ฅ โ„“ฬ‚(๐‘ฅ) and ๏ฟฝฬ‚๏ฟฝ(0) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ)) such that (๐œ‹๐‘– โˆ˜ โ„“ฬ‚)(0) โ‰ฅ (๐œ‹๐‘– โˆ˜ โ„“ฬ‚)(๐‘ฅ) and (๐œ‹๐‘– โˆ˜ ๏ฟฝฬ‚๏ฟฝ)(0) โ‰ค (๐œ‹๐‘– โˆ˜ ๏ฟฝฬ‚๏ฟฝ)(๐‘ฅ), ii. (โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹)(โ„“ฬ‚(๐‘ฅ) โ‰ฅ inf{โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ), โ„“ฬ‚(๐‘ฆ)} and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ), ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ)}) such that (๐œ‹๐‘– โˆ˜ โ„“ฬ‚)(๐‘ฅ) โ‰ฅ inf{(๐œ‹๐‘– โˆ˜ โ„“ฬ‚)(๐‘ฅ โˆ— ๐‘ฆ), (๐œ‹๐‘– โˆ˜ โ„“ฬ‚)(๐‘ฆ)} and (๐œ‹๐‘– โˆ˜ ๏ฟฝฬ‚๏ฟฝ)(๐‘ฅ) โ‰ค sup{(๐œ‹๐‘– โˆ˜ ๏ฟฝฬ‚๏ฟฝ)(๐‘ฅ โˆ— ๐‘ฆ), (๐œ‹๐‘– โˆ˜ ๏ฟฝฬ‚๏ฟฝ)(๐‘ฆ)}, for ๐‘– = 1,2, โ€ฆ . , ๐‘š. example 3.2 let (๐‘‹;โˆ— ,0) be a ๐ต-algebra in the example 2.2. given a multipolar intuitionistic fuzzy set (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over ๐‘‹ by (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) โˆถ ๐‘‹ โ†’ ([0,1] ร— [0,1])5, multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo 297 ๐‘ฅ โ†ฆ { ((0.7,0.3), (0.6,0.25), (0.7,0.15), (0.63,0.2), (0.8,0.18)) ๐‘–๐‘“ ๐‘ฅ โˆˆ {0, ๐‘}, ((0.3,0.6), (0.4,0.5), (0.5,0.4), (0.2,0.7), (0.4,0.5)) ๐‘–๐‘“ ๐‘ฅ โˆˆ {๐‘Ž, ๐‘}. then, (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) is 5-polar intuitionistic fuzzy ideal of ๐‘‹. example 3.3 let (โ„+ โˆ’ {0};โˆ— ,1) be a ๐ต-algebra in the example 2.4. given a multipolar intuitionistic fuzzy set (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over โ„+ โˆ’ {0} by (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) โˆถ ๐‘‹ โ†’ ([0,1] ร— [0,1])5, ๐‘ฅ โ†ฆ { ((1,0), (1,0), (1,0), (1,0), (1,0)) ๐‘–๐‘“ ๐‘ฅ = 1, ((0.5,0.5), (0.4,0.4), (0.3,0.3), (0.2,0.2), (0.1,0.1)) ๐‘–๐‘“ ๐‘ฅ โ‰  1. then, (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) is 5-polar intuitionistic fuzzy ideal of โ„+ โˆ’ {0}. for any ๐œ” โˆˆ ๐‘‹ and multipolar intuitionistic fuzzy set (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) in ๐‘‹, we give the conditions for the set ๐ผ(๐œ”) to be an ideal of ๐‘‹ and its example. theorem 3.4 let (๐‘‹;โˆ— ,0) be a ๐ต-algebra and ๐‘ฅ โˆˆ ๐‘‹. if (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) is a multipolar intuitionistic fuzzy ideal of ๐‘‹, then ๐ผ(๐œ”) is an ideal of ๐‘‹ where ๐ผ(๐œ”) = {๐‘ฅ โˆˆ ๐‘‹|โ„“ฬ‚(๐‘ฅ) โ‰ฅ โ„“ฬ‚(๐œ”) ๐‘Ž๐‘›๐‘‘ ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐œ”)}. proof. let (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) be a multipolar intuitionistic fuzzy ideal of ๐‘‹ where ๐ผ(๐œ”) = {๐‘ฅ โˆˆ ๐‘‹|โ„“ฬ‚(๐‘ฅ) โ‰ฅ โ„“ฬ‚(๐œ”) and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐œ”)}. i. by using definition 3.1 (i) we have that โ„“ฬ‚(0) โ‰ฅ โ„“ฬ‚(๐‘ฅ) โ‰ฅ โ„“ฬ‚(๐œ”) and ๏ฟฝฬ‚๏ฟฝ(0) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐œ”). hence, 0 โˆˆ ๐ผ(๐œ”). ii. let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ such that ๐‘ฅ โˆ— ๐‘ฆ โˆˆ ๐ผ(๐œ”) and ๐‘ฆ โˆˆ ๐ผ(๐œ”). then, โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ) โ‰ฅ โ„“ฬ‚(๐œ”) and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐œ”), โ„“ฬ‚(๐‘ฆ) โ‰ฅ โ„“ฬ‚(๐œ”) and ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐œ”). by using definition 3.1 (ii), we have โ„“ฬ‚(๐‘ฅ) โ‰ฅ inf{โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ), โ„“ฬ‚(๐‘ฆ)} โ‰ฅ โ„“ฬ‚(๐œ”) and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ), ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ)} โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐œ”), such that โ„“ฬ‚(๐‘ฅ) โ‰ฅ โ„“ฬ‚(๐œ”) and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐œ”). hence, ๐‘ฅ โˆˆ ๐ผ(๐œ”). therefore, ๐ผ(๐œ”) is an ideal of ๐‘‹. โˆŽ multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo 298 example 3.5 let (๐‘‹;โˆ— ,0) be a ๐ต-algebra in the example 2.2. given a multipolar intuitionistic fuzzy ideal (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over ๐‘‹ in the example 3.2 where ๐ผ(๐‘) = {0, ๐‘|โ„“ฬ‚(0) โ‰ฅ โ„“ฬ‚(๐‘) and ๏ฟฝฬ‚๏ฟฝ(0) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐‘), โ„“ฬ‚(๐‘) โ‰ฅ โ„“ฬ‚(๐‘) and ๏ฟฝฬ‚๏ฟฝ(๐‘) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐‘)}. then, ๐ผ(๐‘) is an ideal of ๐‘‹. next, we discuss some properties of multipolar intuitionistic fuzzy ideal in ๐ต-algebras. proposition 3.6 let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. every multipolar intuitionistic fuzzy ideal (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over ๐‘‹ satisfies the following implication for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, if ๐‘ฅ โ‰ค ๐‘ฆ then โ„“ฬ‚(๐‘ฅ) โ‰ฅ โ„“ฬ‚(๐‘ฆ) and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ). proof. let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ such that ๐‘ฅ โ‰ค ๐‘ฆ. so, ๐‘ฅ โˆ— ๐‘ฆ = 0. by using definition 3.1 (i) and (ii), we have that โ„“ฬ‚(๐‘ฅ) โ‰ฅ inf{โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ), โ„“ฬ‚(๐‘ฆ)} = inf{โ„“ฬ‚(0), โ„“ฬ‚(๐‘ฆ)} = โ„“ฬ‚(๐‘ฆ) and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ), ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ)} = sup{๏ฟฝฬ‚๏ฟฝ(0), ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ)} = ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ). โˆŽ proposition 3.7 let (๐‘‹;โˆ— ,0) be a commutative ๐ต-algebra. for any multipolar intuitionistic fuzzy ideal (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over ๐‘‹, if for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ satisfies โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ) โ‰ฅ โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ฆ) ๐‘Ž๐‘›๐‘‘ ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ) โ‰ค ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ฆ), then for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹ satisfies โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง)) โ‰ฅ โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง) ๐‘Ž๐‘›๐‘‘ ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง)) โ‰ค ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง). proof. let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹ such that ((๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง โ‰ค (๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง. by using proposition 2.5 and 2.8, we have that ((๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง) โˆ— ๐‘ง = ((๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง โ‰ค (๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง. from proposition 3.6, we have โ„“ฬ‚ (((๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง) โˆ— ๐‘ง) โ‰ฅ โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง) and ๏ฟฝฬ‚๏ฟฝ (((๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง) โˆ— ๐‘ง) โ‰ค ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง). multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo 299 so, from proposition 2.8, we get โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง)) = โ„“ฬ‚ ((๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง) โ‰ฅ โ„“ฬ‚ (((๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง) โˆ— ๐‘ง) โ‰ฅ โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง) and ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง)) = ๏ฟฝฬ‚๏ฟฝ ((๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง) โ‰ค ๏ฟฝฬ‚๏ฟฝ (((๐‘ฅ โˆ— (๐‘ฆ โˆ— ๐‘ง)) โˆ— ๐‘ง) โˆ— ๐‘ง) โ‰ค ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง). โˆŽ proposition 3.8 let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. for any multipolar intuitionistic fuzzy ideal (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over ๐‘‹, if for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹ satisfies โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง)) โ‰ฅ โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง) ๐‘Ž๐‘›๐‘‘ ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ง) โˆ— (๐‘ฆ โˆ— ๐‘ง)) โ‰ค ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง), then for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ satisfies โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ) โ‰ฅ โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ฆ) ๐‘Ž๐‘›๐‘‘ ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ) โ‰ค ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ฆ). proof. let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹. if ๐‘ง is replaced by ๐‘ฆ on the assumption, then by using definition 2.1 (i) and (ii) we have โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ) = โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— 0) = โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— (๐‘ฆ โˆ— ๐‘ฆ)) = โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ) โ‰ฅ โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ฆ) and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ) = ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— 0) = ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— (๐‘ฆ โˆ— ๐‘ฆ)) = ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ) โ‰ค ๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ฆ). โˆŽ based on proposition 3.7 and proposition 3.8, we get the following corollary. corollary if we assume that ๐‘‹ is a commutative ๐ต-algebra, then the statements in proposition 3.7 and proposition 3.8 are equivalent. furthermore, we also give another condition of multipolar intuitionistic fuzzy ideal in ๐ต-algebras such that make this following proposition. proposition 3.9 let (๐‘‹;โˆ— ,0) be a ๐ต-algebra. a multipolar intuitionistic fuzzy set (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over ๐‘‹ is a multipolar intuitionistic fuzzy ideal (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) over ๐‘‹ if and only if for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹, (๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง = 0 implies โ„“ฬ‚(๐‘ฅ) โ‰ฅ inf{โ„“ฬ‚(๐‘ฆ), โ„“ฬ‚(๐‘ง)} and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฆ), ๏ฟฝฬ‚๏ฟฝ(๐‘ง)}. multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo 300 proof. we assume that (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) is a multipolar intuitionistic fuzzy ideal over ๐‘‹. let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹ such that (๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง = 0. so, ๐‘ฅ โˆ— ๐‘ฆ โ‰ค ๐‘ง. by using definition 3.1 (i) and (ii), we have โ„“ฬ‚(๐‘ฅ) โ‰ฅ inf{โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ), โ„“ฬ‚(๐‘ฆ)} โ‰ฅ inf{inf{โ„“ฬ‚((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง), โ„“ฬ‚(๐‘ง)} , โ„“ฬ‚(๐‘ฆ)} = inf{inf{โ„“ฬ‚(0), โ„“ฬ‚(๐‘ง)} , โ„“ฬ‚(๐‘ฆ)} = inf{โ„“ฬ‚(๐‘ฆ), โ„“ฬ‚(๐‘ง)} and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ), ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ)} โ‰ค sup{sup{๏ฟฝฬ‚๏ฟฝ((๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง), ๏ฟฝฬ‚๏ฟฝ(๐‘ง)} , ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ)} = sup{sup{๏ฟฝฬ‚๏ฟฝ(0), ๏ฟฝฬ‚๏ฟฝ(๐‘ง)} , ๏ฟฝฬ‚๏ฟฝ(๐‘ฆ)} = sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฆ), ๏ฟฝฬ‚๏ฟฝ(๐‘ง)}. conversely, we assume for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹, (๐‘ฅ โˆ— ๐‘ฆ) โˆ— ๐‘ง = 0. then โ„“ฬ‚(๐‘ฅ) โ‰ฅ inf{โ„“ฬ‚(๐‘ฆ), โ„“ฬ‚(๐‘ง)} and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฆ), ๏ฟฝฬ‚๏ฟฝ(๐‘ง)}. let ๐‘ฅ โˆˆ ๐‘‹. by using definition 2.1 (ii) and definition 2.11, we have โ„“ฬ‚(0) = โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฅ) โ‰ฅ inf{โ„“ฬ‚(๐‘ฅ), โ„“ฬ‚(๐‘ฅ)} = โ„“ฬ‚(๐‘ฅ) and ๏ฟฝฬ‚๏ฟฝ(0) = ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฅ) โ‰ค sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฅ), ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ)} = ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ). then, let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. by using definition 2.1 (i), we have (๐‘ฅ โˆ— ๐‘ฆ) โˆ— (๐‘ฅ โˆ— ๐‘ฆ) = 0 such that โ„“ฬ‚(๐‘ฅ) โ‰ฅ inf{โ„“ฬ‚(๐‘ฆ), โ„“ฬ‚(๐‘ฅ โˆ— ๐‘ฆ)} and ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ) โ‰ค sup{๏ฟฝฬ‚๏ฟฝ(๐‘ฆ), ๏ฟฝฬ‚๏ฟฝ(๐‘ฅ โˆ— ๐‘ฆ)}. hence, (โ„“ฬ‚, ๏ฟฝฬ‚๏ฟฝ) is a multipolar intuitionistic fuzzy ideal over ๐‘‹. โˆŽ conclusions in this paper, we apply the terminology of multipolar intuitionistic fuzzy ideal in ๐ต-algebras and investigate some properties. we also explain the conditions for a multipolar intuitionistic fuzzy set to be a multipolar intuitionistic fuzzy ideal and give some examples. these definitions and main results can be applied with similarly in other algebraic structure such as ๐ต๐บ-algebras, ๐ต๐น-algebras and ๐ต๐ท-algebras. references [1] zadeh, l.a. 1965. fuzzy sets. information and control, vol. 8, no. 3, 338-353. [2] imai, y.; iseki, k. 1966. on axiom system of propositional calculi, xiv. japan acad 42, 19-22. [3] iseki, k. 1966. an algebra related with a propositional calculus. japan acad 42, 26-29. [4] neggers, j.; kim, h. s. 2002. on b-algebras. mate vesnik, no. 54, 21-29. multipolar intuitionistic fuzzy ideal in b-algebras royyan amigo 301 [5] zhang, w.r.; yang, y. 1994. bipolar fuzzy sets. proceedings of the 1998 ieee international conference on fuzzy systems, 835โ€“840. anchorage, ak, usa. [6] meng, j.; jun, y.b.; kim, h.s. 1997. fuzzy implicative ideals of bck-algebras. fuzzy sets and systems, vol. 89, 243-248. [7] muhiuddin, g.; al-kadi, d. 2021. bipolar fuzzy implicative ideals of bck-algebras. journal of mathematics. [8] chen, j.; li, s.; ma, s.; wang, x. 2014. m-polar fuzzy sets: an extension of bipolar fuzzy sets. sci. world j. [9] kang, k.t.; song, seok-zun.; jun, y.b. 2020. multipolar intuitionistic fuzzy set with finite degree and its application in bck/bci-algebras. mdpi, 8, 177. [10] attanassov, k.t. 1999. intuitionistic fuzzy sets theory and applications. bulgaria. [11] jun, y.b.; roh, e.h.; kim, h.s. 2002. on fuzzy b-algebras. czechoslovak mathematical journal, vol. 52, no. 2, 375โ€”384. [12] al-masarwah, a.; ahmad, a.g. 2019. m-polar fuzzy ideals of bck/bci-algebras. journal of king saud university-science, vol. 31, no. 4, 1220โ€“1226. [13] ahn, s.s.; bang, k. 2003. on fuzzy subalgebras in b-algebras. commun korean math. soc, vol. 10, no. 3, 429-437. [14] borzooei, r.a.; kim, h.s.; jun, y.b.; ahn, s.s. 2020. on multipolar intuitionistic fuzzy b-algebras. mdpi, 8, 907. [15] fitria, e.; gemawati, s.; kartini. 2017. prime ideals in b-algebras. international journal of algebra, vol. 11, no. 7, 301-309. [16] abdullah, h.k; atshan, a.a. 2017. complete ideal and n-ideal of b-algebras. applied mathematical sciences, vol. 11, no. 35, 1705-1713. [17] senapati, t.; bhowmik, m.; pal, m. 2011. fuzzy closed ideals of b-algebras. ijcset, vol. 1, no. 10, 669-673. elliptical orbits mode application for approximation of fuel volume change cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 316-331 p-issn: 2086-0382; e-issn: 2477-3344 submitted: december 19, 2021 reviewed: january 09, 2022 accepted: january 10, 2022 doi: http://dx.doi.org/10.18860/ca.v7i1.14407 elliptical orbits mode application for approximation of fuel volume change jovian dian pratama*, ratna herdiana*, susilo hariyanto department of mathematics, diponegoro university *corresponding author email: joviandianpratama@yahoo.com*, herdiana.math@gmail.com*, sus2_hariyanto@yahoo.com abstract at a 45.507.21 candirejo tuntang gas station, it is difficult to ensure the stock of fuel supplies because there is always a difference between calculations using dipsticks and fuel dispensers. because the calculation method used by gas stations throughout indonesia is linear interpolation which is not smooth, then by using the pertalite (pertamina fuel products) measuring book data a smooth volume change approximation function will be formed. this article presents the elliptical orbits mode (eom) as a proposed method in approximating the function that describes the volume change of fuel with respect to fuel height in underground tank (ut). since the calculation by the gas station is not smooth, it is necessary for a smoother data fitting by considering residual square error (rss) and mean square error (mse). the results of the elliptical orbits mode approximation will be compared with the circle orbits mode and least square data fitting. the result show that eom(ฮธ) method with elliptical height control produces smaller rss and mse compared to using com, eom, least square degree two and three. in next research, the approximation results will be applied to the fuel dispenser data. keywords: orbits mode; data fitting; ellipse; fuel; approximation introduction based on the assumptions given in [1] and [2] the previous orbits mode data fitting research which was used to calibrate the dipstick measuring instrument that converts the height to the volume of fuel in the buried tank, it is explained that the approximation function of the change in fuel volume in the tank is only based on height. in [1] and [2] it is explained that the orbits mode data fitting-based calibration is limited by several assumptions and field conditions, including the following: 1. the resulting approximation function is the change in the volume of fuel in the ut which only depends on the variable height of the fuel in the ut. 2. orbits mode data fitting proposed by the author is used only for the distribution of data that forms a semicircle or ellipse in the first quadrant. 3. the data to be approximated is the fuel measurement manual in the ut from the semarang regency metrology agency. http://dx.doi.org/10.18860/ca.v7i1.14407 mailto:joviandianpratama@yahoo.com elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 317 4. it is assumed that ut is not tilted or flat during measurement, including tank trucks that deliver fuel to gas stations or are filling supplies at gas stations. 5. ut for the right and left have the same shape alias symmetrical, due to the second assumption. in [3] data fitting is applied to approximate the shape of an island on the map, then in [4] the curve fitting which is used to detect enlarged and shrinking eye retina, research in [3] and [4] has their additional algorithm to approach the desired result, which will also be applied to the orbits mode data fitting starting from the proposed method and the object applied to calibration is something new. in [5] hyper least square or hyperls was also introduced and [6] also calibrated data in the form of curves but using an orthogonal matrix where the more data the more complicated, so the method will be difficult for large data. from [7] there is a design drawing of a buried tank where the tank is in the form of a capsule tube with a cross section that is not flat or protruding so that according to [8] also, changes in volume in the tank tend to form a semicircle or half an ellipse or a parabola. the approximation function used by gas stations throughout indonesia is linear interpolation which is not smooth, then by using the pertalite (pertamina fuel products) measuring book data a smooth volume change approximation function with elliptical orbits mode will be formed, and then will be any improvement on ellips height control to minimize residual sum of square (rss) and mean square error (mse), where the data used is the change in the volume of fuel in the tank based on changes in the height of the fuel in the ut in units (cm) and will be converted to fuel volume (liter). therefore, the author proposes method because the calculation is simpler for small and large data and is smoother, although only for data that tends to be semicircular or elliptical, to approximate the fuel volume with minimized errors. orbits mode data fitting is a method proposed by the author in approximating the function of the data which tends to be in the form of a semi-circle or half an ellipse. in [1] and [2] the author introduced the orbits mode data fitting method only in a circle shape, then compared it with cubic spline interpolation and least square data fitting, but this time the authors made the orbits mode data fitting method in the shape of an ellipse too, because in the value approach there is a volume of fuel which has not been detected in the function. definition 1 (ellipse equation) in [9] the ellipse equation is presented in equation (1) which (๐‘,๐‘ž) is the center point of the ellipse with the major and minor axes adjusting ๐‘Ž and ๐‘, (๐‘ฅ โˆ’๐‘)2 ๐‘Ž2 + (๐‘ฆ โˆ’๐‘ž)2 ๐‘2 = 1 (1) definition 2 (๐‘จ๐’Š set for ellipse mode) a set ๐ด๐‘– of points formed from two ellipse equations is defined as follows, ๐ด๐‘– = {(๐‘ฅ,๐‘ฆ) | ๐‘‘๐‘–1 < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ๐‘‘๐‘–2 }, (2) with ๐‘– = 1,2,โ€ฆ,๐‘˜. the set (2) it can be visualized as follows, elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 318 figure 1. set visualization ๐ด๐‘– (2) with ๐‘ฅ๐‘ค 2 = (๐‘ฅ โˆ’ ๐‘ค 2 ) and ๐‘ค = height of ut and ๐‘™ = a half of maximum fuel change in ut defined ๐‘ค 2 (โˆš๐‘‘๐‘–2 โˆ’โˆš๐‘‘๐‘–1) = ๐‘™ 2 (โˆš๐‘‘๐‘–2 โˆ’โˆš๐‘‘๐‘–1) = ๐‘ก๐‘– the thickness of the ellipse from the partition interval taken from the maximum and minimum values of the volume change [ฮด๐‘‰(โ„Ž)๐‘š๐‘–๐‘›,ฮด๐‘‰(โ„Ž)๐‘š๐‘Ž๐‘ฅ] will be divided by several partitions where the thickness with the most points is sought, then [ฮด๐‘‰(โ„Ž)๐‘š๐‘–๐‘›,ฮด๐‘‰(โ„Ž)๐‘š๐‘Ž๐‘ฅ] = [๐‘‘11,๐‘‘12]โˆช [๐‘‘21,๐‘‘22]โˆช [๐‘‘31,๐‘‘32] โˆชโ€ฆโˆช[๐‘‘๐‘˜1,๐‘‘๐‘˜2] (3) with ๐‘‘๐‘–2 = ๐‘‘(๐‘–+1)1 and the intersection of the respective sub-blankets of the minimum and maximum volume intervals in equation (3) is denoted for each [๐‘‘๐‘–1,๐‘‘๐‘–2]โˆฉ [๐‘‘(๐‘–+1)1,๐‘‘(๐‘–+1)2] is equal to ๐‘‘๐‘–2 or ๐‘‘(๐‘–+1)1, where ๐‘– = 1,2,โ€ฆ,๐‘˜ with ๐‘˜ is the number of blankets dividing the maximum and minimum intervals of the volume change. definition 3 (partition of ๐‘จ๐’Š set) partition of ๐ด๐‘– set that divide ๐ด๐‘– set to become partitions or sets of points between 2 ellipses equations, defined as follows, ๐ด1 = {(๐‘ฅ,๐‘ฆ) | ๐‘‘11 < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ๐‘‘12 } ๐ด2 = {(๐‘ฅ,๐‘ฆ) | ๐‘‘21 < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ๐‘‘22 } ๐ด3 = {(๐‘ฅ,๐‘ฆ) | ๐‘‘31 < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ๐‘‘32 } โ€ฆ (4) elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 319 ๐ด๐‘˜ = {(๐‘ฅ,๐‘ฆ) | ๐‘‘๐‘˜1 < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ๐‘‘๐‘˜2 } set of partitions (4) can be described as follows, figure 2. the visualization of partitions set ๐ด1,๐ด2,๐ด3 up to ๐ด๐‘˜ (4) definition 4 (elliptical orbits mode) elliptical orbits mode was choose partition has the most points, defined as follows: ๐‘€๐‘Ž๐‘ฅ(๐‘›(๐ด๐‘–)) = ๐‘€๐‘Ž๐‘ฅ(๐‘›(๐ด1),๐‘›(๐ด2),๐‘›(๐ด3),โ€ฆ,๐‘›(๐ด๐‘˜)) (5) with ๐‘– = 1,2,โ€ฆ,๐‘˜. if there is a condition where ๐‘€๐‘Ž๐‘ฅ(๐‘›(๐ด๐‘–)) = ๐‘›(๐ด๐‘˜1) = โ‹ฏ = ๐‘›(๐ด๐‘˜๐‘š), then the average ellipses scale ๐ด๐‘˜1,๐ด๐‘˜2,โ€ฆ,๐ด๐‘˜๐‘š is taken so ๐‘€๐‘Ž๐‘ฅ(๐‘›(๐ด๐‘–)) = ๐‘›(๐ด๐‘š ฬ…ฬ… ฬ…ฬ… ), therefore, the inequality whose ellipse will change is defined ๐ด๐‘šฬ…ฬ… ฬ…ฬ… as follows, ๐ด๐‘šฬ…ฬ… ฬ…ฬ… = {(๐‘ฅ,๐‘ฆ) |( ๐‘‘๐‘˜11 +โ‹ฏ+๐‘‘๐‘˜๐‘š1 ๐‘š ) < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ( ๐‘‘๐‘˜12 +โ‹ฏ+๐‘‘๐‘˜๐‘š2 ๐‘š ) } the next step, because we have obtained ๐ด๐‘– or ๐ด๐‘šฬ…ฬ… ฬ…ฬ… , then we approximate ellipse equation, divided which can be devide into two cases: case 1, [๐‘ด๐’‚๐’™(๐’(๐‘จ๐’Š)) = ๐’(๐‘จ๐’Ž)] based on the set with the maximum number of points between 2 ellipses, choose ๐ด๐‘š = {(๐‘ฅ,๐‘ฆ) | ๐‘‘๐‘š1 < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ๐‘‘๐‘š2 }, so that we get: ๐‘‘๐‘š1 < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ๐‘‘๐‘š2 โŸน ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 = ( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โŸน ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 (6) elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 320 the steps in (6) can be visualized as follows, figure 3. visualization steps in (6) therefore, from (6) the result of the elliptical orbital mode is a semicircular function by substituting ๐‘ฅ๐‘ค 2 = ๐‘ฅ๐‘‘๐‘š, as follows: ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’( ๐‘ฅ๐‘‘๐‘š ( ๐‘ค 2 ) ) 2 (7) with ๐‘ฅ = the fuel level in ut and ๐‘ฅ๐‘‘๐‘š = ๐‘ฅ โˆ’( ๐‘ค 2 )โˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 . theorem 1 (defined intervals for elliptical orbits mode approximation function) if ๐‘ฅ๐‘ค 2 = ๐‘ฅ๐‘‘๐‘š is substituted to ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1+๐‘‘๐‘š2 2 ) โˆ’( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 then ๐‘ฆ is defined in โ„ in the interval 0 โ‰ค ๐‘ฅ โ‰ค ๐‘ค 2 โˆ’( ๐‘ค 2 )โˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 . proof: substitute ๐‘ฅ๐‘ค 2 = ๐‘ฅ๐‘‘๐‘š to ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1+๐‘‘๐‘š2 2 ) โˆ’( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 so that it is obtained: ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’( ๐‘ฅ๐‘‘๐‘š ( ๐‘ค 2 ) ) 2 โŸบ ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’ ( ๐‘ฅ โˆ’( ๐‘ค 2 )โˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 ( ๐‘ค 2 ) ) 2 โŸบ ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’ ( ๐‘ฅ2 โˆ’๐‘ค๐‘ฅโˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 +( ๐‘ค 2 ) 2 ( ๐‘‘๐‘š1+๐‘‘๐‘š2 2 ) ( ๐‘ค 2 ) 2 ) elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 321 โŸบ ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’ ( ๐‘ฅ2 โˆ’๐‘ค๐‘ฅโˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 ( ๐‘ค 2 ) 2 ) โŸบ ๐‘ฆ = ( ๐‘™ 2 )โˆš ๐‘ฅ(๐‘คโˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 โˆ’๐‘ฅ) ( ๐‘ค 2 ) 2 โŸบ ๐‘ฆ = ( ๐‘™ ๐‘ค )โˆš๐‘ฅ(๐‘คโˆš ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 โˆ’๐‘ฅ) with ๐‘ค,๐‘‘๐‘š1,๐‘‘๐‘š2 โˆˆ โ„ +. obviously ๐‘ฆ is defined in โ„ since ๐‘ฅ(๐‘คโˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 โˆ’๐‘ฅ) โ‰ฅ 0, then ๐‘ฅ must be on both interval 0 โ‰ค ๐‘ฅ โ‰ค ๐‘คโˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 and 0 โ‰ค ๐‘ฅ โ‰ค ๐‘ค 2 โˆ’( ๐‘ค 2 )โˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 , because ๐‘คโˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 > ๐‘ค 2 โˆ’( ๐‘ค 2 )โˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 . โˆŽ substitute ๐‘ฅ๐‘ค 2 = ๐‘ฅ๐‘‘๐‘š so that the value ๐‘ฆ is defined in 0 โ‰ค ๐‘ฅ โ‰ค ๐‘ค 2 โˆ’( ๐‘ค 2 )โˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 , so that (7) the function of volume change to fuel level in the ut can be visualized as follows, figure 4. visualization of steps in (6) to (7) the function is formed from the half ellipse selected for the calibration of the buried tank whose cross-sectional area is circular but convex, so that the volume of ut will be calculated as a function of the change in volume with respect to height, which then the coordinates are taken from the change in units (cm) that will be converted to volume per centimeter (liter/cm). elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 322 case 2, [๐‘ด๐’‚๐’™(๐’(๐‘จ๐’Š)) = ๐’(๐‘จ๐’Œ๐Ÿ) = โ‹ฏ = ๐’(๐‘จ๐’Œ๐’Ž)] based on the set with the maximum number of points between two ellipses equations, ๐ด๐‘šฬ…ฬ… ฬ…ฬ… = {(๐‘ฅ,๐‘ฆ) |( ๐‘‘๐‘˜11+โ‹ฏ+๐‘‘๐‘˜๐‘š1 ๐‘š ) < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ( ๐‘‘๐‘˜12+โ‹ฏ+๐‘‘๐‘˜๐‘š2 ๐‘š ) }, then: ( ๐‘‘๐‘˜11 +โ‹ฏ+๐‘‘๐‘˜๐‘š1 ๐‘š ) < ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 < ( ๐‘‘๐‘˜12 +โ‹ฏ+๐‘‘๐‘˜๐‘š2 ๐‘š ) โŸน ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 = ( ( ๐‘‘๐‘˜11+โ‹ฏ+๐‘‘๐‘˜๐‘š1 ๐‘š )+( ๐‘‘๐‘˜12+โ‹ฏ+๐‘‘๐‘˜๐‘š2 ๐‘š ) 2 ) โŸน ( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 +( ๐‘ฆ ( ๐‘™ 2 ) ) 2 = ( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) . (8) the steps in (8) are visualized similarly in figure 11 with ๐‘‘๐‘š1 = ( ๐‘‘๐‘˜11+โ‹ฏ+๐‘‘๐‘˜๐‘š1 ๐‘š ) and ๐‘‘๐‘š2 = ( ๐‘‘๐‘˜12+โ‹ฏ+๐‘‘๐‘˜๐‘š2 ๐‘š ), then โŸน ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’( ๐‘ฅ๐‘ค 2 ( ๐‘ค 2 ) ) 2 . (9) therefore, the result of the orbital mode ellipse is a half-ellipse function, as follows: ๐‘ฆ = ( ๐‘™ 2 )โˆš( ๐‘‘๐‘š1 +๐‘‘๐‘š2 2 ) โˆ’( ๐‘ฅ๐‘‘๐‘š ( ๐‘ค 2 ) ) 2 , (10) with ๐‘ฅ = is the fuel level in ut and ๐‘ฅ๐‘‘๐‘š = ๐‘ฅ โˆ’( ๐‘ค 2 )โˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 . as stated theorem 1 about defined interval for (10) substituted ๐‘ฅ๐‘ค 2 = ๐‘ฅ๐‘‘๐‘š so that ๐‘ฆ is defined values since 0 โ‰ค ๐‘ฅ โ‰ค ๐‘ค 2 โˆ’( ๐‘ค 2 )โˆš ๐‘‘๐‘š1+๐‘‘๐‘š2 2 , we get (10) the function of the change in volume to the fuel level in the ut which is visualized similarly in figure 4. methods research steps 1. construction of mathematical model elliptical orbits mode methods with the following steps: a) construction of mathematical model elliptical orbits mode. ๏‚ท review for ellipse equation ๏‚ท define ๐ด๐‘– set for ellipse mode ๏‚ท make partition for ๐ด๐‘– set (definition) ๏‚ท choose partitions of set ๐ด๐‘– with ๐‘›(๐ด๐‘–) is the maximum value ๏‚ท divide onto two cases singular and plural maximum value elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 323 ๏‚ท create function ๐‘ฆ = ๐‘“(๐‘ฅ) from chosen ๐ด๐‘– sets ๏‚ท translate ๐‘ฆ = ๐‘“(๐‘ฅ) so that ๐‘ฆ is defined on 0 and so on, and ๏‚ท controlling height to find ellipseโ€™s height or vertical axis that minimized residual sum of square (rss) and mean square error (mse). 2. construction of mathematical model elliptical orbits mode will be applied on data from candirejo gas station, measuring book from government metrology agency specific for pertalite (fuel product of pertamina) only and visualize it. 3. measuring performance using rss [10] and mse [11,12] and compare with circle orbits mode from [1], least square with n = 2 and n = 3 from [13], and elliptical with height control. results and discussion pertalite measuring book data a calculation of gas station 45.507.21 candirejo using a measuring book from government metrology agency to determine the volume of fuel in the buried tank, so the authors are just obtained the following data which is not proceed by authors, we need this data from metrologi agency as constructor of approximation function, as follows: table 1. fuel volume measuring book data for pertalite tanks from metrology agency height (x) volume diff (y) height (x) volume diff (y) height (x) volume diff (y) 0 0.0 0.0 75 7085.9 117.7 150 16124.4 111.1 1 237.1 237.1 76 7203.5 117.6 151 16235.6 111.2 2 294.3 57.2 77 7321.2 117.7 152 16346.7 111.1 3 351.4 57.1 78 7438.8 117.6 153 16457.8 111.1 4 409.4 58.0 79 7556.5 117.7 154 16568.9 111.1 5 468.2 58.8 80 7674.1 117.6 155 16680.0 111.1 6 527.1 58.9 81 7791.8 117.7 156 16791.1 111.1 7 586.1 59.0 82 7909.4 117.6 157 16902.2 111.1 8 646.7 60.6 83 8027.1 117.7 158 17013.3 111.1 9 707.3 60.6 84 8144.7 117.6 159 17124.4 111.1 10 767.9 60.6 85 8262.4 117.7 160 17232.6 108.2 11 831.6 63.7 86 8380.0 117.6 161 17337.9 105.3 12 896.1 64.5 87 8497.6 117.6 162 17443.2 105.3 13 960.6 64.5 88 8615.3 117.7 163 17548.4 105.2 14 1026.7 66.1 89 8732.9 117.6 164 17653.7 105.3 15 1093.3 66.6 90 8855.0 122.1 165 17758.9 105.2 16 1160.0 66.7 91 8980.0 125.0 166 17864.2 105.3 17 1228.3 68.3 92 9105.0 125.0 167 17969.5 105.3 18 1297,2 68.9 93 9230.0 125.0 168 18065.7 96.2 19 1366.2 69.0 94 9355.0 125.0 169 18161.0 95.3 20 1439.3 73.1 95 9480.0 125.0 170 18256.2 95.2 21 1513.3 74.0 96 9605.0 125.0 171 18351.4 95.2 22 1588,0 74.7 97 9730.0 125.0 172 18446.7 95.3 23 1668.0 80.0 98 9855.0 125.0 173 18541.9 95.2 elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 324 height (x) volume diff (y) height (x) volume diff (y) height (x) volume diff (y) 24 1748.0 80.0 99 9980.0 125.0 174 18637.1 95.2 25 1830.0 82.0 100 10105.0 125.0 175 18732.4 95.3 26 1913,3 83.3 101 10230.0 125.0 176 18825.5 93.1 27 1997,4 84.1 102 10355.0 125.0 177 18916.4 90.9 28 2084,3 86.9 103 10480.0 125.0 178 19007.3 90.9 29 2171.3 87.0 104 10605.0 125.0 179 19098.2 90.9 30 2261.8 90.5 105 10730.0 125.0 180 19189.1 90.9 31 2352.7 90.9 106 10855.0 125.0 181 19280.0 90.9 32 2446.7 94.0 107 10980.0 125.0 182 19370.9 90.9 33 2541.9 95.2 108 11105.0 125.0 183 19458.3 87.4 34 2637.1 95.2 109 11230.0 125.0 184 19545.2 86.9 35 2732.4 95.3 110 11355.0 125.0 185 19632.2 87.0 36 2830.0 97.6 111 11480.0 125.0 186 19719.1 86.9 37 2930.0 100.0 112 11605.0 125.0 187 19804.0 84.9 38 3030.0 100.0 113 11730.0 125.0 188 19884.0 80.0 39 3130.0 100.0 114 11855.0 125.0 189 19964.0 80.0 40 3230.0 100.0 115 11980.0 125.0 190 20044.0 80.0 41 3330.0 100.0 116 12105.0 125.0 191 20124.0 80.0 42 3430.0 100.0 117 12230.0 125.0 192 20202.2 78.2 43 3530.0 100.0 118 12355.0 125.0 193 20276.3 74.1 44 3630.0 100.0 119 12480.0 125.0 194 20350.4 74.1 45 3730.0 100.0 120 12605.0 125.0 195 20420.0 69.6 46 3832.6 102.6 121 12730.0 125.0 196 20486.7 66.7 47 3937.9 105.3 122 12855.0 125.0 197 20553.3 66.6 48 4043,2 105.3 123 12980.0 125.0 198 20617.5 64.2 49 4148.4 105.2 124 13105.0 125.0 199 20680.0 62.5 50 4257.8 109.4 125 13227.1 122.1 200 20742.5 62.5 51 4368.9 111.1 126 13344.7 117.6 201 20802.9 60.4 52 4480.0 111.1 127 13462.4 117.7 202 20860.0 57.1 53 4591.1 111.1 128 13580.0 117.6 203 20917.1 57.1 54 4702.2 111.1 129 13697.6 117.6 204 20974.3 57.2 55 4813.3 111.1 130 13815.3 117.7 205 21028.6 54.3 56 4924.4 111.1 131 13932.9 117.6 206 21082.7 54.1 57 5035,6 111.2 132 14050.6 117.7 207 21136.8 54.1 58 5146.7 111.1 133 14168,2 117.6 208 21187.1 50.3 59 5257.8 111.1 134 14285.9 117.7 209 21222.9 35.8 60 5368.9 111.1 135 14403.5 117.6 210 21258.6 35.7 61 5480.0 111.1 136 14521.2 117.7 211 21294.3 35.7 62 5591.1 111.1 137 14638.8 117.6 212 21330.0 35.7 63 5702.2 111.1 138 14756.5 117.7 213 21365,7 35.7 64 5813.3 111.1 139 14874.1 117.6 214 21387.1 21.4 65 5924.4 111.1 140 14991.8 117.7 215 21399.1 12.0 66 6035.6 111.2 141 15109.4 117.6 216 21411.0 11.9 67 6146.7 111.1 142 15227.1 117.7 217 21422.9 11.9 68 6262.4 115.7 143 15344.7 117.6 218 21434.8 11.9 elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 325 69 6380.0 117.6 144 15457.8 113.1 219 21446.7 11.9 70 6497.6 117.6 145 15568.9 111.1 220 21458.6 11.9 71 6615.3 117.7 146 15680.0 111.1 221 21470.5 11.9 72 6732.9 117.6 147 15791.1 111.1 222 21482.4 11.9 73 6850.6 117.7 148 15902.2 111.1 222.3 21486.0 3.6 74 6968.2 117.6 149 16013.3 111.1 approximation using elliptical orbits mode (eom) table 1 is used as sample data; we derive elliptical orbits mode approach as an approximation to the change of fuel volume. to obtain a half-ellipse function from the smallest to the largest abscissa, choose, ๐‘ค 2 = maximum height on underground tank 2 = 222.3 2 = 111.15 ๐‘™ 2 = maximum volume change on undergorund tank = 125 after that, select the difference ๐‘‘๐‘–1 and ๐‘‘๐‘–2 for the prefix of the ๐ด๐‘– set which is ๐‘ก๐‘– = 0.2 defined as follows, ๐ด๐‘– = {(๐‘ฅ,๐‘ฆ) |0.8 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 1} with step-size = 0.02 then the number of partitions is obtained ๐‘ก๐‘– ๐‘ ๐‘ก๐‘’๐‘โˆ’๐‘ ๐‘–๐‘ง๐‘’ = 10, so that the partitions are obtained from the ๐ด๐‘–set with ๐‘– = 1,2,โ€ฆ,10, ๐ด1 = {(๐‘ฅ,๐‘ฆ) | 0.98 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 1} ๐ด2 = {(๐‘ฅ,๐‘ฆ) | 0.96 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.98} ๐ด3 = {(๐‘ฅ,๐‘ฆ) | 0.94 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.96} ๐ด4 = {(๐‘ฅ,๐‘ฆ) | 0.92 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.94} ๐ด5 = {(๐‘ฅ,๐‘ฆ) | 0.90 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.92} ๐ด6 = {(๐‘ฅ,๐‘ฆ) | 0.88 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.90} ๐ด7 = {(๐‘ฅ,๐‘ฆ) | 0.86 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.88} ๐ด8 = {(๐‘ฅ,๐‘ฆ) | 0.84 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.86} ๐ด9 = {(๐‘ฅ,๐‘ฆ) | 0.82 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.84} ๐ด10 = {(๐‘ฅ,๐‘ฆ) | 0.80 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.82} elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 326 accordingly, the value of ๐‘›(๐ด๐‘–) for ๐‘– = 1,2,โ€ฆ,10 is provided in table 2. table 2. calculation of elliptical orbits mode๐‘›(๐ด๐‘–) ๐‘จ๐’Š ๐’(๐‘จ๐’Š) ๐ด1 11 ๐ด2 15 ๐ด3 16 ๐ด4 26 ๐ด5 25 ๐ด6 19 ๐ด7 9 ๐ด8 3 ๐ด9 0 ๐ด10 0 according to table 2 it is obtained that ๐‘€๐‘Ž๐‘ฅ(๐‘›(๐ด๐‘–)) = ๐‘›(๐ด4), with ๐‘– = 1,2,โ€ฆ,10 the selected ๐ด4 set , after that from the ๐ด4 set the following functions ๐‘ฆ = ๐‘“(๐‘ฅ) will be formed, 0.92 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.94 โ‡’ (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 = ( 0.92+0.94 2 ) 0.92 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.94 โ‡’ (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 = 0.93 0.92 < (๐‘ฅ โˆ’111.15)2 (111.15)2 + ๐‘ฆ2 (125)2 < 0.94 โ‡’ ๐‘ฆ = 125โˆš0.93โˆ’ (๐‘ฅ โˆ’111.15)2 (111.15)2 . then the translation ๐‘ฆ = ๐‘“(๐‘ฅ) to be defined at 0 โ‰ค ๐‘ฅ โ‰ค 111.15โˆ’111.15โˆš0.93 or around 0 โ‰ค ๐‘ฅ โ‰ค 3,96, substitution ๐‘ฅ๐‘ค 2 = (๐‘ฅ โˆ’111.5) with ๐‘ฅ๐‘‘๐‘š = (๐‘ฅ โˆ’111.15โˆš0.93), so that we get: ๐‘ฆ = 125โˆš0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 (11) with ๐‘ฆ = change in the volume of fuel with respect to fuel height, x., for visualization of the graph of changes in the volume of fuel obtained: figure 5. graph of change in fuel volume by eom elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 327 based on figure 5, the eom results produce a function that is fit to the pertalite volume change data, the volume as function of height (h) is then obtained by the following integration: ๐‘‰(โ„Ž) = โˆซ125โˆš0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 โ„Ž 0 ๐‘‘๐‘ฅ using the help of maple 2015 the integral results are obtained as follows, ๐‘‰(โ„Ž) = 535945891 800000000000000000 โˆš18792746045928961 + 116250000 17040701 โˆš896879arcsin( 10182971929 93000000000000 โˆš896879โˆš93) + 1 160000000000 (โˆ’8094332975000000000000 โ„Ž2 +1735249799334822290000000 โ„Ž +18792746045928961) 1 2 โ„Ž โˆ’ 535945891 800000000000000000 (โˆ’8094332975000000000000 โ„Ž2 +1735249799334822290000000 โ„Ž +18792746045928961) 1 2 + 116250000 17040701 โˆš896879arcsin( 19 93000000000000 โˆš896879โˆš93(5000000 โ„Ž โˆ’535945891)); (12) where ๐‘‰(โ„Ž) is defined on the interval 0 โ‰ค โ„Ž โ‰ค 222.3โˆš0.93. the eom version of the fuel volume calculation uses (12) with ๐‘‰๐‘š๐‘Ž๐‘ฅ = 20.296.55 liters. elliptical orbits mode with elliptical height control on data pertalite based on figure 5, it can be seen that the volume change function according to eom will regress more pertalite data if the ellipse height is higher, so it is necessary to adjust the ellipse height. the eom result at (11) has an elliptical height 125 which represents the equation so that it has a volume change function with respect to the fuel level in the ut, with the general form of (11): ๐ธ๐‘‚๐‘€(๐œƒ,๐‘ฅ) = ๐œƒ โˆ™โˆš0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 (13) with ๐œƒ is the height of the ellipse, defined on the interval 0 โ‰ค ๐‘ฅ โ‰ค 222.3โˆš0.93. choose ๐œƒ the one that minimizes the residual sum square ๐ธ = โˆ‘ (๐‘ฆ๐‘– โˆ’๐ธ๐‘‚๐‘€(๐œƒ,๐‘ฅ๐‘–)) 2 โŒŠ222.3โˆš0.93โŒ‹ ๐‘–=1 ๐ธ = โˆ‘(๐‘ฆ๐‘– 2 โˆ’2๐ธ๐‘‚๐‘€(๐œƒ,๐‘ฅ๐‘–)๐‘ฆ๐‘– +๐ธ๐‘‚๐‘€ 2(๐œƒ,๐‘ฅ๐‘–)) 214 ๐‘–=1 elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 328 ๐ธ = โˆ‘๐‘ฆ๐‘– 2 214 ๐‘–=1 โˆ’2โˆ‘๐ธ๐‘‚๐‘€(๐œƒ,๐‘ฅ๐‘–)๐‘ฆ๐‘– 214 ๐‘–=1 +โˆ‘(๐ธ๐‘‚๐‘€(๐œƒ,๐‘ฅ๐‘–)) 2 214 ๐‘–=1 ๐ธ = โˆ‘๐‘ฆ๐‘– 2 214 ๐‘–=1 โˆ’2โˆ‘๐‘ฆ๐‘– โˆ™ ๐œƒ โˆš0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 214 ๐‘–=1 +โˆ‘(๐œƒโˆš0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 ) 2 214 ๐‘–=1 ๐ธ = โˆ‘๐‘ฆ๐‘– 2 214 ๐‘–=1 โˆ’2โˆ‘๐‘ฆ๐‘– โˆ™ ๐œƒ โˆš0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 214 ๐‘–=1 +โˆ‘๐œƒ2 (0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 ) 214 ๐‘–=1 then, to find ๐œƒ the minimization of ๐ธ, find the solution of the equation ๐œ•๐ธ ๐œ•๐œƒ = 0, we get: โŸบ โˆ’2โˆ‘๐‘ฆ๐‘– โˆš0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 214 ๐‘–=1 +2๐œƒโˆ‘(0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 ) 214 ๐‘–=1 = 0 โŸบ โˆ’2โˆ‘ ๐‘ฆ๐‘–โˆš0.93โˆ’ (๐‘ฅโˆ’111.15โˆš0.93) 2 (111.15)2 214 ๐‘–=1 +2๐œƒโˆ‘ (0.93โˆ’ (๐‘ฅโˆ’111.15โˆš0.93) 2 (111.15)2 )214๐‘–=1 2โˆš0.93โˆ’ (๐‘ฅโˆ’111.15โˆš0.93) 2 (111.15)2 = 0 โŸบ โˆ’โˆ‘๐‘ฆ๐‘– 214 ๐‘–=1 +๐œƒโˆ‘โˆš0.93โˆ’ (๐‘ฅ โˆ’111.15โˆš0.93) 2 (111.15)2 214 ๐‘–=1 = 0 โŸบ ๐œƒ = โˆ‘ ๐‘ฆ๐‘– 214 ๐‘–=1 โˆ‘ โˆš0.93โˆ’ (๐‘ฅโˆ’111.15โˆš0.93) 2 (111.15)2 214 ๐‘–=1 by using the data in table 1, it is obtained ๐œƒ โ‰ˆ 130,37 that from (27) it is obtained: ๐ธ๐‘‚๐‘€(130,37,๐‘ฅ) = 130,37 โˆ™โˆš0.93 โˆ’ (๐‘ฅ โˆ’ 111.15โˆš0.93) 2 (111.15)2 and visualized the graph of the function of the change in fuel volume and the actual fuel volume change in the reservoir as follows: figure 6. graph of changes in fuel volume by ๐ธ๐‘‚๐‘€(๐œƒ) elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 329 based on figure 6 ๐‘ฆ = ๐‘“(๐‘ฅ) the ๐ธ๐‘‚๐‘€(๐œƒ)results produce a function that is more fit to the pertalite data than the eom results in figure 5, then we calculate the volume function ๐‘‰(โ„Ž) with integral and with (24) obtained: ๐‘‰๐œƒ(โ„Ž) = 130,37 125 โˆ™๐‘‰(โ„Ž) where .๐‘‰๐œƒ(โ„Ž) is defined on the interval 0 โ‰ค โ„Ž โ‰ค 222.3. calculation of the volume of the fuel ๐ธ๐‘‚๐‘€(๐œƒ) version has ๐‘‰๐‘š๐‘Ž๐‘ฅ = 21.166,71 liters. comparison of approximate visualization results data visualization results from circle orbits mode, elliptical orbits mode, ๐ธ๐‘‚๐‘€(๐œƒ), least square data fitting ๐‘› = 2, and least square data fitting ๐‘› = 3, as follows: figure 7. comparison graph of approximation method results the results of the calculation of changes in the volume of fuel based on the height of the fuel in the ut will be applied to the pertalite data to search for rss and mse from each result. pertalite data approximation rss and mse calculation comparison of the results between the proposed method and other methods can be seen from the calculation of rss and mse with liter unit in table 3 below: table 3. pertalite data approximation rss and mse calculation method rss mse ๐ถ๐‘‚๐‘€ 40.390,49 185,28 ๐ธ๐‘‚๐‘€ 8.529,37 39,67 ๐ฟ๐‘†(๐‘› = 2) 8.980,63 40,09 ๐ฟ๐‘†(๐‘› = 3) 7.574,51 33,81 ๐ธ๐‘‚๐‘€(๐œƒ) 6.415,32 29,84 based on table 3 the calculation of com which has the largest rss and mse, for eom has rss and mse which is slightly below ๐ฟ๐‘†(๐‘› = 2), but still above ๐ฟ๐‘†(๐‘› = 3), then by controlling the height of the ellipse to find ๐œƒ that minimizes the rss we obtain the minimum i.e. 6.415,32 and its mse 29,84. the smallest value rss and mse are obtained elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 330 when using ๐ธ๐‘‚๐‘€(๐œƒ). pertalite data approximation is not compared to the calculation of gas stations and cubic spline interpolation because the rss and mse are definitely 0 and have unsmooth approximation. defined domain interval and maximum volume in the orbits mode data fitting construction, there is a reduction in the bbm altitude domain in the ut, so that it is only defined at a certain height. the results of the comparison of the defined domain height and the maximum volume of each approximation method are as follows: table 4. domain height intervals and maximum volume approximation method approximation method domain height (cm) ๐‘ฝ๐’Ž๐’‚๐’™ maximum volume (liter) gas station calculation 0 โ‰ค โ„Ž โ‰ค 222,3 ๐‘‰๐‘š๐‘Ž๐‘ฅ = 21.486.00 liter. circle orbits mode 0 โ‰ค โ„Ž โ‰ค 217,1 ๐‘‰๐‘š๐‘Ž๐‘ฅ = 18.508,85 liter. elliptical orbits mode 0 โ‰ค โ„Ž โ‰ค 222,3โˆš0,93 ๐‘‰๐‘š๐‘Ž๐‘ฅ = 20.296,55 liter. ๐ธ๐‘‚๐‘€(๐œƒ) 0 โ‰ค โ„Ž โ‰ค 222,3โˆš0,93 ๐‘‰๐‘š๐‘Ž๐‘ฅ = 21.166,04 liter. least square ๐‘› = 2 0 โ‰ค โ„Ž โ‰ค 222,3 ๐‘‰๐‘š๐‘Ž๐‘ฅ = 21.248,90 liter. least square ๐‘› = 3 0 โ‰ค โ„Ž โ‰ค 222,3 ๐‘‰๐‘š๐‘Ž๐‘ฅ = 21.256,66 liter. the calculation result of circle orbits mode is only defined to altitude 217,1 cm there is a reduction of 5,2 cm and elliptical orbits mode is only defined to a height of 222,3โˆš0,93 cm or about 214,382 cm, there is a reduction of (222,3โˆ’222,3โˆš0,93) cm or about 7,92 cm. for further research, this has no effect on the application of daily sales data (according to dispenser) if the maximum height of fuel data is below 214,38 cm. so that the value is defined for all data as well as each approximation method as well. approximation results will be validated by measuring mean average deviation (mad) based on [14] and then mean absolute percentage error (mape) based on [15]. if aproximation results has mape below on 10% then aproximation methods is very feasible. conclusions based on the results and discussion, it can be concluded that the method of approximating the pertalite data with the smallest rss and mse is ๐ธ๐‘‚๐‘€(๐œƒ) by ๐œƒ โ‰ˆ 130,37, resulting in rss and mse respectively are 6.415,32 and 29,81. ๐ธ๐‘‚๐‘€(๐œƒ) also produces a more fit half-ellipse function than other approximation methods. the results of the comparison of the approximation of the pertalite data are compared with ๐ถ๐‘‚๐‘€, ๐ธ๐‘‚๐‘€, ๐ฟ๐‘†(๐‘› = 2), and ๐ฟ๐‘†(๐‘› = 3) although ๐ธ๐‘‚๐‘€(๐œƒ) produces rss and mse, which are smaller than other methods, there is a reduction in the altitude domain and has a different maximum volume compared to the calculation of gas stations. according to the gas station metrology measurement book, the height of the ut is 222,3 cm and has a maximum volume of 21.486 liters, but ๐ธ๐‘‚๐‘€(๐œƒ) only detects the volume of fuel up to a height of about 214,1 cm and the maximum volume is below the calculation of the gas station. the author hopes for the development of this research, applied to different types of fuel such as pertamax and dexlite. as well as for a more real problem under study, use data on changes in the height and volume of bbm based on daily sales according to the bbm dispenser which must first be tested for the accuracy of the bbm dispenser used. as well as calculating errors using mape, mad, and other error calculations. elliptical orbits mode application for approximation of fuel volume change jovian dian pratama, ratna herdiana, susilo hariyanto 331 references [1] pratama, j.d., herdiana, r., hariyanto, s., application of orbits mode data fitting for dipstick calibration of altitude measuring instruments into volume of fuel oil in the tank compared with cubic spline interpolation, snast โ€“ national seminar on application of science and technology, akprind โ€“ yogyakarta, 138 146, 2021 [2] pratama, j.d., herdiana, r., hariyanto, s., application of orbits mode data fitting for dipstick calibration. journal of mathematics education: judika education, 4(2), 107118., 2021. [3] urang, job g., ebong, ebong, d., dkk., a new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: a case study of niger delta, nigeria. journal of applied geophysics 183 (2020) 104207, 2020. [4] ma, z. and ho, k.c., asymptotically efficient estimators for the fittings of coupled circles and ellipses. digital signal processing 25 (2014) 28 โ€“ 40, 2014. [5] kenichi, kanatani. and rangarajan, prasanna. hyper least sqeuares fitting of circles and ellipses. computational statistics and data analysis 55 (2011) 2197 โ€“ 2208, 2014. [6] wang, ningming, and wang, shuhua. a calibration data curve fitting method based on matrix orthogonal triangulation. procedia comupter science 174 (2020) 89 โ€“ 94, 2020. [7] tambun, m. saputra., soedjarwanto, noer., & trisanto, agus. tank monitoring model design of gas stations using microcontroller-based ultrasonic waves, electrician โ€“ journal of electrical engineering and technology, 9, no.2. 2015. [8] martin, julia, adana, david daffos ruiz de, and . asuero, agustin g. fitting the model to the data: residue analysis, primer, intechopen, doi: 10.5772/68049. 2017. [9] sibarani, maslen. linear algebra. second edition. jakarta: pt. rajagrafindo persada, 2014. [10] manuel melgosa, rafael huertas, and roy s. berns, "performance of recent advanced color-difference formulas using the standardized residual sum of squares index," j. opt. soc. am. a 25, 1828-1834. 2008. [11] heaton, j. introduction to neural networks for c#. 2nd ed. heaton research inc. 2008 [12] gareth, james; witten, daniela; hastie, trevor; tibshirani, rob. an introduction to statistical learning: with applications in r. springer. isbn 978-1071614174. 2021. [13] burden, richard l & faires, j. douglas. numerical analysis. 9th edition. boston: brooks/cole cengage learning. 2010. [14] zhang, p.. an interval meanโ€“average absolute deviation model for multiperiod portfolio selection with risk control and cardinality constraints. soft comput 20, 1203โ€“1212 https://doi.org/10.1007/s00500-014-1583-3. 2016. [15] de myttenaere, b golden, b le grand, f rossi. "mean absolute percentage error for regression models", neurocomputing 2016 arxiv:1605.02541. 2015. 4. imam fahcruddin positifitas dan ketercapaian positifitas dan ketercapaian sistem linier fractional waktu kontinu imam fahcruddin mahasiswa progam studi s2 matematika fmipa universitas gadjah mada yogyakarta e-mail: fahrudinuin@gmail.com abstract this paper studies a solution of the fractional continuous-time linier system. necessary and sufficient condition were established for the internal and external positivity of fractional systems. sufficient conditions are given for the reachability of fractional positive systems. keywords: fractional systems, positive systems, reachability pendahuluan sudah menjadi familiar, ketika fenomena dalam kehidupan sehari-hari sering dimodelkan dalam persamaan differensial. beberapa model matematika yang telah dipublikasikan, berupa sistem persamaan differensial dengan orde n, ๏ฟฝ ๏ฟฝ ๏ฟฝ. oleh sebab itu, sebagian besar pemerhati matematika sudah familiar dengan notasi-notasi ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ atau ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ , ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ atau ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ , bahkan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ atau ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ,๏ฟฝ ๏ฟฝ ๏ฟฝ. lantas, bagaimana saat orde dari persamaan differensial tersebut bukan bilangan bulat, tetapi real bahkan kompleks, seperti ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ atau ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ? lebih lanjut, bagaimana aplikasi dari persamaan differensial tersebut, apakah hanya sekedar fantasi matematika saja. fractional calculus merupakan salah satu topik dalam matematika yang mengkaji integral atau differensial dengan sebarang orde (podlubny, 1999 : 42). pembahasan mengenai fractional calculus mulai dibahas secara rinci oleh leibnitz pada abad ke-18, kemudian dikembangkan lagi oleh lโ€™hospital, euler, lagrange, laplace, riemann, fourier, liouville, dan caputo. seiring dengan perkembangan sains dan teknologi, kompleksitas dari kejadian alam yang dialami tak bisa dipungkiri lagi. hal ini menyebabkan adanya sub-sub sistem dalam sebuah model perlu dikaji lebih dalam. dalam berbagai aplikasi pemodelan, sering dihadapkan pada permasalahan positifitas. yang berarti variabel input, output, bahkan variabel state diinginkan bernilai tidak negatif. seperti dalam model ekonomi, misalnya kuantitas dari investasi dan pajak selalu bernilai positif. selain itu pemodelan dari masalah transpor polutan dan populasi juga memerlukan variabel-variabel yang bernilai positif. sehingga penelitian mengenai positifitas pada sistem matematika berkembang pesat dewasa ini. pada paper ini, dibicarakan dua aspek penting terkait sistem linier fractional waktu kontinu, yaitu dari sisi kuantitatif maupun kualitatif. mengenai aspek kuantitatif akan dibicarakan solusi dari sistem, sedangkan aspek kualitatif akan dikaji positifitas dan ketercapaian pada sistem tersebut. dalam pembahasannya, disertai beberapa contoh aplikatif tentang sirkuit elektronika, yang didasarkan pada hasil penelitian dzieliล„ski. beberapa notasi yang digunakan dalam paper ini, diantaranya himpunan matriks nxm atas bilangan riil dinotasikan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, dan ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ. himpunan matriks mxn atas bilangan riil yang entri-entrinya nonnegatif dinotasikan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, dan ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ. suatu matriks a dengan entri nonnegatif dinotasikan dengan ๏ฟฝ ๏ฟฝ 0, dan matriks identitas nxn dinotasikan dengan ๏ฟฝ๏ฟฝ. kajian teori pada subbab ini, terlebih dahulu akan dipaparkan beberapa alat-alat yang digunakan untuk menyelesaikan solusi dari sistem linier fractional waktu kontinu. definisi 1 (chen, 1984 : 56) diberikan fungsi f terdefinisi untuk 0 ๏ฟฝ ๏ฟฝ ๏ฟฝ โˆž. transformasi laplace dari f, dinotasikan dengan atau !"๏ฟฝ๏ฟฝ๏ฟฝ #, didefinisikan oleh ๏ฟฝ$ % !"๏ฟฝ๏ฟฝ๏ฟฝ # % & '()*๏ฟฝ๏ฟฝ๏ฟฝ +๏ฟฝ,โˆž, (1) asalkan integral (1) ada untuk setiap s yang lebih besar atau sama dengan suatu nilai $,. dari definisi diatas, dapat dihasilkan beberapa sifat transformasi laplace, seperti sifat konvolusi, yaitu: jika ๏ฟฝ๏ฟฝ$ % !"๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ #, ๏ฟฝ$ % !"๏ฟฝ ๏ฟฝ๏ฟฝ # maka ! -& ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ . / ๏ฟฝ ๏ฟฝ/ +/*, 0 % ๏ฟฝ๏ฟฝ$ ๏ฟฝ$ . positifitas dan ketercapaian sistem linier fractional waktu kontinu jurnal cauchy โ€“ issn: 2086-0382 19 kemudian, berikut ini dipaparkan beberapa fungsi yang berperan penting dalam pembahasan sistem linier fractional, yaitu fungsi gamma yang menggeneralisasi n! ke bilangan tidak bulat, bahkan rasional dan fungsi mittag-leffler yang merupakan generalisasi dari fungsi eksponensial ')1*, yang berguna untuk mendapatkan solusi dari sistem tersebut. definisi 2 (podlubny, 1999 : 1) fungsi gamma yang dinotasikan dengan 2๏ฟฝ๏ฟฝ didefinisikan oleh integral 2๏ฟฝ๏ฟฝ % 3 ๏ฟฝ๏ฟฝ(๏ฟฝ'(*+๏ฟฝ, ๏ฟฝ 4 0.โˆž, definisi 3 (podlubny, 1999 : 16) suatu fungsi kompleks z yang didefinisikan 56๏ฟฝ7 % 8 792๏ฟฝ:; < 1 , โˆž 9>, disebut sebagai fungsi mittag-leffler dengan satu parameter. dalam paper ini, definisi fractional derivative yang digunakan adalah definisi yang dikembangkan oleh caputo, yaitu: definisi 4 (kaczorek, 2011 : 30) diberikan ?'๏ฟฝ: ๏ฟฝ ๏ฟฝ๏ฟฝ . 1,๏ฟฝ dengan ๏ฟฝ ๏ฟฝ ๏ฟฝ, dan ๏ฟฝ๏ฟฝ๏ฟฝ merupakan fungsi differensiabel sampai ke-n. derivative fractional caputo dengan orde : ๏ฟฝ ๏ฟฝ, dinotasikan dengan ๏ฟฝ6, didefinisikan sebagai ๏ฟฝ6๏ฟฝ๏ฟฝ๏ฟฝ % +6+๏ฟฝ6 ๏ฟฝ๏ฟฝ๏ฟฝ % 12๏ฟฝ๏ฟฝ . : 3 ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ/ +/๏ฟฝ๏ฟฝ . / 6๏ฟฝ๏ฟฝ(๏ฟฝ ,*, untuk ๏ฟฝ . 1 ๏ฟฝ : ๏ฟฝ ๏ฟฝ, dengan 2๏ฟฝ๏ฟฝ % & ๏ฟฝ๏ฟฝ(๏ฟฝ'(*+๏ฟฝโˆž, , ?'๏ฟฝ๏ฟฝ 4 0 adalah fungsi gamma dan ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ/ % ๏ฟฝ๏ฟฝ๏ฟฝ@ @๏ฟฝ merupakan persamaan differensial dengan orde ๏ฟฝ. dari definisi 1, dapat diperoleh hasil transformasi laplace dari derivative fractional caputo dengan orde : ๏ฟฝ ๏ฟฝ, yang disajikan dalam teorema dibawah ini: teorema 5 (kaczorek, 2011 : 31) transformasi laplace dari derivative fractional caputo diberikan oleh !"๏ฟฝ6๏ฟฝ๏ฟฝ๏ฟฝ # % $6 ๏ฟฝ$ . 8 $6(9๏ฟฝ๏ฟฝ9(๏ฟฝ ๏ฟฝ0๏ฟฝ ๏ฟฝ9>๏ฟฝ . bukti dengan menggunakan sifat konvolusi pada transformasi laplace, diperoleh !"๏ฟฝ6๏ฟฝ๏ฟฝ๏ฟฝ # % ! a 12๏ฟฝ๏ฟฝ . : 3 ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ/ +/๏ฟฝ๏ฟฝ . / 6๏ฟฝ๏ฟฝ(๏ฟฝ*, b % 12๏ฟฝ๏ฟฝ . : !"๏ฟฝ๏ฟฝ(6(๏ฟฝ# !"๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ # % 12๏ฟฝ๏ฟฝ . : 2๏ฟฝ๏ฟฝ . : $๏ฟฝ(6 c$๏ฟฝ ๏ฟฝ$ . 8 $๏ฟฝ(9๏ฟฝ๏ฟฝ9(๏ฟฝ ๏ฟฝ0๏ฟฝ ๏ฟฝ9>๏ฟฝ d % $6 ๏ฟฝ$ . 8 $6(9๏ฟฝ๏ฟฝ9(๏ฟฝ ๏ฟฝ0๏ฟฝ ๏ฟฝ9>๏ฟฝ . karena terkait dengan sistem, maka ada beberapa jenis matriks yang mempunyai karakter khusus dan menjadi syarat positifitas dan ketercapaian pada sistem linier fractional waktu kontinu, diantaranya adalah matriks metzler dan matriks monomial. definisi 6 (kaczorek, 2008 : 225) suatu matriks persegi atas bilangan rill ๏ฟฝ % efghi dikatakan matriks metsler jika entrientri yang bukan pada diagonal utamanya nonnegatif, i.e. fgh ๏ฟฝ 0 untuk j k l. definisi 7 (kaczorek, 2008 : 226) suatu matriks persegi atas bilangan riil dikatakan monomial jika dan hanya jika setiap baris dan kolom dari entri matriks tersebut hanya memuat satu entri positif dan entri yang lain bernilai 0. pembahasan solusi sistem linier fractional waktu kontinu pandang sistem linier fractional waktu kontinu yang diberikan dengan sistem linier berikut ini: ๏ฟฝ6๏ฟฝ๏ฟฝ๏ฟฝ % ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ < mn๏ฟฝ๏ฟฝ , 0 ๏ฟฝ : ๏ฟฝ 1, (8a) o๏ฟฝ๏ฟฝ % p๏ฟฝ๏ฟฝ๏ฟฝ < ๏ฟฝn๏ฟฝ๏ฟฝ , (8b) dengan ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ merupakan variabel state,n๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ variabel input, o๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝq variabel output dan ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, m ๏ฟฝ ๏ฟฝr๏ฟฝ๏ฟฝ,p ๏ฟฝ๏ฟฝq๏ฟฝr,๏ฟฝ ๏ฟฝ ๏ฟฝq๏ฟฝ๏ฟฝ. teorema 9 (kaczorek, 2008 : 224) solusi dari sistem (8a) diberikan oleh ๏ฟฝ๏ฟฝ๏ฟฝ % ฯ†,๏ฟฝ๏ฟฝ ๏ฟฝ, < 3 ฯ†๏ฟฝ๏ฟฝ . / mn๏ฟฝฯ„ +/,*, ๏ฟฝ๏ฟฝ0 % ๏ฟฝ,, (10) dengan ฯ†,๏ฟฝ๏ฟฝ % 56๏ฟฝ๏ฟฝ๏ฟฝ6 % 8 ๏ฟฝ9๏ฟฝ962๏ฟฝ;: < 1 , โˆž 9>, ๏ฟฝ11 ฯ†๏ฟฝ๏ฟฝ % 8 ๏ฟฝ9๏ฟฝ๏ฟฝ9๏ฟฝ๏ฟฝ 6(๏ฟฝ2"๏ฟฝ; < 1 :#โˆž9>, , ๏ฟฝ12 imam fahcruddin 20 volume 2 no. 1 november 2011 dimana 56๏ฟฝ๏ฟฝ๏ฟฝ6 adalah fungsi matriks mittage-leffler, 2๏ฟฝ๏ฟฝ adalah fungsi gamma. bukti dengan menerapkan transformasi laplace pada (8a), diperoleh !"๏ฟฝ6๏ฟฝ๏ฟฝ๏ฟฝ # = !"๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ < mn๏ฟฝ๏ฟฝ #= !"๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ # < !"mn๏ฟฝ๏ฟฝ # (13) berdasarkan definisi 1 dan teorema 5, hasil transformasi laplace pada (8a) adalah !"๏ฟฝ6๏ฟฝ๏ฟฝ๏ฟฝ # % $6t๏ฟฝ$ . $6(๏ฟฝ๏ฟฝ,, (14) t๏ฟฝ$ % !"๏ฟฝ๏ฟฝ๏ฟฝ # % & ๏ฟฝ๏ฟฝ๏ฟฝ '()*+๏ฟฝ,โˆž, (15) hasil subsitusi (14) ke (13), diperoleh $6t๏ฟฝ$ . $6(๏ฟฝ๏ฟฝ, % ๏ฟฝt๏ฟฝ$ < mu๏ฟฝ$ , (16) t๏ฟฝ$ % "๏ฟฝr$6 . ๏ฟฝ#(๏ฟฝv$6(๏ฟฝ๏ฟฝ, < mu๏ฟฝ$ w, (17) karena "๏ฟฝr$6 . ๏ฟฝ#vโˆ‘ ๏ฟฝ9$(๏ฟฝ9๏ฟฝ๏ฟฝ 6โˆž9>, w % ๏ฟฝr, sehingga "๏ฟฝr$6 . ๏ฟฝ#(๏ฟฝ % vโˆ‘ ๏ฟฝ9$(๏ฟฝ9๏ฟฝ๏ฟฝ 6โˆž9>, w. kemudian disubsitusikan ke (17), diperoleh t๏ฟฝ$ % y8 ๏ฟฝ9$(๏ฟฝ9๏ฟฝ๏ฟฝ 6โˆž9>, zv$6(๏ฟฝ๏ฟฝ, < mu๏ฟฝ$ w % 8 ๏ฟฝ9$(๏ฟฝ96๏ฟฝ๏ฟฝ ๏ฟฝ, < 8 ๏ฟฝ9$(๏ฟฝ9๏ฟฝ๏ฟฝ 6mu๏ฟฝ$ โˆž9>, โˆž 9>, kemudian hasil konvolusi dan invers transformasi laplace pada persamaan diatas adalah ๏ฟฝ๏ฟฝ๏ฟฝ % !(๏ฟฝ"t๏ฟฝ$ # % 8 ๏ฟฝ9!(๏ฟฝe$(๏ฟฝ9๏ฟฝ๏ฟฝ 6iโˆž9>, ๏ฟฝ, <8 ๏ฟฝ9!(๏ฟฝe$(๏ฟฝ9๏ฟฝ๏ฟฝ 6mu๏ฟฝ$ iโˆž9>, % 8 ๏ฟฝ9๏ฟฝ962๏ฟฝ;: < 1 [ 9>, ๏ฟฝ, <8 ๏ฟฝ9!(๏ฟฝe$(๏ฟฝ9๏ฟฝ๏ฟฝ 6i!(๏ฟฝ"mu๏ฟฝ$ #[9>, % ฯ†,๏ฟฝ๏ฟฝ ๏ฟฝ, < 3 ฯ†๏ฟฝ๏ฟฝ . / mn๏ฟฝฯ„ +/*, dengan ฯ†,๏ฟฝ๏ฟฝ % 56๏ฟฝ๏ฟฝ๏ฟฝ6 % 8 ๏ฟฝ9๏ฟฝ962๏ฟฝ;: < 1 , โˆž 9>, ฯ†๏ฟฝ๏ฟฝ % !(๏ฟฝ"๏ฟฝr$6 . ๏ฟฝ# % 8 ๏ฟฝ9!(๏ฟฝe$(๏ฟฝ9๏ฟฝ๏ฟฝ 6iโˆž9>, % 8 ๏ฟฝ9๏ฟฝ๏ฟฝ9๏ฟฝ๏ฟฝ 6(๏ฟฝ2"๏ฟฝ; < 1 :#โˆž9>, . catatan 1. sama halnya dengan derivative orde 1, dari (11) dan (12), untuk : % 1, diperoleh ฯ†,๏ฟฝ๏ฟฝ % ฯ†๏ฟฝ๏ฟฝ % 8 ๏ฟฝ๏ฟฝ๏ฟฝ 92๏ฟฝ; < 1 % '\*. โˆž 9>, perhatikan sirkuit elektronik yang terdiri dari resistor, superkondensator, kumparan, dan sumber tegangan (arus). dipilih variabel state yang diinginkan adalah jarak lintas (across) sumber tegangan dengan superkondensator dan arus dalam kumparan. diketahui bahwa hubungan antara arus j]๏ฟฝ๏ฟฝ dalam superkondensator dengan sumber tegangan n^๏ฟฝ๏ฟฝ (dzieliล„ski, 2009) adalah j]๏ฟฝ๏ฟฝ % p _`a๏ฟฝ* *_ untuk ๏ฟฝ 0: ๏ฟฝ 1, (18) dengan c merupakan kapasitas dari superkondensator. sama halnya, hubungan tegangan nb๏ฟฝ๏ฟฝ pada kumparan dengan arus jb๏ฟฝ๏ฟฝ adalah nb๏ฟฝ๏ฟฝ % c d1e๏ฟฝ* *d untuk 0 ๏ฟฝ f ๏ฟฝ 1, (19) dengan l merupakan inductance dari kumparan. dengan menggunakan hubungan (18) dan (19) dan hukum kirchhoff`s maka sirkuit linier fractional memenuhi persamaan state: gh hi+ 6๏ฟฝ]+๏ฟฝ6+j๏ฟฝb+๏ฟฝj kl lm % n๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ o-๏ฟฝ]๏ฟฝb0 < nm๏ฟฝm o', dengan komponen ๏ฟฝ] ๏ฟฝ ?๏ฟฝ๏ฟฝ merupakan jarak lintas tegangan dengan superkondensator, kemudian ๏ฟฝb ๏ฟฝ ?๏ฟฝ๏ฟฝ merupakan arus dalam kumparan, dan ' ๏ฟฝ ?๏ฟฝ adalah tegangan dari sirkuit. contoh. perhatikan sirkuit linier elektronika pada figur a1 yang terdiri dari resistor ?๏ฟฝ, ? , ?p, kapasitor p๏ฟฝ,p , induktor c๏ฟฝ,c dan sumber tegangan '๏ฟฝ,' . menurut (18) dan (19), dan hukum kirchhoff, sirkuit linier fractional dari figur a1 memenuhi persamaan state: j๏ฟฝ % p๏ฟฝ +6๏ฟฝn๏ฟฝ+๏ฟฝ6๏ฟฝ , j % p +6๏ฟฝn +๏ฟฝ6๏ฟฝ '๏ฟฝ % ๏ฟฝ?๏ฟฝ < ? j๏ฟฝ < c๏ฟฝ +j๏ฟฝj๏ฟฝ+๏ฟฝj๏ฟฝ < n๏ฟฝ . ?pj , ' % ๏ฟฝ? < ?p j < c +j๏ฟฝj +๏ฟฝj๏ฟฝ < n . ?pj๏ฟฝ. gambar 1. contoh sirkui elektronik positifitas dan ketercapaian sistem linier fractional waktu kontinu jurnal cauchy โ€“ issn: 2086-0382 21 persamaan state di atas dapat dibentuk: gh hh hh i _๏ฟฝ`๏ฟฝ *_๏ฟฝ _๏ฟฝ`๏ฟฝ *_๏ฟฝ d๏ฟฝg๏ฟฝ *d๏ฟฝ d๏ฟฝg๏ฟฝ *d๏ฟฝ kl ll ll m % ๏ฟฝq n๏ฟฝn j๏ฟฝj r < m '๏ฟฝ' 0, dengan ๏ฟฝ % gh hh hh i 0 0 ๏ฟฝ]๏ฟฝ 00 0 0 ๏ฟฝ]๏ฟฝ. ๏ฟฝb๏ฟฝ 0 . s๏ฟฝ๏ฟฝstb๏ฟฝ stb๏ฟฝ0 . ๏ฟฝb๏ฟฝ stb๏ฟฝ . s๏ฟฝ๏ฟฝstb๏ฟฝ kl ll ll m , m % gh hh i0 00 0๏ฟฝb๏ฟฝ 00 ๏ฟฝb๏ฟฝkl ll m . menurut teorema 9, solusi dari sistem linier fractional pada sirkuit elektronik diatas dapat diselesaikan dengan mudah. positifitas sistem linier fractional waktu kontinu diawal tadi telah disinggung tentang konsep dasar dari sistem positif. pembahasan mengenai positifitas dari sistem linier fractional waktu kontinu dibagi menjadi dua aspek, yaitu positif internal dan positif eksternal. definisi 19 (kaczorek, 2008 : 225) sistem linier fractional (8) dikatakan positif internal (internally positive) jika dan hanya jika ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝr dan o๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝu untuk ๏ฟฝ ๏ฟฝ 0 untuk sebarang initial state ๏ฟฝ, ๏ฟฝ ๏ฟฝ๏ฟฝr dan semua input n๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0. dari definsi 19, mengindikasikan bahwa variabel state dan output dari sistem (8) diharapkan selalu bernilai nonnegatif untuk ๏ฟฝ ๏ฟฝ 0 . syarat ini diperlukan agar terjadi kesesuaian antara model yang diteliti dengan fakta riil yang terjadi. oleh karena itu, perlu adanya dilakukan karakterisasi sehingga dapat dihasilkan suatu kondisi yang dibutuhkan agar ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝr untuk sebarang initial state ๏ฟฝ, ๏ฟฝ ๏ฟฝ๏ฟฝr dan semua input n๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0. lemma 20 diberikan ๏ฟฝ ๏ฟฝ ?r๏ฟฝr, ๏ฟฝ ๏ฟฝ 0 dan 0 ๏ฟฝ : ๏ฟฝ 1. maka ฯ†,๏ฟฝ๏ฟฝ % 8 ๏ฟฝ9๏ฟฝ962๏ฟฝ;: < 1 ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝr โˆž 9>, dan ฯ†๏ฟฝ๏ฟฝ % 8 ๏ฟฝ9๏ฟฝ๏ฟฝ9๏ฟฝ๏ฟฝ 6(๏ฟฝ2"๏ฟฝ; < 1 :#โˆž9>, ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝr jika dan hanya jika a merupakan matriks metsler. bukti ๏ฟฝy . dari ekspansi ฯ†,๏ฟฝ๏ฟฝ % ๏ฟฝr < ๏ฟฝ2๏ฟฝ: < 1 < z , ฯ†๏ฟฝ๏ฟฝ % ๏ฟฝr ๏ฟฝ๏ฟฝ6(๏ฟฝ 2๏ฟฝ: < ๏ฟฝ ๏ฟฝ 6(๏ฟฝ2๏ฟฝ2: < z jika a matriks metzler , jelas bahwa ฯ†,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝr dan ฯ†๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝr untuk bilangan kecil ๏ฟฝ 4 0. ๏ฟฝ{ . telah diketahui bahwa '\* ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝr untuk ๏ฟฝ ๏ฟฝ 0 (21) jika dan hanya jika a merupakan matriks metzler (kaczorek, 2002). sehingga ฯ†,๏ฟฝ๏ฟฝ % 8 | ๏ฟฝ๏ฟฝ๏ฟฝ6 92๏ฟฝ;: < 1 . ๏ฟฝ๏ฟฝ๏ฟฝ6 9;! ~ โˆž 9>, % 8 |;! . 2๏ฟฝ;: < 1 2๏ฟฝ;: < 1 ~|๏ฟฝ๏ฟฝ๏ฟฝ6 9;! ~ ๏ฟฝ 0 โˆž 9>, untuk ๏ฟฝ ๏ฟฝ 0. (22) karena ;! ๏ฟฝ 2๏ฟฝ;: < 1 untuk 0 ๏ฟฝ : ๏ฟฝ 1. kemudian dari (22) dan (21) diperoleh ฯ†,๏ฟฝ๏ฟฝ ๏ฟฝ '\*_ ๏ฟฝ 0 untuk ๏ฟฝ ๏ฟฝ 0. begitupun sebaliknya untuk kasus ฯ†๏ฟฝ๏ฟฝ . berikut ini akan disajikan syarat cukup dan perlu suatu sistem linier fractional waktu kontinu dapat dikatakan positif internal: teorema 23 sistem fractional derivative waktu kontinu (2) merupakan positif internal jika dan hanya jika matriks a adalah matriks metzler dan m ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝ๏ฟฝ, p ๏ฟฝ ๏ฟฝ๏ฟฝq๏ฟฝr, ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝq๏ฟฝ๏ฟฝ. bukti (y). dari teorema 1, diketahui bahwa solusi dari (8a) dinyatakan dalam bentuk (10). karena matriks a pada sistem (8a) adalah matriks metzler, dari lemma 20 disimpulkan ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝr. lebih lanjut, apabila m ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝ๏ฟฝ, p ๏ฟฝ ๏ฟฝ๏ฟฝq๏ฟฝr, ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝq๏ฟฝ๏ฟฝ dari (28), disimpulkan o๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝu untuk semua n๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0. ({). dipilih n๏ฟฝ๏ฟฝ % 0,๏ฟฝ ๏ฟฝ 0 dan ๏ฟฝ, % 'g (kolom ke-i dari matriks identitas ๏ฟฝ๏ฟฝ). trayektori dari sistem (8a) akan berada pada orthan ๏ฟฝ๏ฟฝ๏ฟฝ hanya jika ๏ฟฝ6๏ฟฝ๏ฟฝ0 % ๏ฟฝ'g ๏ฟฝ 0, yang berakibat fgh ๏ฟฝ 0 untuk j k l. yang berarti a merupakan matriks metzler. dengan analogi yang sama, untuk ๏ฟฝ, % 0 diperoleh ๏ฟฝ6๏ฟฝ๏ฟฝ0 % mn๏ฟฝ0 ๏ฟฝ 0, yang berakibat m ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝ๏ฟฝ untuk sebarang n๏ฟฝ0 ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ. dari (8b), untuk n๏ฟฝ๏ฟฝ % 0,๏ฟฝ ๏ฟฝ 0 diperoleh o๏ฟฝ0 % p๏ฟฝ, ๏ฟฝ 0 yang berakibat p ๏ฟฝ ๏ฟฝ๏ฟฝq๏ฟฝr untuk sebarang ๏ฟฝ, ๏ฟฝ ๏ฟฝ๏ฟฝr. kemudian asumsikan ๏ฟฝ, % 0, dari (8b) diperoleh o๏ฟฝ0 % ๏ฟฝn๏ฟฝ0 ๏ฟฝ 0 yang berakibat ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝq๏ฟฝ๏ฟฝ untuk sebarang n๏ฟฝ0 ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ. dalam menganalisa suatu sistem, terkadang cukup diteliti variabel input dan kondisi awalnya saja, untuk menjustifikasi positivitas dari varibel outputnya. berikut ini disajikan definisi dari positif eksternal, serta matriks impulse respon. definisi 24 (kaczorek, 2008 : 226) sistem linier fractional waktu kontinu (8) dikatakan positif eksternal (externally imam fahcruddin 22 volume 2 no. 1 november 2011 positive) jika untuk semua input n๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0 dan ๏ฟฝ, % 0 maka variabel output o๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝu , ๏ฟฝ ๏ฟฝ 0. definisi 25 (kaczorek, 2011 : 36) output dari sistem fractional single-input single-output (siso) dengan kondisi awal 0, untuk dirac impulse n๏ฟฝ๏ฟฝ % ๏ฟฝ๏ฟฝ๏ฟฝ disebut impulse respon dari sistem. lemma 26 matriks impulse respon dari sistem (8) dinotasikan dengan ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝq๏ฟฝ๏ฟฝ adalah ๏ฟฝ๏ฟฝ๏ฟฝ % pฯ†๏ฟฝ๏ฟฝ m < ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ , untuk ๏ฟฝ ๏ฟฝ 0 . (27) bukti subsitusikan (3) ke (2b) sehingga untuk ๏ฟฝ, % 0, n๏ฟฝ๏ฟฝ % ๏ฟฝ๏ฟฝ๏ฟฝ , dan o๏ฟฝ๏ฟฝ % ๏ฟฝ๏ฟฝ๏ฟฝ diperoleh o๏ฟฝ๏ฟฝ % 3pฯ†๏ฟฝ๏ฟฝ . / mn๏ฟฝ/ +/ < ๏ฟฝn๏ฟฝ๏ฟฝ * , % pฯ†๏ฟฝ๏ฟฝ m < ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,untuk ๏ฟฝ ๏ฟฝ 0. syarat cukup dan perlu agar sistem linier fractional waktu kontinu dikatakan positif eksternal disajikan dalam teorema dibawah ini: teorema 28 (kaczorek, 2008 : 226) sistem linier fractional waktu kontinu (8) adalah positif eksternal (externally positive) jika dan hanya jika matriks impulse respon (27) nonnegative, i.e. ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝq๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0. bukti karena matriks impulse respon pada sistem (8) telah diketahui, maka untuk sebarang input n๏ฟฝ๏ฟฝ , variabel output o๏ฟฝ๏ฟฝ dapat dinyatakan dalam bentuk o๏ฟฝ๏ฟฝ % 3๏ฟฝ๏ฟฝ๏ฟฝ,/ n๏ฟฝ/ +/* , , ๏ฟฝ29 dengan perhitungan langsung ataupun metode grafik. dari lemma 26, variabel output o๏ฟฝ๏ฟฝ dari sistem (8) dapat dinyatakan dalam bentuk (29), yaitu: o๏ฟฝ๏ฟฝ % 3๏ฟฝ๏ฟฝ๏ฟฝ . / n๏ฟฝ/ +/. * , apabila kondisi ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝq๏ฟฝ๏ฟฝ untuk ๏ฟฝ ๏ฟฝ 0 dipenuhi, maka dari (29) disimpulkan o๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝu , ๏ฟฝ ๏ฟฝ 0 untuk setiap input n๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0. reachability sistem linier fractional waktu kontinu terkadang untuk mendesain suatu sistem, diperlukan suatu varibel input yang mengendalikan state awal, menuju state yang dikehendaki. hal ini perlu dilakukan, terkait sistem yang telah terbentuk, apakah sudah benarbenar optimal dalam aspek tertentu. oleh karena itu, berikut ini disajikan definisi sistem yang reachable. definisi 29 (kaczorek, 2008 : 226) state ๏ฟฝ๏ฟฝ ๏ฟฝ ?๏ฟฝr dari sistem linier fractional (8) dikatakan reachable (dapat dicapai) pada waktu ๏ฟฝ๏ฟฝ jika terdapat suatu input n๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ e0,๏ฟฝ๏ฟฝi yang mengendalikan state pada sistem (8), mulai dari state awal yang bernilai 0, i.e. ๏ฟฝ, % 0 ke ๏ฟฝ๏ฟฝ. jika setiap state ๏ฟฝ๏ฟฝ ๏ฟฝ ?๏ฟฝr reachable pada waktu ๏ฟฝ๏ฟฝ, maka sistem dikatakan tercapai pada waktu ๏ฟฝ๏ฟฝ. jika untuk setiap state ๏ฟฝ๏ฟฝ ๏ฟฝ ?๏ฟฝr terdapat waktu ๏ฟฝ๏ฟฝ sedemikian hingga state dalam keadaan reachable, maka sistem (8) dikatakan reachable. mengenai syarat cukup dan perlu sistem (8) dikatakan reachable dipaparkan dalam beberapa teorema dibawah ini: teorema 30 (kaczorek, 2008 : 226) sistem linier fractional dengan waktu kontinu (8) adalah reachable pada waktu ๏ฟฝ๏ฟฝ jika matriks ?v๏ฟฝ๏ฟฝw % 3 ฯ†๏ฟฝ/ *, mm๏ฟฝฯ†๏ฟฝ๏ฟฝ/ +/ ๏ฟฝ31 adalah matriks monomial. lebih lanjut, variabel input yang mengendalikan state pada sistem (8) dari ๏ฟฝ, % 0 menuju ๏ฟฝ๏ฟฝ, yaitu n๏ฟฝ๏ฟฝ % m๏ฟฝฯ†๏ฟฝv๏ฟฝ๏ฟฝ . ๏ฟฝw?(๏ฟฝv๏ฟฝ๏ฟฝw๏ฟฝ๏ฟฝ. (32) bukti diketahui bahwa matriks (31) merupakan matriks monomial, maka ?(๏ฟฝv๏ฟฝ๏ฟฝw ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝr dan variabel input yang didefinisikan (32) merupakan vektor non-negatif, i.e. n๏ฟฝ๏ฟฝ ๏ฟฝ ?๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ 0. dari (10) untuk ๏ฟฝ, % 0, ๏ฟฝ % ๏ฟฝ๏ฟฝ, (31) dan (32) diperoleh ๏ฟฝv๏ฟฝ๏ฟฝw % 3 ฯ†v๏ฟฝ๏ฟฝ . /wmm๏ฟฝฯ†๏ฟฝv๏ฟฝ๏ฟฝ . /w+/?(๏ฟฝv๏ฟฝ๏ฟฝw๏ฟฝ๏ฟฝ *๏ฟฝ , % 3 ฯ†๏ฟฝ/ mm๏ฟฝฯ†๏ฟฝ๏ฟฝ/ +/?(๏ฟฝv๏ฟฝ๏ฟฝw๏ฟฝ๏ฟฝ *๏ฟฝ , % ?v๏ฟฝ๏ฟฝw?(๏ฟฝv๏ฟฝ๏ฟฝw๏ฟฝ๏ฟฝ % ๏ฟฝ๏ฟฝ. terlihat variabel input (32) mengendalikan state dari sistem (8) dari ๏ฟฝ, % 0 menuju ๏ฟฝ๏ฟฝ. teorema 33 (kaczorek, 2008 : 227) jika ๏ฟฝ % +jf๏ฟฝ"f๏ฟฝ, f ,โ€ฆ ,fr# ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝr, m ๏ฟฝ ๏ฟฝ๏ฟฝr๏ฟฝ๏ฟฝ adalah matriks monomial, maka sistem fractional derivative (8) adalah reachable. bukti dari persamaan (12), apabila matriks a adalah matriks diagonal, jelas bahwa matriks ฯ†๏ฟฝ๏ฟฝ dan matriks ฯ†๏ฟฝ๏ฟฝ m adalah monomial. persamaan (31) juga dapat ditulis dalam bentuk ?v๏ฟฝ๏ฟฝw % 3 ฯ†๏ฟฝ/ *, m๏ฟฝฯ†๏ฟฝ/ m ๏ฟฝ+/, ๏ฟฝ34 positifitas dan ketercapaian sistem linier fractional waktu kontinu jurnal cauchy โ€“ issn: 2086-0382 23 dan juga merupakan matriks monomial. dengan demikian, dari teorema 30, dapat disimpulkan bahwa sistem linier fractional (8) adalah reachable. penutup berdasarkan pembahasan, diperoleh kesimpulan bahwa bentuk umum solusi dari sistem linier fractional waktu kontinu diperoleh dari transformasi laplace (teorema 9). syarat cukup dan perlu suatu sistem fractional dapat dikatakan internal positif atau eksternal positif telah diberikan pada teorema 23 dan 28. syarat cukup sistem linier fractional waktu kontinu dikatakan reachable disajikan pada teorema 33. daftar pustaka [1] a. dzieliล„ski, d. sierociuk, and g. sarwas,. (2009). ultracapacitor parameters identification based on fractional order model. proc eccโ€™09 1. cd-rom (2009). [2] chen, c. t. (1984). linier system theory and design. new york: cbs college publishing. [3] kaczorek, t. (2002). positive 1d and 2d systems. london: springer-verlag. [4] kaczorek, t. (2008). fractional positive continuous-time linier systems and their reachability. int. j. appl. math. comput. sci., 2008, vol. 18, no. 2, 223-228. doi: 10.2478/v10006-008-0020-0. [5] kaczorek, t. (2011). selected problems of fractional systems theory. berlin heidelberg : springer-verlag. [6] podlubny, i. (1999). fractional differential equations. london: academic pres on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 84-96 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 15, 2021 reviewed: august 19, 2021 accepted: october 06, 2021 doi: https://doi.org/10.18860/ca.v7i1.12934 on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari department of mathematics, faculty of science and technology, maulana malik ibrahim islamic state university of malang email: juhari@uin-malang.ac.id abstract this study discusses the construction of mathematical model modification of newton-secant method and solving nonlinear equations for multiple zeros by using a modified newton-secant method. a nonlinear equations for multiple zeros or multiplicity ๐‘š > 1 is an equation that has more than one root. the first step is to construct of mathematical model newton-secant method and its modification, namely to construct a mathematical model of the newton-secant method using the concept of the newton method and the concept of the secant method. the second step is to construct a modified mathematical model of the newton-secant method by adding the parameter ๐œƒ. after obtaining the formula for the modification newton-secant method, then applying the method to solve a nonlinear equations for multiple zeros. in this case, it is applied to the nonlinear equation trigonometric function ๐‘“(๐‘ฅ) = (๐‘๐‘œ ๐‘ 2 ๐‘ฅ + ๐‘ฅ)5 which has a multiplicity of ๐‘š = 5. the solution is done by selecting four different initial guess, namely โˆ’2; โˆ’0,8; โˆ’0,2 and 2. furthermore, to determine the effectivity of this method, the researcher compared the result with the newton-raphson method, the secant method, and the newton-secant method that has not been modified. the obtained results from the construction of mathematical model newtonsecant method and its modification is an iteration formula modification of newton-secant method. and for the result of ๐‘“(๐‘ฅ) using a modification of newton-secant method with four different initial guess, the root of ๐‘ฅ is obtained approximately, namely โˆ’0.641714371 with fewer iterations if compared to using the newton method, the secant method, and the newton-secant method. based on the problem to find the root of the nonlinear equation ๐‘“(๐‘ฅ) it can be concluded that the modification of newton-secant method is more effective than the newton method, the secant method, and the newton-secant method. keywords: modification; newton-secant method; nonlinear equation; multiple zeros; trigonometric function introduction in the fields of science, engineering and economics often involve problems mathematics. mathematical problems are often found in the form of nonlinear equations [1]. nonlinear equations in the form of functions ๐‘“(๐‘ฅ) can be form of algebraic equations and transcendent equations. transcendent equations or non-algebraic equations are equations that cannot be expressed in algebraic operations. this equation consists of logarithmic functions, exponential functions, hyperbolic functions and trigonometric https://doi.org/10.18860/ca.v7i1.12934 mailto:juhari@uin-malang.ac.id on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 85 functions [2]. in finding a solution to a nonlinear equation means making that equation becomes zero, i.e. ๐‘“(๐‘ฅ) = 0 [3]. in determining the solution of a complex nonlinear equation will be difficult if done using analytical methods so the numerical will be solution to this problem [4]. the solution obtained from the numerical method an approximate solution. the approximate solution is different from the exact solution, so there is the difference between exact solution and approximate solution. this difference is often referred to as an error [5]. in finding the roots of a nonlinear equation, it is not always singular or simple, sometimes nonlinear equations are in the form of multiple nonlinear equations, meaning the equation has a multiplicity ๐‘š > 1. the following is the definition of multiplicity: definition 1 (multiplicity) the root ๐›ผ of ๐‘“(๐‘ฅ) is said to have multiplicity (๐‘š) if ๐‘“(๐‘ฅ) = (๐‘ฅ โˆ’ ๐›ผ)๐‘šโ„Ž(๐‘ฅ) for โ„Ž(๐‘ฅ) a continuous function with โ„Ž(๐‘ฅ) โ‰  0, and ๐‘š is a positive integer. if ๐‘š = 1 then ๐›ผ is called a simple root. if ๐‘š โ‰ฅ 2 then ๐›ผ is called a multiple root [6]. thus it can be said that a function has multiplicity if the multiplicity of a function is more than one [5]. the most famous numerical method for solving nonlinear equations is the newton-raphson method. in finding solutions to nonlinear equations, this method requires one initial guess and function derivative value. this method will fail if the initial guess selection gives the derivative value zero [7]. the following is the formula of newton-raphson method : ๐‘ฅ๐‘›+1 = ๐‘ฅ๐‘› โˆ’ ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘›) (1) with ๐‘› = 0,1,2, . . .. and ๐‘“ โ€ฒ(๐‘ฅ๐‘›) โ‰  0. the numerical method that is no less famous is the secant method. this method able to overcome the weakness of the newton-raphson method. in the newton-raphson method is required first derivative of the function ๐‘“(๐‘ฅ). the process of finding the derivative function ๐‘“(๐‘ฅ) does not always easy, sometimes there are some functions that are difficult to find the derivative value. to overcome the weakness of newton's method then in the secant method derivative function is replaced by another equivalent form. so the secant method does not require another derivative of the function but requires two initial guesses [8]. the following is the formula of secant method : ๐‘ฅ๐‘›+1 = ๐‘ฅ๐‘› โˆ’ ๐‘“(๐‘ฅ๐‘›) โˆ™ (๐‘ฅ๐‘›โˆ’1 โˆ’ ๐‘ฅ๐‘› ) ๐‘“(๐‘ฅ๐‘›โˆ’1) โˆ’ ๐‘“(๐‘ฅ๐‘›) (2) with ๐‘› = 1,2,3 . . .. in the calculation process using numerical method such as newton's method and the secant method are needed initial guess. determining the initial value will be easier if you pay attention the theory related the intermediate value theorem. the intermediate value theorem is a theorem that is used to determine the presence or absence of a solution at a certain interval limit. theorem 1 (intermediate value theorem) if ๐‘“ โˆˆ ๐ถ[๐‘Ž, ๐‘] and ๐พ is any number between ๐‘“(๐‘Ž) and ๐‘“(๐‘), then there exists a number ๐‘ in (๐‘Ž, ๐‘) for which ๐‘“(๐‘) = ๐พ. [9] another theorem that is almost similar with the intermediate value theorem is bolzano's theorem. on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 86 theorem 2 (bolzano's theorem) if ๐‘“: [๐‘Ž, ๐‘] โŠ‚ โ„ โ†’ โ„ is a continuous function and if ๐‘“(๐‘Ž) โˆ™ ๐‘“(๐‘) < 0, then there is at least one root ๐‘ฅ โˆˆ (๐‘Ž, ๐‘) such that ๐‘“(๐‘ฅ) = 0. [10] each numerical method has a different order of conver gence. order of convergence is the speed of an iteration method in finding the roots simultaneously approximation of the equation of function ๐‘“. the following is the definition of convergence : definition 2 (convergence) let the sequence ๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘› convergence to ๐›ผ and ๐‘’๐‘› = ๐‘ฅ๐‘› โˆ’ ๐›ผ where ๐‘› โ‰ฅ 0. if the order of convergence ๐‘ > 0 and error constant ๐ถ โ‰  0, with lim ๐‘›โ†’โˆž |๐‘ฅ๐‘›+1 โˆ’ ๐›ผ| |๐‘ฅ๐‘› โˆ’ ๐›ผ| ๐‘ = lim ๐‘›โ†’โˆž |๐‘’๐‘›+1| |๐‘’๐‘›| ๐‘ = ๐ถ then the sequence {๐‘ฅ๐‘›} converges to ๐›ผ with the order of convergence ๐‘ [11]. if ๐‘ = 1 then the iteration method has a linear convergence order. if ๐‘ = 2 then the iteration method has a quadratic order of convergence. if 1 < ๐‘ < 2 then iteration method has a superlinear order of convergence [12]. if ๐‘ = 3 then the iteration method has a cubic order of convergence [13]. numerical methods such as the newton-raphson method have the quadratic order of convergence. while the secant method has a superlinear order of convergence [12]. numerical methods often experience developments. the development aims to find methods that are considered more effective in solving existing problems [14]. based on this in 2002 kasturiarachi combine newton's method and the secant method become a new method, namely the leap-frogging newtonโ€˜s method or newton-secant method [13]. this method has a cubic convergence when used to solve simple nonlinear equations. whereas if used to solve multiple zeros of nonlinear equations the convergence to be linear. therefore, in [15] modified newton-secant method with the addition of parameter ๐œƒ. the purpose of this modification, namely to maintain the order of convergence newton-secant method to remain cubic, if used to find the roots of nonlinear equations [15]. the following theorem related to the parameter ๐œƒ used to modify the newton-secant method : theorem 3 let ๐›ผ โˆˆ ๐ท be multiple root of a sufficiently differentiable function ๐‘“ โˆถ ๐ท โŠ‚ ๐‘น โ†’ ๐‘น on an open interval ๐ท with multiplicity ๐‘š > 1, which includes ๐‘ฅ0 as an initial approximation of ๐›ผ. then, the modification of newton-secant method has order three and ๐œƒ = ( โˆ’1+๐‘š ๐‘š ) โˆ’1+๐‘š , ๐‘š โˆˆ ๐‘+. proof: let ๐›ผ is multiple zero of equation ๐‘“(๐‘ฅ) = 0, then ๐‘“(๐›ผ) = 0 and ๐‘“โ€ฒ(๐›ผ) โ‰  0. next, suppose ๐‘’๐‘› โ‰” ๐‘ฅ๐‘› โˆ’ ๐›ผ ๐‘’๐‘›,๏ฟฝฬ…๏ฟฝ โ‰” ๐‘ฅ๐‘›ฬ…ฬ… ฬ… โˆ’ ๐›ผ ๐‘๐‘– โ‰” ๐‘š! (๐‘š + ๐‘–)! ๐‘“ (๐‘š+๐‘–)(๐›ผ) ๐‘“ (๐‘š)(๐›ผ) using the taylor expansion of ๐‘“(๐‘ฅ๐‘›) around ๐‘ฅ๐‘› = ๐›ผ we get ๐‘“(๐‘ฅ๐‘›) = ๐‘0๐‘’๐‘› ๐‘š + ๐‘1๐‘’๐‘›๐‘’๐‘› ๐‘š + ๐‘2๐‘’๐‘› 2๐‘’๐‘› ๐‘š + ๐‘3๐‘’๐‘› 3๐‘’๐‘› ๐‘š + ๐‘‚(๐‘’๐‘› 4) simplified to ๐‘“(๐‘ฅ๐‘›) = ๐‘’๐‘› ๐‘š(๐‘0 + ๐‘1๐‘’๐‘› + ๐‘2๐‘’๐‘› 2 + ๐‘3๐‘’๐‘› 3) + ๐‘‚(๐‘’๐‘› 4), (3) and on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 87 ๐‘“ โ€ฒ(๐‘ฅ๐‘›) = ๐‘’๐‘› ๐‘šโˆ’1(๐‘š + (๐‘š + 1)๐‘1๐‘’๐‘› + (๐‘š + 2)๐‘2๐‘’๐‘› 2 + (๐‘š + 3)๐‘3๐‘’๐‘› 3 + ๐‘‚(๐‘’๐‘› 4)). (4) if equation (3) is divided by equation (4), then we get ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘›) = ๐‘’๐‘› ( (๐‘0 + ๐‘1๐‘’๐‘› + ๐‘2๐‘’๐‘› 2 + ๐‘3๐‘’๐‘› 3) + ๐‘‚(๐‘’๐‘› 4) (๐‘š + (๐‘š + 1)๐‘1๐‘’๐‘› + (๐‘š + 2)๐‘2๐‘’๐‘› 2 + (๐‘š + 3)๐‘3๐‘’๐‘› 3 + ๐‘‚(๐‘’๐‘› 4)) ) (5) furthermore, equation (5) can be written as ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘›) = 1 ๐‘š ๐‘’๐‘› โˆ’ ๐‘1 ๐‘š2๐‘0 ๐‘’๐‘› 2 + โˆ’(1 + ๐‘š)๐‘1 2 + 2๐‘š๐‘0๐‘2 ๐‘š3๐‘0 2 ๐‘’๐‘› 3 + ๐‘‚(๐‘’๐‘› 4), (6) and since ๐‘’๐‘›,๏ฟฝฬ…๏ฟฝ = ๐‘ฅ๐‘›ฬ…ฬ… ฬ… โˆ’ ๐›ผ = โˆ’1 + ๐‘š ๐‘š ๐‘’๐‘› โˆ’ ๐‘1 ๐‘š2๐‘0 ๐‘’๐‘› 2 + โˆ’(1 + ๐‘š)๐‘1 2 + 2๐‘š๐‘0๐‘2 ๐‘š3๐‘0 2 ๐‘’๐‘› 3 + ๐‘‚(๐‘’๐‘› 4). (7) for ๐‘“(๐‘ฅ๐‘›ฬ…ฬ… ฬ…) we have ๐‘“(๐‘ฅ๐‘›ฬ…ฬ… ฬ…) = ๐‘’๐‘›,๏ฟฝฬ…๏ฟฝ ๐‘š (๐‘0 + ๐‘1๐‘’๐‘›,๏ฟฝฬ…๏ฟฝ + ๐‘2๐‘’๐‘›,๏ฟฝฬ…๏ฟฝ 2 + ๐‘3๐‘’๐‘›,๏ฟฝฬ…๏ฟฝ 3 ) + ๐‘‚(๐‘’๐‘›,๏ฟฝฬ…๏ฟฝ 4 ) (8) substituting (3)-(8) in modification of newton-secant method formula, which the method will be constructed in the research results section. so we get ๐‘’๐‘›+1 = ๐ท1๐‘’๐‘› + ๐ท2๐‘’๐‘› 2 + ๐ท3๐‘’๐‘› 3 + ๐‘‚(๐‘’๐‘› 4), where ๐ท1 = 1 + ๐œƒ ๐‘š (โˆ’๐œƒ + ( โˆ’1+๐‘š ๐‘š ) ๐‘š ) , and ๐ท2 = ๐œƒ๐‘šโˆ’2+๐‘š(โˆ’๐‘š(โˆ’1 + ๐‘š)๐‘š + ๐œƒ๐‘š๐‘š(โˆ’1 + ๐‘š))๐‘1 (โˆ’1 + ๐‘š)((โˆ’1 + ๐‘š)๐‘š โˆ’ ๐œƒ๐‘š๐‘š)2๐‘0 , and ๐ท3 = ๐œƒ๐‘šโˆ’3+๐‘š๐ด 2(โˆ’1 + ๐‘š)2((โˆ’1 + ๐‘š)๐‘š โˆ’ ๐œƒ๐‘š๐‘š)3๐‘0 2 , where ๐ด = (โˆ’1 + ๐‘š)2๐‘š(โˆ’1 + ๐‘š + 2๐‘š2)(๐‘š๐‘1 2 โˆ’ 2(โˆ’1 + ๐‘š)๐‘0๐‘2) + 2๐œƒ2(โˆ’1 + ๐‘š)2๐‘š2๐‘š((1 + ๐‘š)๐‘1 2 โˆ’ 2๐‘š๐‘0๐‘2) โˆ’ ๐œƒ(โˆ’1 + ๐‘š)1+๐‘š(๐‘š(3 + 4๐‘š)๐‘1 2 + 2(1 + ๐‘š โˆ’ 4๐‘š2)๐‘0๐‘2). therefore, to provide the three order of convergence, it is need to choose ๐ท๐‘– = 0 (๐‘– = 1, 2), so we have ๐œƒ = ( โˆ’1 + ๐‘š ๐‘š ) โˆ’1+๐‘š , and the error equation becomes ๐‘’๐‘›+1 = ( ๐‘š๐‘1 2 โˆ’ 2(โˆ’1 + ๐‘š)๐‘0๐‘2 2๐‘š2๐‘0 2 ) ๐‘’๐‘› 3 + ๐‘‚(๐‘’๐‘› 4) , and modification of newton-secant method has convergence order of three [15]. based on the description above the researcher intends to construct the modification of newton-secant method in solving nonlinear equations for multiple zeros. then apply the method to solve the nonlinear equations for multiple zeros. in this case, it is applied to a nonlinear trigonometric function. to determine the effectivity of modification of newton-secant method then the solution will also be compared with newton method, secant method, and newton-secant method. on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 88 methods research steps 1. construction of mathematical model newton-secant method and its modification with the following steps: a) construction of mathematical model newton-secant method. ๏‚ท analyzing the theory related to the origin of the newton-secant method based on kasturiarachiโ€™s article 2002 entitled leapfrogging newtonโ€™s method. ๏‚ท performing analysis to obtain newton's approximation by using the equation of the tangent (๐‘ฅ0, ๐‘“(๐‘ฅ0)) that intersects (๐‘ฅ0ฬ…ฬ… ฬ…, 0). ๏‚ท create an equation of a secant connecting the points (๐‘ฅ0, ๐‘“(๐‘ฅ0)) and (๐‘ฅ0ฬ…ฬ… ฬ…, ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)) using the equation of the line that passes through two point and assumes a secant that satisfies the ๐‘ฅ-axis on point (๐‘ฅ1, 0). ๏‚ท substituting newton's approximation into the equation of secant connecting the points (๐‘ฅ0, ๐‘“(๐‘ฅ0)) and (๐‘ฅ0ฬ…ฬ… ฬ…, ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)). ๏‚ท write the iteration formula based on the process that has been done at the stages above. b) construction of mathematical model modification of newton-secant method with adding parameter ๐œƒ to the second term of the newton-secant method. in this case, theorem 3 is used which is in the introduction section. 2. solving nonlinear equation that have a multiplicity ๐‘š > 1 using modification of newton-secant method. in this case the solution is done by selecting two different initial values. after that the researcher compared the result with the newton-raphson method, secant method, and newton-secant method that has not been modified. this comparison aims to determine the effectivity of modification of newton-secant method if when viewed from the iterations, convergence, and time needed to solve a nonlinear equation having a multiplicity of ๐‘š > 1. results and discussion 1. construction of mathematical model newton-secant method and its modification a. construction of mathematical model newton-secant method newton-secant method or also known as leap-frogging newton's method is a combination of newton method and secant method. based on this to do construction of mathematical model newton-secant method used the concept of newton's method and the concept of the secant method. suppose that the function ๐‘“(๐‘ฅ) has the zero ๐›ผ in the interval [๐‘Ž, ๐‘] and ๐‘“ โˆˆ ๐ถ2[๐‘Ž, ๐‘]. let ๐‘ฅ0 be the initial guess. if the equation of the tangent line at (๐‘ฅ0, ๐‘“(๐‘ฅ0)) intersects (๐‘ฅ0ฬ…ฬ… ฬ…, 0) then by using the concept of newton's method geometrically as follows : on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 89 figure 1. newton's approximation curve then we get newton's approximation : ๐‘“ โ€ฒ(๐‘ฅ๐‘›) = ฮด๐‘ฆ ฮด๐‘ฅ ๐‘“ โ€ฒ(๐‘ฅ0) = ๐‘“(๐‘ฅ0) โˆ’ 0 ๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ… ๐‘“ โ€ฒ(๐‘ฅ0)(๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ…) = ๐‘“(๐‘ฅ0) ๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ… = ๐‘“(๐‘ฅ0) ๐‘“ โ€ฒ(๐‘ฅ0) ๐‘ฅ0ฬ…ฬ… ฬ… = ๐‘ฅ0 โˆ’ ๐‘“(๐‘ฅ0) ๐‘“ โ€ฒ(๐‘ฅ0) (9) in this case used ๐‘ฅ0ฬ…ฬ… ฬ… instead of ๐‘ฅ1 because this is only used as an intermediate approximation. furthermore find the equation of the secant line connecting the points (๐‘ฅ0, ๐‘“(๐‘ฅ0)) and (๐‘ฅ0ฬ…ฬ… ฬ…, ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)). to find these equations is used the concept of the secant method geometrically. look at the following curve : figure 2. the concept of secant method to find the equation of the secant line based on figure 2 above, the following gradient is obtained: ๐‘“ โ€ฒ(๐‘ฅ0) = ฮด๐‘ฆ ฮด๐‘ฅ = [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] ๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ… tangent to the curve at ๐‘ฅ0 with gradient ๐‘“ โ€ฒ(๐‘ฅ0) on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 90 the gradient is used to get the equation of the line connecting the points (๐‘ฅ0, ๐‘“(๐‘ฅ0)) and (๐‘ฅ0ฬ…ฬ… ฬ…, ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)). based on the gradient formula to find the equation of the line that through two points, the following equation is obtained : ๐‘ฆ โˆ’ ๐‘“(๐‘ฅ0) = ๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…) ๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ… (๐‘ฅ โˆ’ ๐‘ฅ0) (10) assume the secant line meets the x-axis at the point (๐‘ฅ1, 0). so with substituting a value of ๐‘ฅ1 in ๐‘ฅ and value of 0 in ๐‘ฆ in equation (10) then we get, 0 โˆ’ ๐‘“(๐‘ฅ0) = [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] ๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ… (๐‘ฅ1 โˆ’ ๐‘ฅ0) 0 โˆ’ ๐‘“(๐‘ฅ0) ๐‘ฅ1 โˆ’ ๐‘ฅ0 = [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] ๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ… โˆ’๐‘“(๐‘ฅ0) ๐‘ฅ1 โˆ’ ๐‘ฅ0 = [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] (๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ…) [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] โˆ™ (๐‘ฅ1 โˆ’ ๐‘ฅ0) = โˆ’๐‘“(๐‘ฅ0) โˆ™ (๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ…) ๐‘ฅ1 โˆ’ ๐‘ฅ0 = โˆ’๐‘“(๐‘ฅ0) โˆ™ (๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ…) [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] ๐‘ฅ1 = ๐‘ฅ0 โˆ’ ๐‘“(๐‘ฅ0) โˆ™ (๐‘ฅ0 โˆ’ ๐‘ฅ0ฬ…ฬ… ฬ…) [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] (11) then substitute newton's approximation (9) into equation (11) so that optained, ๐‘ฅ1 = ๐‘ฅ0 โˆ’ ๐‘“(๐‘ฅ0) โˆ™ (๐‘ฅ0 โˆ’ (๐‘ฅ0 โˆ’ ๐‘“(๐‘ฅ0) ๐‘“โ€ฒ(๐‘ฅ0) )) [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] = ๐‘ฅ0 โˆ’ ๐‘“(๐‘ฅ0) โˆ™ ( ๐‘“(๐‘ฅ0) ๐‘“โ€ฒ(๐‘ฅ0) ) [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] = ๐‘ฅ0 โˆ’ [๐‘“(๐‘ฅ0)] 2 ๐‘“โ€ฒ(๐‘ฅ0) [๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] = ๐‘ฅ0 โˆ’ [๐‘“(๐‘ฅ0)] 2 ๐‘“ โ€ฒ(๐‘ฅ0)[๐‘“(๐‘ฅ0) โˆ’ ๐‘“(๐‘ฅ0ฬ…ฬ… ฬ…)] (12) repeating this above process, the iteration formula can be written as following : where ๐‘ฅ๐‘›+1 = ๐‘ฅ๐‘› โˆ’ [๐‘“(๐‘ฅ๐‘›)] 2 ๐‘“ โ€ฒ(๐‘ฅ๐‘›)[๐‘“(๐‘ฅ๐‘›) โˆ’ ๐‘“(๐‘ฅ๐‘›ฬ…ฬ… ฬ…)] , ๐‘› = 0, 1, 2, . . . . ๐‘ฅ๐‘›ฬ…ฬ… ฬ… = ๐‘ฅ๐‘› โˆ’ ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘›) (13) thus, we get equation (13) is the iteration formula for the newton-secant method. b. construction of mathematical model modification of newton-secant method in solving simple nonlinear equations the newton-secant method has cubic convergence. while to solve the nonlinear equations for multiple zeros or multiplicity ๐‘š > 1 the convergence is not cubic but becomes linear. therefore, to maintain the convergence of the newton-secant method to remain cubic it is necessary to modify the method. the process modification of newton-secant method is done by adding parameter ๐œƒ to the second term of the newton-secant method formula. the addition of these parameter resulted in the convergence of the modification of newton-secant method is cubic. on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 91 the formula for the newton-secant method (13) can be written in the following form, ๐‘ฅ๐‘›+1 = ๐‘ฅ๐‘› โˆ’ ๐‘“(๐‘ฅ๐‘›) ๐‘“(๐‘ฅ๐‘›) โˆ’ ๐‘“(๐‘ฅ๐‘›ฬ…ฬ… ฬ…) โˆ™ ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘›) , ๐‘› = 0, 1, 2, . . . . refer to theorem 3 in the introduction section to the construction of mathematical model modification of newton-secant method is done by adding parameter ๐œƒ to the second term newton-secant method. so that the iteration formula is obtained as following : where ๐‘ฅ๐‘›+1 = ๐‘ฅ๐‘› โˆ’ ๐œƒ๐‘“(๐‘ฅ๐‘›) ๐œƒ๐‘“(๐‘ฅ๐‘› ) โˆ’ ๐‘“(๐‘ฅ๐‘›ฬ…ฬ… ฬ…) โˆ™ ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘›) , ๐‘› = 0, 1, 2, . . . . ๐‘ฅ๐‘›ฬ…ฬ… ฬ… = ๐‘ฅ๐‘› โˆ’ ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘›) and ๐œƒ = ( โˆ’1 + ๐‘š ๐‘š ) โˆ’1+๐‘š (14) thus, we get equation (14) is modification of newton-secant method formula which can be used to find solution to nonlinear equations for multiple zeros. 2. solving nonlinear equation for multiple zeros (trigonometric function) use modification of newton-secant method in the previous explanation, the construction of mathematical model newtonsecant method and its modification has been explained. to know effectivity of modification of newton-secant method then it is necessary to apply a modified newtonsecant method to nonlinear equations for multiple zeros. in this case, it is taken an example of nonlinear equation of trigonometric function, namely ๐‘“(๐‘ฅ) = (cos2 ๐‘ฅ + ๐‘ฅ)5 solving equation ๐‘“(๐‘ฅ) use modification of newton-secant method will be applied with four different initial guess, namely ๐‘ฅ = โˆ’2; ๐‘ฅ = โˆ’0,8; ๐‘ฅ = โˆ’0,2 and ๐‘ฅ = 2. the following are the steps to find a solution to the equation ๐‘“(๐‘ฅ) = (๐‘๐‘œ๐‘ 2 ๐‘ฅ + ๐‘ฅ)5 using modification of newton-secant method: 1) determine the initial guess to be used the initial guess selection is based on theorem 1 (intermediate value theorem) in the introduction section. so that the initial guess are chosen, namely ๐‘ฅ = โˆ’2; ๐‘ฅ = โˆ’0,8; ๐‘ฅ = โˆ’0,2 and ๐‘ฅ = 2. 2) finding the derivative of ๐‘“(๐‘ฅ) ๐‘“(๐‘ฅ) = (cos2 ๐‘ฅ + ๐‘ฅ)5 ๐‘“ โ€ฒ(๐‘ฅ) = 5(๐‘๐‘œ๐‘ 2๐‘ฅ + ๐‘ฅ)4(โˆ’2 cos ๐‘ฅ sin ๐‘ฅ + 1). 3) determine the multiplicity of ๐‘“(๐‘ฅ) based on the definition of multiplicity in the introduction section, it can be said that the multiplicity of ๐‘“(๐‘ฅ) is ๐‘š = 5. 4) set the error to be used in this case the author sets the error used, namely 10โˆ’10. 5) calculating the value of ๐œƒ on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 92 ๐œƒ = ( โˆ’1 + ๐‘š ๐‘š ) โˆ’1+๐‘š = ( โˆ’1 + 5 5 ) โˆ’1+5 = ( 4 5 ) 4 = 0,4096 6) perform iteration using the modification of newton-secant method formula. 7) comparing the modification of newton-secant method with the newtonโ€™s method, the secant method, and the newton-secant method. it aims to know the effectiveness of the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function. the following is the result of solving ๐‘“(๐‘ฅ) = (๐‘๐‘œ๐‘ 2 ๐‘ฅ + ๐‘ฅ)5 using modification of newton-secant method, newton method, secant method, and newton-secant method which has not been modified. table 1. solution ๐‘“(๐‘ฅ) = (๐‘๐‘œ๐‘ 2 ๐‘ฅ + ๐‘ฅ)5 use modification of newton-secant method, newton method, secant method, and newton-secant method. ๐’‡๐’Š ๐’™๐ŸŽ method n ๐’™๐’ ๐’‡(๐’™๐’) ๐œบ ๐’‡(๐’™) = (๐’„๐’๐’”๐Ÿ ๐’™ + ๐’™)๐Ÿ“ -2 mmns 5 -0,641714371 1,76869e-74 0,0000000000 mns 61 -0,641714371 8,67022e-49 0,0000000000 mn 93 -0,641714371 1,20449e-47 0,0000000000 ms 133 -0,641714371 -8,69088e-47 0,0000000000 -0,8 mmns 4 -0,641714371 -4,17656e-74 0,0000000000 mns 60 -0,641714371 -1,81522e-48 0,0000000000 mn 92 -0,641714371 -2,51216e-47 0,0000000000 ms 131 -0,641714371 -9,67797e-47 0,0000000000 -0,2 mmns 4 -0,641714371 -9,9601e-76 0,0000000000 mns 62 -0,641714371 3,45672e-48 0,0000000000 mn 96 -0,641714371 1,88037e-47 0,0000000000 ms 132 -0,641714371 -7,87677e-47 0,0000000000 2 mmns 5 -0,641714371 9,07176e-75 0,0000000000 mns 64 -0,641714371 -9,82514e-49 0,0000000000 mn 101 -0,641714371 1,84781e-47 0,0000000000 ms 133 -0,641714371 -8,69088e-47 0,0000000000 information : ๐‘“๐‘– : nonlinear equation function with ๐‘– = 1, 2, 3, โ€ฆ. ๐‘ฅ0 : initial guess or initial value n : many iterations on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 93 ๐‘ฅ๐‘› : root of function ๐‘“(๐‘ฅ๐‘› ) : function of root ๐‘ฅ๐‘› ๐œ€ : error (๐‘ฅ๐‘›+1 โˆ’ ๐‘ฅ๐‘› ) mmns : modification of newton-secant method mns : newton-secant method mn : newton method ms : secant method based on table 1 above, the error is 0.0000000000, meaning that the error in the iteration value is less than the error tolerance constant used, namely ๐œ€ < 10โˆ’10. therefore, the iteration process stops and the approximate root is โˆ’0.641714371 which is the solution of ๐‘“(๐‘ฅ). in the table above, it can be seen that taking four different initial values, namely ๐‘ฅ = โˆ’2; ๐‘ฅ = โˆ’0,8; ๐‘ฅ = โˆ’0,2 and ๐‘ฅ = 2, if the search for a solution uses modification of newton-secant method, iterations are needed more little when compared to newton's method, the secant method, and the newton-secant method. based on the many iterations, it can be said that the modification of newton-secant method is more effective in solving the nonlinear equation ๐‘“(๐‘ฅ) when compared to the newton method, the secant method, and the newton-secant method which have not been modified. the convergence of error values from the table of calculation results above can be seen in table 2 and table 3 below. table 2. convergence graph table of error values in the solution of ๐‘“(๐‘ฅ) using modification of newtonsecant method and newton-secant method ๐’™๐ŸŽ method modification of newton-secant method newton-secant method -2 -0,8 on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 94 -0,2 2 table 3. convergence graph table of error values in the solution of ๐‘“(๐‘ฅ) using newton method and secant method. ๐’™๐ŸŽ method newton method secant method -2 -0,8 on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 95 -0,2 2 conclusion combining two concepts of numerical method, namely the concept of newton's method and the concept of secant method result newton-secant method. then newtonsecant method modified by adding parameter ๐œƒ. so we get a new method, namely modification of newton-secant method with the following iteration formula: where ๐‘ฅ๐‘›+1 = ๐‘ฅ๐‘› โˆ’ ๐œƒ๐‘“(๐‘ฅ๐‘›) ๐œƒ๐‘“(๐‘ฅ๐‘›) โˆ’ ๐‘“(๐‘ฅ๐‘›ฬ…ฬ… ฬ…) โˆ™ ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘› ) , ๐‘› = 0, 1, 2, . . . . ๐‘ฅ๐‘›ฬ…ฬ… ฬ… = ๐‘ฅ๐‘› โˆ’ ๐‘“(๐‘ฅ๐‘›) ๐‘“ โ€ฒ(๐‘ฅ๐‘› ) and ๐œƒ = ( โˆ’1 + ๐‘š ๐‘š ) โˆ’1+๐‘š solution of ๐‘“(๐‘ฅ) = (cos2 ๐‘ฅ + 5)5 use modification of newton-secant method with four different initial guess, namely ๐‘ฅ = โˆ’2; ๐‘ฅ = โˆ’0,8; ๐‘ฅ = โˆ’0,2 and ๐‘ฅ = 2 is obtained the root of ๐‘ฅ approximately, namely โˆ’0,641714371 with fewer iterations when compared to using the newton method, the secant method, and the newton-secant method. based on the problem of finding the root of the nonlinear equation trigonometric function ๐‘“(๐‘ฅ) it can be concluded that the modification of newton-secant method is more effective than the newton method, the secant method, and the newtonsecant method that has not been modified. references [1] p. batarius, "perbandingan metode newton-raphson modifikasi dan metode secant modifikasi dalam penentuan akar persamaan," 2018. [2] j. sapari and s. bahri, "penentuan akar-akar persamaan nonlinier dengan metode iterasi baru," jurnal matematika unand, vol. 4 no. 4, 2015. [3] p. batarius, "nilai awal pada metode newton-raphson yang dimodifikasi dalam on the modification of newton-secant method in solving nonlinear equations for multiple zeros of trigonometric function juhari 96 penentuan akar persamaan," pi: mathematics education journal , vol. 1. no.3, 2018. [4] y. muda, wartono and n. maulana, "konvergensi modifikasi metode newton ganda dengan menggunakan kelengkungan kurva," jurnal sains, teknologi dan industri, vol. 9. no. 2, 2012. [5] r. munir, metode numerik, bandung: informatika, 2008. [6] z. lega, agusni and s. putra, "metode iterasi tiga langkah dengan orde konvergensi lima untuk menyelesaikan persamaan nonlinear berakar ganda," jom fmipa, vol. 1, 2014. [7] rochmad, "aplikasi metode newton-raphson untuk menghampiri solusi persamaan non linear," jurnal mipa 36(2):193-200(2013), 2013. [8] s. c. chapra and r. p. canale, numerical methods for engineers sixth edition, new york: mcgraw-hill companies, inc, 2010. [9] r. l. burden and j. faires, numerical analysis ninth edition, usa: brooks/cole cengage learning, 2011. [10] m. n. vrahatis, "generalization of the bolzano theorem for simplices," elsevier, 2015. [11] j. h. mathews, numerical methods for mathematics, science, and engineering, new jersey: prentice-hall inc, 1992. [12] r. kumar and vipan, "comparative analysis of convergence of various numerical methods," journal of computer and mathematical sciences, vols. 6(6),290-297, 2015. [13] a. b. kasturiarachi, "leap-frogging newton's method," international journal of mathematical education in science and technology, vols. 33, no. 4, 521-527, 2002. [14] s. putra, d. ar and m. imran, "kombinasi metode newton dengan metode secant untuk menyelesaikan persamaan nonlinear," jurnal eksakta, vol. 2, 2011. [15] m. ferrara, s. sharifi and m. salimi, "computing multiple zeros by using a parameter in newton-secant method," sema journal, 2016. regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) cauchy โ€“jurnal matematika murni dan aplikasi volume 6 (4) (2021), pages 296-304 p-issn: 2086-0382; e-issn: 2477-3344 submitted: february 27, 2021 reviewed: april 29, 2021 accepted: may 04, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.11758 regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing1, yudhie andriyana2, bertho tantular3 1statistics indonesia, jakarta, indonesia 1,2,3department of statistics, padjadjaran university, bandung, indonesia email: robinson@bps.go.id abstract generally, modeling poverty aims to obtain the best criteria for assessing poverty status. there are two approaches to model the factors that affect poverty, namely consumption approach and discrete choice model. the advantage of the discrete choice model compared to the consumption approach is that the discrete choice model provides a probabilistic estimate for classifying samples into different poverty categories. the aim of this study is to determine the factors that impact poverty in yogyakarta through regularized ordinal regression used elastic net approach both for parallel, non-parallel, and semi-parallel models. the data used in this study is susenas march 2018 for yogyakarta provinces. the result of this study shows that the best discrete choice model for yogyakartaโ€™s modelling is the parallel model. households that live in villages, have a large number of household members, are headed by women, have elderly household heads, have low education, and work in the primary sector tend to be more vulnerable to poverty. therefore, a simultaneous policy with inclusive economic development is needed to reduce cross-border, cross-gender, and cross-sector inequality. keywords: elastic net; ordinal regression; parallel; poverty introduction poverty is one of the problems in economic development. every country tries to alleviate poverty with various programs. as an institution that released the official poverty rate in indonesia, bps [1] defines poverty as the inability to meet basic needs from an economic perspective, both food and non-food, which is measured in terms of expenditure. generally, modeling poverty aims to obtain the best criteria for assessing poverty status. rouband & razafindrakoto [2] assert that there is a correlation between objective and subjective poverty measures and further argue that various forms of poverty cannot be reduced to one another. a poverty approach is generally a monetary approach, but there is a growing literature that tries to bring up an index of multidimensional aspects of poverty. the impact factor in poverty approaches with two models. the first uses a regression approach between consumption expenditure per adult equivalent to several potential explanatory variables called the consumption approach. the second model is discrete choice model. the discrete approach is to categorize poverty into three categories based on household consumption expenditure compared to a region's poverty http://dx.doi.org/10.18860/ca.v6i4.11758 regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing 297 line. the advantages of the discrete model are the influence of independent variables to vary across poverty categories. one of the most common regression models for ordinal data types is the cumulative logit model [3], also known as the proportional odds model or the ordinal logistic regression model. to improve the prediction accuracy in ordinal regression model with different regression coefficients for each response category, the dogev model was introduced to improve prediction accuracy [4]. the dogev model has a requirement which is the data that used has extreme values. moreover, the model has parallel and non-parallel models yet. wurm, rathouz, & hanlon [5] introduced a regression model using different regression coefficients for each response category known as regulized ordinal regression. the data that has ordinal response or dependent should be explained using parallel or non-parallel. when, the number of household observation used maximum likelihood then it is the proper model [5]. after that, both the nonparallel model that includes the parallel model as a particular case and the parallel model will provide an inconsistent estimation coefficient if there are errors in the modeling. the number of explanatory variables increases, we need a variable selection technique that will reduce some variables. this step is needed because it is impossible to estimate each coefficient with a high degree of accuracy. then more realistic modeling goal is built a model for out-of-sample prediction and determine the most important explanatory variables. two variable selection methods that are often used are the lasso and ridge methods. lasso and ridge regression are techniques that minimize the penalized likelihood objective function. lasso regression uses the l1 penalty, while ridge regression uses the l2 penalty. both penalties produce coefficient estimates that are closer to zero than the maximum likelihood estimator; for example, the estimate is "close" to zero yet. the estimation results in an estimation bias towards zero, but a trade-off occurs in terms of reducing the variance, which often reduces the overall mean squared error. lasso has properties with some approximate coefficients close to zero. this method provided a natural way to select variables because only the most relevant predictor of the response variable will have a non-zero coefficient. however, it is a group of variables that are highly correlated then, the lasso tends to choose one variable from the correlated group and ignores the others. the elastic net penalty was introduced to overcome those limitations [5]. the elastic net penalty method is the weighted average between lasso and ridge, by dividing the lasso properties and shrinking some coefficients to zero so that it has a unique solution in most cases. based on the previous description, the main problem to be examined is how the factors that affect poverty in yogyakarta through regularized ordinal regression with elastic net approach both for parallel, non-parallel, and semi-parallel models. methods data the data that used in this study is susenas consumption module in march 2018 by bps. then used as the response variable and explanatory variables. base on theoretical studies, residential, community, household and individual characteristics influenced differences in household expenditure. this study uses household data and the variables that related to household characteristics only. the variation in household characteristics will affect the householdsโ€™ expenditure. regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing 298 methodology the aim of poverty modelling is to know factor that influence such as poverty. the focus of study is the family that has characteristics in specific poverty status. the framework of poverty study would be assumed that the real poverty status in household unable observed or unconsidered by well-being ratio, with general mode: ๐‘™๐‘œ๐‘”๐‘–๐‘ก (๐’‘๐‘–) = ๐—๐‘– ๐‘‡๐œท i=1,2,...,n (1) where: ๐—๐‘– = covariate matrix ๐œท = vector of regression coefficients ๐’‘๐‘– = category probability the logit model that used is one of the generalized linear model (glm) models. the glm model has three components, namely random component, systematic component and link function. the form of the glm depends on the three components that related to each other. a. random components ๐‘Œ is a random variable of ordinal response with three categories, which is poor, almost poor, not poor ๐‘Œ ~ multinomial (๐‘›; ๐‘1,๐‘2,๐‘3) ๐‘“(๐‘ฆ;๐‘1,๐‘2,๐‘3,๐‘›) = ๐‘›! ๐‘ฆ1!๐‘ฆ2!๐‘ฆ3! ๐‘1 ๐‘ฆ1๐‘2 ๐‘ฆ2๐‘3 ๐‘ฆ3 b. systematic component the systematic component of the model is a set of ๐œท parameters and a covariate ๐— that forms a linear combination of ๐—๐‘– ๐‘‡๐œท the general form of the linear predictor is : ๐œผ๐‘– = ๐—i t๐œท (2) according to wurm, rathouz, & hanlon [5], the linear form of the predictor consists of:: i. parallel model ๐—๐‘– = (๐ˆ๐พร—๐พ | ๐’™๐‘– ๐‘‡ โ‹ฎ ๐’™๐‘– ๐‘‡ ) ๐พร—(๐‘ƒ+๐พ) , ๐œท = ( ๐’ƒ๐ŸŽ ๐’ƒ ) (๐‘ƒ+๐พ)ร—1 ii. nonparallel model ๐—๐‘– = (๐ˆ๐พร—๐พ | ๐’™๐‘– ๐‘‡ 0 0 0 0 ๐’™๐‘– ๐‘‡ 0 0 0 0 โ‹ฑ โ‹ฏ 0 0 โ‹ฎ ๐’™๐‘– ๐‘‡ ) ๐พร—(๐‘ƒ๐พ+๐พ) , ๐œท = ( ๐’ƒ๐ŸŽ ๐1 ๐2 โ‹ฎ ๐๐‘˜) (๐‘ƒ๐พ+๐พ)ร—1 iii. semi-parallel model ๐—๐‘– = ( ๐ˆ๐พร—๐พ || ๐’™๐‘– ๐‘‡ ๐’™๐‘– ๐‘‡ โ‹ฎ ๐’™๐‘– ๐‘‡ ๐’™๐‘– ๐‘‡ 0 โ‹ฎ 0 0 ๐’™๐‘– ๐‘‡ โ‹ฎ 0 โ‹ฏ โ€ฆ โ‹ฑ โ‹ฏ 0 0 โ‹ฎ ๐’™๐‘– ๐‘‡ ) ๐พร—(๐‘ƒ(๐พ+1)+๐พ) , ๐œท = ( ๐’ƒ0 ๐’ƒ ๐1 ๐2 โ‹ฎ ๐๐‘˜) (๐‘ƒ(๐พ+1)+๐พ)ร—1 ๐’ƒ0 = vector intercept, ๐’ƒ = vector slope for parallel model ๐๐‘–= matrix slope for nonparallel model regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing 299 ๐ˆ๐พร—๐พ= matrix identity ๐’™๐’Š = vektor covariat without intercept c. link function the link function is a function that connect systematic components and the expected (average) value the random component explained the relationship working e(๐’š) = n๐’‘ with explanatory variable in linier predictor. we have model ๐’‘ directly or model a monotonous function. ๐ธ (๐’š๐‘–|๐’™๐‘–) = ๐‘”(๐’‘๐‘–) = ๐œผ๐‘– = ๐—๐‘– ๐‘‡๐œท (3) elastic net penalty suppose ๐œท has the length q and ๐›ฝ๐‘— shows the j element. wurm, rathouz, & hanlon [5] wrote the objective elastic net function as: ๐‘€(๐œท;๐›ผ,๐œ†,๐‘1,โ€ฆ,๐‘๐‘„) = โˆ’ 1 ๐‘โˆ— โ„“(๐œท)+๐œ†โˆ‘ ๐‘๐‘— (๐›ผ|๐›ฝ๐‘—|+ 1 2 (1โˆ’๐›ผ)๐›ฝ๐‘— 2) ๐‘„ ๐‘—=1 (4) where: โ„“(๐œท) = โˆ‘ โ„“๐‘–(๐œท) ๐‘ ๐‘–=1 and โ„“๐‘–(๐œท) = ๐ฟ๐‘–(โ„Ž(๐—๐‘– ๐‘‡๐œท)) in model โ„“(๐œท) is loglikelihood function, ๐œ† > 0 and 0 โ‰ค ๐›ผ โ‰ค 1. wurm, rathouz, & hanlon [5] wrote elastic net objective function for each model shape derived from equation 4 as follows: objective function for parallel model is: ๐‘€(๐’ƒ0,๐’ƒ;๐›ผ,๐œ†) = โˆ’ 1 ๐‘โˆ— โ„“(๐’ƒ0,๐’ƒ)+๐œ†โˆ‘(๐›ผ|๐‘๐‘—|+ 1 2 (1โˆ’๐›ผ)๐‘๐‘— 2) ๐‘ƒ ๐‘—=1 objective function for nonparallel model is: ๐‘€(๐’ƒ0,๐;๐›ผ,๐œ†) = โˆ’ 1 ๐‘โˆ— โ„“(๐’ƒ0,๐)+๐œ†โˆ‘โˆ‘(๐›ผ|๐ต๐‘—|+ 1 2 (1โˆ’๐›ผ)๐ต๐‘—๐‘˜ 2 ) ๐พ ๐‘˜=1 ๐‘ƒ ๐‘—=1 objective function for semiparallel model is: ๐‘€(๐‘0,๐‘,๐ต;๐›ผ,๐œ†,๐œŒ) = โˆ’ 1 ๐‘โˆ— โ„“(๐‘0,๐‘,๐ต) +๐œ†(๐œŒโˆ‘(๐›ผ|๐‘๐‘—|+ 1 2 (1โˆ’๐›ผ)๐‘๐‘— 2) ๐‘ƒ ๐‘—=1 +โˆ‘โˆ‘(๐›ผ|๐ต๐‘—|+ 1 2 (1โˆ’๐›ผ)๐ต๐‘—๐‘˜ 2 ) ๐พ ๐‘˜=1 ๐‘ƒ ๐‘—=1 ) when ๐œ† โ‰ฅ 0 and ๐›ผ โˆˆ [0,1] are tuning parameters and ๐œŒ โ‰ฅ 0 is tuning parameters which determines the extent to eliminated the parallel term results and discussion firstly, we discuss characteristics of the socioeconomic variables of the household as a general overview of the respondents that used in the study. we use pie charts for the descriptive characteristics of the respondents. it is used to illustrate the frequency of each category in the research variables. table 1. characteristic of responden variable category poverty status total poor almost poor not poor region type rural 5,99 4,49 54,53 65,01 urban 5,56 3,57 25,86 34,99 the total number single 0,39 0,25 7,95 8,59 regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing 300 household member living with a couple 1,93 1,03 14,05 17,01 living with a couple with other family members. 9,24 6,78 58,38 74,39 marital status never marriage 0,25 0,11 4,17 4,53 marriage 10,16 7,35 65,58 83,10 divorce 0,07 0,11 2,85 3,03 divorce by death 1,07 0,50 7,77 9,34 gender male 10,34 7,49 70,01 87,84 female 1,21 0,57 10,38 12,16 age 15-64 years old 8,92 6,63 70,86 86,41 65+ years old 2,64 1,43 9,52 13,59 education primary and junior 8,84 5,67 39,16 53,67 senior high school 2,64 2,32 26,64 31,60 collage 0,07 0,07 14,59 14,73 sector economy primary 6,13 3,53 19,54 29,21 secondary 2,92 2,14 17,40 22,47 tertiary 2,50 2,39 43,44 48,32 total 11.05 8,06 80,39 the first step is to test chi-square independence. chi-square independence analysis use when it has a relationship between categorical variables. this method has done at first step. then seeing whether the independent variable/predictor used has a relationship (dependent) with the dependent/response variable. the null hypothesis formulation there is no dependency between poor status and variables the explanation, while the alternative hypothesis there is a dependency between poor status with the explanatory variable. table 2 is the probability value of the results less than 0.05 then it means all independent variables have a dependent relationship with the dependent variable/response. table 2. independent test of category variables on poor status in this study, used the ordinalnetcv function on the ordinalnet software r version 3.61 package. in this study, we compare the results of parallel, non-parallel and semiparallel models with the aic, bic and loglik. in general, parallel and semi-parallel models have similar performance, but non-parallel models are much worse. this model might be due to the unidentified out-of-sample log-likelihood non-parallel model (nonmonotonous cumulative probability) in the first few values of ฮป. table 3. comparison of the aic, bic and loglik values of the three ordinal regression models model aic bic loglik parallel 3192.01 3269.21 -319.1258 non-parallel 3403.23 3468.56 -339.732 semi-parallel 3209.88 3358.35 -321.276 table 3 shows that the values of aic, bic, and loglik have the smallest on the parallel model, moreover, the lambda parameters obtained in all three models for each fold, in table 4. the variability of lambda values is the lowest in the parallel model. category variables value chi square df p.value region type 41,086 2 0.000 the total number household member 30,327 4 0.000 marital status 27,660 6 0.000 gender 7,491 2 0.024 age 181,148 4 0.000 education 32,699 2 0.000 sector economy 154,836 4 0.000 regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing 301 table 4. comparison of lambda values for the three regression models fold parallel model nonparallel model semiparallel model fold1 0,0015 0,0010 0,0019 fold2 0,0012 0,0229 0,0031 fold3 0,0019 0,0292 0,0009 fold4 0,0025 0,0180 0,0040 fold5 0,0012 0,0372 0,0051 table 5 shows that five dummy variables have a positive coefficient, six dummy variables that have a negative coefficient and one dummy variable with a zero coefficient. a positive coefficient value means the chance of the understudy category to be poor is higher compared to the reference category, furthermore the negative coefficient means the chance of the category understudy is smaller for the poor status compared to the reference category. the zero coefficient means that the opportunity for the category studied is not significantly different for poor status compared to the reference category. table 5. ordinal regression variabel category logit(p[y<=1]) logit(p[y<=2]) intercept -2.389 -1.706 region type (*rural) region type (urban) 0.042 0.042 the total number household member *single living with a couple 1.249 1.249 living with a couple with other family members. 0.539 0.539 marital status * never marriage marriage 0.000 0.000 divorce -1.157 -1.157 divorce by death -0.367 -0.367 gender (*male) gender (female) 0.319 0.319 age (*15-64 years old) age (non produktif 65+) 0.390 0.390 education *primary&junior senior high school -0.455 -0.455 collage -2.912 -2.912 sector economy *primer secondary sector -0.408 -0.408 tertiary sector -1.057 -1.057 *baseline category discussion of the results a. residential type regional type is a category of respondent's residential area; there are two categories: urban and rural areas. the location of the household is one of the factors which is often associated with poverty status. the regional type is due to differences in access to primary facilities such as education and health. the results of this study show that the status of the area of residence significantly affected the poverty status of a household. rural households have a higher tendency to become poorer than urban households. this result is in line with some previous studies such as [6] and [7] that suggest that rural households are more vulnerable to poverty due to limited access. b. household size the size of a household indicates the number of people who live in that household. the more people live in a household; then the more resources are needed to keep the household members prosperous. the results of this study show that compared to households consisting of only one person, households of 2 or more people had a higher inclination to live in poverty. the results of this study are in developing countries which regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing 302 show that as the number of households increases, the average per capita consumption decreases, indicating that households are approaching poor status. the results of the studies that conducted in developing countries such as [6] and [8] show that the larger householdโ€™s size, the lower the average consumption per capita. it indicates that these households are getting closer to poor status. the problem is even though they live in one household, about 20 percent of the items used together [8]. therefore, they must allocate limited income to more needs. c. marital status marital status is related to responsibility for household expenses. someone who has a never married status tends to have income that and use it for personal needs. where, the income generated becomes cumulative from household members, in the results, there is equal opportunities between those who are never married and those who are married. compared to someone who are never married, household with divorcee-household head have less probability to be poor. according to [9], divorcee usually has economic planning and economic adaptation strategies to align with the amount of income a family needs every day of their life. it proves that from the way a divorcee to save, set aside in part piecemeal revenue that could be used to meet the needs of their child's education and are used for urgent needs. d. household gender there are characteristic differences between households dominated by men and women. in general, households headed by women are often identified with households with higher chances of poverty. the research results in some regions, both in developed and developing countries, showed that households led by women are more prone to poverty, because female heads of households generally generate lower incomes and generally have more dependencies ([7], [10], [11]). the yogyakarta data also shows alike. based on the data collected in this study, female heads of households tend to bear a large number of household members. e. head of household age one of the factors that influence a person's level of productivity is age. a person who has at a productive age is likely to have a higher income than someone has at an unproductive age. therefore, it is a common misconception that households with lowincome households are less likely to become poorer. the results of this study support these general assumptions. the result of this research is with the research that has done in [7] and have shown that as a productive age passes, one's income tends to decline, and the risk of becoming poor can higher. f. head of household education education is one of the crucial factors that determine one's well-being. educational attainment increases potential income of individuals, and as a result, increasing income definitely helped them to out from poverty [12]. in line with previous research, this study showed consistent results. households headed by a person with a high school education have a higher tendency to be poor compared to those with a lower middle school. g. economic sector of head of household the field of work in which household heads work has an impact on household poverty status. this is due to differences in income levels in each industry sector. the primary regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing 303 sectors comprising agriculture and mining generally have lower income levels than other sectors. the results of this study show that households with households working in the secondary and tertiary sectors have a lower tendency to be poor compared to those with primary income from the primary sector. besides that, the results of this study show that households who work in the tertiary sector have a higher chance of being poor than those who work in other sectors. the result of this research is in line with [13] and [14] that state that the shift from the agricultural sector is effective in alleviating poverty. conclusions some factors determined poverty such as household size, marital status, the gender of household head, age of head of household, level of education of the head of household, and occupation of the head of household. based on aic and bic criteria, the best model to yogyakarta poverty data is parallel model. households that live in villages, have a large number of household members, are headed by women, have elderly household heads, have low education, and work in the primary sector tend to be more vulnerable to poverty. therefore, a simultaneous policy with inclusive economic development is needed to reduce cross-border, cross-gender, and cross-sector inequality. references [1] badan pusat statistik, โ€œdata dan informasi kemiskinan kabupaten/kota 2018,โ€ jakarta, 2018. [2] m. razafindrakoto and f. roubaud, โ€œthe multiple facets of poverty: the case of urban africa,โ€ in wider conference on inequality, 2003. [3] p. mccullagh, s. journal, r. statistical, and s. series, โ€œregression models for ordinal data,โ€ j. r. stat. soc. ser. b, vol. 42, no. 2, pp. 109โ€“142, 1980. [4] e. fissuh and m. harris, โ€œmodeling determinants of poverty in eritrea: a new approach,โ€ pp. 1โ€“35, 2005. [5] m. j. wurm, p. j. rathouz, and b. m. hanlon, โ€œregularized ordinal regression and the ordinalnet r package,โ€ 2017. [6] j. c. anyanwu, โ€œmarital status, household size and poverty in nigeria: evidence from the 2009/2010 survey data,โ€ african dev. rev., vol. 26, no. 1, pp. 118โ€“137, 2014. [7] r. gounder and z. xing, โ€œimpact of education and health on poverty reduction: monetary and non-monetary evidence from fiji,โ€ econ. model., vol. 29, no. 3, pp. 787โ€“ 794, 2012. [8] p. lanjouw and m. ravallion, โ€œpoverty and household size,โ€ econ. j., vol. 105, no. 433, pp. 1415โ€“1434, 1995. [9] a. s. rahayu, โ€œkehidupan sosial ekonomi single mother dalam ranah domestik dan publik,โ€ j. anal. sosiol., vol. 6, no. 1, 2017. [10] m. buviniฤ‡ and g. rao gupta, โ€œfemale-headed households and female-maintained families: are they worth targeting to reduce poverty in developing countries?,โ€ econ. dev. cult. change, vol. 45, no. 2, pp. 258โ€“280, 1997. [11] d. f. meyer, โ€œpredictors of poverty: a comparative analysis of low income communities in the northern free state region, south africa,โ€ online) int. j. soc. sci. humanit. stud., vol. 8, no. 2, pp. 1309โ€“8063, 2016. [12] m. awan et al., โ€œimpact of education on poverty reduction,โ€ int. j. acad. res., vol. 3, 2011. regularized ordinal regression with elastic net approach (case study: poverty modeling in yogyakarta province 2018) pardomuan robinson sihombing 304 [13] i. d. a. bagus, e. k. a. artika, a. a. s. kencana, i. d. a. ayu, and k. marini, โ€œpergeseran lapangan usaha sektor pertanian , pertumbuhan ekonomi,โ€ j. unmas mataram, pp. 111โ€“117, 2018. [14] f. fahar, โ€œkemiskinan dan ketenagakerjaan di kepulauan riau 2014: permasalahan dan implikasi kebijakan,โ€ no. february, 2015. yusron rijal filter halaman web pornografi _7_ filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit yusron rijal1 dan awalia nofitasari2 1email: yusronrijal@yahoo.com 2pt. elpro solusitama, 2email: awalia.nofitasari@gmail.com abstract this paper presents an effort to detect pornographic webpages. it was stated that a positive relationship exists between percentage of human skin color in an image and the image itself (jones et.al., 1998). based on the statement, rather than using the traditional method of text-filtering, this paper propose a new approach to detect pornographic images by using skin color detection. the skin color detection performed by using rgb, hsi, and ycbcr color model. using algorithm stated by ap-apid (ap-apid, 2005), the system will classify nude and not-nude images. if one or more nude images are found, the system will block the webpage. keywords: webpage filtering, image processing, pornography, nudity, skin color, nude images pendahuluan perkembangan teknologi di bidang penangkapan dan pengolahan citra serta penyimpanan data, seiring dengan akses internet yang semakin luas, secara signifikan meningkatkan aliran informasi di masyarakat. salah satunya adalah penyebaran informasi yang berkaitan dengan pornografi. internet adalah media yang mudah diakses, sehingga tiap orang yang mengerti cara membuka web browser, menggunakan situs pencarian kemudian masuk ke situs tertentu, dapat menampilkan halaman web yang mengandung pornografi hanya dengan mengetikkan beberapa kata kunci. (lin, et. al, 2003:1) kebanyakan sistem komersial yang didesain untuk mencegah akses terhadap hal-hal yang mengandung pornografi seperti netnanny, cybersitter, cyberpatrol dan childwebguardian memblokir situs web dengan membandingkan suatu alamat ip, alamat url, atau teks dalam suatu halaman web dengan alamat ip, alamat url, atau kata-kata tertentu yang ada dalam basis data sistem tersebut. pendekatan tersebut efektif untuk memblokir situs web porno yang populer dan halaman web yang memiliki link ke situs web porno, tetapi kurang efektif dalam memblokir halaman web yang berisi koleksi citra pornografi karena halaman-halaman tersebut sering tidak berisi link ke halaman web lain yang mengandung pornografi atau tidak berisi katakata yang mengandung pornografi. (liang, et. al, 2004:1) data statistik terhadap 4.000.000 halaman html yang dihimpun oleh starykevitch dan daoudi (starykevitch, 2002) menunjukkan bahwa 70% dari halaman-halaman tersebut berisi citra digital, dan sebuah halaman html rata-rata berisi 18,8 citra digital. tinjauan statistik terhadap 1.232 halaman web porno dan 6.967 halaman web non-porno menunjukkan bahwa 72% halaman web porno berisi lebih dari 5 citra digital dan 60% dari halaman web porno berisi lebih dari 10 citra digital. 40% dari halaman web porno tersebut berisi lebih dari 5 link menuju file video dan citra digital. karenanya, kemampuan untuk mendeteksi citra pornografi dapat menjadi alat yang berguna untuk menyaring hal-hal yang mengandung pornografi di internet. (abadpour, 2005:1) pornografi adalah konsep yang hingga kini belum memiliki definisi yang cukup saksama untuk membedakan citra mana yang mengandung pornografi dan citra mana yang tidak (chan, et. al, 1999:1). berdasarkan definisi pornografi oleh lin (lin et. al, 2003:2), halaman web yang mengandung citra pornografi didefinisikan sebagai halaman web yang didalamnya terdapat citra yang mengandung obyek manusia telanjang, manusia menunjukkan organ seksual, atau manusia sedang melakukan hubungan seksual. sebuah citra dapat digolongkan sebagai citra pornografi bila didalamnya terdapat obyek manusia yang telanjang, manusia yang menunjukkan organ seksual, atau manusia yang sedang melakukan hubungan seksual. citra tersebut umumnya memiliki banyak warna kulit, sehingga warna kulit merupakan salah satu perhatian utama dalam pendeteksian citra pornografi. lebih jauh lagi, lin (lin et al, 2003) menyebutkan bahwa situs web pornografi umumnya mengandung kata-kata yang mengindikasikan pornografi. yusron rijal dan awalia nofitasri 208 volume 1 no. 4 mei 2011 metodologi perancangan sistem tujuan utama penelitian yang dilakukan penulis adalah untuk menyaring halaman web yang mengandung citra pornografi. penyaringan halaman web yang mengandung citra pornografi diimplementasikan dengan membuat script penyaringan halaman web yang mengandung citra pornografi untuk kemudian ditambahkan kedalam script situs web tertentu, misalnya sebagai penyaring masukan pada layanan buku tamu online (umumnya pada situs web pribadi atau blog) atau layanan pendaftaran promosi iklan online (umumnya pada situs web iklan baris). bahasa pemrograman yang digunakan adalah php dengan apache sebagai web server. penyaringan halaman web yang mengandung unsur pornografi dilakukan menggunakan kombinasi dua metode, yaitu pencocokan kata (text matching) dan identifikasi citra pornografi. secara umum, langkah-langkah penyaringan halaman web yang mengandung unsur pornografi dapat digambarkan pada blok diagram berikut: gambar 1. blok diagram penyaringan halaman web berdasarkan blok diagram tersebut, proses identifikasi citra dibagi menjadi 4 tahap, yaitu: 1. cari url dalam komentar. 2. cari kata-kata yang mengandung unsur pornografi. 3. identifikasi citra pornografi pada url tersebut. 4. klasifikasikan halaman web, apakah termasuk halaman web yang mengandung unsur pornografi atau tidak. identifikasi url dalam komentar url dalam komentar diidentifikasi berdasarkan pernyataan-pernyataan berikut: 1. kebanyakan url menggunakan protokol http (boutell, 2009). 2. protokol yang digunakan untuk mengakses file tertentu dalam sebuah web server dan menampilkannya dalam web browser adalah protokol http (university of illinois at urbanachampaign, 2009). 3. protokol dan nama resource dipisahkan dengan tanda titik dua dan dua garis miring (sun, 2009). 4. untuk dapat diakses, sebuah url tidak dapat mengandung spasi (blogger, 2009). sehingga, sebuah rangkaian karakter yang memiliki rangkaian karakter โ€œhttp://โ€ akan dianggap url oleh sistem dan rangkaian karakter tersebut akan disimpan hingga menemukan karakter spasi (โ€œ โ€). url dapat pula disebutkan dalam sebuah hyperlink. untuk mengantisipasi hal tersebut, sistem menghilangkan semua tag html dalam isi komentar sebelum melakukan pencarian rangkaian karakter โ€œhttp://โ€. contoh isi komentar disampaikan pada gambar 2. gambar 2. contoh komentar url pada gambar 2 adalah http://www. break.com/pictures_nsfw/hottie-on-thebed6641 10.html. identifikasi kata-kata yang mengandung unsur pornografi teknik yang digunakan adalah text matching, dimana isi html sebuah halaman web dicocokkan dengan daftar kata yang dimiliki sistem. bila ditemukan adanya kata yang sama, sistem akan melakukan analisa lebih lanjut. bila tidak ketemu, sistem akan menganggap bahwa komentar aman untuk disimpan. daftar kata yang mengandung unsur pornografi disusun berdasarkan hasil pengamatan terhadap 24 sampel halaman web. kata yang dipilih adalah kata yang sering muncul dalam sampel halaman web pornografi tapi tidak muncul dalam sampel bukan halaman web pornografi. contoh hasil text matching disampaikan pada gambar 3. gambar 3. contoh hasil text matching isi komentar identifikasi url dalam komentar identifikasi citra pornografi identifikasi kata-kata yang mengandung unsur pornografi status komentar (diblokir atau disimpan) penarikan kesimpulan filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit jurnal cauchy โ€“ issn: 2086-0382 209 identifikasi citra pornografi jika proses pencarian kata yang mengindikasikan pornografi menghasilkan nilai true, sistem mencari alamat citra pada isi html halaman web. citra yang diidentifikasi adalah citra jenis jpeg (ekstensi .jpg dan .jpeg). dengan demikian, alamat citra adalah alamat yang diawali dengan kata โ€œhttp://โ€ dan diakhiri dengan kata โ€œ.jpgโ€ atau โ€œ.jpegโ€. alamat citra dicari pada: a. alamat yang disebutkan dalam properti src sebuah image. contoh: . . . b. alamat yang disebutkan dalam properti href sebuah hyperlink. contoh: . . . bila jumlah alamat citra yang dihasilkan dari proses pencarian berjumlah lebih dari satu, sistem melakukan proses penyalinan file citra. penyalinan file citra digital merupakan proses menyalin (copy) citra digital kedalam komputer server. bila alamat citra tidak ditemukan, sistem menganggap bahwa halaman web tersebut tidak mengandung citra pornografi, sehingga sistem kemudian menyimpan isi komentar. contoh hasil pencarian alamat citra digital disampaikan pada gambar 4 dan gambar 5. gambar 4. alamat file citra digital pada properti src sebuah image gambar 5. hasil penyalinan file citra digital secara umum, langkah-langkah identifikasi citra pornografi adalah (ap-apid, 2005:3): 1. deteksi piksel warna kulit dalam citra. 2. cari atau bentuk area-area kulit berdasarkan hasil pendeteksian piksel. 3. analisa tiap area kulit untuk mendapatkan petunjuk pornografi. 4. klasifikasikan citra, apakah termasuk citra pornografi atau bukan. untuk mendeteksi piksel warna kulit, digunakan model warna tertentu. model warna yang digunakan harus dapat membedakan piksel yang menyerupai warna kulit dengan piksel yang tidak menyerupai warna kulit. dari piksel-piksel yang menyerupai warna kulit, diperkirakan daerah-daerah yang dapat dibentuk oleh pikselpiksel tersebut. tiap daerah kulit kemudian dihitung luasnya. luas daerah kulit digunakan sebagai bahan penarikan kesimpulan (berdasarkan kriteria-kriteria yang telah ditetapkan) untuk mengambil kesimpulan apakah suatu citra tergolong citra pornografi atau tidak. pemilihan model warna untuk mendeteksi piksel warna kulit, digunakan tiga macam model warna: rgb, hsi, dan ycbcr. lin (lin et al, 2003:4) menyebutkan bahwa model warna default untuk file citra digital jenis jpeg dan gif adalah rgb. model warna hsi mewakili penerimaan mata manusia terhadap warna. ycbcr dapat digunakan untuk mengidentifikasi warna kulit manusia tanpa memperhatikan faktor perbedaan ras (chai and bouzerdoum, 1999). model warna rgb tidak sesuai untuk mengidentifikasi piksel warna kulit karena model warna rgb tidak hanya menggambarkan warna tapi juga kecerahan warna. hal ini dapat diatasi dengan penggunaan model warna hsi dan ycbcr. model warna hsi dan ycbcr dapat memisahkan tingkat kecerahan piksel dengan kromatisitas warna (chai & bouzerdoum, 1999). persamaan yang digunakan untuk mendapatkan nilai hsi sebagai berikut (abadpour, 2005:15): )))(()((2 2 cos 2 1 bgbrgr bgr h โˆ’โˆ’+โˆ’ โˆ’โˆ’ = โˆ’ (1) ),,min( 3 1 bgr bgr s ++ โˆ’= (2) )( 3 1 bgri ++= (3) persamaan yang digunakan untuk mendapatkan nilai ycbcr sebagai berikut (blogspot, 2009): )*114,0()*587,0()*299,0( bgry ++= (4) )*5,0()*331,0()*169,0( bgrcb +โˆ’+โˆ’= (5) )*081,0()*419,0()*5,0( bgrcr โˆ’+โˆ’+= (6) penetapan batas ambang untuk memisahkan piksel warna kulit dengan piksel bukan warna kulit, diperlukan penentuan batas ambang untuk tiap model warna. batas ambang ditentukan berdasarkan hasil eksperimen terhadap 85 sampel citra kulit manusia dan 58 sampel citra bukan kulit manusia. pendeteksian warna kulit pada dasarnya, deteksi kulit pada citra digital melibatkan dua proses, yaitu pembacaan piksel dan segmentasi citra. pembacaan piksel yusron rijal dan awalia nofitasri 210 volume 1 no. 4 mei 2011 dilakukan untuk mengetahui nilai rgb tiap piksel. dari nilai rgb tersebut, dilakukan perhitungan nilai hsi dan ycbcr. dari nilai rgb, hsi, dan ycbcr yang diperoleh, dilakukan segmentasi citra. segmentasi citra merupakan proses pemisahan piksel bukan warna kulit dengan piksel warna kulit menggunakan batas ambang tertentu untuk tiap model warna. piksel yang dianggap bukan piksel warna kulit akan diubah warnanya menjadi hitam, sedangkan piksel warna kulit akan diubah warnanya menjadi putih. dengan demikian, citra yang dihasilkan dari proses segmentasi citra adalah sebuah citra biner. yang dimaksud citra biner adalah citra hitam putih, dimana piksel warna kulit direpresentasikan dengan warna putih, dan piksel bukan warna kulit direpresentasikan dengan warna hitam. segmentasi citra dilakukan untuk mempermudah proses perhitungan luas area kulit. hasil segmentasi citra dari gambar 5 disampaikan pada gambar 6. gambar 6. citra biner hasil segmentasi batas ambang untuk model warna rgb ditetapkan berdasarkan pernyataan-pernyataan berikut: 1. kulit manusia terdiri atas darah yang berwarna merah dan melanin yang berwarna kuning atau coklat. dengan demikian, kulit manusia (pada citra selain hitam putih dan keabuan) tidak mungkin berwarna hitam, putih, atau abu-abu. 2. piksel (pada model warna rgb) dapat digolongkan sebagai piksel warna kulit jika memiliki nilai r > g atau r > b atau keduanya. pernyataan tersebut bila digunakan memerlukan analisa lebih lanjut, karena pernyataan r > g atau r > b hanya berlaku jika citra tidak memiliki piksel (selain warna kulit) berwarna merah (brown et.al., 2001). dari pernyataan-pernyataan tersebut, batas ambang untuk model warna rgb ditetapkan sebagai berikut: a. piksel dianggap bukan warna kulit jika berwarna putih (255, 255, 255), berwarna hitam (0, 0, 0), ataupun abu-abu (r = g = b). b. piksel dianggap bukan warna kulit jika r <= g atau r <= b. batas ambang hsi dan ycbcr diperoleh dari hasil eksperimen terhadap 85 sampel citra warna kulit dan 58 sampel citra bukan warna kulit. batas ambang untuk model warna hsi sebagai berikut: a. hue lebih besar dari -1 dan lebih kecil dari 15 (-1 < h < 15), dengan nilai saturation antara 3 dan 65 (3 < s < 65) b. hue lebih besar sama dengan 15 dan lebih kecil dari 45 (15 <= h < 45), dengan nilai saturation antara 3 dan 70 (3 < s < 70) c. hue lebih besar sama dengan 45 dan lebih kecil dari 75 (45 <= h < 75), dengan nilai saturation antara 3 dan 65 (3 < s < 65) batas ambang ycbcr ditetapkan sebagai berikut: a. kroma biru lebih besar dari -61 dan lebih kecil dari 7 (-61 < cb < 7) b. kroma merah lebih besar dari 10 dan lebih kecil dari 101 (10 < cr < 101) segmentasi citra akan membentuk areaarea kulit. perhitungan luas area kulit dilakukan menggunakan metode freemanโ€™s chain code yang telah dimodifikasi (rijal et.al, 2006). model chain code yang digunakan penulis adalah chain code dengan delapan arah mata angin (gambar 7). tiap arah pergeseran direpresentasikan dengan angka tertentu, dimana angka terkecil adalah arah permulaan pergeseran. untuk menyederhanakan algoritma perhitungan luas, pergerakan chain code ditetapkan ke kanan searah jarum jam. angka terkecil menunjukkan arah permulaan penelusuran piksel. sehingga, penelusuran piksel dimulai dari kanan koordinat, kemudian kanan bawah, bawah, kiri bawah, kiri, kiri atas, atas, kanan atas, demikian seterusnya hingga semua piksel telah ditelusuri. area yang dikenai proses perhitungan luas adalah area berwarna putih. satuan luas yang digunakan adalah piksel. contoh hasil perhitungan luas disampaikan pada gambar 8. gambar 7. chain code yang dimodifikasi gambar 8. contoh hasil perhitungan luas dari informasi luas tiap area kulit, dihitung luas piksel kulit. luas piksel kulit kemudian dibandingkan dengan luas piksel bukan kulit. jika 1 7 5 3 2 86 4 jurnal cauchy persentase jumlah piksel warna kulit dibandingkan dengan jumlah piksel bukan warna kulit lebih besar dari 50 perse citra pornografi. bila kurang dari sama dengan 50 persen, citra dianggap bukan citra pornografi. batas ambang piksel kulit terhadap piksel bukan warna kulit ditentukan berdasarkan hasil eksperimen terhadap 120 pornografi. penarikan kesimpulan penarikan kesimpulan merupakan proses penentuan apakah suatu halaman web tergolong halaman web digunakan untuk penarikan kesimpulan adalah adanya kata yang mengindikasikan unsur pornografi dan jumlah citra pornografi. jika sistem tidak menemukan kata yang mengindikasikan pornografi, sistem akan menyimpan komentar. jika sis kata yang mengindikasikan pornografi tapi tidak metemukan satu pun citra pornografi dalam halaman web, sistem akan menyimpan komentar. bila sistem menemukan adanya kata yang mengindikasikan pornografi dan metemukan setidaknya satu citra porno web, komentar tidak akan disimpan dan sistem akan menampilkan halaman pemblokiran komentar ( gambar 9. hasil dan pembahasan untuk menguji akurasi penyaringan halaman web, digunakan 10 sampel url terdiri atas 6 halaman web pornografi dan 4 halaman web bukan pornografi. untuk menguji akurasi identifikasi citra pornografi, digunakan 178 sampel citra. sampel citra terdiri atas 118 citra pornografi dan 60 citra bukan pornografi. uji aku merupakan uji kuantitatif, sehingga hasil pengujian dibagi dalam empat kelompok, yaitu kelompok negative kelompok false negative uji akurasi penya filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit jurnal cauchy โ€“ issn: 2086 persentase jumlah piksel warna kulit dibandingkan dengan jumlah piksel bukan warna kulit lebih besar dari 50 perse citra pornografi. bila kurang dari sama dengan 50 persen, citra dianggap bukan citra pornografi. batas ambang prosentase piksel kulit terhadap piksel bukan warna kulit ditentukan berdasarkan hasil eksperimen terhadap 120 citra pornografi dan 32 citra bukan pornografi. penarikan kesimpulan penarikan kesimpulan merupakan proses penentuan apakah suatu halaman web tergolong halaman web pornografi digunakan untuk penarikan kesimpulan adalah adanya kata yang mengindikasikan unsur pornografi dan jumlah citra pornografi. jika sistem tidak menemukan kata yang mengindikasikan pornografi, sistem akan menyimpan komentar. jika sis kata yang mengindikasikan pornografi tapi tidak metemukan satu pun citra pornografi dalam halaman web, sistem akan menyimpan komentar. bila sistem menemukan adanya kata yang mengindikasikan pornografi dan metemukan setidaknya satu citra porno web, komentar tidak akan disimpan dan sistem akan menampilkan halaman pemblokiran komentar (gambar 9). gambar 9. halaman pemblokiran komentar hasil dan pembahasan untuk menguji akurasi penyaringan halaman web, digunakan 10 sampel url terdiri atas 6 halaman web pornografi dan 4 halaman web bukan pornografi. untuk menguji akurasi identifikasi citra pornografi, digunakan 178 sampel citra. sampel citra terdiri atas 118 citra pornografi dan 60 citra bukan pornografi. uji akurasi penyaringan halaman web merupakan uji kuantitatif, sehingga hasil pengujian dibagi dalam empat kelompok, yaitu kelompok true positive (tn), kelompok kelompok false negative uji akurasi penyaringan halaman web filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit issn: 2086-0382 persentase jumlah piksel warna kulit dibandingkan dengan jumlah piksel bukan warna kulit lebih besar dari 50 persen, citra dianggap citra pornografi. bila kurang dari sama dengan 50 persen, citra dianggap bukan citra pornografi. prosentase perbandingan luas piksel kulit terhadap piksel bukan warna kulit ditentukan berdasarkan hasil eksperimen citra pornografi dan 32 citra bukan penarikan kesimpulan penarikan kesimpulan merupakan proses penentuan apakah suatu halaman web tergolong pornografi atau tidak. kriteria yang digunakan untuk penarikan kesimpulan adalah adanya kata yang mengindikasikan unsur pornografi dan jumlah citra pornografi. jika sistem tidak menemukan kata yang mengindikasikan pornografi, sistem akan menyimpan komentar. jika sistem menemukan kata yang mengindikasikan pornografi tapi tidak metemukan satu pun citra pornografi dalam halaman web, sistem akan menyimpan komentar. bila sistem menemukan adanya kata yang mengindikasikan pornografi dan metemukan setidaknya satu citra pornografi dalam halaman web, komentar tidak akan disimpan dan sistem akan menampilkan halaman pemblokiran ambar 9). halaman pemblokiran komentar hasil dan pembahasan untuk menguji akurasi penyaringan halaman web, digunakan 10 sampel url terdiri atas 6 halaman web pornografi dan 4 halaman web bukan pornografi. untuk menguji akurasi identifikasi citra pornografi, digunakan 178 sampel citra. sampel citra terdiri atas 118 citra pornografi dan 60 citra rasi penyaringan halaman web merupakan uji kuantitatif, sehingga hasil pengujian dibagi dalam empat kelompok, yaitu true positive (tp), kelompok (tn), kelompok false positive kelompok false negative (fn). ringan halaman web filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit 0382 persentase jumlah piksel warna kulit dibandingkan dengan jumlah piksel bukan warna n, citra dianggap citra pornografi. bila kurang dari sama dengan 50 persen, citra dianggap bukan citra pornografi. perbandingan luas piksel kulit terhadap piksel bukan warna kulit ditentukan berdasarkan hasil eksperimen citra pornografi dan 32 citra bukan penarikan kesimpulan merupakan proses penentuan apakah suatu halaman web tergolong atau tidak. kriteria yang digunakan untuk penarikan kesimpulan adalah adanya kata yang mengindikasikan unsur pornografi dan jumlah citra pornografi. jika sistem tidak menemukan kata yang mengindikasikan pornografi, sistem akan tem menemukan kata yang mengindikasikan pornografi tapi tidak metemukan satu pun citra pornografi dalam halaman web, sistem akan menyimpan komentar. bila sistem menemukan adanya kata yang mengindikasikan pornografi dan metemukan grafi dalam halaman web, komentar tidak akan disimpan dan sistem akan menampilkan halaman pemblokiran halaman pemblokiran komentar untuk menguji akurasi penyaringan halaman web, digunakan 10 sampel url. sampel url terdiri atas 6 halaman web pornografi dan 4 untuk menguji akurasi identifikasi citra pornografi, digunakan 178 sampel citra. sampel citra terdiri atas 118 citra pornografi dan 60 citra rasi penyaringan halaman web merupakan uji kuantitatif, sehingga hasil pengujian dibagi dalam empat kelompok, yaitu (tp), kelompok true false positive (fp), dan ringan halaman web filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit persentase jumlah piksel warna kulit dibandingkan dengan jumlah piksel bukan warna n, citra dianggap citra pornografi. bila kurang dari sama dengan 50 persen, citra dianggap bukan citra pornografi. perbandingan luas piksel kulit terhadap piksel bukan warna kulit ditentukan berdasarkan hasil eksperimen citra pornografi dan 32 citra bukan penarikan kesimpulan merupakan proses penentuan apakah suatu halaman web tergolong atau tidak. kriteria yang digunakan untuk penarikan kesimpulan adalah adanya kata yang mengindikasikan unsur pornografi dan jumlah citra pornografi. jika sistem tidak menemukan kata yang mengindikasikan pornografi, sistem akan tem menemukan kata yang mengindikasikan pornografi tapi tidak metemukan satu pun citra pornografi dalam halaman web, sistem akan menyimpan komentar. bila sistem menemukan adanya kata yang mengindikasikan pornografi dan metemukan grafi dalam halaman web, komentar tidak akan disimpan dan sistem akan menampilkan halaman pemblokiran untuk menguji akurasi penyaringan url. sampel url terdiri atas 6 halaman web pornografi dan 4 untuk menguji akurasi identifikasi citra pornografi, digunakan 178 sampel citra. sampel citra terdiri atas 118 citra pornografi dan 60 citra rasi penyaringan halaman web merupakan uji kuantitatif, sehingga hasil pengujian dibagi dalam empat kelompok, yaitu true (fp), dan menghasilkan 6 halaman web pornografi dideteksi sebagai halaman web pornografi (tp = 60%), 0 halaman web pornografi deteksi sebagai bukan halaman web pornografi (tn = 0%), 2 halaman web bukan pornografi d halaman web pornografi (fp = 20%), 2 halaman web bukan pornografi dideteksi sebagai bukan halaman web pornografi (fn = 20%). hasil pengujian disampaikan pada tabel 1. adanya citra bukan pornografi yang didentifikasi sebagai citra pornografi. tabel 1. uji akurasi identifikasi citra pornografi hasil sebagai berikut: 1. 2. 3. 4. beberapa hasil pengujian disampaikan pada tabel 2 dan tabel 3. dipengaruhi oleh kualitas citra, tingkat pencahayaan, serta keragaman warna kulit antar ras manusia. munculn dipengaruhi oleh antara lain adanya warna latar belakang obyek manusia pada citra menyerupai warna kulit manusia, serta adanya obyek manusia pada citra yang memenuhi sebagian besar luasan citra, misalnya pada citra foto manusia. no. 1 filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit pengujian terhadap 10 sampel url menghasilkan 6 halaman web pornografi dideteksi sebagai halaman web pornografi (tp = 60%), 0 halaman web pornografi deteksi sebagai bukan halaman web pornografi (tn = 0%), 2 halaman web bukan pornografi d halaman web pornografi (fp = 20%), 2 halaman web bukan pornografi dideteksi sebagai bukan halaman web pornografi (fn = 20%). hasil pengujian disampaikan pada tabel 1. munculnya adanya citra bukan pornografi yang didentifikasi sebagai citra pornografi. tabel 1. hasil uji akurasi penyaringan halaman web uji akurasi identifikasi citra pornografi pengujian terhadap sampel memberikan hasil sebagai berikut: 112 sampel citra pornografi dideteksi sebagai citra pornografi (tp = 62,9%). 6 sampel citra pornografi dideteksi sebagai citra pornografi (tn = 3,37%) 51 sampel citra bukan pornografi dideteksi sebagai citra bukan pornografi (fn = 28,7%) 9 sampel citra bukan p sebagai citra pornografi (fp = 5%) beberapa hasil pengujian disampaikan pada tabel 2 dan tabel 3. munculnya dipengaruhi oleh kualitas citra, tingkat pencahayaan, serta keragaman warna kulit antar ras manusia. munculn dipengaruhi oleh antara lain adanya warna latar belakang obyek manusia pada citra menyerupai warna kulit manusia, serta adanya obyek manusia pada citra yang memenuhi sebagian besar luasan citra, misalnya pada citra foto manusia. tabel 2. beberapa hasil pengujian terhadap citra no. citra sampel filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit pengujian terhadap 10 sampel url menghasilkan 6 halaman web pornografi dideteksi sebagai halaman web pornografi (tp = 60%), 0 halaman web pornografi deteksi sebagai bukan halaman web pornografi (tn = 0%), 2 halaman web bukan pornografi d halaman web pornografi (fp = 20%), 2 halaman web bukan pornografi dideteksi sebagai bukan halaman web pornografi (fn = 20%). hasil pengujian disampaikan pada tabel 1. munculnya false positive adanya citra bukan pornografi yang didentifikasi sebagai citra pornografi. hasil uji akurasi penyaringan halaman web uji akurasi identifikasi citra pornografi pengujian terhadap sampel memberikan hasil sebagai berikut: sampel citra pornografi dideteksi sebagai citra pornografi (tp = 62,9%). 6 sampel citra pornografi dideteksi sebagai citra pornografi (tn = 3,37%) 51 sampel citra bukan pornografi dideteksi sebagai citra bukan pornografi (fn = 28,7%) 9 sampel citra bukan p sebagai citra pornografi (fp = 5%) beberapa hasil pengujian disampaikan pada tabel munculnya true negative dipengaruhi oleh kualitas citra, tingkat pencahayaan, serta keragaman warna kulit antar ras manusia. munculnya dipengaruhi oleh antara lain adanya warna latar belakang obyek manusia pada citra menyerupai warna kulit manusia, serta adanya obyek manusia pada citra yang memenuhi sebagian besar luasan citra, misalnya pada citra foto beberapa hasil pengujian terhadap citra pornografi citra sampel hasil pengolahan citra filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit pengujian terhadap 10 sampel url menghasilkan 6 halaman web pornografi dideteksi sebagai halaman web pornografi (tp = 60%), 0 halaman web pornografi deteksi sebagai bukan halaman web pornografi (tn = 0%), 2 halaman web bukan pornografi dideteksi sebagai halaman web pornografi (fp = 20%), 2 halaman web bukan pornografi dideteksi sebagai bukan halaman web pornografi (fn = 20%). hasil pengujian disampaikan pada tabel 1. false positive dipengaruhi oleh adanya citra bukan pornografi yang didentifikasi hasil uji akurasi penyaringan halaman web uji akurasi identifikasi citra pornografi pengujian terhadap sampel memberikan sampel citra pornografi dideteksi sebagai citra pornografi (tp = 62,9%). 6 sampel citra pornografi dideteksi sebagai citra pornografi (tn = 3,37%) 51 sampel citra bukan pornografi dideteksi sebagai citra bukan pornografi (fn = 28,7%) 9 sampel citra bukan pornografi dideteksi sebagai citra pornografi (fp = 5%) beberapa hasil pengujian disampaikan pada tabel true negative dipengaruhi oleh kualitas citra, tingkat pencahayaan, serta keragaman warna kulit antar ya false positive dipengaruhi oleh antara lain adanya warna latar belakang obyek manusia pada citra menyerupai warna kulit manusia, serta adanya obyek manusia pada citra yang memenuhi sebagian besar luasan citra, misalnya pada citra foto beberapa hasil pengujian terhadap citra pornografi hasil pengolahan citra identifikasi ? filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit 211 pengujian terhadap 10 sampel url menghasilkan 6 halaman web pornografi dideteksi sebagai halaman web pornografi (tp = 60%), 0 halaman web pornografi deteksi sebagai bukan halaman web pornografi (tn = 0%), 2 ideteksi sebagai halaman web pornografi (fp = 20%), 2 halaman web bukan pornografi dideteksi sebagai bukan halaman web pornografi (fn = 20%). hasil dipengaruhi oleh adanya citra bukan pornografi yang didentifikasi hasil uji akurasi penyaringan halaman web uji akurasi identifikasi citra pornografi pengujian terhadap sampel memberikan sampel citra pornografi dideteksi sebagai citra pornografi (tp = 62,9%). 6 sampel citra pornografi dideteksi sebagai 51 sampel citra bukan pornografi dideteksi sebagai citra bukan pornografi (fn = 28,7%) ornografi dideteksi beberapa hasil pengujian disampaikan pada tabel dapat dipengaruhi oleh kualitas citra, tingkat pencahayaan, serta keragaman warna kulit antar positive dapat dipengaruhi oleh antara lain adanya warna latar belakang obyek manusia pada citra menyerupai warna kulit manusia, serta adanya obyek manusia pada citra yang memenuhi sebagian besar luasan citra, misalnya pada citra foto beberapa hasil pengujian terhadap citra ter identifikasi ? ya yusron rijal dan awalia nofitasri 212 volume 1 no. 4 mei 2011 2 ya 3 ya 4 ya 5 ya tabel 3. beberapa hasil pengujian terhadap citra bukan pornografi no. citra sampel hasil pengolahan citra ter identifikasi ? 1 tidak 2 ya 3 tidak 4 ya 5 tidak 6 tidak 7 tidak 8 tidak 9 tidak 10 ya penutup hasil evaluasi menunjukkan bahwa penyaringan halaman web pornografi mengggunakan pendekatan deteksi warna kulit dapat dilakukan. keberhasilan penyaringan halaman web pornografi sangat dipengaruhi oleh tingkat keberhasilan pendeteksian warna kulit. akurasi penyaringan halaman web dapat ditingkatkan dengan mengkombinasikan pendeteksian citra dengan sistem ip filtering dan text filtering. beberapa metode yang dapat dilakukan untuk meningkatkan akurasi pendeteksian citra antara lain: 1. melakukan penggolongan warna kulit berdasarkan kecerahan warna kulit. 2. mengkombinasikan metode deteksi warna kulit dengan pendeteksian tepi. 3. mengkombinasikan metode deteksi warna kulit dengan pengenalan fitur. 4. mengkombinasikan metode deteksi warna kulit dengan identifikasi kontur. daftar pustaka [1] abadpour, a. & kasaei, s. 2005. pixel-based skin detection for pornography filtering, (online), (http://ce.sharif.edu/~ipl/papers/ ijeee-05-aa.pdf, diakses 15 pebruari 2009) [2] achmad, u. 2005. pengolahan citra digital dan teknik pemrogramannya. jogjakarta: graha ilmu [3] anderson, d.l, shapiro, l. 2006. introduction to chain codes, (online), (http://www. mind. ilstu.edu/curriculum/chain_codes_intro/cha in_codes_intro.php?modgui=162&compgui =1704&itemgui=2966, diakses 10 maret 2009) [4] ap-apid, r. 2005. an algorithm for nudity detection, (online), (http://www.math.admu .edu.ph/~raf/pcsc05/proceedings/ai4.pdf, diakses 15 pebruari 2009) [5] arifianto, r.d. 2008. deteksi wajah menggunakan metode segmentasi berbasis model warna pada objek bergerak, (skripsi). stikomp surabaya [6] blogspot. 2009. jpeg: the most popular image compression, (online), (http:// suicunesoul.blogspot.com/2008/10/jpegmost-popular-image-compression-you.html, diakses 10 maret 2009) [7] bosson, a., cawleyz, g., chanz, y., & harveyz, r. 2002. non-retrieval: blocking pornographic images, (online), (http:// www2.cmp.uea.ac.uk/~rwh/research/repri filter halaman web pornografi menggunakan kecocokan kata dan deteksi warna kulit jurnal cauchy โ€“ issn: 2086-0382 213 nts/civr2002.pdf, diakses 17 pebruari 2009) [8] boutell. 2009. www faqs: what is a url?, (online), (http://www.boutell.com/newfaq/ definitions/url.html, diakses 18 maret 2009) [9] brown, d.a., craw, i., lewthwaite j. 2001. a som based approach to skin detection with application in real time systems, (online), (http://www.bmva.ac.uk/bmvc/2001/pape rs /33/accepted_33.pdf, diakses 19 pebruari 2009) [10] carlsson, a., eriksson, a., isik, m.. 2008. automatic detection of images containing nudity, (online), (http://publications.lib. chalmers.se/records/fulltext/76159.pdf, diakses 17 pebruari 2009) [11] castleman, k.r. 1996. digital image processing. new jersey: prentice-hall [12] chan, y., harvey r., smith d. 1999. building system to block pornography, (online), (http://www2.cmp.uea.ac.uk/~rwh/researc h/reprints/cir99.pdf, diakses 18 pebruari 2009) [13] gonzalez, r. c and woods, r. e. 2002. digital image processing. new jersey: prentice hall [14] jones, m. & rehg, j. 1998. statistical color models with application to skin detection, (online), (http://www.hpl.hp.com/techre ports/compaq-dec/crl-98-11.pdf, diakses 17 pebruari 2009) [15] liang k.m., scott s.d., waqas m. 2004. detecting pornographic images, (online), (http://www.projekcarpet.com/detectingpo rnographicimages.pdf, diakses 18 pebruari 2009) [16] lin, y., tseng, h. & fuh, c. 2003. pornography detection using support vector machine, (online), (http://www.csie.mcu. edu.tw/~yklee/cvgip03/cd/paper/cv/cv07.pdf, diakses 17 pebruari 2009) [17] mandelbrot-dazibao. 2009. hsv colorspace, (online), (http://www.mandelbrot-dazibao. com/hsv/hsv.htm, diakses 10 maret 2009) [18] munir, r. 2004. pengolahan citra digital dengan pendekatan algoritmik. bandung: informatika [19] ncsu. 2009. color principles hue, saturation, and value, (online), (http:// www.ncsu.edu/scivis/lessons/colormodels/ color_models2.html, diakses 10 maret 2009) [20] php documentation group. 2009. php manual, (online), (http://www.php.net/ manual/en/, diakses 10 maret 2009) [21] rgbworld. 2007. color, (online), (http:// www.rgbworld.com.color.html, diakses 18 pebruari 2009) [22] rijal, y., supeno, m. & purnomo, m.h. 2006. deteksi wajah pada objek bergerak dengan menggunakan kombinasi gabor filter dan gaussian low pass filter. seminar nasional aplikasi teknologi informasi (snati) 2006. universitas islam indonesia [23] sitepoint forum. 2009. donโ€™t get this bitshifting colors code, (online), (http:// www.sitepoint.com/forums/showthread.ph p?t=587190, diakses 10 maret 2009) [24] starykevitch, b. & daoudi, m.. 2002. poesia software architecture definition document. (online), (http://www.poesiafilter.org/pdf/ deliverable_3_1.pdf, diakses 18 pebruari 2009) [25] sun. 2009. what is a url?, (online), (http://java.sun.com/docs/books/tutorial/ networking/urls/definition.html, diakses 18 maret 2009) [26] university of illinois at urbana-champaign. 2009. whatโ€™s a url?, (online), (http:// www.cites.illinois.edu/101/url101.html, diakses 18 maret 2009) [27] wang, j., li, j., wiederhold, g., & firschein, o. 1998. system for screening objectionable images, (online), (http://infolab.stanford. edu/image/jcc98/wang.pdf, diakses 17 pebruari 2009) [28] webdevelopernotes. 2009. urls โ€“ what is an url?, (online), (http://www.webdevelopersnotes.com/basics/urls.php3, diakses 18 maret 2009) [29] wikipedia. 2007. rgb color model, (online), (http://www.wikipedia.org/wiki/rgb color model.htm, diakses 18 pebruari 2009) [30] wilson, brian. 2009. url encoding, (online), (http://www.blooberry.com/indexdot/html /topics/urlencoding.htm, diakses 18 maret 2009) [31] wordpress. 2009. color management, (online), (http://warto.files.wordpress.com/ 2008/11/g-color-management.ppt, diakses 10 maret 2009) cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 publication etics journal cauchy is a peer-reviewed electronic national journal. this statement clarifies ethical behaviour of all parties involved in the act of publishing an article in this journal, including the author, the chief editor, the editorial board, the peer-reviewer and the publisher (mathematics department of maulana malik ibrahim state islamic university of malang). this statement is based on copeโ€™s best practice guidelines for journal editors. ethical guideline for journal publication the publication of an article in a peer-reviewed cauchy is an essential building block in the development of a coherent and respected network of knowledge. it is a direct reflection of the quality of the work of the authors and the institutions that support them. peer-reviewed articles support and embody the scientific method. it is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer, the publisher and the society. as publisher of pure and applied mathematics journal, we take our duties to back up over all stages of publishing seriously and we recognize our ethical and other responsibilities. we are committed to ensuring that advertising, reprint or other commercial revenue has no impact or influence on editorial decisions. publication decisions the editor of cauchy is responsible for deciding which of the articles submitted to the journal should be published. the validation of the work in question and its importance to researchers and readers must always drive such decisions. the editors may be guided by the policies of the journal's editorial board and constrained by such legal requirements as shall then be in force regarding libel, copyright infringement and plagiarism. the editors may confer with other editors or reviewers in making this decision. fair play an editor at any time evaluates manuscripts for their intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the authors. confidentiality the editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher, as appropriate. any manuscripts received for review must be treated as confidential documents. they must not be shown to or discussed with others except as authorized by the editor. disclosure and conflicts of interest unpublished materials disclosed in a submitted manuscript must not be used in an editor's own research without the express written consent of the author. cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 publication etics contribution to editorial decisions peer review assists the editor in making editorial decisions and through the editorial communications with the author may also assist the author in improving the paper. promptness any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse himself from the review process. standards of objectivity reviews should be conducted objectively. personal criticism of the author is inappropriate. referees should express their views clearly with supporting arguments. acknowledgement of sources reviewers should identify relevant published work that has not been cited by the authors. any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. a reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge. disclosure and conflict of interest privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers. reporting standards authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance. underlying data should be represented accurately in the paper. a paper should contain sufficient detail and references to permit others to replicate the work. fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. data access and retention authors are asked to provide the raw data in connection with a paper for editorial review and should be prepared to provide public access to such data (consistent with the alpspstm statement on data and databases), if practicable, and should in any event be prepared to retain such data for a reasonable time after publication. originality and plagiarism the authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted. cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 publication etics multiple, redundant or concurrent publication an author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. acknowledgement of sources proper acknowledgment of the work of others must always be given. authors should cite publications that have been influential in determining the nature of the reported work. authorship of the paper authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. all those who have made significant contributions should be listed as co-authors. where there are others who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. the corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. hazards and human or animal subjects if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. disclosure and conflicts of interest all authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. all sources of financial support for the project should be disclosed. fundamental errors in published works when an author discovers a significant error or inaccuracy in his/her own published work, it is the authorโ€™s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. cauchy jurnal matematika murni dan aplikasi volume 6, issue 3, november 2020 issn : 2086-0382 e-issn : 2477-3344 acknowledgment to reviewers in this issue contributions and valuable comments of the following reviewers in this issue was very appreciated kusno kusno, university of jember, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia dr riswan efendi, uin sultan syarif kasim riau, indonesia heni widayani, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia corina karim, brawijaya uiversity abdussakir abdussakir, (scopus id:57202352728), universitas islam negeri maulana malik ibrahim malang, indonesia forecasting population of madiun regency using arima method cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 420-431 p-issn: 2086-0382; e-issn: 2477-3344 submitted: may 26, 2022 reviewed: july 19, 2022 accepted: july 25, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.16156 forecasting population of madiun regency using arima method yuniar farida*, mayandah farmita, nurissaidah ulinnuha, dian yuliati department of mathematics, faculty of science and technology, sunan ampel state islamic university surabaya, indonesia email: yuniar_farida@uinsby.ac.id abstract the high population growth of the madiun regency can cause population density that can have implications for other problems, both in terms of social, economic, welfare, security, land availability, availability of clean water, and food needs. this study aims to predict the population growth of madiun regency using the arima method. the arima method is popular for forecasting time series data, which is reliable because the calculation process is done gradually. the arima method has three models, namely ar (autoregressive), ma (moving average), and arma (autoregressive moving average). this study uses annual population data of madiun regency from 1983 to 2021 and produces an arima forecasting model (0,2,1) with a mape value of 8.42%. this study also showed that from 2022 to 2024 is predicted to increase by 17947 people or 2.39%. the results of this study are expected to be used as information from the madiun regency government in anticipating the emergence of problems caused by the population level of madiun regency in the future. keywords: arima; forecasting; population; time series analysis introduction one of the most important problems globally is the high population growth in developing countries [1], [2]. indonesia is listed as one of the five most populous countries in the world. indonesia ranks fourth after china, india, and the united states and is the most populous asian continent [3]. according to the 2020 population census, conducted in 2020, the population of indonesia reached 270.20 million. indonesia has a land area of 1.9 million km2 and a population density of 141 people per km2, with an average annual population growth rate of 1.25% between 2010 and 2020 [4]. in indonesia, java ranks first as the most populous island, and east java is the second-most populous province after west java, with 40.67 million people. [4]. east java province consists of several cities and regencies, one of which is madiun regency, whose population growth rate ranks fifth in the 2020 period and experiences population growth every year. in 2015 the population was 676,087 people, while its development in 2019 was 749,070 [5]. population growth in madiun regency is affected by the high birth rate. in 2020, the birth rate in madiun regency will be 3928, with a population growth rate of 0.92% [5]. high population growth can cause various problems, such as regional spatial problems, housing, employment, education, economy, and security. in addition, it can also http://dx.doi.org/10.18860/ca.v7i3.16156 mailto:yuniar_farida@uinsby.ac.id population forecasting of madiun regency using arima method yuniar farida 421 cause problems in social aspects, welfare, availability of clean water, food needs, and can cause environmental damage [1], [6], [7]. population density, which can cause problems, needs to be anticipated by making predictions so that various handling strategies can be carried out. several statistical mathematical-based forecasting models can predict it, including exponential smoothing, moving average, and arima models (box-jenkins). other forecasting models are based on artificial intelligence, such as neural networks, genetic algorithmic, simulated annealing, and classification [8]. several previous studies by xu et al., predicted beijing's main area population using the long short term memory (lstm) model with mape 4.35% [9]. next, a study that indicated the population of residents in east kalimantan using exponential smoothing by pakpahan, basani, and hariani that yielded a mape of 14.81% [10]. on the other, there are studies related to the prediction of population prediction using the arima method conducted by mardiyah et al. in pasuruan city [11], nyoni, mutongi, and munyaradzi in the gambia [12], and nyoni in zimbabwe obtained mape < 3.94% [13]. based on the previous studies, the authors are interested in the arima method, which results in an excellent level of accuracy in some cases of population forecasting. the arima method is flexible and straightforward in an application, and accurate prediction results for the short term, but the forecasting accuracy for long-term forecasting is not good and will usually tend to be flat for a long time [14], [15]. in applying practice and forecasting the population, arima is also widely used in various case studies, including research by alabdulrazzaq related to predicting the spread of covid-19 with mape 4.2% [16]. other research by swaraj about covid-19 predictions in india with mape 4.7% [17]. additional research by guha and bandyopadhyay predicts the price of gold with a mape of 3.25% [18]. another study by banerjee related forecasting on the indian stock market with mape 3.33% [19]. then there was research by grigonytฤ— and butkeviฤiลซtฤ— about predicting wind speed in latvia with mape 1% [20]. based on the explanation above, this study used the arima method to predict the population of the madiun regency. this research is expected to provide information for the madiun regency government to take policy steps to minimize and reduce risk due to the high rate of population growth of madiun regency. methods the data the data used in this study is data on residents of madiun regency from 1983 to 2021, which is taken from the central bureau of statistics of madiun regency, from the website https://bit.ly/pendudukkabmadiun [21]. table 1. the population of madiun regency no. year population 1. 1983 638586 2. 1984 627467 โ‹ฎ โ‹ฎ โ‹ฎ 38 2020 744350 39 2021 750143 https://bit.ly/pendudukkabmadiun population forecasting of madiun regency using arima method yuniar farida 422 arima box and jenkins first developed the arima model in the 1970s [22]. the arima is one of the econometric methods used to predict univariate time-series data. box and jenkins state that this model does not use independent variables but instead utilizes the information in the circuit to generate pre-predicted values. therefore, the arima model requires an autocorrelation process in the series. autocorrelation is the correlation between two observations at different points in a time series. in other words, time series data is self-correlated. time series models in the arima method include autoregressive (ar), moving average (ma), and autoregressive moving average (arma) [23], [24]. the analysis with arima box jenkins begins by creating a series of plot periods and plotting the acf to determine whether the data is mean-stationary or variancestationary. differentiation must be done if the data are not stationary to the mean. otherwise, if the data is not stationary to the variance, a box-cox transformation is performed. repeat the process for the data stationer. after getting stationary data, the next step is to predict the data from arima based on the acf and pacf plots. then use ljung-box to test the parameters of the test model as well as test the residual hypothesis, which is residual white noise. it can be concluded, there are several stages of forecasting in arima, namely model identification, parameter estimation, diagnostic testing, and prediction. model identification when identifying the model on the arima method, the data used must meet the stationary or stability requirements. if the data does not meet the stationery requirements, the data must be stationary for the variance and average (mean) [25]. the transformation equation is as follows [26]. ๐‘‡(๐‘๐‘ก) โ€ฒ = ๐‘๐‘ก ๐œ† ๐œ† (1) where: ๐‘‡(๐‘๐‘ก) : transformed data value ๐‘๐‘ก : i th time data value ๐œ† : the estimated value of transformation parameters the transformed data is determined by the lambda value. for example, the following table shows some commonly used ๐œ† values and associated transformations. table 2. ๐œ† value and transformation ๐€ value transformation -1.0 1 ๐‘๐‘กโ„ -0.5 1 โˆš๐‘๐‘กโ„ 0.0 ln๐‘๐‘ก 0.5 โˆš๐‘๐‘ก 1.0 ๐‘๐‘ก for time-series data that have not satisfied the stationarity of the average, the data must be processed differentially to find the difference between one data and the previous data in sequence. the differencing equation is as follows. ๐‘๐‘ก โ€ฒ = ๐‘๐‘ก โˆ’ ๐‘๐‘กโˆ’1 (2) population forecasting of madiun regency using arima method yuniar farida 423 ๐‘๐‘ก โ€ฒ is the differentiated data value, where ๐‘๐‘ก is the i th time data value. if the data is already stationary, a tentative model of arima (p, d, q) is obtained. annotation p is a lag that exceeds the significance limit on the partial autocorrelation function (pacf) plot graph, d is the level of differencing performed, q is the lag that crosses the significance limit of the autocorrelation function (acf) plot. autoregressive is a model in which a dependent variable is influenced by the value of the dependent variable itself because the data used is single. in general, ar is p ordo, with the form ๐ด๐‘…(๐‘) as follows [27]. ๐‘‹๐‘ก = โˆ…0 + โˆ…1๐‘‹๐‘กโˆ’1 + โˆ…2๐‘‹๐‘กโˆ’2 + โ‹ฏ+ โˆ…๐‘–๐‘‹๐‘กโˆ’๐‘– + ๐›ผ๐‘ก (3) where: ๐‘‹๐‘ก : time series t ๐‘‹๐‘กโˆ’๐‘– : time series t-i ๐›ผ๐‘ก : time error value t โˆ…0 : constant โˆ…๐‘– : coefficients of autoregressive moving average is a model that measures autocorrelation between the error or residual values. the ma is generally ornate q, with the following form of ๐‘€๐ด(๐‘ž) [28]. ๐‘‹๐‘ก = ๐‘’๐‘ก โˆ’ ๐œƒ1๐›ผ๐‘กโˆ’1 โˆ’ ๐œƒ2๐›ผ๐‘กโˆ’2 โˆ’ โ‹ฏโˆ’ ๐œƒ๐‘–๐›ผ๐‘กโˆ’๐‘– (4) where: ๐›ผ๐‘กโˆ’๐‘– : time error value t-i ๐œƒ๐‘– : coefficient of moving average autoregressive moving average or arma (p, q), with the following general equations [29]. ๐‘‹๐‘ก = โˆ…0 + โˆ…1๐‘‹๐‘กโˆ’1 + โ‹ฏ+ โˆ…๐‘–๐‘‹๐‘กโˆ’๐‘– + ๐›ผ๐‘ก โˆ’ ๐œƒ1๐›ผ๐‘กโˆ’1 โˆ’ โ‹ฏโˆ’ ๐œƒ๐‘–๐›ผ๐‘กโˆ’๐‘– (5) where: ๐‘‹๐‘ก : stationary time series autoregressive integrated moving average data used must be stationary. arima's general statement is as follows [30]. โˆ…0(๐ต)(1 โˆ’ ๐ต) ๐‘‘๐‘๐‘ก = ๐œƒ0 + ๐œƒ๐‘ž(๐ต)๐‘Ž๐‘ก (6) where: โˆ…0 : autoregressive process ๐œƒ๐‘ž : moving average process (1 โˆ’ ๐ต)๐‘‘ : differentiating operator ๐‘‘ : differencing parameter ๐ต : step-back operator ๐‘๐‘ก : deviations from the average process parameter estimation tentative model determination requires several estimation stages through model feasibility tests to find the best model. the significance test hypothesis is as follows [29]. ๐ป0:โˆ… = 0 (indicates parameters are not yet significant) ๐ป1:โˆ… โ‰  0 (shows the parameters are significant) population forecasting of madiun regency using arima method yuniar farida 424 ๐‘ก๐‘๐‘œ๐‘ข๐‘›๐‘ก = ๐œƒ ๐‘†๐ธ(๐œƒ๐‘—) (7) where: ๐œƒ : estimation of autoregressive model parameters and moving averages ๐‘†๐ธ(๐œƒ๐‘—) : standard errors diagnostic test diagnostic tests are used to determine whether or not the model is the best. a good model, where the residual results of the white noise assumption test using the ljung-box test are as follows [6], [29]. ๐‘„ = ๐‘›(๐‘› + 2)โˆ‘ ๏ฟฝฬ‚๏ฟฝ๐‘˜ 2 (๐‘› โˆ’ ๐‘˜) ๐‘– ๐‘˜ (8) where: ๏ฟฝฬ‚๏ฟฝ๐‘˜ : lag autocorrelation value k q : ljung-box test ๐‘˜ : lag time prediction accuracy value the results produced by the arima model are measured in terms of forecast accuracy. each method has a mape (mean absolute percentage error) error value that can be used to calculate the error value with the following formula [16], [31]. ๐‘€๐ด๐‘ƒ๐ธ = โˆ‘ |๐‘ƒ๐ธ๐‘ก| ๐‘› ๐‘ก=1 ๐‘› (9) with ๐‘ƒ๐ธ๐‘ก = ๐‘’๐‘ก ๐‘๐‘ก ร— 100 (8) where: ๐‘ƒ๐ธ๐‘ก : percentage of errors at t ๐‘’๐‘ก : t-time error value ๐‘๐‘ก : actual data of t-time the quality of the prediction can be shown by the mape value, which can be interpreted into four categories, namely excellent (mape < 10%), good (mape 11% 20%), good enough (mape 21% 50%), and not good (mape > 50%). results and discussion based on table 1, a time series plot is performed to determine the arima model and identify the stationarity of the data. population forecasting of madiun regency using arima method yuniar farida 425 figure 1. plot data on the population of madiun regency based on figure 1, the plot data shows an uptrend (positive). the data is not stationary because in 2019 there was an increase seen from the previous year's difference of 67,676 people. if there is no increase or decrease invariance and average, the data is stationary. figure 2. plot box-cox transformation figure 2 shows that the lambda value is equal to 1, the data can be said to be stationary in variance. stationary data on the average can be seen from the acf plot and time series plot. the data does not yet have a fixed pattern. population forecasting of madiun regency using arima method yuniar farida 426 figure 3. acf plot of madiun regency population from the plot figure 3, it appears that the lag-lag is falling slowly. the plot time series data also does not have a fixed pattern, so the data is not stationary against the average. as a result, it is necessary to do a further transformation process through differencing so that the data is stationary. figure 4. acf plot after differencing figure 4 shows that the data is stationary against the mean. if the data is stationary, the next step is to plot the autocorrelation function (pacf). population forecasting of madiun regency using arima method yuniar farida 427 figure 5. pacf plot after differencing based on figures 4 and 5 shows that the plot does not have an autocorrelation on the model, so the values ๐‘€๐ด(๐‘ž) = 0 and ๐ด๐‘…(๐‘) = 0, then obtained the tentative model arima (0,2,0). the model is a random walk where the autocorrelation coefficient is equal to 1, so the tentative models of arima are arima models (1,2,0), (0,2,1), and (1,2,1). a significance test and a residual white noise test were carried out to choose the model used in the prediction. test the significance of the parameters by knowing the pvalue. if the p-value is less than 0.05, then the model is significant. the results of the arima model's tentative significance test (1,2,0), (0,2,1), and (1,2,1) are as follows. table 3. significance test results model parameters coef se coef t-value p-value arima (1,2,0) ar (1) -0.580 0.139 -4.19 0.000 arima (0,2,1) ma (1) 0.950 0.131 7.26 0.000 arima (1,2,1) ar (1) -0.221 0.180 -1.23 0.228 ma (1) 0.946 0.122 7.73 0.000 table 3 shows that the arima models (1,2,1) are not significant because p-values are more than 0.05, arima models (1,2,0) and (0,2,1) are significant because p-values are less than 0.05. after conducting a parameter significance test, it is necessary to perform a residual white noise test to determine which model to use for prediction in performing residual tests using ljung-box. if the p-value is more than 0.05, the model meets the white noise requirement. ljung-box test results for arima models (1,2,0), (0,2,1), and arima models (1,2,1). population forecasting of madiun regency using arima method yuniar farida 428 table 4. ljung-box test results model lag chi-square df p-value arima (1,1,1) 12 5.34 10 0.867 24 11.17 22 0.972 36 23.15 34 0.920 arima (2,1,1) 12 1.83 10 0.998 24 7.23 24 0.999 36 11.94 36 1.000 arima (0,1,2) 12 0.53 9 1.000 24 6.15 21 0.999 36 11.41 33 1.000 table 4, after the ljung-box test, shows that the arima model (1,2,0), (0,2,1), and arima model (1,2,1) are white noise because the p-value is more than 0.05. after performing the white noise test, determine the mape value of the arima provisional model. table 5. mape value model mape arima (1,2,0) 12.45 arima (0,2,1) 8.42% arima (1,2,1) 8.92% based on table 3, table 4, and table 5 of the arima model, whose parameters are significant and meet the assumption of white noise, the arima model (0,2,1) has the smallest mape value. after choosing the best model, then predicted the number of residents of madiun regency. figure 6. actual data plot and forecasting figure 6 showed that there is not much difference between the actual data and the forecast and obtained mape < 10%, which means that the prediction model is already very good. the prediction of the number of residents of madiun regency for the next three years (2022 to 2024) is presented in table 6 below: population forecasting of madiun regency using arima method yuniar farida 429 table 6. population prediction year population 2022 758561 2023 767346 2024 776508 table 6 shows that the madiun regency population from 2022 to 2024 is predicted to increase by 17947 people or 2.39%. the results of these predictions show an uptrend every year. population growth, if followed by an increase in the quality of human resources, will become a regional potential for development. on the other hand, if the increase in population is not accompanied by good quality human resources, it will become a burden for regional development [32]. population data prediction is needed in the planning and evaluating of humanoriented development as the primary target because the population is both an object and a subject of the action. the objectโ€™s function means the population as a target, and the people carry out the development mark. the function of the issue means that the people are the sole actor in action. the two functions are expected to go hand in hand and line integrally [32]. conclusions based on the research results on the prediction of the population of madiun regency using the arima method, it can be concluded that the best model for predicting the number of residents of madiun regency is arima (0,2,1) with a mape of 8.42%. the predicted number of residents of madiun regency in 2022 amounted to 758561 people. the selection of the arima method in this research for forecasting the number of residents in madiun is very appropriate because it produces an error value of less than 10%. this method can be applied to similar case studies, especially the case of forecasting the number of residents in other areas. references [1] c. christiani, p. tedjo, and b. martono, โ€œanalisis dampak kepadatan penduduk terhadap kualitas hidup masyarakat provinsi jawa tengah,โ€ ilmiah, vol. 3, no. 1, pp. 102โ€“114, 2014. [2] j. dai and s. chen, โ€œthe application of arima model in forecasting population data,โ€ j. phys. conf. ser., vol. 1324, no. 1, 2019, doi: 10.1088/1742-6596/1324/1/012100. [3] f. fejriani, m. hendrawansyah, l. muharni, s. f. handayani, and syaharuddin, โ€œforecasting peningkatan jumlah penduduk berdasarkan jenis kelamin menggunakan metode arima,โ€ j. kajian, penelit. dan pengemb. pendidik., vol. 8, no. 1 april, pp. 27โ€“36, 2020. [4] direktorat statistik kependudukan dan ketenagakerjaan, potret sensus penduduk 2020 menuju satu data kependudukan indonesia. jakarta: bps ri, 2021. [5] b. k. madiun, kabupaten madiun dalam angka 2021. madiun: bps kabupaten madiun, 2021. [6] haslina, hasmah, k. w. fitriani, m. asbar, and asrirawan, โ€œpenerapan metode arima (autoregressive integrated moving average) box jenkins untuk memprediksi pertambahan jumlah penduduk transmigran (jawa dan bali) di population forecasting of madiun regency using arima method yuniar farida 430 kecamatan sukamaju, kabupaten luwu utara propinsi sulawesi selatan,โ€ dinamika, vol. 9, no. 1, pp. 55โ€“67, 2018. [7] h. yoshikura, โ€œnegative impacts of large population size and high population density on the progress of measles elimination,โ€ jpn. j. infect. dis., vol. 65, no. 5, pp. 450โ€“454, 2012, doi: 10.7883/yoken.65.450. [8] n. l. a. k. yuniastari and i. w. w. wirawan, โ€œperamalan permintaan produk perak menggunakan metode simple moving average dan single exponential smoothing,โ€ sist. dan inform., vol. 9, no. 1, pp. 97โ€“106, 2016. [9] z. xu, j. li, z. lv, y. wang, l. fu, and x. wang, โ€œa graph spatial-temporal model for predicting population density of key areas,โ€ comput. electr. eng., vol. 93, no. may, p. 107235, 2021, doi: 10.1016/j.compeleceng.2021.107235. [10] h. s. pakpahan, y. basani, and r. r. hariani, โ€œprediksi jumlah penduduk miskin kalimantan timur menggunakan single dan double exponential smoothing,โ€ inform. mulawarman j. ilm. ilmu komput., vol. 15, no. 1, pp. 47โ€“51, 2020. [11] i. mardiyah, w. d. utami, d. c. r. novitasari, m. hafiyusholeh, and d. sulistiyawati, โ€œanalisis prediksi jumlah penduduk di kota pasuruan menggunakan metode arima,โ€ ilmu mat. dan terap., vol. 15, no. 3, pp. 525โ€“534, 2021. [12] t. nyoni, c. mutongi, and n. munyaradzi, โ€œpopulation dynamics in gambia: an arima approach,โ€ munich pers. repec arch., 2019. [13] t. nyoni, โ€œthe population question in zimbabweโ€ฏ: reliable projections from the box jenkins arima approach,โ€ munich pers. repec arch., pp. 0โ€“15, 2019. [14] m. s. k. abhilash, a. thakur, d. gupta, and b. sreevidya, โ€œtime series analysis of air pollution in bengaluru using arima model,โ€ adv. intell. syst. comput., vol. 696, pp. 413โ€“426, 2018, doi: 10.1007/978-981-10-7386-1_36. [15] nurviana, r. p. sari, u. nabilla, and t. talib, โ€œforecasting rice paddy production in aceh using arima and exponential smoothing models,โ€ cauchy, vol. 7, no. 2, pp. 281โ€“292, 2022. [16] h. alabdulrazzaq, m. n. alenezi, y. rawajfih, b. a. alghannam, a. a. al-hassan, and f. s. al-anzi, โ€œon the accuracy of arima based prediction of covid-19 spread,โ€ results phys., vol. 27, p. 104509, 2021, doi: 10.1016/j.rinp.2021.104509. [17] a. swaraj, k. verma, a. kaur, g. singh, a. kumar, and l. melo de sales, โ€œimplementation of stacking based arima model for prediction of covid-19 cases in india,โ€ j. biomed. inform., vol. 121, no. august 2020, p. 103887, 2021, doi: 10.1016/j.jbi.2021.103887. [18] b. guha and g. bandyopadhyay, โ€œgold price forecasting using arima model,โ€ j. adv. manag. sci., no. march, pp. 117โ€“121, 2016, doi: 10.12720/joams.4.2.117-121. [19] d. banerjee, โ€œforecasting of indian stock market using time-series arima model,โ€ int. conf. bus. inf. manag. icbim 2014, pp. 131โ€“135, 2014, doi: 10.1109/icbim.2014.6970973. [20] e. grigonytฤ— and e. butkeviฤiลซtฤ—, โ€œshort-term wind speed forecasting using arima model,โ€ energetika, vol. 62, no. 1โ€“2, pp. 45โ€“55, 2016, doi: 10.6001/energetika.v62i1-2.3313. [21] bps kabupaten madiun, kabupaten madiun dalam angka madiun regency in figures 2021. 2021. [22] s. ozturk and f. ozturk, โ€œforecasting energy consumption of turkey by arima model,โ€ j. asian sci. res., vol. 8, no. 2, pp. 52โ€“60, 2018, doi: 10.18488/journal.2.2018.82.52.60. [23] j. sun, โ€œforecasting covid-19 pandemic in alberta, canada using modified arima models,โ€ comput. methods programs biomed. updat., vol. 1, no. september, p. population forecasting of madiun regency using arima method yuniar farida 431 100029, 2021, doi: 10.1016/j.cmpbup.2021.100029. [24] c. b. a. satrio, w. darmawan, b. u. nadia, and n. hanafiah, โ€œtime series analysis and forecasting of coronavirus disease in indonesia using arima model and prophet,โ€ procedia comput. sci., vol. 179, no. 2020, pp. 524โ€“532, 2021, doi: 10.1016/j.procs.2021.01.036. [25] d. didiharyono and m. syukri, โ€œforecasting with arima model in anticipating open unemployment rates in south sulawesi,โ€ int. j. sci. technol. res., vol. 9, no. 3, pp. 3838โ€“3841, 2020. [26] d. s. domingos, j. f. l. de oliveira, and p. s. g. de mattos neto, โ€œan intelligent hybridization of arima with machine learning models for time series forecasting,โ€ knowledge-based syst., vol. 175, pp. 72โ€“86, 2019, doi: 10.1016/j.knosys.2019.03.011. [27] f. a. chyon, m. n. h. suman, m. r. i. fahim, and m. s. ahmmed, โ€œtime series analysis and predicting covid-19 affected patients by arima model using machine learning,โ€ j. virol. methods, vol. 301, no. december 2021, p. 114433, 2021, doi: 10.1016/j.jviromet.2021.114433. [28] n. ulinnuha and y. farida, โ€œprediksi cuaca kota surabaya menggunakan autoregressive integrated moving average (arima) box jenkins dan kalman filter,โ€ j. mat. โ€œmantik,โ€ vol. 4, no. 1, pp. 59โ€“67, 2018, doi: 10.15642/mantik.2018.4.1.59-67. [29] t. yunita, โ€œperamalan jumlah penggunaan kuota internet menggunakan metode autoregressive integrated moving average ( arima ),โ€ j. math. theory appl., vol. 1, no. 2, pp. 16โ€“22, 2019. [30] l. wulandari, y. farida, a. fanani, and m. syaiโ€™in, โ€œoptimization of autoregressive integrated moving average (arima) for forecasting indonesia sharia stock of index (issi) using kalman filter,โ€ pp. 295โ€“303, 2020, doi: 10.5220/0008906902950303. [31] m. b. s. junianto, โ€œfuzzy inference system mamdani dan the mean absolute percentage error (mape) untuk prediksi permintaan dompet pulsa pada xl axiata depok,โ€ j. inform. univ. pamulang, vol. 2, no. 2, p. 97, 2017, doi: 10.32493/informatika.v2i2.1511. [32] p. k. madiun, data demografi, ekonomi dan sosial budaya kota madiun 2017. madiun: pemerintah kota madiun, 2017. the metric dimension and local metric dimension of relative prime graph cauchy โ€“jurnal matematika murni dan aplikasi volume 6(3) (2020), pages 149-161 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 06, 2020 reviewed: october 07, 2020 accepted: 10 november 2020 doi: http://dx.doi.org/10.18860/ca.v6i3.10103 the metric dimension and local metric dimension of relative prime graph inna kuswandari1, fatmawati2, mohammad imam utoyo3 mathematics department, faculty of science and technology, universitas airlangga, mulyorejo, surabaya 60115, indonesia. email: ikuswandari94@gmail.com, fatma47unair@gmail.com, m.i.utoyo@fst.unair.ac.id abstract this study aims to determine the metric dimensions and local metric dimensions of relative prime graphs formed from modulo ๐‘› integer rings, namely ๐บโ„ค๐‘› with ๐‘› โ‰ฅ 2. as a vertex set is โ„ค๐‘› โˆ–{0} and ๐‘ข๐‘ฃ โˆˆ ๐บโ„ค๐‘› if ๐‘ข and ๐‘ฃ are relatively prime. by finding the pattern elements of resolving set and local resolving set, it can be shown the value of the metric dimension and the local metric dimension of ๐บโ„ค๐‘› are ๐‘› โˆ’ 2+ ๐‘˜ and |๐‘ƒ0|โˆ’ 1+ ๐‘˜ respectively, where ๐‘˜ is the number of vertices groups that formed multiple 2,3, โ€ฆ , ๐‘˜ and |๐‘ƒ0| is the cardinality of set ๐‘ƒ0. this research can be developed by determining the fractional metric dimension, local fractional metric dimension and studying the advanced properties of graphs related to their forming rings. key words : metric dimension; modulo ๐‘›; relative prime graph; resolving set; rings. introduction graph ๐บ is defined as a non-empty and finite set of ๐‘‰(๐บ) whose elements are called vertices and set ๐ธ(๐บ) (maybe empty) whose elements are called edges which are the unordered pair of different vertices in ๐‘‰(๐บ) [1]. any problems whose objects can be described as vertices and edges can be solved by the concept of graph theory, this has become one of the supporting factors in the field of graph theory research developing very rapidly today. the notion of metric dimensions was introduced firstly by [2] and independently by [3] (in [4]). in [3], the concepts of bases and dimensions have been built on the graph. a bases on a graph is a set of vertices with minimal cardinality that implies in each vertex of graph having a different representation (resolving set) to the bases, while the dimensions are number elements of the bases. meanwhile, the local metric dimension was introduced by [5] by considering different representations of two adjacent vertices so that the local metric dimension of a graph is obtained. the research related to the metric dimensions and local metric dimensions of a graph has been carried out by many researchers no exception to the graph of the results of operations (comb, corona, joint, etc.). the development of research in the field of graph theory is also supported by the expansion of research objects in algebraic systems, namely groups or rings. in [6], the zero divisor graph is introduced from any commutative ring by defining the vertices on the graph are elements of the ring, while the two vertices are adjacent if the product is zero. by using http://dx.doi.org/10.18860/ca.v6i3.10103 mailto:ikuswandari94@gmail.com mailto:fatma47unair@gmail.com mailto:utoyo@fst.unair.ac.id the metric dimension and local metric dimension of relative prime graph fatmawati 150 the definition in [6], the research was also carried out in [7,8,9] and succeeded in finding several properties related to the diameter, girth, isomorphism of the graph, radius, and domination set of zero divisor graphs constructed from the commutative and non commutative rings. in addition to the zero divisor of graph, research has also been developed on the jacobson graph formed from commutative rings that have nonzero unit elements [10,11]. the definition of vertices and edges is built from the radical jacobson and the unit of the ring. specifically, in [11], jacobson graph was formed from the commutative ring ๐‘3๐‘› and obtained several properties that related to the graph with its forming ring. some of the research above inspired the author to examine the metric dimensions and local metric dimensions on graphs constructed from commutative rings. as an object of research, we choose a ring of modulo ๐‘› integer with the adjacency between two vertices was chosen based on the relative prime properties between the two vertices. the following is given the definition of the greatest common divisor and the relative prime of two positive integers. definition 1 [12]. let ๐‘Ž and ๐‘ be two positive integers. the positive integer ๐‘‘ that satisfies ๐‘‘ = ๐‘๐‘Ž + ๐‘ž๐‘ for some integer ๐‘ and ๐‘ž is called greatest common divisor (abbreviated gcd) of ๐‘Ž and ๐‘, denoted by ๐‘‘ = gcd (๐‘Ž,๐‘). definition 2 [12]. two positive integers ๐‘Ž and ๐‘ are relatively prime if gcd(๐‘Ž,๐‘) = 1. the purpose of this study is to determine the metric dimensions and local metric dimensions of relative prime graphs. the definition of metric dimensions and local metric dimensions which refer to [13] and [5] is given as follows. definition 3 [13]. suppose that ๐บ is a connected graph of order ๐‘› and ๐‘Š = {๐‘ค1,๐‘ค2,โ€ฆ,๐‘ค๐‘—} โŠ† ๐‘‰(๐บ),1 โ‰ค ๐‘— โ‰ค ๐‘› is an ordered set of j-tuples of vertices in ๐บ. representation of vertice ๐‘ฃ โˆˆ ๐‘‰(๐บ) with respect to ๐‘Š is an ordered pair j-tuples ๐‘Ÿ(๐‘ฃ|๐‘Š) = (๐‘‘(๐‘ฃ,๐‘ค1),๐‘‘(๐‘ฃ,๐‘ค2),โ€ฆ,๐‘‘(๐‘ฃ,๐‘ค๐‘—)), where ๐‘‘(๐‘ฃ,๐‘ค๐‘–) representing the distance between vertex ๐‘ฃ and vertex ๐‘ค๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘—. the set ๐‘Š is called the resolving set of ๐บ if each vertex in ๐บ has different representation with respect to ๐‘Š. the resolving set with a minimum cardinality is called a bases, whereas number of elements on the bases are called dimensions of the graph ๐บ, denoted by ๐‘‘๐‘–๐‘š(๐บ). since the calculation of dimensions in a graph is built using the concept of distance (metric), it is called the metric dimension. definition 4 [5]. let g be the connected graph and ๐‘Š โŠ† ๐‘‰(๐บ). the set ๐‘Š is called the local resolving set of a graph ๐บ if each of two adjacent vertices in ๐บ has a different representation with respect to ๐‘Š, i.e. ๐‘ข๐‘ฃ โˆˆ ๐ธ(๐บ) implies ๐‘Ÿ(๐‘ข|๐‘Š) โ‰  ๐‘Ÿ(๐‘ฃ|๐‘Š). the set of local resolving set with minimal cardinality is called a local bases, while number of elements on a bases are called the local metric dimensions of graph ๐บ, denoted by ๐‘‘๐‘–๐‘š๐‘™(๐บ). methods this study aims to determine the metric dimensions and local metric dimensions of relative prime graph ๐บ๐‘๐‘›. the most important step in determining the metric dimensions and local metric dimensions is to determine the pattern of resolving set and local resolving set that have a minimum cardinality as a bases set. the main difference between them is that the metric dimension and local metric dimension of relative prime graph fatmawati 151 1 1 1 2 3 2 3 3 4 4 5 2 6 2 on the local metric dimension the different representation are only required at adjacent vertices. results and discussion in this section, we will discuss the definition of a relative prime graph built from a ring of modulo ๐‘› integer and an exploration of the basic properties of a relative prime graph related to the characteristics of a graph. the discussion begins with the definition of a relative prime graph. definition 5. let โ„ค๐‘› be a rings of modulo ๐‘› integer โ„ค๐‘›, where ๐‘› positive integer and ๐‘› โ‰  1. we defined a new graph ๐บ with ๐‘‰(๐บ) = โ„ค๐‘› โˆ–{0} and ๐ธ(๐บ) = {๐‘ข๐‘ฃ;๐‘ข relatively prime with ๐‘ฃ}. graph ๐บ which formed from ring of modulo ๐‘› integer with add relatively prime as condition for adjacency two vertices are called relative prime graph, denoted by ๐บโ„ค๐‘›. the number of vertices of ๐บ๐‘๐‘›is denoted |๐‘‰(๐บโ„ค๐‘›)| and the number of edges is denoted |๐ธ(๐บโ„ค๐‘›)|. example: a b c figure 1. some relative prime graphs a: ๐บโ„ค4; b: ๐บโ„ค5; c: ๐บโ„ค7 the graph on figure 1: a: ๐บโ„ค4 consists of three vertices, namely 1,2,3 which are mutually relative prime. hence vertex 1 adjacent to 2, vertex 2 adjacent to 3, and vertex 3 adjacent to 1. b: ๐บโ„ค5 consists of four vertices, namely 1,2,3,4. the adjacency of vertices 1,2,3 similar with condition of ๐บโ„ค4. furthermore, vertex 4 is relatively prime to 1 and 3, while vertex 2 is not relatively prime to 4. hence vertex 2 is not adjacent to 4. c: ๐บโ„ค7 consists of six vertices, namely 1,2,3,4,5,6. vertex 1 is relatively prime to vertices 2,3,4,5,6; vertex 2 is relatively prime to vertices 1,3,5; vertex 3 is relatively prime to vertices 1,2,4,5; vertex 4 is relatively prime to vertices 1,3,5; vertex 5 is relatively prime to vertices 1,2,3,4,6; and vertex 6 is relatively prime to vertices 1,3,5. since the three vertices (i.e. 2,4,6) are not relatively prime to each other, then they are not adjacent to each other. likewise, vertex 3 is not adjacent to 6 because 3 is not relatively prime to 6. the results of this study begin with an exploration the basic properties of ๐บโ„ค๐‘›, furthermore determine the metric dimensions and local metric dimensions of ๐บโ„ค๐‘›. based on definition 5 above, there are some basic properties of ๐บโ„ค๐‘› for ๐‘› โ‰ฅ 2, as follows: a. the set of vertices in ๐บโ„ค๐‘›is ๐‘‰(๐บโ„ค๐‘›) = {1,2,3,โ€ฆ,๐‘› โˆ’ 1}, hence |๐ธ(๐บโ„ค๐‘›)| = ๐‘› โˆ’ 1. b. ๐บโ„ค๐‘› is not an empty graph. c. ๐บโ„ค๐‘› is a trivial graph for ๐‘› = 2 because it consist only one vertex. the metric dimension and local metric dimension of relative prime graph fatmawati 152 d. ๐บโ„ค๐‘› is a connected graph. e. ๐บโ„ค๐‘› is a complete graph for ๐‘› = 2,3,4. specifically for ๐‘› = 3 it is a path graph and for ๐‘› = 4 it is a sikel graph. f. ๐บโ„ค๐‘› is a regular graph for ๐‘› = 3,4 because every vertex has the same degree. g. there is a vertex 1 that adjacent to every vertex in ๐บโ„ค๐‘› for ๐‘› โ‰ฅ 3. based on definition 5, a vertex ๐‘ข is adjacent to vertex ๐‘ฃ if ๐‘ข is relatively prime with ๐‘ฃ. in ๐บโ„ค๐‘›, there are vertices that are adjacent to each vertex in ๐บโ„ค๐‘›, included in this category are vertex 1 and several vertices which are prime numbers. based on the definition of two adjacent vertices on ๐บโ„ค๐‘›, the adjacency of vertices are divided into two groups, namely (1) vertices that are adjacent to every vertex, and (2) vertices that are not adjacent to each other. the vertices that not adjacent are the vertices that not relatively prime to each other, i.e. the vertices that have a common divisor other than 1. furthermore, the vertices that have a common divisor other than 1 can be divided into multiple of 2, multiple of 3, multiple of 5, ..., multiple of 7, ... . suppose ๐ด = {2,3,5,7,โ€ฆ} = {๐‘1,๐‘2,โ€ฆ,๐‘๐‘˜} represent a set of ordered prime numbers, then the non adjacent vertices are grouped together in multiples of 2, multiples of 3, ... to multiples of prime numbers ๐‘๐‘˜, where 2๐‘๐‘˜ โ‰ค ๐‘› โˆ’ 1. in this case, ๐‘๐‘˜ is the largest prime numbers and ๐‘˜ represents number of groups (multiples 2, multiples 3, etc.). the vertices that adjacent to every vertices in ๐บโ„ค๐‘› are categorized into group ๐‘0. example: in ๐บโ„ค15, ๐‘‰(๐บโ„ค15) = {1,2,3,โ€ฆ, 14}. the grouping of vertices in ๐บโ„ค15 are: the vertices in group ๐‘0 are 1,11,13. the vertices in group of multiple ๐‘1= 2 are 2,4,6,8,10,12,14. the vertices in group of multiple ๐‘2= 3 are 3,6,9,12. the vertices in group of multiple ๐‘3= 5 are 5,10. the vertices in group of multiple ๐‘4= 7 are 7,14. in this case, there are four groups of multiples, where 7 is the largest prime number that satisfy 2x7 โ‰ค 14. the vertices 1,11,13 are adjacent to every vertex in ๐บโ„ค15 so that it is categorized in group ๐‘0. it appears that there are vertices that are in more than one group of multiples, for example vertices 6 and 12 are in groups of multiple 2 and multiple 3. likewise, vertex 15 is in groups of multiple 3 and multiple 5. furthermore, if ๐‘ƒ๐‘– is the set of vertices in the group of multiples ๐‘๐‘–, where ๐‘– = 1,2,โ€ฆ,๐‘˜ and โŒŠ๐‘ฅโŒ‹ represent the largest integer that same or less than ๐‘ฅ, then |๐‘ƒ๐‘–| = โŒŠ ๐‘›โˆ’1 ๐‘๐‘– โŒ‹. on ๐บโ„ค15, |๐‘ƒ1| = โŒŠ 14 2 โŒ‹ = 7; |๐‘ƒ2| = โŒŠ 14 3 โŒ‹ = โŒŠ4,67โŒ‹ = 4; |๐‘ƒ3| = โŒŠ 14 5 โŒ‹ = โŒŠ2,8โŒ‹ = 2; |๐‘ƒ4| = โŒŠ 14 7 โŒ‹ = 2. so, in general in ๐บโ„ค๐‘› the number of vertices in the group of multiples ๐‘๐‘– is โŒŠ ๐‘›โˆ’1 ๐‘๐‘– โŒ‹, while the number of vertices in the group of multiples ๐‘๐‘– and ๐‘๐‘— is โŒŠ ๐‘›โˆ’1 ๐‘๐‘–.๐‘๐‘— โŒ‹ where 1 โ‰ค ๐‘–,๐‘— โ‰ค ๐‘˜. the lemma that expressed the number of edge of ๐บโ„ค๐‘› is given as follows. lemma 1. |๐ธ(๐บโ„ค๐‘›)| = (๐‘›โˆ’1)(๐‘›โˆ’2) 2 โˆ’ โˆ‘ ( โŒŠ ๐‘›โˆ’1 ๐‘๐‘– โŒ‹ 2 )๐‘˜๐‘–=1 , where โŒŠ ๐‘›โˆ’1 ๐‘๐‘– โŒ‹ is the number of vertices in groups of multiples ๐‘๐‘–, ๐‘– = 1,2,โ€ฆ,๐‘˜ and 2๐‘๐‘˜ โ‰ค ๐‘› โˆ’ 1. proof. as explained above, the vertices on ๐บโ„ค๐‘› are divided into 2 major groups, namely the group ๐‘0 and the groups of multiples ๐‘๐‘–. due to the specific properties of each group, the number of edges on graph ๐บโ„ค๐‘› can be calculated by asumption the number of edges of the complete graph with ๐‘› โˆ’1 vertices, then edge reduction is done based on the non relatively prime properties between any two vertices. as we know, the number of edge of the complete graph with ๐‘› โˆ’ 1 vertices is (๐‘›โˆ’1)(๐‘›โˆ’2) 2 . since an edge is formed by two different vertices, the metric dimension and local metric dimension of relative prime graph fatmawati 153 then there is a reduction in the edge for each group of multiples ๐‘๐‘– as many as ( โŒŠ ๐‘›โˆ’1 ๐‘๐‘– โŒ‹ 2 ). thus, |๐ธ(๐บโ„ค๐‘›)| = (๐‘›โˆ’1)(๐‘›โˆ’2) 2 โˆ’ โˆ‘ ( โŒŠ ๐‘›โˆ’1 ๐‘๐‘– โŒ‹ 2 )๐‘˜๐‘–=1 ๏ฒ table 1. number of edges on graph ๐บโ„ค๐‘› ๐‘› |๐‘‰(๐บโ„ค๐‘›)| groups of vertices reduction of edge |๐ธ(๐บโ„ค๐‘›)| 2 1 0 3 2 ๐‘0 : 1,2 2(2โˆ’ 1) 2 = 1 4 3 ๐‘0 : 1,2,3 3(3โˆ’ 1) 2 = 3 5 4 ๐‘0 : 1,3 4(4โˆ’ 1) 2 โˆ’ 1 = 5 ๐‘1 : 2,4 ( 2 2 ) = 1 6 5 ๐‘0 : 1,3,5 5(5โˆ’ 1) 2 โˆ’ 1 = 9 ๐‘1 : 2,4 ( 2 2 ) = 1 7 6 ๐‘0 : 1,5 6(6โˆ’1) 2 โˆ’3 โˆ’1 = 11 ๐‘1 : 2,4,6 ( 3 2 ) = 3 ๐‘2 : 3,6 ( 2 2 ) = 1 8 7 ๐‘0 : 1,5,7 7(7โˆ’1) 2 โˆ’3 โˆ’1 = 17 ๐‘1 : 2,4,6 ( 3 2 ) = 3 ๐‘2 : 3,6 ( 2 2 ) = 1 9 8 ๐‘0 : 1,5,7 8(8โˆ’1) 2 โˆ’6 โˆ’1 = 21 ๐‘1 : 2,4,6,8 ( 4 2 ) = 6 ๐‘2 : 3,6 ( 2 2 ) = 1 the degree of each vertex on any graph is the number of the vertices that adjacent to that vertex. thus, the degree of vertex ๐‘ข โˆˆ ๐‘‰(๐บโ„ค๐‘›) is determined based on their adjacency to (๐‘› โˆ’ 2) other vertices as in observation 2. furthermore, lemma 3 states the minimum and maximum degree of the vertex on ๐บโ„ค๐‘›. observation 2. if deg๐บโ„ค๐‘› (๐‘ข) denoted the degree of any vertex ๐‘ข โˆˆ ๐‘‰(๐บโ„ค๐‘›), then deg๐บโ„ค๐‘› (๐‘ข) = |{๐‘ฃ โˆˆ ๐‘‰(๐บโ„ค๐‘›):๐‘ฃ relatively prime with ๐‘ข}|. lemma 3. if ๐‘ข โˆˆ ๐‘‰(๐บโ„ค๐‘›), then deg๐บโ„ค๐‘› (๐‘ข) = { 0, 1, 2 โ‰ค deg๐บโ„ค๐‘› (๐‘ข) โ‰ค ๐‘› โˆ’ 2, ๐‘› = 2 ๐‘› = 3 ๐‘› โ‰ฅ 4 proof. let ๐‘ข โˆˆ ๐‘‰(๐บโ„ค๐‘›). the metric dimension and local metric dimension of relative prime graph fatmawati 154 for ๐‘› = 2, then ๐‘ข = 1 and ๐บโ„ค๐‘› is the trivial graph, hence deg๐บโ„ค๐‘› (๐‘ข) = 0. for ๐‘› = 3, then ๐‘ข โˆˆ {1,2}. the number 1 is relatively prime with 2, hence vertex 1 adjacent to vertex 2. thus, deg๐บโ„ค๐‘› (๐‘ข) = 1. for ๐‘› โ‰ฅ 4, it means |๐‘‰(๐บโ„ค๐‘›)| โ‰ฅ 3. to show the minimum degree of any vertex is 2, we use claim: every vertex in ๐บโ„ค๐‘› is adjacent to at least two other vertices. proof of claim: since the criterion for two adjacency vertices are relative prime and the vertices in ๐บโ„ค๐‘› are natural numbers, it is sufficient to show that any natural number other than 1 must be relative prime to the natural number before and after it. suppose any natural number ๐‘Ž where ๐‘Ž โ‰  1, it will be shown that ๐‘Ž relative prime with ๐‘Ž โˆ’ 1 and ๐‘Ž also relative prime with ๐‘Ž + 1. based on definition 2, the natural number ๐‘Ž is relative prime with ๐‘Ž โˆ’ 1 if there are integers ๐‘ and ๐‘ž such that 1 = ๐‘๐‘Ž + ๐‘ž(๐‘Ž โˆ’ 1). by choosing ๐‘ = 1 and ๐‘ž = โˆ’1, equality hold. hence ๐‘Ž relative prime with ๐‘Ž โˆ’ 1. in a similar way, it can be shown that ๐‘Ž relative prime with ๐‘Ž + 1. thus, ๐‘Ž adjacent to ๐‘Ž โˆ’ 1 and also ๐‘Ž adjacent to ๐‘Ž + 1. therefore, for any ๐‘ข โˆˆ ๐‘‰(๐บโ„ค๐‘›), there are at least two vertices that adjacent to ๐‘ข, so deg๐บโ„ค๐‘› (๐‘ข) โ‰ฅ 2. on the other hand, based on the property of the group ๐‘0, where each vertex is adjacent to every vertex in ๐บโ„ค๐‘›, so for any ๐‘ข โˆˆ ๐‘ƒ0, deg๐บโ„ค๐‘› (๐‘ข) = |๐‘‰(๐บโ„ค๐‘›)|โˆ’ 1 = ๐‘› โˆ’ 1 โˆ’ 1 = ๐‘› โˆ’2 and this is the maximum degree of any vertex in ๐บโ„ค๐‘›. thus, it is proven that 2 โ‰ค deg๐บโ„ค๐‘› (๐‘ข) โ‰ค ๐‘› โˆ’ 2, for ๐‘› โ‰ฅ 4 and the whole lemma is proven. ๏ฒ for example, on graph ๐บโ„ค7 we have ๐‘‰(๐บโ„ค7) = {1,2,3,4,5,6}. the degree of each vertex is: deg๐บโ„ค7 (1) = |{2,3,4,5,6}| = 5; deg๐บโ„ค7 (2) = |{1,3,5}| = 3; deg๐บโ„ค7 (3) = |{1,2,4,5}| = 4; deg๐บโ„ค7 (4) = |{1,3,5}| = 3; deg๐บโ„ค7 (5) = |{1,2,3,4,6}| = 5; deg๐บโ„ค7 (6) = |{1,5}| = 2. it can be seen that 2 โ‰ค deg๐บโ„ค7 (๐‘ข) โ‰ค 5, for every ๐‘ข โˆˆ ๐‘‰(๐บโ„ค7). in ๐บโ„ค๐‘›, there is vertex 1 which is adjacent to each vertex in ๐บโ„ค๐‘›. several other vertices are also similar. vertices of this property will form a complete subgraph of ๐บโ„ค๐‘› as shown in theorem 4. theorem 4. there is a complete subgraph formed by vertices of ๐บโ„ค๐‘›. proof. a complete graph is a graph where every two vertices are adjacent. based on the property of the vertices on ๐บโ„ค๐‘›, there are vertices that are adjacent to each vertex, namely the vertices in the group ๐‘0. these vertices will form the complete subgraph ๐พ๐‘š, where ๐‘š = |{๐‘ข โˆˆ ๐‘‰(๐บโ„ค๐‘›):gcd(๐‘ข,๐‘ฃ) = 1,โˆ€๐‘ฃ โˆˆ ๐‘‰(๐บโ„ค๐‘›)}|. ๏ฒ from theorem 4, the vertices in ๐บโ„ค๐‘› that form the complete subgraph are vertices in group ๐‘0, where ๐‘š = |{๐‘ข โˆˆ ๐‘‰(๐บโ„ค๐‘›):gcd(๐‘ข,๐‘ฃ) = 1,โˆ€๐‘ฃ โˆˆ ๐‘‰(๐บโ„ค๐‘›)}| = |๐‘ƒ0|. on the other hand, the vertices in the group of multiples ๐‘๐‘–, ๐‘– = 1,2,โ€ฆ,๐‘˜ have the same property that they are not adjacent to each other. this inspires that the vertices in the group of multiples ๐‘๐‘–, ๐‘– = 1,2,โ€ฆ,๐‘˜ form the multipartite subgraph of ๐บโ„ค๐‘› which is stated in the theorem 5. theorem 5. for ๐‘› โ‰ฅ 5, ๐บโ„ค๐‘› is isomorphic with a ๐พ๐‘š + ๐ป graph where ๐ป is the ๐‘˜-partite graph, ๐พ๐‘š is a complete graph with ๐‘š vertices and ๐‘š = |๐‘ƒ0|. proof. based on theorem 4, the vertices in the group ๐‘0 form the complete subgraph ๐พ๐‘š of ๐บโ„ค๐‘›. meanwhile, the vertices in the group of multiples ๐‘๐‘–, ๐‘– = 1,2,โ€ฆ,๐‘˜ are not adjacent to the metric dimension and local metric dimension of relative prime graph fatmawati 155 each other for each ๐‘–, so the vertices in the group of multiples ๐‘๐‘– can be partitioned into ๐‘˜ partitions with each partition consisting of vertices in the same group of multiples. on the same partition, there are no adjacent vertices according to the properties of the vertices in the group of multiples ๐‘๐‘–. the connectedness of the vertices between partitions is based on the relatively prime properties of these vertices. since every vertex in ๐พ๐‘š is adjacent to every vertex in the group of multiples ๐‘๐‘–, this means that every vertex in ๐พ๐‘š is adjacent to every vertex on all partitions (as many as ๐‘˜ partitions) that are formed. suppose the ๐‘˜ partitions formed along with adjacency their vertices are called graph ๐ป, then ๐ป is a ๐‘˜-partite graph formed from vertices in the group of multiples ๐‘๐‘–. every vertex in the group ๐‘0 is adjacent to every vertex in ๐บโ„ค๐‘›, especially in the group of multiples ๐‘๐‘–. this means that every vertex in ๐พ๐‘š is adjacent to every vertex in ๐ป. therefore, there is a bijective function ๐‘“ from ๐‘‰(๐บโ„ค๐‘›) to ๐‘‰(๐พ๐‘š + ๐ป) which preserves the adjacency between vertices in ๐บโ„ค๐‘›. thus, ๐บโ„ค๐‘› โ‰… ๐พ๐‘š + ๐ป. ๏ฒ theorem 5 applies for ๐‘› โ‰ฅ 5, spesifically for ๐‘› = 2,3,4 then ๐บโ„ค๐‘› โ‰… ๐พ๐‘›โˆ’1 (complete graph with ๐‘› โˆ’1 vertices). for example: on ๐บโ„ค8 where ๐‘‰(๐บโ„ค8) = {1,2,3,4,5,6,7}. โ‰… + ๐บโ„ค8 ๐พ3 + ๐ป2,2 figure 2. isomorphism ๐บโ„ค8 with ๐พ3 + ๐ป2,2 figure 2 illustrates the isomorphism ๐บโ„ค8 with ๐พ3 + ๐ป2,2 where ๐ป2,2 is 2-partite graph. in ๐บโ„ค8, vertices 1,5,7 is adjacent to each vertex such that ๐‘š = 3. meanwhile, the vertices in the group of multiples 2 are 2,4,6; the vertices in the group of multiples 3 are 3,6 and no vertex are multiples of 5, so there are 2 partitions. in the example above, the vertices on the first partition are 2 and 4, while the vertices on the second partition are 3 and 6. since the number of vertices on the first partition is 2 and the number of vertices on the second partition is 2, it is written ๐ป2,2. the existence of graph ๐ป2,2 as a 2-partite graph is not unique. another alternative is that if three vertices are selected on the first partition (i.e. vertices 2,4,6) and on the second partition one vertex is chosen (i.e. vertex 3), then the 2-partite graph in this case is written ๐ป3,1. thus, ๐บโ„ค8 โ‰… ๐พ3 + ๐ป2,2 โ‰… ๐พ3 + ๐ป3,1. next, we will be determined the value of the metric dimension and the local metric dimension of ๐บโ„ค๐‘› for ๐‘› โ‰ฅ 2. the determination of metric dimensions is calculated using the concept of the distance between two vertices, namely the length of the shortest path connecting the two vertices. theorem 6. if ๐‘ข,๐‘ฃ โˆˆ ๐‘‰(๐บโ„ค๐‘›), then ๐‘‘(๐‘ข,๐‘ฃ) โ‰ค 2. proof. let ๐‘ข,๐‘ฃ โˆˆ ๐‘‰(๐บโ„ค๐‘›). based on theorem 5, there are three possibilities for ๐‘ข and ๐‘ฃ, namely (i) ๐‘ข,๐‘ฃ โˆˆ ๐‘‰(๐พ๐‘š), (ii) ๐‘ข,๐‘ฃ โˆˆ ๐‘‰(๐ป), dan (iii) ๐‘ข โˆˆ ๐‘‰(๐พ๐‘š) ,๐‘ฃ โˆˆ ๐‘‰(๐ป). (i) suppose ๐‘ข,๐‘ฃ โˆˆ ๐‘‰(๐พ๐‘š). since ๐พ๐‘š is a complete graph, then distance between two different vertices is 1, so that ๐‘‘(๐‘ข,๐‘ฃ) = { 0, ๐‘ข = ๐‘ฃ 1, ๐‘ข โ‰  ๐‘ฃ . 1 2 3 5 4 7 6 1 5 7 3 2 4 6 the metric dimension and local metric dimension of relative prime graph fatmawati 156 (ii) suppose ๐‘ข,๐‘ฃ โˆˆ ๐‘‰(๐ป), there are two condition, i.e. ๐‘ข and ๐‘ฃ on the same partitions or ๐‘ข and ๐‘ฃ on the different partitions. a. if ๐‘ข and ๐‘ฃ are vertex on the same partition, then there is ๐‘ง โˆˆ ๐‘‰(๐พ๐‘š) so that ๐‘‘(๐‘ข,๐‘ง) = 1 and ๐‘‘(๐‘ง,๐‘ฃ) = 1. therefore, ๐‘‘(๐‘ข,๐‘ฃ) = 2. so ๐‘‘(๐‘ข,๐‘ฃ) = { 0, 2, ๐‘ข = ๐‘ฃ ๐‘ข โ‰  ๐‘ฃ . b. if ๐‘ข and ๐‘ฃ are vertices on the different partition, then the distance is 1 if ๐‘ข adjacent to ๐‘ฃ. for vertex ๐‘ข which is not adjacent to ๐‘ฃ, there is ๐‘ฅ โˆˆ ๐‘‰(๐พ๐‘š) so that ๐‘‘(๐‘ข,๐‘ฅ) = 1 and ๐‘‘(๐‘ฅ,๐‘ฃ) = 1. therefore ๐‘‘(๐‘ข,๐‘ฃ) = 2. thus ๐‘‘(๐‘ข,๐‘ฃ) = { 1, 2, gcd(๐‘ข,๐‘ฃ) = 1 gcd(๐‘ข,๐‘ฃ) โ‰  1 . (iii) suppose ๐‘ข โˆˆ ๐‘‰(๐พ๐‘š) ,๐‘ฃ โˆˆ ๐‘‰(๐ป), then ๐‘‘(๐‘ข,๐‘ฃ) = 1 because every vertex in ๐พ๐‘š is adjacent to all vertices in ๐ป. from all possibilities (i), (ii), and (iii) it is proven that ๐‘‘(๐‘ข,๐‘ฃ) โ‰ค 2. ๏ฒ corollary 7. let ๐‘ข,๐‘ฃ โˆˆ ๐‘‰(๐บโ„ค๐‘›), ๐‘‘(๐‘ข,๐‘ฃ) = 2 if and only if ๐‘ข is not relatively prime to ๐‘ฃ. proof. it is clear, is a direct result of theorem 6. the vertices in the group ๐‘0 apart from forming a complete subgraph of ๐บโ„ค๐‘› are also adjacent to all vertices in ๐บโ„ค๐‘›. due to this specific property, in determining the elements of the resolving set, only one vertex is allowed. on the other hand, the vertices in the group of multiples ๐‘๐‘– also have a specific property. two groupings of vertices in ๐บโ„ค๐‘›, each group have specific properties, so it is impossible for the metric bases of ๐บโ„ค๐‘› consist of vertices in the group ๐‘0 or in the group of multiples ๐‘๐‘– only. this condition is illustrated in theorem 8 below by observing the vertices in the group ๐‘0. theorem 8. every subset of ๐พ๐‘š is not a resolving set. proof. referring to theorem 4, the vertices in group ๐‘0 form a complete subgraph with ๐‘š vertices and the metric dimension is ๐‘š โˆ’ 1. that is, the representation of other vertices in the group ๐‘0 against the ๐‘š โˆ’ 1 vertices is the same as the vertex representation outside the group ๐‘0 for the ๐‘š โˆ’ 1 verices. as a result, the set consisting of ๐‘š โˆ’ 1 vertices is not a resolving set. the same condition also applies to sets whose element are less than ๐‘š โˆ’ 1 vertices. based on theorem 5 which states ๐บโ„ค๐‘› โ‰… ๐พ๐‘š +๐ป, it is obtained that each vertex in ๐พ๐‘š is adjacent to every vertex in ๐ป, it means that the distance is 1. for the same reason, any vertex taken from ๐พ๐‘š is not a resolving set. evidently, every subset of ๐พ๐‘š is not a resolving set. ๏ฒ based on the proof of theorem 8, the resolving set can not contain only vertices in ๐พ๐‘š. on the other hand, the vertices in groups of multiples ๐‘1,๐‘2, ..., ๐‘๐‘˜ has a similar property that are not adjacent to each other. representation of two different vertices of a certain group of multiple to another vertices in the same group of multiple and to different groups of multiple are presented in the following lemma 9 and lemma 10. lemma 9. if ๐‘ข,๐‘ฃ โˆˆ ๐‘ƒ๐‘–, where ๐‘ข โ‰  ๐‘ฃ, then ๐‘Ÿ(๐‘ข|๐‘ƒ๐‘– โˆ– {๐‘ข,๐‘ฃ}) = ๐‘Ÿ(๐‘ฃ|๐‘ƒ๐‘– โˆ–{๐‘ข,๐‘ฃ}). proof. the vertices in the group of multiples ๐‘๐‘– have a similar characteristic, namely they are not adjacent. based on the proof of theorem 6 (ii) a, the distance between different vertices is 2. thus, ๐‘Ÿ(๐‘ข|๐‘ƒ๐‘– โˆ–{๐‘ข,๐‘ฃ}) = (2,2,โ€ฆ,2) and ๐‘Ÿ(๐‘ฃ|๐‘ƒ๐‘– โˆ–{๐‘ข,๐‘ฃ}) = (2,2,โ€ฆ,2). therefore, ๐‘Ÿ(๐‘ข|๐‘ƒ๐‘– โˆ– {๐‘ข,๐‘ฃ}) = ๐‘Ÿ(๐‘ฃ|๐‘ƒ๐‘– โˆ–{๐‘ข,๐‘ฃ}). ๏ฒ lemma 10. if ๐‘ข,๐‘ฃ โˆˆ ๐‘ƒ๐‘—1, then ๐‘Ÿ(๐‘ข|๐‘ƒ๐‘—2) = ๐‘Ÿ(๐‘ฃ|๐‘ƒ๐‘—2), where 1 โ‰ค ๐‘—1, ๐‘—2 โ‰ค ๐‘˜ and ๐‘ข,๐‘ฃ โˆ‰ ๐‘ƒ๐‘—1 โˆฉ๐‘ƒ๐‘—2. the metric dimension and local metric dimension of relative prime graph fatmawati 157 proof. based on the proof of theorem 6 (ii) b, the distance between two vertices on different partitions is 1 or 2. furthermore, ๐‘Ÿ(๐‘ข|๐‘ƒ๐‘—2) = (๐‘‘(๐‘ข,๐‘๐‘—2),๐‘‘(๐‘ข,2๐‘๐‘—2),๐‘‘(๐‘ข,3๐‘๐‘—2),โ€ฆ,๐‘‘(๐‘ข,๐‘ก๐‘๐‘—2)) and ๐‘Ÿ(๐‘ฃ|๐‘ƒ๐‘—2) = (๐‘‘(๐‘ฃ,๐‘๐‘—2),๐‘‘(๐‘ฃ,2๐‘๐‘—2),๐‘‘(๐‘ฃ,3๐‘๐‘—2),โ€ฆ,๐‘‘(๐‘ฃ,๐‘ก๐‘๐‘—2)), where ๐‘ก๐‘๐‘—2 โ‰ค ๐‘› โˆ’ 1. the distance between two vertices in different groups of multiples is 1 if the two vertices are relatively prime and the distance is 2 if they are not relatively prime. since the properties of the group of multiples ๐‘๐‘—1 and multiples ๐‘๐‘—2 are similar, namely that the vertices are not adjacent in each group, while ๐‘ข and ๐‘ฃ are vertices in the same multiple group, then ๐‘Ÿ(๐‘ข|๐‘ƒ๐‘—2) = ๐‘Ÿ(๐‘ฃ|๐‘ƒ๐‘—2). ๏ฒ based on the results of lemma 9 and lemma 10, the vertices in the group of multiple ๐‘๐‘– become element of the resolving set leaving only one vertex in each group. this also applies to the vertices in the group ๐‘0, which leaves only one vertex. suppose that the vertex that must be left in the group of multiples ๐‘๐‘– are ๐‘Ž๐‘– where 1 โ‰ค ๐‘– โ‰ค ๐‘˜ and the vertex that must be left in the group ๐‘0 are ๐‘Ž0, the following is given the metric dimension of ๐บโ„ค๐‘›. theorem 11. ๐ท๐‘–๐‘š(๐บโ„ค๐‘›) = ๐‘› โˆ’ ๐‘˜ โˆ’2, where ๐‘˜ represents number of groups of multiples ๐‘๐‘–, ๐‘– = 1,2,โ€ฆ,๐‘˜. proof. suppose ๐‘Š = ๐‘„0 โˆช ๐‘„1 โˆช ๐‘„2 โˆชโ€ฆโˆช๐‘„๐‘˜, where ๐‘„0 = ๐‘ƒ0 โˆ– {๐‘Ž0}, ๐‘Ž0 is an arbitrary vertex left from the group ๐‘0, ๐‘„1 = ๐‘ƒ1 โˆ– {๐‘Ž1}, ๐‘Ž1 is an arbitrary vertex left from the group of multiple ๐‘1, ๐‘„2 = ๐‘ƒ2 โˆ– {๐‘Ž2}, ๐‘Ž2 is an arbitrary vertex left from the group of multiple ๐‘2, โ‹ฎ ๐‘„๐‘˜ = ๐‘ƒ๐‘˜ โˆ– {๐‘Ž๐‘˜}, ๐‘Ž๐‘˜ is an arbitrary vertex left from the group of multiple ๐‘๐‘˜. the representation of every vertex in ๐‘‰(๐บโ„ค๐‘› โˆ–๐‘Š) with respect to ๐‘Š is: ๐‘Ÿ(๐‘Ž0|๐‘Š) = ( 1,1,1,โ€ฆ,1โŸ as many as |๐‘ƒ0|โˆ’1 , 1,1,1,โ€ฆ,1โŸ as many as |๐‘ƒ1|โˆ’1 , 1,1,1,โ€ฆ,1โŸ as many as |๐‘ƒ2|โˆ’1 ,โ€ฆ, 1,1,1,โ€ฆ,1โŸ as many as |๐‘ƒ๐‘˜|โˆ’1 ) ๐‘Ÿ(๐‘Ž1|๐‘Š) = ( 1,1,1,โ€ฆ,1โŸ as many as |๐‘ƒ0|โˆ’1 , 2,2,2,โ€ฆ,2โŸ as many as |๐‘ƒ1|โˆ’1 ,๐‘‘(๐‘Ž1,๐‘„2),โ€ฆ,๐‘‘(๐‘Ž1,๐‘„๐‘˜)) ๐‘Ÿ(๐‘Ž2|๐‘Š) = ( 1,1,1,โ€ฆ,1โŸ as many as |๐‘ƒ0|โˆ’1 ,๐‘‘(๐‘Ž2,๐‘„1), 2,2,2,โ€ฆ,2โŸ as many as |๐‘ƒ2|โˆ’1 ,โ€ฆ,๐‘‘(๐‘Ž2,๐‘„๐‘˜)) โ‹ฎ ๐‘Ÿ(๐‘Ž๐‘˜|๐‘Š) = ( 1,1,1,โ€ฆ,1โŸ as many as |๐‘ƒ0|โˆ’1 , ๐‘‘(๐‘Ž๐‘˜,๐‘„1), ๐‘‘(๐‘Ž๐‘˜,๐‘„2),โ€ฆ, 2,2,2,โ€ฆ,2โŸ as many as |๐‘ƒ๐‘˜|โˆ’1 ) where ๐‘‘(๐‘Ž๐‘–,๐‘„๐‘—) = { 1,if ๐‘Ž๐‘– โˆ‰ ๐‘ƒ๐‘— 2, if ๐‘Ž๐‘– โˆˆ ๐‘ƒ๐‘— , 1 โ‰ค ๐‘–,๐‘— โ‰ค ๐‘˜. it appears that the representation of every vertex with respect to ๐‘Š is different, so that ๐‘Š is a resolving set. next, it will be shown that the cardinality of ๐‘Š is minimal. suppose that any set ๐‘‹ is taken whose cardinality is one less than ๐‘Š, that is, |๐‘‹| = |๐‘Š|โˆ’ 1. there are three possibilities for elements of set ๐‘‹, namely (i) all vertices in group ๐‘0 are element of ๐‘‹; (ii) all vertices in the group of multiples ๐‘๐‘– are element of ๐‘‹; and (iii) all vertices of the group of multiple ๐‘๐‘— (certain ๐‘—), 1 โ‰ค ๐‘— โ‰ค ๐‘˜ being element of ๐‘‹. (i) if all vertices in the group ๐‘0 are element of ๐‘‹, then ๐‘˜ + 1 of the vertices in ๐บโ„ค๐‘› must be left in the group of multiples ๐‘๐‘– with the number of groups being ๐‘˜. a. suppose that as many as ๐‘˜ โˆ’ 1 groups leave each one vertex, then there are two vertices that must be left by the group of multiple ๐‘๐‘— (certain ๐‘—), 1 โ‰ค ๐‘— โ‰ค ๐‘˜. due to the metric dimension and local metric dimension of relative prime graph fatmawati 158 the similar properties of vertices in the group of multiple ๐‘๐‘—, the representation of the two vertices with respect to ๐‘‹ will be the same. thus ๐‘‹ is not being a resolving set. b. suppose that all vertices in the ๐‘˜ โˆ’ 1 group are element of ๐‘‹, then there is one particular group, name the group of multiple ๐‘๐‘— (certain ๐‘—), 1 โ‰ค ๐‘— โ‰ค ๐‘˜ leaving ๐‘˜ + 1 vertex. for the same reason as (i)a, these ๐‘˜ โˆ’ 1 vertices will have the same representation of ๐‘‹ because the vertices in the group of multiples ๐‘๐‘— are nonmutually adjacent. so ๐‘‹ is not a resolving set. (ii) if all the vertices in the group of multiples ๐‘๐‘– are element of ๐‘‹, then |๐‘‹| = |๐‘Š| โˆ’ 1+ ๐‘˜ = (๐‘› โˆ’ 2 โˆ’ ๐‘˜) โˆ’ 1+ ๐‘˜ = ๐‘› โˆ’ 3 โ‰ฅ ๐‘› โˆ’ 2โˆ’ ๐‘˜ for ๐‘˜ โ‰ฅ 1. the equity hold only to ๐‘˜ = 1. so, for ๐‘˜ โ‰ฅ 2 then |๐‘‹| > |๐‘Š|. this contradicts the cardinality of the set ๐‘‹. (iii) if all vertices in a group of multiples ๐‘๐‘–, namely ๐‘๐‘— dengan 1 โ‰ค ๐‘— โ‰ค ๐‘˜ as element of ๐‘‹, then from the vertices in ๐บโ„ค๐‘› must be left ๐‘˜ + 1 vertices in ๐‘˜ โˆ’ 1 group of multiples ๐‘๐‘– (other than ๐‘๐‘—) and in the group ๐‘0. a. suppose that all vertices in the group ๐‘0 are element of ๐‘‹, then from ๐‘˜ โˆ’ 1 group of multiples ๐‘๐‘– must be left ๐‘˜ vertices. this is similar to case (i). b. suppose all vertices in the group of multiples ๐‘๐‘– (other than ๐‘๐‘—) are element of ๐‘‹, it means that all vertices in the group of multiples ๐‘๐‘– are element of ๐‘‹. this is similar to the case (ii). from all of the above possibilities it can be concluded that ๐‘‹ is not a resolving set. if all vertices in one group are selected as element of set ๐‘‹, then ๐‘‹ is not a resolving set. likewise, if there is a group ๐‘0 or a group of multiples ๐‘๐‘– that leaves more than one vertex, it will result that ๐‘‹ not being a resolving set. since |๐‘‹| = |๐‘Š| โˆ’ 1 and ๐‘Š are resolving set, it means that ๐‘Š is the resolving set with minimal cardinality or the metric bases of ๐บโ„ค๐‘›. since each group leaves one vertex and the number of groups are ๐‘˜ +1, the metric dimension of ๐บโ„ค๐‘› is (๐‘› โˆ’ 1) โˆ’ (๐‘˜ + 1) = ๐‘› โˆ’ ๐‘˜ โˆ’ 2. it is proven that ๐‘‘๐‘–๐‘š(๐บโ„ค๐‘›) = ๐‘› โˆ’๐‘˜ โˆ’ 2. ๏ฒ based on theorem 11, the metric bases of ๐บโ„ค๐‘› consists of a combination of vertices in the group ๐‘0 and the group of multiples ๐‘๐‘– with the conditions each leaving only one vertex. the final part of this research is to determine the value of the local metric dimension of ๐บโ„ค๐‘› by first determining the local resolving set. in this case the vertex representation may be the same as long as the vertices are not adjacent. theorem 12. ๐ท๐‘–๐‘š๐‘™(๐บโ„ค๐‘›) = |๐‘ƒ0| + ๐‘˜ โˆ’ 1, where ๐‘˜ representing number of groups of multiples ๐‘๐‘–, ๐‘– = 1,2,โ€ฆ,๐‘˜ and |๐‘ƒ0| is the cardinality of set ๐‘ƒ0. proof. based on the property of each group of multiples ๐‘๐‘–, ๐‘– = 1,2,โ€ฆ,๐‘˜, which the vertices are not mutually adjacent, the property of the group ๐‘0 that all elements are adjacent to every vertex, and according to the definition of the local metric dimension, then we choose the set ๐‘Š๐‘™ = {1,๐‘01,โ€ฆ,๐‘๐‘œ(๐‘šโˆ’2),๐‘11,๐‘21,โ€ฆ,๐‘๐‘˜1}, where 1,๐‘01,โ€ฆ,๐‘๐‘œ(๐‘šโˆ’2) are ๐‘š โˆ’ 1 vertices in the group ๐‘0, ๐‘11 is one vertex in the group of multiples ๐‘1, ๐‘21 is one vertex in the group of multiples ๐‘2, ๐‘๐‘˜1 is one vertex in the group of multiples ๐‘๐‘˜. the representation of every vertex in ๐บโ„ค๐‘› with respect to ๐‘Š๐‘™ is: ๐‘Ÿ(1|๐‘Š๐‘™) = (0,1,โ€ฆ,1,1,1,โ€ฆ,1); ๐‘Ÿ(๐‘01|๐‘Š๐‘™) = (1,0,โ€ฆ,1,1,1,โ€ฆ,1); ๐‘Ÿ(๐‘๐‘œ(๐‘šโˆ’2)|๐‘Š๐‘™) = (1,1,โ€ฆ,0,1,1,โ€ฆ,1); ๐‘Ÿ(๐‘11|๐‘Š๐‘™) = (1,1,โ€ฆ,1,0,1,โ€ฆ,1); ๐‘Ÿ(๐‘21|๐‘Š๐‘™) = (1,1,โ€ฆ,1,1,0,โ€ฆ,1); ๐‘Ÿ(๐‘๐‘˜1|๐‘Š๐‘™) = (1,1,โ€ฆ,1,1,1,โ€ฆ,0); the metric dimension and local metric dimension of relative prime graph fatmawati 159 ๐‘Ÿ(๐‘02|๐‘Š๐‘™) = (1,1,โ€ฆ,1,1,1,โ€ฆ,1); ๐‘Ÿ(๐‘03|๐‘Š๐‘™) = (1,1,โ€ฆ,1,1,1,โ€ฆ,1); ๐‘Ÿ(๐‘12|๐‘Š๐‘™) = (1,1,โ€ฆ,1,2,2,โ€ฆ,1); ๐‘Ÿ(๐‘13|๐‘Š๐‘™) = (1,1,โ€ฆ,1,2,2,โ€ฆ,1); ๐‘Ÿ(๐‘14|๐‘Š๐‘™) = (1,1,โ€ฆ,1,2,2,โ€ฆ,1); ๐‘Ÿ(๐‘1๐‘ |๐‘Š๐‘™) = (1,1,โ€ฆ,1,2,2,โ€ฆ,1). it appears that ๐‘Ÿ(๐‘13|๐‘Š๐‘™) = ๐‘Ÿ(๐‘13|๐‘Š๐‘™) = ๐‘Ÿ(๐‘14|๐‘Š๐‘™) = ๐‘Ÿ(๐‘1๐‘ |๐‘Š๐‘™), but ๐‘12,๐‘13,๐‘14,๐‘1๐‘  are vertices in the group of multiples ๐‘1 which is not mutually adjacent. in the concept of local metric dimensions, the above still meets the criteria, meaning that ๐‘Š๐‘™ is a local resolving set. next, it will be shown that the cardinality of ๐‘Š๐‘™ is minimal. suppose any set ๐‘‹๐‘™ whose cardinality is reduced to one from the set ๐‘Š๐‘™, i.e. |๐‘‹๐‘™| = |๐‘Š๐‘™| โˆ’ 1. there are three possibilities for element of ๐‘‹๐‘™, namely (i) all vertices in group ๐‘0 become element of ๐‘‹๐‘™; (ii) at least one vertex from each group of multiples ๐‘๐‘– become element of ๐‘‹๐‘™; and (iii) the group ๐‘0 leaves more than one vertex. (i) suppose that all vertices in the group ๐‘0 are members of ๐‘‹๐‘™, then there are ๐‘˜ โˆ’ 2 vertices from the group of multiple ๐‘๐‘– as many as ๐‘˜ that can be element of ๐‘‹๐‘™. assuming at least one vertex in each group of multiple ๐‘๐‘– becomes a element of ๐‘‹๐‘™, it means that there are at least two groups whose vertices are not represented as element of ๐‘‹๐‘™. it is sufficient to show that there are two vertices from two different groups, these two vertices are adjacent and have the same representation respect to ๐‘‹๐‘™. suppose that the two groups not represented in the element of the set ๐‘‹๐‘™ are the group of multiples ๐‘๐‘—1 and ๐‘๐‘—2 where 1 โ‰ค ๐‘—1, ๐‘—2 โ‰ค ๐‘˜. vertex ๐‘๐‘—1 is adjacent to ๐‘๐‘—2 because both are prime numbers and are the first element in their respective group of multiples. in addition, vertices ๐‘๐‘—1 and ๐‘๐‘—2 are adjacent to all vertices in the group ๐‘0, so that ๐‘Ÿ(๐‘๐‘—1|๐‘‹๐‘™) = ๐‘Ÿ(๐‘๐‘—2|๐‘‹๐‘™). consequently, ๐‘‹๐‘™ is not a resolving set. (ii) suppose that at least one vertex from each group of multiples ๐‘๐‘– is a element of ๐‘‹๐‘™, then there are at least two vertices in the group ๐‘0 that are not element of ๐‘‹๐‘™. the two vertices in the group ๐‘0 will have the same representation respect to ๐‘‹๐‘™, because the two vertices in the group ๐‘0 are adjacent to every vertex in ๐บโ„ค๐‘›. so ๐‘‹๐‘™ is not a resolving set. (iii) suppose that the group ๐‘0 leaves more than one vertex, then a. if the group ๐‘0 leaves two vertices, then whatever the condition for selecting vertices in the group of multiples ๐‘๐‘–, the remaining two vertices in the group ๐‘0 will have the same representation respect to ๐‘‹๐‘™. consequently, ๐‘‹๐‘™ is not a resolving set. b. if the group ๐‘0 leaves more than two vertices, then there is a group of multiples ๐‘๐‘– where all the vertices are not ๐‘‹๐‘™ element. in this case, the remaining vertices in the group ๐‘0 will have the same representation of ๐‘‹๐‘™ regardless of the vertex conditions in the group of multiples ๐‘๐‘–. as a result, ๐‘‹๐‘™ is not a resolving set. from all of the above possibilities, it can be concluded that ๐‘‹๐‘™ is not a local resolving set. if there are more than one vertex left in group ๐‘0, then the representation of the remaining vertices respect to ๐‘‹๐‘™ will be the same. likewise, if there is one or more groups of multiples ๐‘๐‘– that are not represented in the element of the set ๐‘‹๐‘™, it can always be found the vertices of the group of multiples ๐‘๐‘– which have the same representation respect to set ๐‘‹๐‘™ eventhough they are adjacent. since |๐‘‹๐‘™| = |๐‘Š๐‘™| โˆ’ 1 and ๐‘Š๐‘™ are local resolving set, it can be concluded that ๐‘Š๐‘™ is a local resolving set with minimal cardinality or local metric bases of ๐บโ„ค๐‘›. the cardinality of the set ๐‘Š๐‘™ is the local metric dimension of ๐บโ„ค๐‘›. it is proven that ๐‘‘๐‘–๐‘š๐‘™(๐บ๐‘๐‘›) = |๐‘ƒ0|โˆ’ 1 + ๐‘˜. ๏ฒ based on theorem 12, the local metric bases consists of vertices in the group ๐‘0 and the group of multiples ๐‘๐‘–, provided that the group ๐‘0 leaves only one vertex while in each group of multiples ๐‘๐‘– are represented by only one vertex. the metric dimension and local metric dimension of relative prime graph fatmawati 160 example: suppose given ๐บโ„ค17, where ๐‘‰(๐บโ„ค17) = {1,2,3,โ€ฆ, 16}. it will determine the metric dimension and the local metric dimension of ๐บโ„ค17 and some metric bases and local metric bases. firstly, the vertices of ๐บโ„ค17 were grouped as follows: group ๐‘0:1,11,13 then |๐‘ƒ0| = 3. group of multiple 2 are 2,4,6,8,10,12,14,16. group of multiple 3 are 3,6,9,12,15. group of multiple 5 are 5,10,15. group of multiple 7 are 7,14. there are four groups of multiples, namely multiples of 2, multiples of 4, multiples of 5, and multiples of 7, so ๐‘˜ = 4. (1) ๐‘‘๐‘–๐‘š(๐บโ„ค17) = 17 โˆ’ 4 โˆ’ 2 = 11. some of the metric bases of ๐บโ„ค17 are: ๐‘Š1 = {1,11,2,3,4,6,8,10,12,14,15}, then ๐‘Ÿ(5|๐‘Š1) = (1,1,1,1,1,1,1,2,1,1,2); ๐‘Ÿ(7|๐‘Š1) = (1,1,1,1,1,1,1,1,1,2,1); ๐‘Ÿ(9|๐‘Š1) = (1,1,1,2,1,2,1,1,2,1,2); ๐‘Ÿ(13|๐‘Š1) = (1,1,1,1,1,1,1,1,1,1,1); ๐‘Ÿ(16|๐‘Š1) = (1,1,2,1,2,2,2,2,2,2,1). ๐‘Š2 = {1,13,2,3,4,6,10,12,14,15,16}, then ๐‘Ÿ(5|๐‘Š2) = (1,1,1,1,1,1,2,1,2,2,1); ๐‘Ÿ(7|๐‘Š2) = (1,1,1,1,1,1,1,1,2,1,1); ๐‘Ÿ(8|๐‘Š2) = (1,1,2,1,2,2,2,2,2,1,2); ๐‘Ÿ(9|๐‘Š2) = (1,1,1,2,1,2,1,2,1,2,1); ๐‘Ÿ(11|๐‘Š2) = (1,1,1,1,1,1,1,1,1,1,1). ๐‘Š3 = {11,13,2,4,6,9,10,12,14,15,16}, then ๐‘Ÿ(1|๐‘Š3) = (1,1,1,1,1,1,1,1,1,1,1); ๐‘Ÿ(3|๐‘Š3) = (1,1,1,1,1,2,2,1,2,2,1); ๐‘Ÿ(5|๐‘Š3) = (1,1,1,1,1,1,2,1,1,2,1); ๐‘Ÿ(7|๐‘Š3) = (1,1,1,1,1,1,1,1,2,1,1); ๐‘Ÿ(8|๐‘Š3) = (1,1,2,1,2,1,2,2,2,1,2). (2) ๐‘‘๐‘–๐‘š๐‘™(๐บโ„ค17) = 3 โˆ’ 1+ 4 = 6. some of the local metric bases of ๐บโ„ค17 are: ๐‘Š๐‘™1 = {1,11,2,3,5,7}, then ๐‘Ÿ(4|๐‘Š๐‘™1) = (1,1,2,1,1,1); ๐‘Ÿ(6|๐‘Š๐‘™1) = (1,1,2,2,1,1); ๐‘Ÿ(8|๐‘Š๐‘™1) = (1,1,2,1,1,1); ๐‘Ÿ(9|๐‘Š๐‘™1) = (1,1,1,2,1,1); ๐‘Ÿ(10|๐‘Š๐‘™1) = (1,1,2,1,2,1); ๐‘Ÿ(12|๐‘Š๐‘™1) = (1,1,2,2,1,1); ๐‘Ÿ(13|๐‘Š๐‘™1) = (1,1,1,1,1,1); ๐‘Ÿ(14|๐‘Š๐‘™1) = (1,1,2,1,1,2); ๐‘Ÿ(15|๐‘Š๐‘™1) = (1,1,1,2,2,1); ๐‘Ÿ(16|๐‘Š๐‘™1) = (1,1,2,1,1,1). it appears that ๐‘Ÿ(4|๐‘Š๐‘™1) = ๐‘Ÿ(8|๐‘Š๐‘™1) and ๐‘Ÿ(6|๐‘Š๐‘™1) = ๐‘Ÿ(12|๐‘Š๐‘™1), but vertex 4 is not adjacent to 8 and vertex 6 is not adjacent to 12. ๐‘Š๐‘™2 = {1,13,4,9,5,7}, then ๐‘Ÿ(2|๐‘Š๐‘™2) = (1,1,2,1,1,1); ๐‘Ÿ(3|๐‘Š๐‘™2) = (1,1,1,1,1,1); ๐‘Ÿ(6|๐‘Š๐‘™2) = (1,1,2,2,1,1); ๐‘Ÿ(8|๐‘Š๐‘™2) = (1,1,2,1,1,1); ๐‘Ÿ(10|๐‘Š๐‘™2) = (1,1,2,1,2,1); ๐‘Ÿ(11|๐‘Š๐‘™2) = (1,1,1,1,1,1); ๐‘Ÿ(12|๐‘Š๐‘™2) = (1,1,2,2,1,1); ๐‘Ÿ(14|๐‘Š๐‘™2) = (1,1,2,1,1,2); ๐‘Ÿ(15|๐‘Š๐‘™2) = (1,1,1,2,2,1); ๐‘Ÿ(16|๐‘Š๐‘™2) = (1,1,2,1,1,1). it appears that ๐‘Ÿ(2|๐‘Š๐‘™1) = ๐‘Ÿ(8|๐‘Š๐‘™1) and ๐‘Ÿ(6|๐‘Š๐‘™1) = ๐‘Ÿ(12|๐‘Š๐‘™1), but vertex 2 is not adjacent to 8 and vertex 6 is not adjacent to 12. ๐‘Š๐‘™3 = {1,11,8,12,5,14}, then ๐‘Ÿ(2|๐‘Š๐‘™3) = (1,1,2,2,1,2); ๐‘Ÿ(3|๐‘Š๐‘™3) = (1,1,1,2,2,1); ๐‘Ÿ(4|๐‘Š๐‘™3) = (1,1,2,2,1,2); ๐‘Ÿ(6|๐‘Š๐‘™3) = (1,1,2,2,1,2); ๐‘Ÿ(7|๐‘Š๐‘™3) = (1,1,1,1,1,1); ๐‘Ÿ(9|๐‘Š๐‘™3) = (1,1,1,2,1,1); ๐‘Ÿ(10|๐‘Š๐‘™3) = (1,1,2,2,2,2); ๐‘Ÿ(13|๐‘Š๐‘™3) = (1,1,1,1,1,1); ๐‘Ÿ(15|๐‘Š๐‘™3) = (1,1,1,2,2,1); ๐‘Ÿ(16|๐‘Š๐‘™3) = (1,1,2,2,1,2). it appears that ๐‘Ÿ(2|๐‘Š๐‘™3) = ๐‘Ÿ(4|๐‘Š๐‘™3) = ๐‘Ÿ(6|๐‘Š๐‘™3) = ๐‘Ÿ(16|๐‘Š๐‘™3), but the vertices 2,4,6,16 are not adjacent to each other. the metric dimension and local metric dimension of relative prime graph fatmawati 161 conclusions this research focuses on determining the metric dimension and local metric dimension of relative prime graphs ๐บ๐‘๐‘›. based on the previous discussion, it can be concluded that: (1) ๐‘‘๐‘–๐‘š(๐บ๐‘๐‘›) = ๐‘› โˆ’๐‘˜ โˆ’ 2; (2) ๐‘‘๐‘–๐‘š๐‘™(๐บ๐‘๐‘›) = |๐‘ƒ0| โˆ’ 1 + ๐‘˜, where ๐‘˜ is the number of group multiples ๐‘1,๐‘2,โ€ฆ,๐‘๐‘˜, and |๐‘ƒ0| is the cardinality of set ๐‘ƒ0. in the future, the research can be extended to other topics such as fractional metric dimensions, local fractional metric dimensions, domination numbers/set, graph coloring, and graph labeling as well as expansion of research objects in special rings. references [1] g. chartrand and l. lesniak, graphs and digraphs, third edition, chapman & hall/crc, florida, 2000. [2] p. j. slater, "leaves and trees", congr. numer., 14, pp. 549-559, 1975. [3] f. harary and r. a. melter, "on the metric dimension of a graph", ars combinatoria, vol. 2, pp. 191-195, 1976. [4] j. a. rodriquez-velazquez, i. g. yero, d. kuziak and o. r. oellermann, "on the strong metric dimension of cartesian and direct product of graphs", discrete mathematics 335, pp. 8-19, 2014. [5] f. okamoto, b. phinezy and p. zhang, "the local metric dimension of a graph", math. bohem., vol. 135, pp. 239-255, 2010. [6] i. beck, "coloring of commutative rings", journal of algebra, vol. 116, no.1, pp. 208226, 1988. [7] d. f. anderson and p. s. livingston, "the zero-divisor graph of a commutative ring", journal of algebra 217, pp. 434-447 1999. [8] s. p. redmond, "the zero-divisor graph of a non-commutative ring", international j. commutative rings 1(4), pp. 203-211, 2002. [9] s. p. redmond, "central sets and radii of the zero-divisor graphs of commutative rings", communications in algebra 34, pp. 2389โ€“2401, 2006. [10] a. azimi, a. erfanian and d. g. farrokhi, "the jacobson graph of commutative rings", jounal of algebra and its application, doi: 10.1142/s0219498812501794, 2012. [11] a. novictor, l. susilowati and fatmawati, "jacobson graph construction of ring z3n, for n > 1", journal of physics: conference series 1494 (2020) 012016, doi:10.1088/17426596/1494/1/012016, 2020. [12] j. b. fraleigh, a first course in abstract algebra, addison-wesley publishing company, massachusetts, 2003. [13] g. chartrand, l. eroh, m. a. johnson and o. r. oellermann, "resolvability in graphs and the metric dimension of a graph", discrete applied mathematics 105, pp. 99-113, 2000. cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 publication etics cauchy: jurnal matematika murni dan aplikasi is a peer-reviewed electronic national journal. this statement clarifies ethical behaviour of all parties involved in the act of publishing an article in this journal, including the author, the chief editor, the editorial board, the peer-reviewer and the publisher (mathematics department of maulana malik ibrahim state islamic university of malang). this statement is based on copeโ€™s best practice guidelines for journal editors. ethical guideline for journal publication the publication of an article in a peer-reviewed cauchy is an essential building block in the development of a coherent and respected network of knowledge. it is a direct reflection of the quality of the work of the authors and the institutions that support them. peer-reviewed articles support and embody the scientific method. it is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer, the publisher and the society. as publisher of pure and applied mathematics journal, we take our duties to back up over all stages of publishing seriously and we recognize our ethical and other responsibilities. we are committed to ensuring that advertising, reprint or other commercial revenue has no impact or influence on editorial decisions. publication decisions the editor of cauchy is responsible for deciding which of the articles submitted to the journal should be published. the validation of the work in question and its importance to researchers and readers must always drive such decisions. the editors may be guided by the policies of the journal's editorial board and constrained by such legal requirements as shall then be in force regarding libel, copyright infringement and plagiarism. the editors may confer with other editors or reviewers in making this decision. fair play an editor at any time evaluates manuscripts for their intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the authors. confidentiality the editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher, as appropriate. any manuscripts received for review must be treated as confidential documents. they must not be shown to or discussed with others except as authorized by the editor. disclosure and conflicts of interest unpublished materials disclosed in a submitted manuscript must not be used in an editor's own research without the express written consent of the author. cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 publication etics contribution to editorial decisions peer review assists the editor in making editorial decisions and through the editorial communications with the author may also assist the author in improving the paper. promptness any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse himself from the review process. standards of objectivity reviews should be conducted objectively. personal criticism of the author is inappropriate. referees should express their views clearly with supporting arguments. acknowledgement of sources reviewers should identify relevant published work that has not been cited by the authors. any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. a reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge. disclosure and conflict of interest privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers. reporting standards authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance. underlying data should be represented accurately in the paper. a paper should contain sufficient detail and references to permit others to replicate the work. fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. data access and retention authors are asked to provide the raw data in connection with a paper for editorial review and should be prepared to provide public access to such data (consistent with the alpspstm statement on data and databases), if practicable, and should in any event be prepared to retain such data for a reasonable time after publication. originality and plagiarism the authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted. cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 publication etics multiple, redundant or concurrent publication an author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. acknowledgement of sources proper acknowledgment of the work of others must always be given. authors should cite publications that have been influential in determining the nature of the reported work. authorship of the paper authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. all those who have made significant contributions should be listed as co-authors. where there are others who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. the corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. hazards and human or animal subjects if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. disclosure and conflicts of interest all authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. all sources of financial support for the project should be disclosed. fundamental errors in published works when an author discovers a significant error or inaccuracy in his/her own published work, it is the authorโ€™s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. cauchy jurnal matematika murni dan aplikasi volume 7, issue 1, november 2021 issn : 2086-0382 e-issn : 2477-3344 acknowledgment to reviewers in this issue contributions and valuable comments of the following reviewers in this issue was very appreciated bety hayat susanti, politeknik siber dan sandi negara, indonesia dian savitri, universitas negeri surabaya, indonesia meta kallista, universitas telkom, indonesia dani suandi, universitas bina nusantara, bandung, indonesia anwar fitrianto, department of statistics, ipb university, indonesia subanar seno, gadjah mada university, indonesia arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia sri harini, universitas islam negeri maulana malik ibrahim malang, indonesia heni widayani, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia corina karim, brawijaya uiversity fachrur rozi, universitas islam negeri maulana malik ibrahim malang, indonesia javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740595') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740557') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740556') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740541') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/736347') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/5964') 1a sampul depan sebuah telaah elips dan lingkaran melalui sebuah pendekatan aljabar matriks rahmat sagara sekolah tinggi keguruan dan ilmu pendidikan kebangkitan nasional sampoerna school of education building jl. kapten tendean no. 88 c. 4th floor, jakarta selatan 12710, indonesia phone: +62 21 577 2275 ext. 7243, fax: +62 21 577 2276 e-mail: rahmat.sagara@sampoernaeducation.ac.id abstract in this article, ellipse and circle will be learnt in depth via matrix algebra approach. the discussion of the both is started from their classic definition continued by surveying ellipse in matrix form. during the survey, some properties about ellipse will be explained and also, the procedure in drawing the figures can be obtained geometrically using some aspect in geometry: rotation and translation. at the end of the discussion, the new definition of the figures is deduced. both of them are defined asโ€ a set of points in a plane that are the same distance from a fixed pointโ€ but in different point of view about the โ€˜distanceโ€™. the โ€˜distanceโ€™ in the definition is derived from different norm definition. the difference lies on the positive definite matrix used in the norm definition. base on the new definition, weโ€™ll have the conclusion that circle is a special type of ellipse. keywords: circle, distance, ellipse, norm, positive definite matrix pendahuluan elips dan lingkaran memiliki definisi yang berbeda. masing-masing didefinisikan sebagai berikut: lingkaran didefinisikan sebagai himpunan semua titik-titik pada bidang datar yang berjarak sama terhadap sebuah titik tertentu. sebuah titik ini disebut titik pusat dari lingkaran. elips didefinisikan sebagai himpunan semua titik-titik pada bidang datar yang jumlah jaraknya terhadap dua titik-titik tertentu tetap. kedua titik-titik ini disebut titik-titik fokus dari elips. berdasarkan kedua definisi di atas, sebuah lingkaran bisa disebut elips, yakni elips dengan titik-titik fokusnya berimpit dengan titik pusatnya. misalkan r adalah jarak yang dinyatakan pada definisi yang pertama (dengan kata lain r adalah panjang jari-jari dari lingkaran), t adalah jumlah jarak yang dinyatakan pada definisi kedua, titik-titik fokus dari elips adalah f๏ฟฝc, 0๏ฟฝ and f๏ฟฝ๏ฟฝ c, 0๏ฟฝ dimana c adalah sebuah bilangan real non-negatif, dan tanpa mengurangi keumuman misalkan titik asal ๏ฟฝ0,0๏ฟฝ adalah titik pusat bagi kedua bangun datar tersebut. maka bisa ditunjukkan bahwa lingkaran dan elips masing-masing bisa dirumuskan sebagai berikut: ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ|๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ (1.1) dan ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ !๏ฟฝ". (1.2) pada bidang kartesius, jika sembarang titik pada kedua bangun datar itu dinamai dengan p, titik potong dengan sumbu-x dinamai dengan a dan a๏ฟฝ, dan titik potong dengan sumbuy dinamai dengan b dan b๏ฟฝ maka kedua bangun datar tersebut masing-masing digambarkan seperti gambar 1 dan gambar 2. gambar 1. lingkaran dengan titik pusat ๏ฟฝ0,0๏ฟฝ dan panjang jari-jari r gambar 2. elips dengan titik pusat ๏ฟฝ0,0๏ฟฝ titik-titik fokus f dan &๏ฟฝ serta jumlah jarak titik pada elips ke titik-titik focus ' ๏ฟฝ ๏ฟฝ! ๏ฟฝ ๏ฟฝ๏ฟฝ. rahmat sagara 86 volume 1 no. 2 mei 2010 pandang gambar 2 dan misalkan bahwa koordinat dari (, (๏ฟฝ, ) dan )* berturut-turut adalah ๏ฟฝ+, 0๏ฟฝ, ๏ฟฝ +, 0๏ฟฝ, ๏ฟฝ,, 0๏ฟฝ, dan ๏ฟฝ ,, 0๏ฟฝ, dimana + dan , keduanya adalah bilangan real positif. jika berimpit dengan ( atau (๏ฟฝ, maka akan didapatkan ' ๏ฟฝ 2+ (1.3) dan jika berimpit dengan ) atau )*, maka akan didapatkan !๏ฟฝ '๏ฟฝ ๏ฟฝ ,๏ฟฝ ๏ฟฝ /๏ฟฝ. (1.4) dari persamaan 1.3 dan 1.4 didapatkan +๏ฟฝ ๏ฟฝ ,๏ฟฝ ๏ฟฝ /๏ฟฝ. (1.5) dengan demikian, persamaan elips bisa dituliskan sebagai berikut: ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ1๏ฟฝ ๏ฟฝ 1" (1.6) atau ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ|,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ +๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ +๏ฟฝ,๏ฟฝ๏ฟฝ (1.7) dimana + dan , keduanya adalah bilangan real positif sebagai mana dipaparkan di atas. bilangan 2+ dan 2, masing-masing adalah panjang sumbu mayor dan panjang sumbu minor dari elips. pembahasan 1. elips dalam pendekatan aljabar matriks misalkan p๏ฟฝx, y๏ฟฝ merupakan sebuah titik pada elips seperti pada persamaan 1.7. jelas bahwa akan memenuhi persamaan ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ +๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ +๏ฟฝ,๏ฟฝ (2.1) atau dalam bentuk persamaan matriks, akan memenuhi persamaan: 5๏ฟฝ ๏ฟฝ6 7,๏ฟฝ 00 +๏ฟฝ8 7๏ฟฝ๏ฟฝ8 ๏ฟฝ +๏ฟฝ,๏ฟฝ . (2.2) pandang persamaan 2.2. matriks bujur sangkar yang digunakan pada persamaan itu bersifat definit positif karena simetri dan (sesuai dengan diasumsikan sebelumnya bahwa + 9 0 dan , 9 0 yang mengakibatkan +๏ฟฝ dan ,๏ฟฝ yang tiada lain adalah) nilai-nilai eigen dari matriks itu bernilai positif. kemudian karena +๏ฟฝ dan ,๏ฟฝ adalah nilai-nilai eigen dari matriks itu, jelas bahwa +๏ฟฝ,๏ฟฝ adalah nilai determinan dari matriks itu. lebih jauh, bahwa secara umum, matriks bujursangkar yang bisa digunakan dalam persamaan elips tidak hanya matriks diagonal, tetapi semua matriks definit positif. tentunya dua matriks definit positif yang berbeda akan menghasilkan dua buah elips yang berbeda pula. dengan demikian, elips bisa dirumuskan sebagai berikut: ๏ฟฝ! ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ5๏ฟฝ ๏ฟฝ6: 7๏ฟฝ๏ฟฝ8 ๏ฟฝ |:|" (2.3) dimana m adalah sebuah matriks definit positif berukuran 2x2 dan |:| adalah determinan dari matriks m. perumusan ini bisa dijelaskan sebagai berikut: karena m adalah sebuah matriks simetri maka terdapat matriks orthogonal p dan matriks diagonal d sedemikian sehingga m=pdpt, dimana pt adalah matriks transpos dari p. semua komponen diagonal dari d adalah nilai eigen dari m dan karena m definit positif maka semua komponen diagonal ini positif. vektor kolom ke-i dari matriks p adalah vektor eigen satuan dari m yang bersesuaian dengan nilai eigen ke-i dari m, yakni komponen diagonal ke-i dari d. dengan demikian, ekspresi: 5๏ฟฝ ๏ฟฝ6: 7๏ฟฝ๏ฟฝ8 bisa dituliskan sebagai: 5; <6= 7;<8 dimana 7;<8 ๏ฟฝ >? 7๏ฟฝ๏ฟฝ8 dan karena p merupakan matriks orthogonal, didapatkan juga 7๏ฟฝ๏ฟฝ8 ๏ฟฝ > 7;<8. dengan demikian persamaan 2.3 bisa dituliskan sebagai: ๏ฟฝ! ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ 7๏ฟฝ๏ฟฝ8 ๏ฟฝ > 7;<8 @๏ฟฝ;, <๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ "(2.4) dimana ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ;, <๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ5; <6= 7;<8 ๏ฟฝ |=|" (2.5) dan p dan d masing masing matriks orthogonal dan matriks diagonal sedemikian sehingga : ๏ฟฝ >=>? seperti yang telah dipaparkan sebelumnya. dari persamaan 2.4 dan 2.5 terlihat bahwa elips yang dirumuskan pada persamaan 2.3 adalah hasil transformasi a dari elips ๏ฟฝ๏ฟฝ, atau ๏ฟฝ! ๏ฟฝ a๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ dibawah definisi: a b7;<8c ๏ฟฝ > 7;<8. (2.6) lebih dalam, peranan matrks d dan p dalam pembentukan elips dipaparkan sebagai berikut: pandang matriks d dan tulis = ๏ฟฝ de๏ฟฝ 00 e!f. tanpa mengurangi keumuman asumsikan bahwa e! g e๏ฟฝ, maka elips ๏ฟฝ๏ฟฝ seperti 2.5 adalah elips sebuah telaah elips dan lingkaran melalui sebuah pendekatan aljabar matriks jurnal cauchy โ€“ issn: 2086-0382 87 yang berpusat di ๏ฟฝ0,0๏ฟฝ mempunyai panjang sumbu mayor dan sumbu minor masing-masing adalah 2he! dan 2he๏ฟฝ. hal ini didapat dari analogi persamaan 2.5 dan persamaan 1.6 dimana he! dan he๏ฟฝ pada persamaan 2.5 bersesuaian dengan + dan , pada persamaan 1.6. sekarang pandang matriks p dan tulis > ๏ฟฝ 7i!! i!๏ฟฝi๏ฟฝ! i๏ฟฝ๏ฟฝ8. karena p adalah matriks ortognal maka >>? ๏ฟฝ >?> ๏ฟฝ jk yaitu matriks identitas orde 2. dari persamaan >>? ๏ฟฝ jk didapat hubungan: d i!!๏ฟฝ ๏ฟฝ i!๏ฟฝ๏ฟฝ i!!i๏ฟฝ! ๏ฟฝ i!๏ฟฝi๏ฟฝ๏ฟฝi๏ฟฝ!i!! ๏ฟฝ i๏ฟฝ๏ฟฝi!๏ฟฝ i๏ฟฝ!๏ฟฝ ๏ฟฝ i๏ฟฝ๏ฟฝ๏ฟฝ f ๏ฟฝ 71 00 18 atau didapat sistem persamaan: i!!๏ฟฝ ๏ฟฝ i!๏ฟฝ๏ฟฝ ๏ฟฝ 1 (2.7) i!!i๏ฟฝ! ๏ฟฝ i!๏ฟฝi๏ฟฝ๏ฟฝ ๏ฟฝ 0 (2.8) i๏ฟฝ!๏ฟฝ ๏ฟฝ i๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 1 (2.9) dan dari persamaan >?> ๏ฟฝ jk ini didapat hubungan: d i!!๏ฟฝ ๏ฟฝ i๏ฟฝ!๏ฟฝ i!!i!๏ฟฝ ๏ฟฝ i๏ฟฝ!i๏ฟฝ๏ฟฝi!๏ฟฝi!! ๏ฟฝ i๏ฟฝ๏ฟฝi๏ฟฝ! i!๏ฟฝ๏ฟฝ ๏ฟฝ i๏ฟฝ๏ฟฝ๏ฟฝ f ๏ฟฝ 71 00 18 atau didapat sistem persamaan: i!!๏ฟฝ ๏ฟฝ i๏ฟฝ!๏ฟฝ ๏ฟฝ 1 (2.10) i!!i!๏ฟฝ ๏ฟฝ i๏ฟฝ!i๏ฟฝ๏ฟฝ ๏ฟฝ 0 (2.11) i!๏ฟฝ๏ฟฝ ๏ฟฝ i๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 1 (2.12) dari persamaan 2.8 dan 2.11 didapatkan ๏ฟฝi!! i๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝi!๏ฟฝ i๏ฟฝ!๏ฟฝ ๏ฟฝ 0. (2.13) pandang persamaan 2.13 untuk kedua kasus berikut: 1. kasus i!๏ฟฝ l i๏ฟฝ! jika i!๏ฟฝ l i๏ฟฝ! maka i!! ๏ฟฝ i๏ฟฝ๏ฟฝ; dan jika i!! ๏ฟฝ i๏ฟฝ๏ฟฝ maka berdasarkan persamaan 2.7 dan 2.9 (atau persamaan 2.10 dan 2.12) didapat bahwa i!๏ฟฝ๏ฟฝ ๏ฟฝ i๏ฟฝ!๏ฟฝ akan tetapi karena i!๏ฟฝ l i๏ฟฝ! maka i!๏ฟฝ ๏ฟฝ i๏ฟฝ!. dengan demikian bisa dituliskan bahwa > ๏ฟฝ dm nn m f (2.13) dimana m dan n adalah bilagan real yang memenuhi sifat m๏ฟฝ ๏ฟฝ n๏ฟฝ ๏ฟฝ 1. 2. kasus i!! l i๏ฟฝ๏ฟฝ jika i!! l i๏ฟฝ๏ฟฝ maka i!๏ฟฝ ๏ฟฝ i๏ฟฝ!; dan jika i!๏ฟฝ ๏ฟฝ i๏ฟฝ! maka berdasarkan persamaan 2.7 dan 2.9 (atau persamaan 2.10 dan 2.12) didapat bahwa i!!๏ฟฝ ๏ฟฝ i๏ฟฝ๏ฟฝ๏ฟฝ akan tetapi karena i!! l i๏ฟฝ๏ฟฝ maka i!! ๏ฟฝ i๏ฟฝ๏ฟฝ. dengan demikian bisa dituliskan bahwa > ๏ฟฝ dm nn mf (2.14) dimana m dan n adalah bilagan real yang memenuhi sifat m๏ฟฝ ๏ฟฝ n๏ฟฝ ๏ฟฝ 1. matriks p pada persamaan 2.13 dan 2.14 keduanya memberikan elips yang sama. hal ini dijamin oleh fakta berikut: 1. dengan menggunakan matriks p pada persamaan 2.13, hasil perkalian dari pdpt: dm nn m f de! 00 e๏ฟฝf d m n n mf๏ฟฝ de!m๏ฟฝ ๏ฟฝ e๏ฟฝn๏ฟฝ ๏ฟฝe! e๏ฟฝ๏ฟฝmn๏ฟฝe! e๏ฟฝ๏ฟฝmn e!n๏ฟฝ ๏ฟฝ e๏ฟฝm๏ฟฝf 2. dengan menggunakan matriks p pada persamaan 2.14, hasil perkalian dari pdpt: dm nn mf de! 00 e๏ฟฝf dm nn mf๏ฟฝ de!m๏ฟฝ ๏ฟฝ e๏ฟฝn๏ฟฝ ๏ฟฝe! e๏ฟฝ๏ฟฝmn๏ฟฝe! e๏ฟฝ๏ฟฝmn e!n๏ฟฝ ๏ฟฝ e๏ฟฝm๏ฟฝf pada kedua kasus di atas bisa dilihat bahwa keduanya memberikan matriks perkalian pdpt yang sama. selain itu, fenomena ini juga bisa dijelaskan dengan fakta bahwa kelipatan dari suatu vektor eigen yang bersesuaian dengan suatu nilai eigen tertentu merupakan sebuah vektor eigen yang bersesuaian dengan nilai eigen itu. dengan demikian, apapun bentuk matriks p yang dipakai, baik pada persamaan 2.13 maupun pada persamaan 2.14, tidak akan memberikan elips yang berbeda. tranformasi yang didefinisikan pada persamaan 2.6 jika menggunakan matriks p seperti pada persamaan 2.13 secara geometri bisa ditafsirkan sebagai rotasi sebesar p (diukur dalam derajat) dengan sumbu rotasi titik asal ๏ฟฝ0,0๏ฟฝ sedemikian sehingga m ๏ฟฝ cos๏ฟฝp๏ฟฝ dan n ๏ฟฝ sin๏ฟฝp๏ฟฝ. dengan menulis kembali elips pada persamaan 2.3 dan ganti |:| dengan bilangan real positif u, maka akan didapatkan elips baru sebagai berikut: ๏ฟฝv ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ|5๏ฟฝ ๏ฟฝ6: 7๏ฟฝ๏ฟฝ8 ๏ฟฝ u" (2.15) atau ๏ฟฝv ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ 7๏ฟฝ๏ฟฝ8 ๏ฟฝ > 7;<8 @๏ฟฝ;, <๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ " (2.16) dimana ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ;, <๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ5; <6= 7;<8 ๏ฟฝ u" (2.17) dan > ๏ฟฝ dm nn m f dan = ๏ฟฝ dฮป๏ฟฝ 00 ฮป!f masing-masing adalah matriks orthogonal dan matriks diagonal sehingga : ๏ฟฝ >=>?. rahmat sagara 88 volume 1 no. 2 mei 2010 sembarang titik -๏ฟฝ๏ฟฝ;, <๏ฟฝ pada elips ๏ฟฝ๏ฟฝ akan memenuhi: 5; <6 dฮป๏ฟฝ 00 ฮป!f 7;<8 ๏ฟฝ u yang ekivalen dengan e๏ฟฝ;๏ฟฝ ๏ฟฝ e!<๏ฟฝ ๏ฟฝ u atau w๏ฟฝxy๏ฟฝ ๏ฟฝ z ๏ฟฝxy[ ๏ฟฝ 1. (2.18) bisa dilihat bahwa persamaan 2.18 serupa dengan ekspresi yang dipenuhi titik-titik pada elips ๏ฟฝ seperti pada persamaan 1.6. dengan demikian, analogi dengan elips e pada persamaan 1.6 (dimana + dan , pada persamaan 1.6 masingmasing bersesuaian dengan \ ]ฬ‚๏ฟฝ dan \ ]ฬ‚[ pada persamaan 2.6), ๏ฟฝ๏ฟฝ adalah elips yang berpusat di ๏ฟฝ0,0๏ฟฝ, panjang sumbu mayor 2\ ]ฬ‚๏ฟฝ, panjang sumbu minor 2\ ]ฬ‚[ dan titik-titik fokus _\u ^[๏ฟฝ^๏ฟฝ^[^๏ฟฝ , 0` and _ \u ^[๏ฟฝ^๏ฟฝ^[^๏ฟฝ , 0`. hal khusus pada persamaan 2.18, jika nilai eigen the eigen e! ๏ฟฝ e๏ฟฝ ๏ฟฝ e, maka persamaan 2.18 akan menjadi: ;๏ฟฝ ๏ฟฝ <๏ฟฝ ๏ฟฝ ]ฬ‚ (2.19) dan persamaan ini serupa dengan ekspresi yang dipenuhi oleh titik-titik pada lingkaran seperti pada persamaan 1.1. dengan demikian, pada hal khusus tersebut, elips ๏ฟฝ๏ฟฝ pada persamaan 2.17 merupakan sebuah lingkaran dengan pusat di ๏ฟฝ0,0๏ฟฝ dan panjang jari-jari ๏ฟฝ ๏ฟฝ \]ฬ‚ , begitu pula dengan persamaan 2.15 karena matriks orthogonal p akan berupa matriks identitas yang artinya bahwa lingkaran tersebut dirotasi dengan besar sudut 0a, artinya bahwa transformasi ini tidak merubah bentuk awal. 2. elips dalam pendekatan jarak untuk sembarang vektor ๏ฟฝb ๏ฟฝ 7๏ฟฝ!๏ฟฝ๏ฟฝ8 ๏ฟฝ ๏ฟฝ๏ฟฝ, definisikan sebuah norm dari vektor itu sebagai berikut: c๏ฟฝbc: ๏ฟฝ โˆš๏ฟฝb๏ฟฝ:๏ฟฝb (3.1) dimana m adalah sebuah matriks definit positif. dengan norm ini, definisikan pula jarak antara dua titik -๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ dan e๏ฟฝ;, <๏ฟฝ sebagai norm dari selisih dua vektor 7๏ฟฝ๏ฟฝ8 dan 7;<8 sebagai berikut: f:๏ฟฝ-, e๏ฟฝ ๏ฟฝ g7๏ฟฝ๏ฟฝ8 7;<8g: ๏ฟฝ 5๏ฟฝ ; ๏ฟฝ <6: 7๏ฟฝ ;๏ฟฝ <8 (3.2) dengan demikian jarak -๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ dan titik asal ๏ฟฝ0,0๏ฟฝ adalah f:๏ฟฝ-, ๏ฟฝ ๏ฟฝ g7๏ฟฝ๏ฟฝ8g: ๏ฟฝ 5๏ฟฝ ๏ฟฝ6: 7๏ฟฝ๏ฟฝ8 (3.3) berdasarkan definisi jarak pada persamaan 3.3, bisa dikatakan bahwa elips ๏ฟฝv ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ|5๏ฟฝ ๏ฟฝ6: 7๏ฟฝ๏ฟฝ8 ๏ฟฝ u" adalah merupakan himpunan semua titik-titik yang berjarak sama terhadap titik asal, yakni sebesar โˆšu. pusat dari elips bisa diperluas menjadi sembarang titik dengan menggunakan aspek lain dari geometri yaitu translasi. dengan demikian jika diinginkan bahwa pusat dari elips itu adalah h๏ฟฝi, i๏ฟฝ, maka translasi dari elips ๏ฟฝv harus dilakukan dengan vektor arah translasi 7ii8 sehingga didapat elips ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ|5๏ฟฝ i ๏ฟฝ i6: 7๏ฟฝ i๏ฟฝ i8 ๏ฟฝ u". penutup misalkan h๏ฟฝi, i๏ฟฝ sebuah titik tertentu dan -๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ titik sembarang di dalam bidang kartesius. misalkan pula m adalah sebuah matriks definit positif berukuran 2x2 dan u sebuah bilangan real positif. pandang definisi jarak pada persamaan 3.2 dan sebuah himpunan yang diformulasikan sebagai berikut: j ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ|f:๏ฟฝ-, h๏ฟฝ ๏ฟฝ u๏ฟฝ maka: 1. jika > ๏ฟฝ dm nn m f dan = ๏ฟฝ dฮป๏ฟฝ 00 ฮป!f masing-masing adalah matriks orthogonal dan matriks diagonal sehingga : ๏ฟฝ >=>?, maka j adalah sebuah elips dengan: a. titik pusat h, b. merupakan hasil transformasi a๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝa! k a๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ dimana a๏ฟฝ b7๏ฟฝ๏ฟฝ8c ๏ฟฝ dm nn m f 7๏ฟฝ๏ฟฝ8 adalah rotasi sebesar p (diukur dalam derajat) dengan sumbu rotasi titik asal sebuah telaah elips dan lingkaran melalui sebuah pendekatan aljabar matriks jurnal cauchy โ€“ issn: 2086-0382 89 ๏ฟฝ0,0๏ฟฝ sedemikian sehingga m ๏ฟฝ cos๏ฟฝp๏ฟฝ dan n ๏ฟฝ sin๏ฟฝp๏ฟฝ, a b7๏ฟฝ๏ฟฝ8c ๏ฟฝ 7๏ฟฝ ๏ฟฝ i๏ฟฝ ๏ฟฝ i8 adalah translasi dengan arah vektor translasi 7ii8 dan ๏ฟฝ ๏ฟฝ l๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝm ๏ฟฝ๏ฟฝue๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝue! ๏ฟฝ 1n adalah elips yang berpusat di ๏ฟฝ0,0๏ฟฝ, panjang sumbu mayor 2\ ]ฬ‚๏ฟฝ, panjang sumbu minor 2\ ]ฬ‚[ dan titik-titik fokus _\u ^[๏ฟฝ^๏ฟฝ^[^๏ฟฝ , 0` and _ \u ^[๏ฟฝ^๏ฟฝ^[^๏ฟฝ , 0`. 2. jika : ๏ฟฝ 7ฮป 00 ฮป8, maka j adalah sebuah lingkaran dengan: a. titik pusat h, b. panjang jari-jari \]ฬ‚, 3. jika : ๏ฟฝ 71 00 18, maka j adalah sebuah lingkaran dengan: a. titik pusat h, b. panjang jari-jari โˆšu akhirnya, dari penelaahan ini bisa dikemukakan definisi dari elips dan lingkaran sebagai berikut: elips adalah himpunan semua titik-titik pada bidang datar yang berjarak sama terhadap sebuah titik tertentu, dimana jarak yang dimaksud didefinisikan seperti pada persamaan 3.2 dan lingkaran adalah hal khusus dari elips yang mana matriks definit positif yang dipakai dalam definisi jarak itu berupa matriks identitas atau kelipatannya. daftar pustaka [1] hogg, r. v., and craig, a. t., (1978), introduction to statistical mathematics, 5th ed., prentice-hall, inc. [2] mardia, k. v., kent, j. t., and bibby, j. m., (1979) multivariate analysis, academic press. [3] meyer, c. d., (2000), matrix analysis and applied linear algebra, society for industrial and applied mathematics. [4] rich, b., and thomas, c., (2009), geometry scauhmโ€™s outlines, 4th ed., mcgraw-hill companies, inc. [5] http://en.wikipedia.org/wiki/ellipse microsoft word 1 sampul depan.doc 7ย  pendeteksian outlier dengan metode regresi ridge sri harini jurusan matematika, fakultas sains dan teknologi universitas islam negeri maulana malik ibrahim malang e-mail: sriharini21@yahoo.co.id abstrak dalam analisis regresi linier berganda adanya satu atau lebih pengamatan pencilan (outlier) akan menimbulkan dilema bagi para peneliti. keputusan untuk menghilangkan pencilan tersebut harus dilandasi alasan yang kuat, karena kadang-kadang pencilan dapat memberikan informasi penting yang diperlukan. masalah outlier ini dapat diatasi dengan berbagai metode, diantaranya metode regresi ridge (ridge regression). untuk mengetahui kekekaran regresi ridge perlu melihat nilai-nilai r2, press, serta leverage (hii), untuk metode regresi ridge dengan berbagai nilai tetapan bias k yang dipilih. kata kunci: outlier, press, regresi ridge, r2, leverage (hii) 1. pendahuluan pada analisis regresi berganda sering ditemui satu atau lebih pengamatan tidak sesuai dengan model yang digunakan pada sebagian besar pengamatan lainnya. hal ini dapat terjadi karena kesalahan dalam pencatatan pengamatan-pengamatan tersebut, kesalahan alat ukur, atau karena ketidakcocokan model yang digunakan. pengamatan semacam itu disebut pencilan (outlier). pencilan bisa dihilangkan bila ada penjelasan tentang kasus pencilan yang menunjukkan situasi khusus yang tercakup dalam model. pencilan dalam data regresi berganda dapat berpengaruh pada hasil analisis statistik. pengamatan pencilan mungkin menghasilkan residual yang besar dan sering berpengaruh terhadap fungsi regresi yang dihasilkannya. untuk itu perlu dilakukan identifikasi terhadap pencilan ini guna melihat kesalahan sampel observasi. (walker dan birch, 1988). 2. kajian pustaka pendeteksian pencilan (outlier) seringkali model regresi dibentuk dari data yang banyak mengandung kekurangan, diantaranya adalah adanya pencilan yaitu pengamatan dengan residual yang besar. pencilan sering menyebabkan kesalahan dalam pemilihan model, dan biasanya dihilangkan. kenyataannya, beberapa pencilan dapat memberi informasi yang berarti, misalnya pencilan timbul dari kombinasi keadaan yang tidak biasa yang mungkin penting dan perlu diselidiki lebih lanjut. oleh karena itu adanya pencilan dalam data perlu diselidiki secara seksama, barangkali dapat diketahui ada alasan dibalik keganjilan itu. pencilan dapat disebabkan oleh kesalahan dalam data atau status fisik yang ganjil dari obyek yang dianalisis. kesalahan dalam data berupa gangguan, penyimpangan instrumen, kesalahan operator, atau kesalahan pencetakan (retnaningsih, 2001). pendeteksian pencilan terhadap nilai-nilai variabel x, dapat menggunakan matrik topi yang didefinisikan sebagai h=x(x'x)-1x'. unsur ke-i pada diagonal utama matrik topi disebut leverage (hii). unsur hii dapat diperoleh dari hii=xi(x'x)-1xi'. nilai diagonal hii terletak antara 0 dan 1 dan jumlahnya sama dengan p, yaitu banyak parameter regresi di dalam fungsi regresi termasuk suku intersep (neter, wasserman, dan kutner, 1990). sriย hariniย  8 volumeย 1ย no.ย 1ย novemberย 2009 nilai leverage yang besar menunjukkan pencilan dari nilai-nilai variabel x untuk pengamatan ke-i. hal ini disebabkan, bahwa hii adalah ukuran jarak antara nilai x untuk pengamatan ke-i dengan rata-rata nilai x untuk semua pengamatan. sehingga, nilai hii yang besar menunjukkan pengamatan ke-i berada jauh dari pusat semua pengamatan variabel x. suatu nilai hii dianggap besar apabila nilainya lebih besar dari 2p/n dan dapat berpotensi sebagai pengamatan yang berpengaruh. regresi ridge (ridge regression) regresi ridge merupakan salah satu metode yang dianjurkan untuk memper-baiki masalah multikolinearitas dengan cara memodifikasi metode kuadrat terkecil, sehingga dihasilkan penduga koefisien regresi lain yang bias (neter, et al., 1990). modifikasi metode kuadrat terkecil tersebut dilakukan dengan cara menambah tetapan bias, k, yang relatif kecil pada diagonal matriks x'x, sehingga penduga koefisien regresi dipengaruhi oleh besarnya tetapan bias, k. pada umumnya nilai k berkisar antara 0 dan 1. untuk menentukan penduga ridge, dimulai dari asumsi model linier secara umum, yaitu : y = x ฮฒ + ฮต โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (2.1) dimana : y adalah vektor pengamatan pada variabel respon yang berukuran (nx1) x adalah matrik yang berukuran nx(p+1) dari p variabel bebas ฮฒ adalah vektor berukuran (p+1)x1 dari koefisien regresi ฮต adalah vektor berukuran (nx1) dari error dalam regresi ridge variabel bebas x dan variabel tak bebas y ditransformasikan dalam bentuk variabel baku z dan y*, dimana transformasi variabel bebas dan tak bebas ke bentuk variabel baku diperoleh dari z= xs xx โˆ’ dan y*= ys yy โˆ’ . selanjutnya z'z= โŽŸโŽŸ โŽŸ โŽ  โŽž โŽœโŽœ โŽœ โŽ โŽ› โˆ’ xs xx . โŽŸ โŽŸ โŽŸ โŽ  โŽž โŽœ โŽœ โŽœ โŽ โŽ› โˆ’ xs xx dan z'y= โŽŸ โŽŸ โŽŸ โŽ  โŽž โŽœ โŽœ โŽœ โŽ โŽ› โˆ’ xs xx โŽŸ โŽŸ โŽŸ โŽ  โŽž โŽœ โŽœ โŽœ โŽ โŽ› โˆ’ ys yy . sementara itu rumus dari korelasi rxx= ( ) xx ss xxxx )( โˆ’โˆ’ . sehingga persamaan normal kuadrat terkecil (x'x)b=x'y akan berbentuk (rxx)b=rxy, dengan rxx adalah matrik korelasi variabel x dan rxy adalah vektor korelasi antara y dan masing-masing variabel x. akibat dari transformasi matrik x ke z dan vektor y ke y*, maka akan menjadikan persamaan normal regresi ridge berbentuk : (rxx+ki) *bฬ‚ =rxy. penduga koefisien regresi ridge menjadi : *bฬ‚ =(rxx+ k i)-1 rxy โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (2.2) dimana : *bฬ‚ adalah vektor koefisien regresi ridge rxx adalah matrik korelasi variabel x yang berukuran pxp rxy adalah vektor korelasi antara variabel x dan y berukuran px1 k adalah tetapan bias i adalah matrik identitas berukuran pxp. masalah yang dihadapi dalam regresi ridge adalah penentuan nilai dari k. prosedur yang cukup baik untuk menentukan nilai k ini adalah dengan menggunakan nilai statistik cp-mallows, yaitu ck. statistik cp-mallows adalah suatu kriteria yang berkaitan dengan rata-rata kuadrat error (mean square error) dari nilai kesesuaian model. nilai k yang terpilih adalah yang meminimumkan nilai ck (myers, 1990). nilai ck dapat dirumuskan sebagai berikut : 2ฯƒฬ‚ k k jkr c = n + 2 + 2 tr[hk] โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (2.3) dimana : jkrk adalah jumlah kuadrat residual dari regresi ridge n adalah banyak pengamatan pendeteksianย outlierย denganย metodeย regresiย ridgeย ย  volumeย 1ย no.ย 1ย novemberย 2009 9 hk = [z(z'z+ki)-1z'] dengan i adalah matrik identitas tr [hk] adalah teras dari matrik hk 2ฯƒฬ‚ adalah penduga varian metode kuadrat terkecil acuan lain yang digunakan untuk memilih nilai k adalah dengan melihat nilai vif (myers, 1990). nilai vif untuk koefisien regresi ridge *bฬ‚ didefinisikan sebagai diagonal dari matrik (rxx+ki)-1rxx(rxx+ki)-1 . rumusan ini didapat dengan serangkaian proses sebagai berikut : jika di metode kuadrat terkecil diketahui nilai koefisien penduga bฬ‚ dan varian( bฬ‚ ): bฬ‚ = (x'x)-1 x'y dengan y=x bฬ‚ varian( bฬ‚ ) = 2ฯƒ (x'x)-1 dalam regresi ridge harga *bฬ‚ dan varian( *bฬ‚ ) diketahui sebagai : *bฬ‚ = (x'x+ki)-1 x'y = (x'x+ki)-1 x' xb varian( *bฬ‚ ) = 2ฯƒ (x'x+ki)-1 (x'x) (x'x)-1 (x'x) (x'x+ki)-1 = 2ฯƒ (x'x+ki)-1 (x'x) (x'x+ki)-1 sehingga vif merupakan diagonal matrik (x'x+ki)-1 (x'x) (x'x+ki)-1. bila x dibakukan, maka vif dari regresi ridge adalah diagonal dari matrik (rxx+ki)-1rxx(rxx+k i)-1. leverage dalam regresi ridge ketika teknik bias digunakan pada regresi ridge, untuk mengurangi efek dari multikolinearitas, maka rumus pencilan di dalam data tersebut dapat dimodifikasi. seperti halnya di dalam metode regresi kuadrat terkecil, maka pencilan dalam regresi ridge dapat diukur dengan nilai leverage (hii). untuk itu nilai hii pada regresi kuadrat terkecil berubah sebagai fungsi dari k, guna mendapatkan nilai hii pada regresi ridge (retnaningsih,2001). dengan memakai penduga (2.2), maka nilai-nilai vektor dugaan y adalah : *ห†iy = z b* = z(z'z+ki*)-1z'y oleh karena itu, matrik h untuk regresi ridge menjadi h*=z(z'z+ki*)-1z', dan unsur ke-i pada diagonal utama matrik h* adalah hii* = zi (z'z+ki*)-1 zi'. matrik h* berperan sama seperti matrik h pada metode kuadrat terkecil. sehingga, nilai dugaan ke-i dapat ditulis dalam bentuk elemen h* sebagai berikut (walker dan birch, 1988): *ห†iy = โˆ‘ = n j jij yh 1 * unsur diagonal matrik topi ridge hii* dapat diinterpretasikan sama sebagai leverage pada diagonal matrik topi pada metode kuadrat terkecil. lichtenstein dan velleman (1983) dalam walker dan birch (1988) mengungkapkan beberapa fakta penting dari sifat unsur diagonal matrik h*. pertama, untuk k>0, maka nilai hii* < hii dengan i = 1, 2, โ€ฆ, n. dengan demikian, untuk setiap pengamatan, nilai leverage regresi ridge lebih kecil dari leverage regresi kuadrat terkecil. kedua, leverage menurun secara monoton sejalan dengan kenaikan k. ketiga, laju penurunan leverage tergantung pada posisi baris tertentu dari z sepanjang sumbu utama. artinya, leverage dari baris yang terletak di sumbu utama yang berpadanan dengan akar karakteristik besar akan berkurang lebih sedikit dari pada leverage dari baris yang terletak di sumbu utama yang berpadanan dengan akar karakteristik kecil. sriย hariniย  10 volumeย 1ย no.ย 1ย novemberย 2009 3. pembahasan penurunan rumus dari regresi ridge jika *ฮฒฬ‚ adalah penduga dari vektor ฮฒ , maka jumlah kuadrat residual dapat ditulis (hoerl dan kennard, 1970) sebagai berikut : ฯ† = (y-x *ฮฒฬ‚ )'(y-x *ฮฒฬ‚ ) = (y-x ฮฒฬ‚ )'(y-x ฮฒฬ‚ )+( ฮฒฬ‚ *ฮฒฬ‚ )'x'x( ฮฒฬ‚ *ฮฒฬ‚ ) = minฯ† + ฯ† ( *ฮฒฬ‚ ) dimana ฮฒฬ‚ adalah penduga kuadrat terkecil dari ฮฒ . untuk ฯ† tetap, maka dipilih nilai *ฮฒฬ‚ dan dibuat meminimumkan *ฮฒฬ‚ ' *ฮฒฬ‚ dengan kendala ( ฮฒฬ‚ *ฮฒฬ‚ )'x'x( ฮฒฬ‚ *ฮฒฬ‚ )= 0ฯ† , sehingga masalah lagrange (hoerl dan kennard, 1970) menjadi : =f *ฮฒฬ‚ ' *ฮฒฬ‚ + k 1 [( *ฮฒฬ‚ ฮฒฬ‚ )'x'x( *ฮฒฬ‚ ฮฒฬ‚ )0ฯ† ] *ฮฒฬ‚โˆ‚ โˆ‚f = 2 *ฮฒฬ‚ + k 1 [2(x'x) *ฮฒฬ‚ -2(x'x) ฮฒฬ‚ ] = 0 *ฮฒฬ‚ [1+ k 1 (x'x)] k 1 (x'x) ฮฒฬ‚ ] *ฮฒฬ‚ = [ki+ (x'x)]-1 (x'x) ฮฒฬ‚ jadi penduga regresi ridge adalah : *ฮฒฬ‚ = [(x'x + ki)]-1 x'y adapun sifat-sifat regresi ridge sebagai berikut (marquardt, 1970): 1. penduga *ฮฒฬ‚ adalah transformasi linier dari ฮฒฬ‚ , dan transformasi hanya tergantung pada x dan k. *ฮฒฬ‚ = [ki+ (x'x)]-1 x'y, tetapi x'y = (x'x) ฮฒฬ‚ maka, *ฮฒฬ‚ = [(x'x+ki)]-1 (x'x) ฮฒฬ‚ = zk ฮฒฬ‚ e( *ฮฒฬ‚ ) = zk ฮฒฬ‚ sehingga *ฮฒฬ‚ adalah penduga bias dari ฮฒฬ‚ 2. varian *ฮฒฬ‚ adalah : v( *ฮฒฬ‚ ) = 2ฯƒ [ki+ (x'x)]-1 (x'x) [ki+ (x'x)]-1 v( *ฮฒฬ‚ ) = var [ki+ (x'x)]-1 x'y = [ki+ (x'x)]-1 x' 2ฯƒ ix[ki+ (x'x)]-1 v( *ฮฒฬ‚ ) = 2ฯƒ [ki+ (x'x)]-1 (x'x) [ki+ (x'x)]-1 3. mse (mean square error) dari *ฮฒฬ‚ : e(l2) = tr[v( *ฮฒฬ‚ )]+ ฮฒฬ‚ '(zk-i)'(zk-i) ฮฒฬ‚ = varian + (bias)2 e(l2) = e[( *ฮฒฬ‚ ฮฒฬ‚ )'( *ฮฒฬ‚ ฮฒฬ‚ )] = 2ฯƒ โˆ‘ = + p j j i k1 2)(ฮป ฮป + k2 ฮฒ '(x'x+ki)-2 ฮฒ = v( *ฮฒฬ‚ )+k2 ฮฒ '(x'x+ki)-2 ฮฒ 4. jika kโ‰ฅ 0, dan misal *ฮฒฬ‚ memenuhi persamaan *ฮฒฬ‚ = [(x'x + ki)]-1 x'y, maka *ฮฒฬ‚ meminimumkan jumlah kuadrat residual : *)ห†(*)'ห†(*)ห†( ฮฒฮฒฮฒ xyxy โˆ’โˆ’=ฯ† . 5. jika *ฮฒฬ‚ adalah solusi dari [ki+ (x'x)] *ฮฒฬ‚ = x'y untuk nilai k yang diberikan, maka *ฮฒฬ‚ adalah fungsi monoton turun kontinyu dari k, sedemikian hingga pada saat k โˆžโ†’ , *ฮฒฬ‚ โ†’ 0. pendeteksianย outlierย denganย metodeย regresiย ridgeย ย  volumeย 1ย no.ย 1ย novemberย 2009 11 6. jika ฮฒฮฒ ' terbatas, maka ada tetapan k>0 sedemikian hingga mse dari *ฮฒฬ‚ kurang dari mse penduga kuadrat terkecil 7. dalam persamaan (x'x+ki) *ฮฒฬ‚ = x'y, g = x'y adalah vektor gradien dari )(ฮฒฯ† . misal kฮณ adalah sudut antara *ฮฒฬ‚ dan g, maka kฮณ adalah fungsi monoton turun kontinyu dari k, sedemikian hingga k .0, โ†’โˆžโ†’ kฮณ pemilihan nilai tetapan bias k merupakan sesuatu yang tidak dipisahkan dalam regresi ridge. untuk itu perlu dirunut dari mana asal nilai tetapan bias k tersebut. untuk melihat *ฮฒฬ‚ dari sudut pandang mse, maka hoerl dan kennard (1970) mengekspresikan hal tersebut ke dalam bentuk e(l2), dimana : e(l2) = 2ฯƒ โˆ‘ = + p j j i k1 2)(ฮป ฮป + k2 ฮฒ '(x'x+ki)-2 ฮฒ = )()( 2)1( kk ฮณฮณ + elemen kedua, yaitu )(2 kฮณ , adalah jarak kuadrat dari z ฮฒ ke ฮฒ . elemen )(2 kฮณ akan bernilai nol, jika k=0, sehingga )(2 kฮณ dapat dipandang sebagai bias kuadrat. elemen pertama, yaitu )(1 kฮณ , merupakan total varian dari dugaan parameter. total varian dari semua *ฮฒฬ‚ j adalah jumlah diagonal elemen 2ฯƒ z(x'x)-1 z'. total varian turun seiring dengan kenaikan k, sementara bias kuadrat naik seiring dengan kenaikan k. total varian )(1 kฮณ adalah kontinyu, merupakan fungsi monoton turun dari k. 1.)(2 321 โˆ’+โˆ’= โˆ‘ kdk d jj ฮปฮปฯƒ ฮณ = -2 โˆ‘ + 3 2 )( kj j ฮป ฮป ฯƒ bias kuadrat )(2 kฮณ adalah kontinyu, merupakan fungsi monoton naik dari k. = dk d 2ฮณ โˆ‘ + +โˆ’+ 4 2222 )( ))(2()(2 k kkkk j jjjj ฮป ฮปฮฑฮปฮฑ = โˆ‘ + โˆ’+ 3 22222 )( 222 k kkk j jjjj ฮป ฮฑฮฑฮปฮฑ = โˆ‘ + 3 2 )( 2 k k j jj ฮป ฮปฮฑ โˆ‘ = โŽฅ โŽฅ โŽฆ โŽค โŽข โŽข โŽฃ โŽก + โˆ’ + =+ p j j j j jj kk k dk d dk d 1 3 2 3 2 21 )()( 2 ฮป ฮป ฯƒ ฮป ฮฑฮปฮณฮณ = 0 022 =โˆ’ jjjk ฮปฯƒฮฑฮป 2 2 j k ฮฑ ฯƒ = sedangkan untuk rumusan ck yang digunakan sebagai alternatif pemilihan nilai tetapan bias k dapat diturunkan sebagai berikut (myers, 1990): โˆ‘ โˆ‘ = = + n i i n i i ybiasyvar 1 2* 1 * ]ห†[ห† 2 2 * 1 ][ ห† k i n i atr yvar = โˆ‘ = ฯƒ sriย hariniย  12 volumeย 1ย no.ย 1ย novemberย 2009 222* 1 )()ห†( kki n i aitrjkrybias โˆ’โˆ’=โˆ‘ = ฯƒ * 2 2 2 1 2 2 2 2 ห†( ) ( ) ( ) ฯƒ ฯƒ ฯƒ ฯƒ = โˆ’ โˆ’= = โˆ’ โˆ’ โˆ‘ n i i k k k k biasy jkr tr i a jkr tr i a jadi penduga dari โˆ‘ โˆ‘ = = + n i i n i i ybiasyvar 1 2* 1 * ]ห†[ห† diberikan oleh : ck = e 2)](ห†[ ii yey โˆ’ = [ )ห†()]ห†()( 2 iii yvyeye +โˆ’ ck = 2 1 2* 1 * ]ห†[ห† ฯƒ โˆ‘ โˆ‘ = = + n i i n i i ybiasyvar = +2)( katr 2 2 )( k k aitr jkr โˆ’โˆ’ ฯƒ = )(22 k k atrn jkr +โˆ’ ฯƒ bila *')**'(* 1 xkixxxh k โˆ’+= dan 1)()( += kk htratr ck = ]1)([2 ห† 2 ++โˆ’ k k htrn jkr ฯƒ ck = )(22 ห† 2 k k htrn jkr ++โˆ’ ฯƒ identifikasi pencilan leverage (hii) adalah elemen-elemen diagonal dari matrik proyeksi least squares yang disebut matrik topi, h = x(x'x)-1x', yang menjelaskan pendugaan atau nilai-nilai dugaan, karena : hyxby =โ‰กห† . elemen-elemen diagonal h merupakan jarak antara xi dan .x oleh karena h adalah matrik proyeksi, maka dia simetris dan idempoten (h2=h). elemen-elemen dari matrik topi yang dipusatkan adalah : )/1( ~ nhh ijij โˆ’= . hal ini berimplikasi, bahwa 1)/1( โ‰คโ‰ค ihn . jumlah akar karakteristik dari matrik proyeksi tidak nol sama dengan rank dari matrik. dalam hal ini rank(h) = rank(x)=p dan trace h=p, atau karena x rank penuh, maka โˆ‘ = n i ih 1 = p. ukuran rata-rata elemen diagonal adalah p/n. data yang diinginkan adalah yang jauh dari pengamatan berpengaruh, dimana masing-masing pengamatan mempunyai hi dekat dengan rata-rata p/n. untuk itu perlu beberapa kriteria untuk memutuskan kapan nilai hi cukup besar atau cukup jauh dari rata-ratanya. jika variabel-variabel bebas didistribusikan secara independen, maka dapat dicari distribusi eksak dari fungsi-fungsi tertentu dari hi. belsley, kuh, dan welsch (1980) mengambil teori distribusi untuk mencari batas kritis dari nilai leverage sebagai berikut : statistik ฮป wilks untuk dua grup, dimana 1 grup terdiri dari titik tunggal : )' ~ det( )~'~)(~)('~)1( ~ ' ~ det( )~( xx xxixixnxx x iii โˆ’โˆ’โˆ’ =ฮป pendeteksianย outlierย denganย metodeย regresiย ridgeย ย  volumeย 1ย no.ย 1ย novemberย 2009 13 = ) ~ ' ~ det( ) ~ ' ~ det()'~) ~ ' ~ (~ 1 1 1 xx xxxxxx n n ii โˆ’ โˆ’ โˆ’ = 1~ 1 i h n n โˆ’ = 1) 1 ( 1 n h n n i โˆ’โˆ’ = )1( 1 i h n n โˆ’ โˆ’ โŽฅ โŽฅ โŽฆ โŽค โŽข โŽข โŽฃ โŽก ฮป ฮปโˆ’ โˆ’ โˆ’ )~( )~(1 1 i i x x p pn ~ fp-1,n-p sehingga dapat ditulis : โŽฅ โŽฅ โŽฅ โŽฅ โŽฆ โŽค โŽข โŽข โŽข โŽข โŽฃ โŽก โˆ’ โˆ’ โˆ’ โˆ’ )1( ) 1 ( 1 i i h n h p pn ~ fp-1,n-p untuk p besar (lebih dari 10) dan n-p besar (lebih dari 50), maka pada tabel f nilai-nilainya kurang dari 2 sehingga nilai 2(p/n) merupakan batas yang cukup bagus. selanjutnya, pengamatan ke-i adalah titik leverage ketika hi melebihi 2(p/n). penurunan rumus press rumus press umumnya adalah iii yy โˆ’โˆ’ ,ห† . rumus ini bisa ditulis sebagai berikut (myers, 1990) : ei,-i = yi xi'b-i ei,-i = ii ii ii ii yxh xxxxxx xxxy โˆ’โˆ’ โˆ’โˆ’ โˆ’ โŽฅ โŽฆ โŽค โŽข โŽฃ โŽก โˆ’ +โˆ’ ' 11 1 1 )'(')'( )'(' = ii iiiii iiii h yxxxxh yxxxxy โˆ’ โˆ’โˆ’ โˆ’โˆ’ โˆ’ โˆ’โˆ’ โˆ’ 1 )'( )'( '1' '1' = ii iiiiiiiiiiiii h yxxxxhyxxxxhyh โˆ’ โˆ’โˆ’โˆ’ โˆ’โˆ’ โˆ’ โˆ’โˆ’ โˆ’ 1 )'()'()1()1( '1''1' = ii iiiiii h yxxxxyh โˆ’ โˆ’โˆ’ โˆ’โˆ’ โˆ’ 1 )'()1( '1' = ii iiiiii h yxyxxxxyh โˆ’ โˆ’โˆ’โˆ’ โˆ’ 1 )'()'()1( 1' = = ii i h yy โˆ’ โˆ’ 1 ห† = ii i h e โˆ’1 4. kesimpulan masalah pencilan ini dapat diatasi degan berbagai metode, diantaranya metode regresi ridge (ridge regression). hal ini ditinjau dari ketepatan model, dimana metode regresi ridge memberikan hasil yang relatif lebih baik dibandingkan dengan metode kuadrat terkecil. ii iiiiiii h yhyyh โˆ’ +โˆ’โˆ’ 1 ห†)1( sriย hariniย  14 volumeย 1ย no.ย 1ย novemberย 2009 daftar pustaka belsley, d.a., kuh, e., dan welsch, r.e, (1980), regression diagnostics. john wiley. new york. hoerl, a.e dan kennard, r.w., (1970), ridge regression: biased estimation for nonorthogonal problems. technometrics, vol. 12, no. 1. marquardt, d.w., (1970), generalized inverses, ridge regression, biased linearestimation, and nonlinier estimation. technometrics, vol. 12, no. 3. mason, r.l. dan gunst, r.f., (1985), outlier-induced collinearities. technometrics, vol. 2, no. 4. myers, r.h, (1990), classical and modern regression with applications. 2nd edition. pws-kent, boston. neter, j., wasserman, w. dan kutner, m.h., (1990), applied linear statistical models, regression, analysis of variance & experimental design, richard d. irwin inc. illinois. toppan company. ltd, tokyo. retnaninsih, e., (2001), studi perbandingan metode regresi ridge dengan kuadrat trekecil parsial pada struktur ekonomi dan tingkat kesra penduduk indonesia. tidak dipublikasikan, tesis program master, its, surabaya. walker, e. dan birch, j.b., (1988). influence measure in ridge regression. technometrics, 25: 221-227. microsoft word 1 sampul depan.doc 48ย  penyelesaian persamaan nonlinier orde-tinggi untuk akar berganda mohammad jamhuri jurusan matematika, fakultas sains dan teknologi, universitas islam negeri maulana malik ibrahim malang j4m3sh@gmail.com abstrak dalam paper ini dikembangkan sebuah metode orde-empat untuk mencari akar berganda dari persamaan nonlinier. metode tersebut di dasarkan pada metode orde-lima dari jarrat (untuk akar-akar sederhana) yang hanya memerlukan satu perhitungan fungsi dan tiga kali perhitungan turunan. efisiensi informasi dari metode tersebut sama dengan metode-metode dengan orde yang lebih rendah. untuk kasus-kasus akar berganda, telah ditemukan metode-metode yang hanya memerlukan satu kali perhitungan turunan. sehingga metode-metode tersebut lebih efisien jika dibandingkan dengan metode-metode lainnya. kata kunci: akar berganda, orde-tinggi, persamaan nonlinier. 1. pendahuluan ada berbagai macam literature untuk masalah penyelesaian persamaan nonlinier dan sistem persamaan nonlinier. lihat pada contoh ostrowski (1960), traub (1964), neta (1983) dan pada referensi-referensi yang lainnya. dalam penelitian ini akan dikembangkan sebuah metode titik-tetap orde-tinggi untuk penyelesaian akar berganda. sebenarnya terdapat banyak metode yang dapat digunakan untuk mencari akar dari persamaan nonlinier 0, lihat neta (1983). metode newton hanya salah satu metode orde-satu kecuali yang dimodifikasi sehingga menjadi orde-dua tingkat konvergensinya, lihat rall (1996) atau schroder (1996). untuk memodifikasi diperlukan pengetahuan tentang multiplicity. traub (1964) telah menyarankan penggunaan sebuah metode untuk atau , beberapa metode tersebut memerlukan turunan yang libih tinggi dari pada yang digunakan untuk masalah akar sederhana yang hanya memiliki satu akar. sehingga yang pertama dari metode-metode tersebut adalah mengetahui multiplicity . dalam beberapa hal, terdapat metode orde-tinggi yang dikembangkan oleh hamsen dan patrick (1977), victory dan neta (1987), dan dong (1987). karena secara umum tidak dapat diketahui multiplicity-nya, traub (1964) menyarankan sebuah jalan untuk mengaproksimasinya pada saat iterasi. sebagai contoh, metode newton yang dimodifikasi dengan tingkat konvergensi kuadratik adalah 1 dan metode halley (1964) dengan tingkat konvergensi kubik adalah 1 2 2 2 dimana adalah kependekan dari . metode orde-tiga lainnya telah dikembangkan oleh victory dan neta (1987) yang didasarkan metode orde-empat-nya king (1973) untuk akar-akar sederhana. ย penyelesaianย persamaanย nonlinearย ordeโ€tinggiย untukย akarย bergandaย  volumeย 1ย no.ย 1ย novemberย 2009 49 ย ย ย  3 dimana 2 1 1 1 ย  4 dan 1 5 sebelumnya, dua metode orde-tiga telah dikembangkan oleh dong (1987), keduanya memerlukan informasi yang sama dan keduanya juga didasarkan pada keluarga metodemetode orde-empat (untuk akar-akar sederhana) oleh jarrat (1966): 1 1 1 6 1 1 1 1 1 7 dimana . langkah awal dari metode yang akan dibentuk disini adalah metode jarrat (1996) yang diberikan 8 dimana seperti diatas dan 9 jarrat (1996) telah menunjukkan bahwa metode ini (untuk akar sederhana) adalah dari orde-lima jika parameter-parameter yang dipilih adalah sebagai berikut: 1, 1 8 , 3 8 , 1 6 , 2 3 10 metode tersebut memerlukan satu fungsi-dan tiga turunan-untuk setiap langkah perhitungan. sehingga efisiensi informasi adalah 1.25 (traub, 1964). karena jarrat (1996) tidak memberikan konstanta error asymptotic-nya, maka digunakan redfern (1994) untuk memperolehnya, 1 24 1 2 1 4 1 8 dimana diberikan oleh 14 dengan 1. 2. skema baru untuk orde-tinggi untuk memaksimalkan orde-konvergensi untuk sebuah akar dengan perkalian harus ditentukan enam parameter , , , , , _3. misalkan , ฬ‚ , adalah error pada untuk iterasi ke, yaitu: ฬ‚ mohammadย jamhuriย  50 volumeย 1ย no.ย 1ย novemberย 2009 jika dan di expansi menggunakan deret taylor (setelah dipotong sampai orde ke, ) diperoleh ! 12 atau ! 1 13 dimana ! ! , 14 1 ! 1 15 untuk mengekspansi dan digunakan manipulasi symbolic, seperti redfern (1994), diperoleh 1 ! ฬ‚ 1 1 ฬ‚ 2 ฬ‚ 16 ฬ‚ 1 1 1 2 1 2 1 1 2 17 dimana untuk memudahkan dipilih 2 18 sehingga 1 ! 19 dimana 2 3 1 2 4 2 3 3 2 2 2 25 21 4 21 34 2 12 13 48 6 2 20 error-nya diberikan oleh ย penyelesaianย persamaanย nonlinearย ordeโ€tinggiย untukย akarย bergandaย  volumeย 1ย no.ย 1ย novemberย 2009 51 2 ฬ‚ 1 2 ย ย ย ย  8 5 6 ฬ‚ 4 4 1 3 7 ฬ‚ 4 21 dimana ฬ‚ 2 1 ฬ‚ 22 berikutnya ekspansi dalam bentuk 1 ! 1 1 2 ! 23 dimana 1 3 1 ฬ‚ 2 1 6 3 2 ฬ‚ 32 ฬ‚ ฬ‚ ฬ‚ ฬ‚ ฬ‚ ฬ‚ ฬ‚ 24 dimana 16 2 1 7 2 1 8 6 1 3 15 1 1 2 7 4 8 1 1 6 3 16 4 1 16 1 32 2 4 2 4 2 1 2 5 2 8 16 2 48 2 5 51 98 5 27 26 8 24 2 48 2 5 35 42 128 2 1 32 2 berikutnya substitusikan 13 , 15 , 19 dan 23 kedalam 8 dan expansi kuasi menggunakan deret taylor, sehingga diperoleh 26 mohammadย jamhuriย  52 volumeย 1ย no.ย 1ย novemberย 2009 dimana koefisien tergantung pada parameter-parameter , , , , . kelima parameter tersebut dapat digunakan untuk menghilangkan koefisien , , dan . sehingga orde dari metode tersebut adalah 4. sebenarnya, kecuali untuk 2, digunakan dan sehingga hanya 4 parameter yang di gunakan. ini merupakan syarat perlu untuk memperoleh metode orde-empat. tabel 1. hasil dari contoh 2 0 0.8 0.1296 0.6 0.4096 1 1.00074058 0.21954564 5 1.02772227 0.31600247 2 2 1.00000014 0.750396 13 karena sangat kompleknya persamaan di atas, parameter-parameter yang digunakan untuk 2,3,4,5 dan diberikan dalam tabel 2 berikut ini. metode-metode tersebut semuanya memiliki orde-empat. tabel 2. parameter-parameter hasil contoh 2 2 2 3 4 5 6 1 4 3 3 2 2 5 2 3 2 5 2 3 1 3 3 5 4 0.064783 0.021737 0.008212 1 2 1 2 2 25 108 43 72 0.437458 0.430345 0.368149 2 3 1 4 25 72 7.904129 18.815436 39.687683 0 2 125 72 5.912818 15.894083 35.699379 1 2 2 9 13 18 5 1296 37 108 0.236261 0.164791 0.120179 3 8 7 8 2 25 81 5 972 0.154675 0.101387 0.073031 1 8 1 8 2 25 0.083527 0.069672 0.057025 batas kesalahan diberikan oleh 27 dimana , , dan adalah yang diberikan dalam table diatas untuk setiap . untuk 3, dapat dipilih dengan parameter dengan bebas untuk menyamakn . ringkasnya, dalam penelitian ini telah dihasilkan metode orde-empat yang menggunakan satu fungsi dan tiga turunan dalam setiap iterasi. efisiensi informasi pada metode-metode tersebut adalah 1, seperti metode-metode yang telah disebutkan diatas untuk akar-akar yang banyak. indeks efisiensinya adalah 1.4142 yang lebih rendah daripada metode-metode orde-tiga. dalam hal 2 diperoleh sebuah metode yang hanya memerlukan dua perhitungan turunan 0 sehingga efisiensi informasinya adalah 4/3 dan indeks efisiensinya adalah 1.5874. ย penyelesaianย persamaanย nonlinearย ordeโ€tinggiย untukย akarย bergandaย  volumeย 1ย no.ย 1ย novemberย 2009 53 3. simulasi numerik dalam contoh pertama ini digunakan sebuah polynomial kuadratik yang mempunyai dua akar pada 1. 2 1 28 dalam contoh ini, dimulai dengan 0, dan kekonvergenannya diperoleh dalam 1 iterasi. dalam contoh kedua, diambil polynomial yang mempunyai dua akar pada 1. 2 1 29 dimulai pada 0.8, metode ini konvergen dalam 1 iterasi. jika dimulai dengan 0.6, metode ini memerlukan 2 kali iterasi. hasil perhitungannya diberikan dalam table 1. hasil yang sama juga diperoleh jika dimulai dengan 0.8 dan 0.6 untuk konvergen pada 1. contoh berikutnya adalah polinomial dengan 3 akar pada 1. 8 24 34 23 6 30 iterasinya dimulai dengan 0 dan hasilnya diringkas dalam tabel 3. contoh lainnya dengan 2 akar pada 0 adalah 31 dimulai pada 0.1 metode ini konvergen dalam 1 iterasi, tetapi jika nilai awalnya dimulai pada 0.2, metode ini konvergen dalam 1 iterasi. hasil perhitungannya diberikan dalam tabel 4. contoh terakhir adalah polinomial yang mempunyai akar ganda pada 1 3 8 6 24 19 32 tabel 3. hasil dari contoh 3 0 0 6 1 0.95239072 0.23148417 3 2 0.99999683 0.63 16 tabel 4. hasil dari contoh 4 0 0.1 0.11051709 1 0.2 0.48856110 1 1 0.12654311 4 0.16013361 9 0.17709827 3 0.31369352 7 2 0.3739 20 0 0.14341725 15 0 tabel 5. hasil dari contoh 5 0 0 19 1 1.46056319 9.725126111 2 1.00101187 0.368806435 4 3 1 0 mohammadย jamhuriย  54 volumeย 1ย no.ย 1ย novemberย 2009 daftar pustaka dong, c., (1987), a family of multipoint iterative function for finding multiple zeros of nonlinear equations, int. j. comput. math., 21, pp 363-367 halley, e., (1964), a new, exact and easy method of finding the roots of equations generally and that without any previous reduction., phil. trans. r. soc. london, 18, pp 136-148. hansen, e., patrick, m., (1977), a family of root finding methods, numer. math., 27, pp 257-269. jarrat, p., (1966), some fourth order multipoint methods for solving equations, math. comp., 20, pp 434-437. jarrat, p., (1996), multipoints iterative methods for solving certain equations, comput. j., 8, pp 398-400. king, r.f., (1973), a family of fourth order methods for nonlinear equations, siam j. numer. anal., 10, pp 876-879. neta, b., (1983), numerical methods for the solution of equations, net-a-sof, california. ostrowski, a.m., (1960), solution of equations and system of equations, academic press, new york. rall, l.b., (1996), convergence of the newton process to multiple solutions, numer. math., 9, pp 23-37. redfern, d., (1994), the maple handbook, springer-verlag, new york. schroder, e., (1996), uber unendlich viele algorithm zur auflosung der gleichungen, math. ann., 2, pp 23-37. traub, j.f., (1964), iterative methods for the soslution of equations, prentice hall, new jersey. victory, h.d., neta, b., (1987), a higher order method for multiple roots of equations, int. j. comput. math., 21, pp 363-367. confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 411-419 p-issn: 2086-0382; e-issn: 2477-3344 submitted: may 07, 2022 reviewed: may 15, 2022 accepted: june 23, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.15989 confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad*, i wayan mangku, bib paruhum silalahi department of mathematics, ipb university, bogor, indonesia email: idipbfaisalmuhammad@apps.ipb.ac.id abstract asymtotic normality of an estimator for the mean function of a compound cyclic poisson process in the present of power function trend which introduced by safitri in 2002. to provided information on parameters guarantees (mean function) covered in an interval, it is necessary to find a convidence interval for the mean function of a compound cyclic poisson process in the presence of power function trend. the objectives of this paper are: (i) to construct confidence interval for the mean function of a compound cyclic poisson process with significance level 0 < ๐›ผ < 1, (ii) to prove that the probability that the mean function contained in the confidence interval converges to 1 โˆ’ ๐›ผ, and (iii) to observe, using simulation study, that the probabilities of the mean function contained in the confidence intervals for bounded length of observation interval. this paper showed that a confidence interval for the mean function and a theorem about convergence of the probability that the mean function contained in confidence interval. the simulation study shows that the probability that the mean function contained in the confidence interval is in accordance with the theorem. the contribution of this study is to provide information for users regarding confidence interval for the mean function of a compound cyclic poisson process in the presence of power function trend. keywords: compound cyclic poisson process; power function tren; mean function; confidence interval; poisson process. introduction there are many events in everyday life that are uncertain, such as the birth and death process [1] the queue process [2] and the estimation of total insurance claims [3], which can be modeled using a stochastic process. a stochastic process is process that describes series of random events at certain time intervals [4]. a special form of stochastic process is the compound poisson process. a compound poisson process is a process of adding sequencess random variables of independent and identically distributed (i.i.d) with certain distribution as many as poisson random variables, and independent of the poisson process. based on the time aspect, stochastic process can be classified in two categories, namely discrete time stochastic process and continuous time stochastic process. a special form of continuous time stochastic process is the poisson process. the poisson process is a counting a process in which the number of events in a poisson distribution time interval. http://dx.doi.org/10.18860/ca.v7i3.15989 mailto:idipbfaisalmuhammad@apps.ipb.ac.id confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad 412 based on the intensity aspect, the poisson process can be classified in two categories, that is homogeneous poisson process with constant intensity function (not dependent on time) and the non-homogeneous poisson process with intensity function depends on time. one type of non-homogeneous poisson process is the cyclic or periodic poisson process [5]. the period can be daily, weekly, yearly or in other forms [6]. this non-homogeneous poisson process is widely applied to real phenomena, such as th phenomenon of earthquakes [7], healthcare [8], radio burst rates [9], and traffic accidents [10]. the study of the compound periodic poisson process is widely. this research begins with the estimation of the expected value function on the compound periodic poisson process [11] [12], then it was developed with a power trend [13] [14]. the compound cyclic poisson does not follow the usual distribution patern. one aspect which can be estimated is the mean value. since this value depends on the time of observation, it is called the mean function. in [15], an estimator for the mean function of a compound cyclic poisson process has been constructed and studied. the asymptotic normality of this estimator also has been proven. furthemore, to give assurance information that the mean function is included in an interval, it is necessary to construct a confidence interval for mean function of the compound cyclic poisson process in the presence of power function trend. as an application of the asymptotic normality, it can be determined the confidence interval of the estimator for the periodic component. in [16] studied the confidence intervals for the mean and variance functions of compound poisson process with power function intensity have been studied, while in [17] confidence intervals for the mean and variance functions of compound poisson process with exponential of linear function intensity have been studied. specifically, this research was conducted to (i) to construct confidence interval for the mean function of a compound cyclic poisson process in the presence of power function trend, (ii) to prove convergence to 1 โˆ’ ๐›ผ of probability that the mean function included in the confidence interval, and (iii) to check using simulation study that the probabilities of the mean function contained in the confidence intervals for bounded length of observation interval. the contribution of this study is to provide information for users regarding confidence interval for the mean function of a compound cyclic poisson process in the presence of power function trend. methods the estimator for the mean function suppose that {๐‘(๐‘ก), ๐‘ก โ‰ฅ 0} is a nonhomogeneous poisson process with (unknown) intensity function ๐œ† which is assumed to be locally integrable. suppose that ๐œ† has two components, namely a cyclic component (๐œ†๐‘ ) with (known) period ๐œ > 0 and a power function trend component (๐‘Ž๐‘ ๐‘ ). in other words, for all ๐‘Ž โ‰ฅ 0 and ๐‘  โ‰ฅ 0, the intensity function ๐œ†(๐‘ ) can be expressed as ๐œ†(๐‘ ) = ๐œ†๐‘ (๐‘ ) + ๐‘Ž๐‘  ๐‘ . (1) the value of b is assumed to be known real number and 0 < ๐‘ < 1 2 . we do not assumed any parametric form for the cyclic component c ๏ฌ , except that it is cyclic or periodic, which satisfies confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad 413 ๐œ†๐‘ (๐‘ ) = ๐œ†๐‘ (๐‘  + ๐‘˜๐œ) (2) for all ๐‘  โ‰ฅ 0 and all kโˆˆ โ„•. suppose that {๐‘Œ(๐‘ก), ๐‘ก โ‰ฅ 0} is a process where ๐‘Œ(๐‘ก) = โˆ‘ ๐‘‹๐‘– ๐‘(๐‘ก) ๐‘–=1 (3) with {๐‘‹๐‘– , ๐‘– โ‰ฅ 1} is a sequence of independent and identically distributed random variables which having mean ๐œ‡ < โˆž and variance ๐œŽ2 < โˆž, and also independent of {๐‘(๐‘ก), ๐‘ก โ‰ฅ 0}. the process {๐‘Œ(๐‘ก), ๐‘ก โ‰ฅ 0} is called a compound cyclic poisson process with power function trend [7]. suppose that ๐œ“(๐‘ก) is notation of the mean function of ๐‘Œ(๐‘ก), that is ๐œ“(๐‘ก) = ๐ธ(๐‘Œ(๐‘ก)) = ๐ธ[๐‘(๐‘ก)]๐ธ[๐‘‹1] = ๐›ฌ(๐‘ก)ฮผ (4) with ๐œ‡ = ๐ธ(๐‘‹๐‘–) and ๐›ฌ(๐‘ก) = โˆซ ๐œ†(๐‘ ) ๐‘‘๐‘  ๐‘ก 0 . (5) let ๐‘ก๐‘Ÿ = ๐‘ก โˆ’ โŒŠ ๐‘ก ๐œ โŒ‹ ๐œ, where โŒŠ ๐‘ก ๐œ โŒ‹ represents the largest integer less than or equal to ๐‘ก ๐œ , ๐‘ก ๐œ โˆˆ โ„ and ๐‘˜๐‘ก,๐œ = โŒŠ ๐‘ก ๐œ โŒ‹. then, for any real number ๐‘ก โ‰ฅ 0, ๐‘ก can be expressed as ๐‘ก = ๐‘˜๐‘ก,๐œ ๐œ + ๐‘ก๐‘Ÿ with 0 โ‰ค ๐‘ก๐‘Ÿ โ‰ค ๐œ. let ๐œƒ = 1 ๐œ โˆซ ฮป๐‘ (๐‘ ) ๐‘‘๐‘  ๐œ 0 denotes the global intensity of the periodic component in the process {n(t ), t โ‰ฅ 0} and it is assumed that ๐œƒ > 0. this ๐œƒ can be written as ๐›ฌ๐‘ (๐‘ก๐‘Ÿ) + ๐›ฌ๐‘ ๐‘ (๐‘ก๐‘Ÿ ) with ๐›ฌ๐‘ (๐‘ก๐‘Ÿ ) = โˆซ ฮป๐‘ (๐‘ ) ๐‘‘๐‘  ๐‘ก๐‘Ÿ 0 (6) and ๐›ฌ๐‘ ๐‘ (๐‘ก๐‘Ÿ) = โˆซ ฮป๐‘ (๐‘ ) ๐‘‘๐‘ . ๐œ ๐‘ก๐‘Ÿ (7) by using (6) and (7) and substituting (1) into (5), then for any t โ‰ฅ 0, ๐›ฌ(๐‘ก) can be written as ๐›ฌ(๐‘ก) = (๐‘˜๐‘ก,๐œ + 1)๐›ฌ๐‘ (๐‘ก๐‘Ÿ)+๐‘˜๐‘ก,๐œ ๐›ฌ๐‘ ๐‘ (๐‘ก๐‘Ÿ ) + ๐‘Ž ๐‘+1 ๐‘ก๐‘+1. (8) by substituting (8) into (4), we have ๐œ“(๐‘ก) = ((๐‘˜๐‘ก,๐œ + 1)๐›ฌ๐‘ (๐‘ก๐‘Ÿ)+๐‘˜๐‘ก,๐œ ๐›ฌ๐‘ ๐‘ (๐‘ก๐‘Ÿ ) + ๐‘Ž ๐‘+1 ๐‘ก๐‘+1) ๐œ‡. (9) estimation of mean function in [11] an estimator of the mean function ๐œ“(๐‘ก) has been formulated as follows ๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘ (๐‘ก) = ((๐‘˜๐‘ก,๐œ + 1)๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘ (๐‘ก๐‘Ÿ ) + ๐‘˜๐‘ก,๐œ ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘ ๐‘ (๐‘ก๐‘Ÿ ) + ๏ฟฝฬ‚๏ฟฝ๐‘š,๐‘ ๐‘ + 1 ๐‘ก๐‘+1) ๏ฟฝฬ‚๏ฟฝ๐‘› (10) where ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘ (๐‘ก๐‘Ÿ ) = (1 โˆ’ ๐‘)๐œ1โˆ’๐‘ ๐‘›1โˆ’๐‘ โˆ‘ 1 ๐‘˜๐‘ ๐‘˜๐‘›,๐œ ๐‘˜=1 ๐‘([๐‘˜๐œ, ๐‘˜๐œ + ๐‘ก๐‘Ÿ ]) โˆ’ ๏ฟฝฬ‚๏ฟฝ๐‘š,๐‘ (1 โˆ’ ๐‘)๐‘› ๐‘ ๐‘ก๐‘Ÿ , (11) ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘ ๐‘ (๐‘ก๐‘Ÿ) = (1 โˆ’ ๐‘)๐œ1โˆ’๐‘ ๐‘›1โˆ’๐‘ โˆ‘ 1 ๐‘˜๐‘ ๐‘˜๐‘›,๐œ ๐‘˜=1 ๐‘([๐‘˜๐œ + ๐‘ก๐‘Ÿ , ๐‘˜๐œ + ๐œ]) + ๏ฟฝฬ‚๏ฟฝ๐‘š,๐‘(1 โˆ’ ๐‘)๐‘› ๐‘ (๐‘ก๐‘Ÿ โˆ’ ๐œ), (12) confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad 414 ๏ฟฝฬ‚๏ฟฝ๐‘š,๐‘ = (1 + ๐‘)๐‘([0, ๐‘š]) ๐‘š(1+๐‘) โˆ’ (1 + ๐‘) ๐‘š๐‘ ๏ฟฝฬƒ๏ฟฝ๐‘› , (13) ๏ฟฝฬƒ๏ฟฝ๐‘› = (1 โˆ’ ๐‘) ๐‘›1โˆ’๐‘ ๐œ๐‘๐‘2 โˆ‘ 1 ๐‘˜๐‘ ๐‘˜๐‘›,๐œ ๐‘˜=1 ๐‘([๐‘˜๐œ, ๐‘˜๐œ + ๐œ]) โˆ’ (1 + ๐‘)(1 โˆ’ ๐‘)๐‘›๐‘ ๐‘([0, ๐‘›]) ๐‘›(1+๐‘)๐‘2 , (14) ๏ฟฝฬ‚๏ฟฝ๐‘› = 1 ๐‘[0, ๐‘›] โˆ‘ ๐‘‹๐‘– ๐‘([0,๐‘›]) ๐‘–=1 . (15) with ๏ฟฝฬ‚๏ฟฝ๐‘› = 0 when ๐‘([0, ๐‘›]) = 0. asymptotic normally of the estimator for the mean function theorem 1 (the asymptotic normally of the estimator for the mean function) suppose that the intensity ๐œ† statisfies (1) and locally integrable. if ๐‘Œ(๐‘ก) statisfies (2), then โˆš๐‘›1โˆ’๐‘ (๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘(๐‘ก) โˆ’ ๐œ“(๐‘ก)) ๐‘‘ โ†’ normal (0, (๐‘˜๐‘ก,๐œ + 1) 2 ๐‘Ž(1 โˆ’ ๐‘)๐œ๐‘ก๐‘Ÿ ๐œ‡ 2 + ๐‘˜๐‘ก,๐œ 2 ๐‘Ž(1 โˆ’ ๐‘)๐œ(๐œ โˆ’ ๐‘ก๐‘Ÿ )๐œ‡ 2) (16) as ๐‘› โ†’ โˆž. the proofs of theorem 1 can be proved through a rough analysis [11]. results and discussion our main results are a confidence interval for the mean function ๐(๐’•) and a theorem about convergence of the probability that ๐(๐’•) contained in the confidence interval. corollary 1 (the confidence interval for ๐(๐’•)) for given a significant level ๐›ผ, where 0 < ๐›ผ < 1, the confidence interval for ๐œ“(๐‘ก) in the case 0 < ๐‘ < 1 2 is given by ๐ผ๐œ“,๐‘› = [๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘ (๐‘ก) โˆ’ ๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ , ๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘(๐‘ก) + ๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ ] with ๐‘‰๐‘›,๐‘ = (๐‘˜๐‘ก,๐œ + 1) 2 ๏ฟฝฬ‚๏ฟฝ๐‘š,๐‘ (1 โˆ’ ๐‘)๐œ๐‘ก๐‘Ÿ ๏ฟฝฬ‚๏ฟฝ๐‘› 2 + ๐‘˜๐‘ก,๐œ 2 ๏ฟฝฬ‚๏ฟฝ๐‘š,๐‘ (1 โˆ’ ๐‘)๐œ(๐œ โˆ’ ๐‘ก๐‘Ÿ )๏ฟฝฬ‚๏ฟฝ๐‘› 2 ๐‘›1โˆ’๐‘ , where ๏† denotes the standard normal distribution and ๐‘‰๐‘›,๐‘ denotes the studenize version of (16). theorem 2 (convergence of probability that ๐(๐’•) โˆˆ ๐‘ฐ๐,๐’) for confidence interval ๐ผ๐œ“,๐‘› of ๐œ“(t) given in corollary 1, we have that ๐‘ƒ(๐œ“(๐‘ก) โˆˆ ๐ผ๐œ“,๐‘›) โ†’ 1 โˆ’ ๐›ผ as ๐‘› โ†’ โˆž. confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad 415 proof of theorem 2: the probability that ๐œ“(๐‘ก) contained in the confidence interval ๐ผ๐œ“,๐‘› can be computed as follows. . ๐‘ƒ (๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘ (๐‘ก) โˆ’ ๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ โ‰ค ๐œ“(t) โ‰ค ๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘ (๐‘ก) + ๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ ) = ๐‘ƒ (โˆ’๏†โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ โ‰ค โˆ’๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘ (๐‘ก) + ๐œ“(t) โ‰ค ๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ ) = ๐‘ƒ (๏†โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ โ‰ฅ ๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘(๐‘ก) โˆ’ ๐œ“(t) โ‰ฅ โˆ’๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ ) = ๐‘ƒ (โˆ’๏†โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ โ‰ค ๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘ (๐‘ก) โˆ’ ๐œ“(t) โ‰ค ๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ ) = ๐‘ƒ (โˆ’๏†โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘(๐‘ก)โˆ’๐œ“(t) โˆš๐‘‰๐‘›,๐‘ โ‰ค ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )). by the studentize version of (16), we have that ๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘(๐‘ก)โˆ’๐œ“(t) โˆš๐‘‰๐‘›,๐‘ ๐‘‘ โ†’ normal(0,1), as ๐‘› โ†’ โˆž. therefore ๐‘ƒ(๐œ“(๐‘ก) โˆˆ ๐ผ๐œ“,๐‘›) converges to ๐‘ƒ (โˆ’๏†โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๐‘ โ‰ค ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )) as ๐‘› โ†’ โˆž, where ๐‘ is the standard normal random variable. further we can simplify the above probability as follows. ๐‘ƒ (โˆ’๏†โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๐‘ โ‰ค ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )) = ๐‘ƒ (๐‘ โ‰ค ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ ๐‘ƒ (๐‘ โ‰ค ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )) = ๐‘ƒ (๐‘ โ‰ค ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ ๐‘ƒ (๐‘ โ‰ฅ ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )) = ๐‘ƒ (๐‘ โ‰ค ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ (1 โˆ’ ๐‘ƒ (๐‘ โ‰ค ๏†โˆ’1 (1 โˆ’ ๐›ผ 2 ))) = ๏† (๏†โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ (1 โˆ’ ๏† (๏†โˆ’1 (1 โˆ’ ๐›ผ 2 ))) = (1 โˆ’ ๐›ผ 2 ) โˆ’ (1 โˆ’ (1 โˆ’ ๐›ผ 2 )) = 1 โˆ’ ๐›ผ. this completes the proof of theorem 2. simulation of the confidence interval for the mean function the purpose of this simulation is to check the probability that the mean function ๐œ“(๐‘ก) is contained in the confidence intervals for some different significant levels, period, and length of observation interval, using generated data. this simulation was carried out with the help of r software and scilab software for illustration the results. confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad 416 the programing stage is carried out by generating the realization of compound periodic poisson process with a power function trend with the formulation of the intensity function: ๐œ†(๐‘ ) = sin 2๐œ‹๐‘  ๐œ + 1 + ๐‘Ž๐‘ ๐‘ . in this simulation, we choose significant levels ๐›ผ = 1%, 5% and 10%, ๐œ = 1, ๐‘  = 2.5, ๐‘Ž = 0.1, ๐‘ = 0.4, ๐‘› = 20, 50 and 100 with 1000 repetitions. table 1. simulation results of confidence interval for the mean function ๐œ“(๐‘ก) ๐›ผ ๐‘› a b c d e 1% 20 985 15 98.5% 1.5% 0.5% 50 988 12 98.8% 1.2% 0.2% 100 990 10 99.0% 1.0% 0.0% 5% 20 941 59 94.1% 5.9%% 0.9% 50 950 50 95.0% 5.0% 0.0% 100 952 48 95.2% 4.8% 0.2% 10% 20 891 109 89,1% 10.9% 0.9% 50 907 93 90.7% 9.3% 0.7% 100 917 83 91.7% 8.3% 1.7% (a= the number confidence interval containing the parameter, b= the number confidence interval that do not contain the parameter, c= percentage of confidence interval containing the parameter, d= percentage of confidence interval that does not contain the parameter, e= absolute error between ๐›ผ and percentage of confidence interval that does not contain the parameters) based on simulation results, percentage of confidence interval that does not contain parameter at ๐‘  = 2.5 and ๐œ = 1 with ๐›ผ = 1%, 5% and 10% fir observation interval [0, ๐‘›] with ๐‘› = 20, 50 and 100 respectively from 0.0% โˆ’ 0.5%, 0.0% โˆ’ 0.9% and from 0.7% โˆ’ 1.7%. the error that obtained between ๐›ผ and percentage of confidence interval that does not contain parameters also tend to be small, between 0% and 1.7%. this shows that the result of the simulation of the confidence interval for the mean function ๐œ“(๐‘ก) for the compound poisson process with different significant levels is in accordance with the theory obtained. the simulation results based on the first 200 estimators can be seen in figure 1. confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad 417 figure 1. confidence interval for the mean function ๐œ“(๐‘ก) based on the first 200 estimators with ๐‘  = 2.5, ๐œ = 1, ๐›ผ = 1% and ๐‘› = 100 the illustration in figure 1 shows some of the results of the confidence interval simulation for the mean function ๐œ“(๐‘ก) at ๐‘  = 2.5 and ๐œ = 1 based on the first 200 estimators with significance level of ๐›ผ = 1% and ๐‘› = 100. it can be seen in the figure that the horizontal line is the true value of the mean function ๐œ“(๐‘ก) and vertical lines are the confidence intervals of the mean function ๐œ“(๐‘ก). if the horizontal and vertical lines do not intersect each other, this indicates that the value of the mean function ๐œ“(๐‘ก) is not in that interval. in figure 1, there are three non intersecting lines which indicates there are three confidence intervals based on the first 200 estimators do not contain the value of the mean function ๐œ“(๐‘ก). since in table 1 there are 10 confidence intervals that do not contain the mean function ๐œ“(๐‘ก), this shows that there are seven confidence intervals based on the 201-st to 1000-th estimators do not contain the value of the mean function ๐œ“(๐‘ก). the illustration results in figure 1 show that the probability of the mean function ๐œ“(๐‘ก) is contained in the confidence interval already close to 1 โˆ’ ๐›ผ for ๐œ = 1 and 5, ๐›ผ = 1%, 5% and 10% for bounded time interval observation. conclusions according to the main results, it can be concluded that confidence interval for the mean function ๐œ“(๐‘ก) of compound cyclic poisson process in the presence of power function trend is ๐ผ๐œ“,๐‘› = [๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘ (๐‘ก) โˆ’ ๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ , ๏ฟฝฬ‚๏ฟฝ๐‘›,๐‘ (๐‘ก) + ๏† โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘‰๐‘›,๐‘ ], where ๏† denotes the standard normal distribution and ๐‘‰๐‘›,๐‘ = (๐‘˜๐‘ก,๐œ + 1) 2 ๏ฟฝฬ‚๏ฟฝ๐‘š,๐‘ (1 โˆ’ ๐‘)๐œ๐‘ก๐‘Ÿ ๏ฟฝฬ‚๏ฟฝ๐‘› 2 + ๐‘˜๐‘ก,๐œ 2 ๏ฟฝฬ‚๏ฟฝ๐‘š,๐‘ (1 โˆ’ ๐‘)๐œ(๐œ โˆ’ ๐‘ก๐‘Ÿ )๏ฟฝฬ‚๏ฟฝ๐‘› 2 ๐‘›1โˆ’๐‘ . convergence of the probability that the mean function ๐œ“(๐‘ก) contained in the confidence interval is confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad 418 ๐‘ƒ(๐œ“(๐‘ก) โˆˆ ๐ผ๐œ“,๐‘›) โ†’ 1 โˆ’ ๐›ผ, as ๐‘› โ†’ โˆž. the simulation results show that the probability of the mean function ๐œ“(๐‘ก) included in the confidence interval already close to 1 โˆ’ ๐›ผ for a finite length observation interval. a recommendation for futher research can be to use different intensity functiom and different observation function from this study at thr simulation stage, so that they can show more diverse simulation results. refrences [1] e. roflin, "analysis of time series with calendar effects," management science, vol. 26, pp. 106-112, 2000. [2] s. udayabaskaran and v. t. dora pravina, "transient analysis of an m/m/1 queueing system with server operating in three models," far east journal of mathematical science, vol. 101, pp. 1395-1418, 2017. [3] a. chadidjah, "proses poisson dalam estimasi total klaim," in prosiding seminar nasional matematika dan pendidikan matematika dengan tema peran matematika dan pendidikan matematika dalam menghadapi isu-isu global, 2015, pp. 325-336. [4] s. m. ross, introduction to probaility models, ninth ed. florida: academic press inc, 2010. [5] i. w. mangku, "estimating the intensity function of a cyclic posson process," univ of amsterdam, 2001. [6] t. a. walls and j. l. schafer, "models for intensice longitudinal data," oxford univ pr, 2006. [7] j. geng, w. shi, and g. hu, "bayesian nonparametric nonhomogeneous poisson process with applications to usgs earthquake data," eslevier, vol. 41, p. 100495, march 2021. [8] d. munandar, s. supian, and subiyanto, "probability distributions of covid-19 tweet posted trends use a nonhomogeneous poisson process," international journal of quantitative research and modeling, vol. 1, no.4, pp. 229-238, 2020. [9] e. lawrence, s. vander wiel, c. law, s. b. spolar, and g. c. bower, "the nonhomogeneous poisson process for fast radio burst rates," astron. j., vol. 154, no.3, p. 117, 2017. [10] f. grabski, "nonhomogeneous poisson process anf compound poisson process in the modelling of random process related to road accidents," j. kones, vol. 26, no.1, pp. 39-46, 2019. [11] r. ruhiyat, i. w. mangku, and i. g. p. purnaba, "consistent estimation of the mean function of compound cyclic poisson process," far east j. math. sci, vol. 77, no. 2, pp. 183-194, 2013. [12] f. i. makhmudah, i. w. mangku, and h. sumarno, "estimating the variance function of a compound cyclic poisson process," far east journal of mathematical science (fjms), vol. 100, no. 6, pp. 911-922, sep 2016. [13] i. f sari, i. w. mangku, and h. sumarno, "estimating the mean function of a compound cyclic poissom process in the presence od power function trend," far east j. math. sci, vol. 100, no. 11, pp. 1825-1840, 2016. confidence intervals for the mean function of a compound cyclic poisson process in the presence of power function trend faisal muhamad 419 [14] a. fajri, "pendugaan ragam pada proses poisson periodik majemuk dengan tren fungsi pangkat," ipb university, 2018. [15] n. i. safitri, "sebaran asimtotik penduga fungsi nilai harapan proses poisson periodik majemuk dengan tren fungsi pangkat," ipb university, 2022. [16] a. fajri, "selang kepercayaan fungsi nilai harapan dan fungsi ragam proses poisson majemuk dengan intensitas fungsi pangkat," ipb university, 2017. [17] s. utami, "interval kepercayaan fungsi nilai harapan dan fungsi ragam proses poisson majemuk degan intensitas eksponensial fungsi linear," ipb university, 2018. optimalization route to tourism places in west java using a-star algorithm cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 464-473 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 11, 2022 reviewed: july 13, 2022 accepted: july 28, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.17032 optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha*, sudradjat supian, herlina napitupulu departement of mathematics, faculty of mathematics and natural science, universitas padjadjaran, sumedang, indonesia email: muhammad16088@mail.unpad.ac.id abstract indonesia has many tourism places, one of which is west java province. tourist places in west java province are scattered in various regions, then many roads can be passed by tourists to reach these tourist places. west java also has a complex route; therefore, an optimal route is needed to pass the complex route to tourism places in west java province. based on these problems, the algorithm used is the a-star algorithm. the purpose of this research is to use the a-star algorithm to find the optimal route to tourism places which is influenced by distance and traffic density. the steps taken are to describe all the main lines in west java into a graph, then process the data that has been obtained from several government agencies in the province of west java so that it can be solved using the a-star algorithm. the results of the calculation of the a-star algorithm can produce an optimal route. by using the help of python, the optimal route to tourism in the province of west java can be obtained. this optimal route can help tourists to go to tourism places with the shortest distance in the province of west java. keywords: a-star algorithm; optimal route; road density; graph. introduction tourism is a variety of tourism activities and is supported by various facilities and services provided by the community, businessmen, government, and local governments. each region throughout indonesia has a variety of diversity and uniqueness of each, the province of west java is one of them. west java province has tourism spots scattered in each district and city. this province has all the potential of mountains, seas, beaches, rice fields, valleys, waterfalls, and local wisdom. west java province has a complex route one of them is traffic density, where the route is one of the tools used to reach tourism places. optimal route search has been widely applied to various navigation applications. the process of finding the optimal route finding the smallest cost or value of a route from the starting nodes to the destination nodes. optimal route search techniques that are often used are; blind search and heuristic search. blind search is easier to understand than heuristic search, but the solution search time is faster and the results obtained are more varied than the heuristic search [1]. one of the optimal route search algorithms using heuristic search is the a-star algorithm. this algorithm is a planning method that can be applied to situations where information about the global http://dx.doi.org/10.18860/ca.v7i3.17032 mailto:muhammad16088@mail.unpad.ac.id optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 465 environment has been obtained and also has a heuristic value that can be used as a basis for consideration [2], [3]. several previous studies have discussed finding the optimal route using the astar algorithm. research and testing on the application of finding the closest culinary route in bandar lampung, it was concluded that the tests carried out on the algorithm manually and the application got valid results with the same distance [4]. determining the best route can be done with the a-star algorithm, this simulation determines the starting nodes to the end nodes with the obstacles given in each route and gets the best route compared to other routes [1]. the search for the closest route between hospitals in samarinda is obtained using the a-star algorithm [2]. the a-star algorithm generates the shortest path for making roguelike games in the process of pursuing enemies against the player character. [5]. semi-optimized crane placement and configuration in a modular construction was successful in resulting in significant total cost reductions compared to lift planning algorithms [6]. based on the description above, the motivation for this research is to use the astar algorithm to find the optimal route which is affected by the distance and road density to tourist places in west java province. the parameter that is used to obtain the optimal route is the distance unit, with the use of four-wheeled vehicles. the road used in the study is a two-way road. methods the method used in this research is the a-star algorithm. in finding the shortest route with this algorithm, the route is drawn using a graph. in this graph, each edge has two values, namely the weight value, and the heuristic value. then the a-star algorithm calculates the weight value at the ๐‘›th node plus the heuristic value at the ๐‘›th node. after that, the algorithm calculates the weight value of the ๐‘› โˆ’ 1 node to the ๐‘›th node plus the heuristic value of the ๐‘›th node until it reaches the destination node. when the optimal value has been obtained, the algorithm performs a callback to call the route that has been passed or can be referred to as the optimal route. graph a graph is a configuration of edge pairs and vertices. many things can be represented as a graph, for example, a highway as an edge and a bus station as a node [7] a linear graph or graph ๐บ = (๐‘‰, ๐ธ) consists of a non-empty set of ๐‘‰ = {๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3, โ€ฆ } called vertices or nodes, and the set ๐ธ = {๐‘’1, ๐‘’2, ๐‘’3, โ€ฆ } called edge that connects a pair of vertices [8]. a graph ๐บ is called connected if every node of the graph has a path connecting the two vertices, or it can be said to be connected if a node ๐‘ฃ๐‘– and ๐‘ฃ๐‘— there is at least one edge [9]. if e is an edge, then ๐‘’ = (๐‘ฃ๐‘– , ๐‘ฃ๐‘— ) where ๐‘ฃ๐‘– and ๐‘ฃ๐‘— are different elements of ๐‘‰. edge ๐‘’ = (๐‘ฃ๐‘– , ๐‘ฃ๐‘— ) is a pair of vertices ๐‘ฃ๐‘– and vertices ๐‘ฃ๐‘— , for an undirected graph, can also be denoted as ๐‘ฃ๐‘– ๐‘ฃ๐‘— or ๐‘ฃ๐‘— ๐‘ฃ๐‘– [1]. graphs can be implemented for optimal route finding. intersections, starting nodes, and ending nodes are represented as vertices. then, the length of the road segment is represented as an edge. shortest path problem the shortest route problem is a problem to find a path between two or more vertices in a weighted graph, the weight sought is the weight of the smallest edge that traversed [2], [10]. the shortest route problem is an optimization problem that uses a optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 466 weighted graph, where the weights can represent the distance between cities, delivery times, travel costs, and so on [10]. the shortest route obtained will optimize a special linear function of the route in the form of distance, time, and or costs that will be faced during the trip [9]. the shortest route problem can be applied to both directed and undirected graphs [11]. several kinds of shortest path problems, among others; search for the shortest path between two nodes, search for the shortest path between all pairs of nodes, search for the shortest path from a certain node to all other nodes, and search for the shortest path between two nodes that pass through certain nodes [8]. decision tree a tree in discrete mathematics means an undirected graph that is connected and does not contain circuits [12]. a tree has many applications such as; expression tree, binary search tree, prefix code, huffman code, and decision tree [12]. decision trees have many advantages in modeling optimization problems, including; being easy to interpret, easy to understand, allowing for exploring all possibilities, more accurate in terms of modeling, and complex decision-making can be changed to be simpler [12]. a-star algorithm optimal route-finding algorithms have played many important roles in various scientific disciplines such as cybernetics, satellite navigation systems for vehicles on highways, vehicle path planning, and robotic path planning [6]. the a-star algorithm is the best first search algorithm because it modifies the heuristic value, this algorithm minimizes the total cost of the path and under the right conditions can provide the best solution with optimal time [13]. in 1968 peter hart, nils nilsson, and bertram raphael of the stanford research institute described the a-star algorithm for the first time. the algorithm is an extension of dijkstra's algorithm which produces better time performance by using heuristic values [14]. the heuristic function contained in the a-star algorithm to calculate the estimated value of a node that has been traversed is [15]. ๐น(๐‘›) = ๐บ(๐‘›) + ๐ป(๐‘›) (1) where ๐น(๐‘›): total estimated cost ๐บ(๐‘›): cost from starting node to ๐‘›th node ๐ป(๐‘›): estimated cost to arrive at a destination from the n-th node the a-star algorithm uses two list, namely open and closed. open is a list that is used to store nodes/vertices that have been calculated and their heuristic values have also been calculated but have not been selected as the best node (๐น(๐‘›)). in other words, the list contains nodes that still have a chance to be selected as the best node. closed is a list to store the nodes that have been calculated and have been selected as the best node (๐น(๐‘›)). in other words, the opportunity to be selected from the nodes in closed does not exist (dalem, 2018). in the a-star algorithm, the value of each iteration of the open list is compared and the smallest value is selected. then the value of the next open list is calculated and then compared with other ๐น(๐‘›) values. when the value of ๐น(๐‘›) is the smallest and there is a destination node, then the iteration stops. optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 467 result and discussion case study the a-star algorithm can be used when the processed data has a heuristic value which is a benchmark for calculations in the algorithm. in this study, the data were secondary data obtained from several related departement in the province of west java. the data used are as follows: 2016 track distance data from the department of spatial planning; 2016 provincial traffic density data from the department of transportation; and 2019 tourism places data from the department of tourism and culture. the form of data obtained is data on distances between provincial boundaries, the road ends, and intersections. the data can be seen at the link https://bit.ly/3oiddgc. figure 1. provincial, national toll road, national non-toll road, and west java province tourism places figure 1 is a combination of the provincial road (blue), national non-toll road (green), and national toll road (red) in 2016. then, on the provincial road, the density value is obtained from the value of the volume of the road divided by the capacity of the road with a value range of 0.00 โ€“ 1.00 from the department of transportation of west java province which was managed in 2016. non-toll national route with the distance value between each node obtained with the help of google maps. the department of transportation of west java province does not have density data from the national nontoll road because the route is managed by the ministry of transportation, then the lane is considered to have 0 density value. national toll road with the value of the distance https://bit.ly/3oiddgc optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 468 between each node obtained with the help of google maps. if the toll road is considered unimpeded, then the lane is considered to have 0 density value. figure 1 contains 239 nodes stating: provincial boundaries; road boundaries; intersections; and tourism in west java province a total of 208 nodes are: provincial boundaries; road boundaries; and intersections. furthermore, there are 43 tourism places adjacent to the main route in west java province. then the tourism place is drawn by passing the nearest route (regency/city road or village road) so that the node that states the tourism place is located on the main route. however, among the 43 nodes resulting from the withdrawal of the tourism sites, there are 11 nodes adjacent to the provincial boundary nodes, road boundaries, and intersections. thus, 11 of the 208 nodes were converted into tourism nodes, and 32 other tourism nodes were added. apart from the 43 tourism places nodes, the rest of the nodes are used as starting nodes. complete data related to road names, calculating distances and density values of the 239 interrelated nodes can be seen in full at the link https://bit.ly/3oiddgc. table 1. tourist places from each city/regency city/regency node tourism places kabupaten kota sukabumi a1 curug bibijilan a2 bukit sabak kabupaten cianjur a3 taman wisata alam sevillage a4 wana wisata pokland kabupaten kota bogor a5 wana wisata rusa a6 taman buah mekarsari kabupaten kota bekasi a7 gedung juang a8 taman buaya indonesia jaya kota depok a9 taman herbal insani a10 taman rekreasi wiladatika kabupaten karawang a11 candi jiwa a12 sian djin ku poh temple kabupaten purwakarta a13 green valley waterpark a14 bale panyawangan diorama nusantara kabupaten bandung barat a15 gua pawon stone garden citatah kabupaten bandung a16 situ cileunca a17 farm house susu lembang kota bandung a18 alun alun kota bandung a19 bukit moko kota cimahi a20 alam wisata cimahi a21 curug tilu leuwi opat kabupaten garut a22 pucak guha a23 curug sanghyang taraje kabupaten kota tasikmalaya a24 taman wisata curug cikoja a25 wisata alam pasir kirisik kabupaten ciamis a26 wisata alam ciung wanara a27 objek wisata situ wangi kota banjar a28 curug panganten a29 ecopark kota banjar kabupaten pangandaran a30 batu karas a31 pantai karapyak kabupaten kuningan a32 wisata bukit panembongan a33 telaga remis pasawahan kabupaten kota cirebon a34 pantai kejawanan a35 keraton kasepuhan cirebon kabupaten indramayu a36 museum bandar cimanuk a37 pantai tirtamaya https://bit.ly/3oiddgc optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 469 kabupaten subang a38 wisata buaya blanakan a39 pemandian air panas ciater kabupaten majalengka a40 curug cilutung a41 taman wisata alam cadas gantung kabupaten sumedang a42 cadas pangeran a43 curug cipongkor table 1 describes two names of tourism places given from each city/regency in west java province. numeric result how to calculate the a-star algorithm is done as in the example below: figure 2. graph for a-star algorithm example given the value of ๐ป(๐‘›) at nodes ab, az, bc, bd, ce, de, dz, and ez sequentially, namely 5, 3, 4, 2, 6, 3, 1, and 2. based on figure 2, the route from the starting node to the destination node can be modeled as follows 1. ๐ด โ†’ ๐ต = ๐น(๐‘›) = ๐บ(๐‘›)๐ด๐ต + ๐ป(๐‘›)๐ด๐ต ๐ด โ†’ ๐‘ = ๐น(๐‘›) = ๐บ(๐‘›)๐ด๐‘ + ๐ป(๐‘›)๐ด๐‘ 2. ๐ด โ†’ ๐ต โ†’ ๐ถ = ๐น(๐‘›) = ๐บ(๐‘›)๐ด๐ต๐ถ + ๐ป(๐‘›)๐ต๐ถ ๐ด โ†’ ๐ต โ†’ ๐ท = ๐น(๐‘›) = ๐บ(๐‘›)๐ด๐ต๐ท + ๐ป(๐‘›)๐ต๐ท 3. ๐ด โ†’ ๐ต โ†’ ๐ท โ†’ ๐ธ = ๐น(๐‘›) = ๐บ(๐‘›)๐ด๐ต๐ท๐ธ + ๐ป(๐‘›)๐ท๐ธ ๐ด โ†’ ๐ต โ†’ ๐ท โ†’ ๐‘ = ๐น(๐‘›) = ๐บ(๐‘›)๐ด๐ต๐ท๐‘ + ๐ป(๐‘›)๐ท๐‘ table 2. decision tree drawing iteration open list closed list hold decision tree 0 ๐ต โˆ’ ๐‘ ๐ด โˆ’ 1 ๐ถ โˆ’ ๐ท โˆ’ ๐‘ ๐ด โˆ’ ๐ต ๐‘ 2 ๐ถ โˆ’ ๐ธ โˆ’ ๐‘ ๐ด โˆ’ ๐ต โˆ’ ๐ท ๐ถ โˆ’ ๐‘ optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 470 iteration open list closed list hold decision tree 3 โˆ’ ๐ด โˆ’ ๐ต โˆ’ ๐ท โˆ’ ๐‘ โˆ’ the flow used by a-star algorithm starts with the initial node initiation into the open list then the current node (the current node) is made the best node (๐น score). as long as the current node is not the destination node, then move the current node into the closed list. then calculate and compare the ๐น score values of all open lists. after the current node with the smallest ๐น score value is the destination node, then the iteration is stopped and performs a backtrack to display the route. python is used to help find the optimal route by using equation (1) where ๐น(๐‘›) is the total distance value, ๐บ(๐‘›) is the distance from the starting node to the nth node, and ๐ป(๐‘›) is a heuristic estimate of traffic density between nodes. numerical is done by finding the optimal route which is the optimal distance and the route traversed by the a-star algorithm. the initial node used is the southwest node of west java province in sukabumi regency (node a), with the destination node being 43 tourism places nodes. the route column in table 2 is depicted with symbols representing provincial boundary nodes; road boundaries; and intersections. between these nodes is the name of the road traversed by the optimal route generated from the a-star algorithm. full data on the road can be seen at the link https://bit.ly/3oiddgc. table 3. distance and route from node a to tourist places destination node tourism places distances route a1 curug bibijilan 128.36 a, b, c, a1 a2 bukit sabak 141.24 a, b, d, f, i, j, q, p, o, n, a2 a3 taman wisata alam sevillage 180.84 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, a3 a4 wana wisata pokland 179.04 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4 a5 wana wisata rusa 199.84 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a5 a6 taman buah mekarsari 213.71 a, b, d, f, i, h, s, t, az, hq, ay, av, au, ap, aq, ao, ar, a6 a7 gedung juang 239.67 a, b, d, f, i, h, s, t, az, hq, ay, av, au, ap, aq, ao, ar, ho, hp, a7 a8 taman buaya indonesia jaya 242.91 a, b, d, f, i, h, s, t, az, hq, ay, av, au, ap, aq, ao, ar, a6, as, a8 a9 taman herbal insani 191.81 a, b, d, f, i, h, s, t, az, hq, ay, aw, ax, a9 a10 taman rekreasi wiladatika 197.01 a, b, d, f, i, h, s, t, az, hq, ay, av, au, ap, am, a10 a11 candi jiwa 310.50 a, b, d, f, i, h, s, t, az, hq, ay, av, au, ap, aq, ao, ar, a6, as, a8, bd, be, bf, bh, a12, a11 a12 sian djin ku poh temple 284.31 a, b, d, f, i, h, s, t, az, hq, ay, av, au, ap, aq, ao, ar, a6, as, a8, bd, be, bf, bh, a12 https://bit.ly/3oiddgc optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 471 destination node tourism places distances route a13 green valley waterpark 244.34 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4, cb, ca, bz, a14, bx, a13 a14 bale panyawangan diorama nusantara 238.54 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4, cb, ca, bz, a14 a15 gua pawon 195.64 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4, cb, a15 stone garden citatah a16 situ cileunca 230.98 a, b, c, y, z, hz, dg, cx, cy, df, a16 a17 farm house susu lembang 219.32 a, b, c, y, z, hz, dg, cx, cw, cq, co, cl, a18, a17 a18 alun alun kota bandung 214.31 a, b, c, y, z, hz, dg, cx, cw, cq, co, cl, a18 a19 bukit moko 232.12 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4, cb, a15, cc, cd, cg, a21, ch, ci, a19 a20 alam wisata cimahi 214.54 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4, cb, a15, cc, ce, cf, cm, a20 a21 curug tilu leuwi opat 215.94 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4, cb, a15, cc, cd, cg, a21 a22 pucak guha 167.90 a, b, c, y, aa, dr, a22 a23 curug sanghyang taraje 220.73 a, b, c, y, aa, dr, dq, a23 a24 taman wisata curug cikoja 270.60 a, b, c, y, aa, dr, a22, hk, ds, du, a24 a25 wisata alam pasir kirisik 293.51 a, b, c, y, z, hz, dg, cx, cy, cz, db, gw, dh, dk, dl, dz, a25 a26 wisata alam ciung wanara 341.01 a, b, c, y, z, hz, dg, cx, cy, cz, db, gw, dh, dk, dl, dz, dy, ea, eb, a26 a27 objek wisata situ wangi 316.91 a, b, c, y, z, hz, dg, cx, cy, cz, db, gw, dh, dk, dl, dz, a25, ec, a27 a28 curug panganten 355.71 a, b, c, y, z, hz, dg, cx, cy, cz, db, gw, dh, dk, dl, dz, dy, ea, eb, a26, ed, a28 a29 ecopark kota banjar 350.11 a, b, c, y, z, hz, dg, cx, cy, cz, db, gw, dh, dk, dl, dz, dy, ea, eb, a26, ed, a29 a30 batu karas 292.25 a, b, c, y, aa, dr, a22, hk, ds, du, do, a30 a31 pantai karapyak 342.20 a, b, c, y, aa, dr, a22, hk, ds, du, do, eg, ei, a31 a32 wisata bukit panembongan 363.67 a, b, c, y, z, hz, dg, cx, cy, cz, db, gw, dh, dk, dl, a40, gk, el, a32 a33 telaga remis pasawahan 335.67 a, b, c, y, z, hz, dg, cx, cy, cz, db, hi, gs, gq, a42, a43, gp, go, gm, gn, a33 a34 pantai kejawanan 350.61 a, b, c, y, z, hz, dg, cx, cy, cz, db, hi, gs, gq, a42, a43, gp, go, fn, fh, fg, ff, ez, a34 a35 keraton kasepuhan cirebon 349.81 a, b, c, y, z, hz, dg, cx, cy, cz, db, hi, gs, gq, a42, a43, gp, go, fn, fh, fg, ff, fe, a35 a36 museum bandar cimanuk 359.31 a, b, c, y, z, hz, dg, cx, cy, cz, db, hi, gs, gq, a42, a43, gp, go, gz, fs, ft, fv, hf, a36 a37 pantai tirtamaya 362.15 a, b, c, y, z, hz, dg, cx, cy, cz, db, hi, gs, gq, a42, a43, gp, go, fn, fm, fk, fj, fp, fo, a37 a38 wisata buaya blanakan 285.94 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4, cb, ca, bz, a14, bx, a13, br, bp, bo, gd, a38 a39 pemandian air panas ciater 253.08 a, b, d, f, i, j, q, p, o, n, a2, ab, ac, ad, a4, cb, a15, cc, cd, cg, a21, ch, ci, a39 a40 curug cilutung 326.31 a, b, c, y, z, hz, dg, cx, cy, cz, db, gw, dh, dk, dl, a40 optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 472 destination node tourism places distances route a41 taman wisata alam cadas gantung 323.81 a, b, c, y, z, hz, dg, cx, cy, cz, db, hi, gs, gq, a42, a43, gp, go, fn, a41 a42 cadas pangeran 251.11 a, b, c, y, z, hz, dg, cx, cy, cz, db, hi, gs, gq, a42 a43 curug cipongkor 254.51 a, b, c, y, z, hz, dg, cx, cy, cz, db, hi, gs, gq, a42, a43 based on table 3 for the tourism destination of curug bibijilan (node a1), the optimal route chosen is a, b, c, a1. in other words, the route it takes is jl. raya ciracap โ€“ jl. surade โ€“ tegalbuleud โ€“ jl. sagaranten โ€“ cidolog curug bibijilan with a route distance of 128.36 km. all search results for the optimal route along with the road names from each point can be seen at the link https://bit.ly/3oiddgc. based on these numerical results, the conclusion that can be drawn is that optimizing the route to tourism in west java using the a-star algorithm can produce an optimal route. in particular, it can be concluded that the search for optimal routes that are affected by distance and traffic density can be solved by the a-star algorithm. conclusions based on the research, the a-star algorithm can be used when information about the distance and traffic density has been obtained. in this case, traffic density becomes a heuristic value that can be used as a basis for consideration. it can be concluded that the optimal route which is affected by the distance and traffic density can be found using the a-star algorithm. this research can also help tourists to get through the most optimal route to tourism places in west java province. references [1] i. b. g. w. a. dalem, โ€œpenerapan algoritma a*(star) menggunakan graph untuk menghitung jarak terpendek,โ€ jurnal resistor (rekayasa sistem komputer), vol. 1, no. 1, pp. 41โ€“47, 2018. [2] a. b. w. putra, a. a. rachman, a. santoso, and m. mulyanto, โ€œperbandingan hasil rute terdekat antar rumah sakit di samarinda menggunakan algoritma a*(star) dan floyd-warshall,โ€ jurnal sisfokom (sistem informasi dan komputer), vol. 9, no. 1, pp. 59โ€“68, 2020. [3] m. m. costa and m. f. silva, โ€œa survey on path planning algorithms for mobile robots,โ€ in 2019 ieee international conference on autonomous robot systems and competitions (icarsc), 2019, pp. 1โ€“7. [4] s. purnama, d. a. megawaty, and y. fernando, โ€œpenerapan algoritma a star untuk penentuan jarak terdekat wisata kuliner di kota bandarlampung,โ€ jurnal teknoinfo, vol. 12, no. 1, pp. 28โ€“32, 2018. [5] h. hermawan and h. setiyani, โ€œimplementasi algoritma a-star pada permainan komputer roguelike berbasis unity,โ€ jurnal algoritma, logika dan komputasi, vol. 2, no. 1, 2019. [6] s. m. bagheri, h. taghaddos, a. mousaei, f. shahnavaz, and u. hermann, โ€œan a-star algorithm for semi-optimization of crane location and configuration in modular construction,โ€ automation in construction, vol. 121, pp. 1โ€“15, 2021. [7] s. thurner, r. hanel, and p. klimek, introduction to the theory of complex systems. oxford university press, 2018. https://bit.ly/3oiddgc optimalization route to tourism places in west java using a-star algorithm muhammad herlambang prakasa yudha 473 [8] s. susilawati, r. rizky, s. setiyowati, and a. g. pratama, โ€œpenerapan metode a* star pada pencarian rute tercepat menuju destinasi wisata cagar budaya menes pandeglang,โ€ geodika j. kaji. ilmu dan pendidik. geogr, vol. 4, no. 2, pp. 192โ€“199, 2020. [9] melladia, โ€œalgoritma genetika menentukan jalur jalan dengan lintasan terpendek (shortest path),โ€ prosiding sisfotek, vol. 4, no. 1, pp. 112โ€“117, 2020. [10] y. n. marlim, d. jollyta, and f. saputra, โ€œanalisis sistem jalur terpendek menggunakan algoritma djikstra dan evaluasi usability,โ€ j. edukasi dan penelit. inform, vol. 6, no. 1, pp. 54โ€“60, 2020. [11] a. madkour, w. g. aref, f. u. rehman, m. a. rahman, and s. basalamah, โ€œa survey of shortest-path algorithms,โ€ arxiv preprint arxiv:1705.02044, 2017. [12] m. shafiq, z. tian, y. sun, x. du, and m. guizani, โ€œselection of effective machine learning algorithm and bot-iot attacks traffic identification for internet of things in smart city,โ€ future generation computer systems, vol. 107, pp. 433โ€“442, 2020. [13] i. ahmad and w. widodo, โ€œpenerapan algoritma a star (a*) pada game petualangan labirin berbasis android,โ€ khazanah informatika: jurnal ilmu komputer dan informatika, vol. 3, no. 2, pp. 57โ€“60, 2017. [14] z. hong et al., โ€œimproved a-star algorithm for long-distance off-road path planning using terrain data map,โ€ isprs international journal of geo-information, vol. 10, no. 11, p. 785, 2021. [15] h. iฬ‡. ลŸahฤฑn and a. r. kavsaoฤŸlu, โ€œindoor path finding and simulation for smart wheelchairs,โ€ in 2021 29th signal processing and communications applications conference (siu), 2021, pp. 1โ€“4. mila kurniawaty estimasi harga multi-state european call option _5_ estimasi harga multi-state european call option menggunakan model binomial mila kurniawaty1 dan endah rokhmati2 1jurusan matematika, universitas brawijaya, malang. email: mila akuwni@yahoo.com 2jurusan matematika, institut teknologi sepuluh nopember, surabaya abstrak option merupakan kontrak yang memberikan hak kepada pemiliknya untuk membeli (call option) atau menjual (put option) sejumlah aset dasar tertentu (underlying asset) dengan harga tertentu (strike price) dalam jangka waktu tertentu (sebelum atau saat expiration date). perkembangan option belakangan ini memunculkan banyak model pricing untuk mengestimasi harga option, salah satu model yang digunakan adalah formula black-scholes. multi-state option merupakan sebuah option yang payoff-nya didasarkan pada dua atau lebih aset dasar. ada beberapa metode yang dapat digunakan dalam mengestimasi harga call option, salah satunya masyarakat finance sering menggunakan model binomial untuk estimasi berbagai model option yang lebih luas seperti multi-state call option. selanjutnya, dari hasil estimasi call option dengan model binomial didapatkan formula terbaik berdasarkan penghitungan eror dengan mean square error. dari penghitungan eror didapatkan eror rata-rata dari masing-masing formula pada model binomial. hasil eror rata-rata menunjukkan bahwa estimasi menggunakan formula 5 titik lebih baik dari pada estimasi menggunakan formula 4 titik. kata kunci: option, formula black-scholes, multi-state option, model binomial. pendahuluan perkembangan dunia perekonomian sekarang ini semakin pesat, seiring dengan kebutuhan masyarakat yang terus meningkat sehingga mendorong para pelaku ekonomi termasuk para investor untuk bersaing memperoleh keuntungan semaksimal mungkin. dengan membayar sejumlah uang tertentu untuk investasi awal, investor dapat menguasai saham yang nilainya berlipat ganda dari investasi awal. oleh karena itu, diperlukan alat investasi yang berupa option. pada dasarnya, option merupakan kontrak yang memberikan hak kepada pemiliknya untuk membeli atau menjual sejumlah aset dasar tertentu dengan harga tertentu (strike price) dalam jangka waktu tertentu. aset dasarnya dapat berupa saham, kurs, indeks, atau komoditas. menurut waktu exercise-nya, ada beberapa jenis option. salah satunya adalah european option, yang hanya dapat di-exercise pada saat jatuh tempo. jika sebuah option yang payoff-nya berdasarkan pada dua atau lebih aset dasar maka dinamakan multi-state option. model binomial paling banyak digunakan dalam komunitas finance untuk estimasi berbagai model option yang lebih luas seperti pada multi-state european option dalam mengkaji mengenai estimasi harga multi-state european call option menggunakan model binomial, akan diperoleh suatu pemahaman yang mendalam mengenai estimasi tersebut dan menjadi alternatif lain bagi komunitas finance, khususnya para investor untuk mengestimasi harga option di samping modelmodel lain yang telah ada agar dapat memaksimumkan keuntungan dan meminimumkan kerugian. pendekatan proses return dalam mengestrimasi harga multi-state european call option dengan model binomial digunakan suatu pendekatan proses return. dalam melakukan pendekatan proses return diperlukan pemahaman mengenai fungsi payoff dan formula black-scholes. fungsi payoff berdasarkan waktu exercise-nya, ada beberapa jenis option. salah satunya adalah european option, yang hanya dapat di-exercise pada saat jatuh tempo. fungsi payoff dari european call option adalah sebagai berikut ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ max ๏ฟฝ๏ฟฝ ๏ฟฝ,0๏ฟฝ atau dapat dijabarkan sebagai berikut ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ0 , ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ dimana ๏ฟฝ๏ฟฝ adalah stock price pada saat jatuh tempo dan ๏ฟฝ adalah strike price. estimasi harga multi-state european call option menggunakan model binomial jurnal cauchy โ€“ issn: 2086-0382 183 formula black-scholes untuk european option persamaan black-scholes dari option pricing adalah sebagai berikut ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ!๏ฟฝ ๏ฟฝ "๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ! "# ๏ฟฝ 0 (1) berdasarkan asumsi model black-scholes pada persamaaan (1), persamaan black-scholes untuk european vanilla call option dapat dibentuk sebagai berikut ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ!๏ฟฝ ๏ฟฝ "๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ! "#, โˆž $ ๏ฟฝ $ โˆž,% ๏ฟฝ 0 (2) dimana # ๏ฟฝ #&๏ฟฝ,%' merupakan nilai european call option, ๏ฟฝ adalah harga aset dasar, % adalah jatuh tempo, " adalah suku bunga bebas resiko dan ( adalah volatilitas. kondisi awal (payoff saat jatuh tempo) dapat dinyatakan sebagai berikut #&๏ฟฝ,0' ๏ฟฝ max ๏ฟฝ ๏ฟฝ,0๏ฟฝ dengan ๏ฟฝ adalah strike price. solusi dari persamaan (2) diperoleh sebagai berikut #&๏ฟฝ,%' ๏ฟฝ )*+๏ฟฝ , max&๏ฟฝ๏ฟฝ ๏ฟฝ' โˆž 1 ๏ฟฝ๏ฟฝ(โˆš21% exp4 56 ๏ฟฝln๏ฟฝ๏ฟฝ 9ln๏ฟฝ ๏ฟฝ :" ( 2 ;%<= 2( % > ?@a๏ฟฝ๏ฟฝ operasi ekspektasi #&๏ฟฝ,%' ๏ฟฝ b&max&๏ฟฝ๏ฟฝ ๏ฟฝ,0'')*+&๏ฟฝ*c' dapat dinyatakan sebagai berikut #&๏ฟฝ,%' ๏ฟฝ )*+&๏ฟฝ*c' d max&๏ฟฝ๏ฟฝ ๏ฟฝ'eโˆž&๏ฟฝ๏ฟฝ;๏ฟฝ'a๏ฟฝ๏ฟฝ (3) dengan % ๏ฟฝ g h. e&๏ฟฝ๏ฟฝ;๏ฟฝ' merupakan transition density function dari harga aset ๏ฟฝ๏ฟฝ yang dapat dinyatakan sebagai berikut e&๏ฟฝ๏ฟฝ;๏ฟฝ' ๏ฟฝ j!k๏ฟฝโˆš l๏ฟฝ expm n&op !q*op!'*r+* s๏ฟฝ๏ฟฝ t๏ฟฝu๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ v (4) dari persamaan tersebut terlihat bahwa fungsi densitas berdistribusi normal dengan variabel ln !q! , yang mempunyai mean w" s๏ฟฝ๏ฟฝ x% dan varians ( %. model yang digunakan adalah two-state option dan densitas bersama dari harga dua aset dasar ๏ฟฝj dan ๏ฟฝ adalah lognormal bivariate. dalam dunia netral resiko, return aset dasar diberikan sebagai berikut ln !yโˆ†[!y ๏ฟฝ \] , i = 1,2 dimana ๏ฟฝ] merupakan harga dari aset dasar i pada saat ini, ๏ฟฝ]โˆ†c merupakan harga aset dasar i pada suatu periode โˆ†h berikutnya dan \] adalah return aset dasar. sesuai perhitungan pada (4), variabel acak normal \] mempunyai mean r" ๏ฟฝy๏ฟฝ tโˆ†h dan varians (] โˆ†h. dimana " adalah tingkat bunga bebas resiko dan ( adalah varians dari proses lognormal. ^ merupakan koefisien korelasi antara \j dan \ dan (] adalah volatilitas harga aset dasar ๏ฟฝ], ๏ฟฝ ๏ฟฝ 1,2. proses normal bivariate bersama \j,\ ๏ฟฝ didekati oleh sepasang variabel acak diskrit \j_,\ _๏ฟฝ dengan mengikuti distribusi berikut tabel 1. distribusi variabel diskrit \j_,\ _๏ฟฝ \j_ \ _ probabilitas `j `j `j `j 0 ` ` ` ` 0 ๏ฟฝj ๏ฟฝ ๏ฟฝa ๏ฟฝb ๏ฟฝc dimana `] ๏ฟฝ d](]โˆšฮดh , ๏ฟฝ ๏ฟฝ 1,2. hasil dan pembahasan nilai probabilitas untuk mendapatkan nilai probabilitas 4321 ,,, pppp dan 5p , mean, varian, dan covarian dari \j_,\ _๏ฟฝ disamakan dengan \j,\ ๏ฟฝ. sehingga didapatkan persamaan yang bersesuaian sebagai berikut trppppve a โˆ†๏ฃท๏ฃท ๏ฃธ ๏ฃถ ๏ฃฌ๏ฃฌ ๏ฃญ ๏ฃซ โˆ’=โˆ’โˆ’+= 2 )()( 2 1 432111 ฯƒ ฮถ trppppve a โˆ†๏ฃท๏ฃท ๏ฃธ ๏ฃถ ๏ฃฌ๏ฃฌ ๏ฃญ ๏ฃซ โˆ’=+โˆ’โˆ’= 2 )()( 2 2 432122 ฯƒ ฮถ tppppva โˆ†=+++= 214321 2 11 )()var( ฯƒฮถ (5) tppppva โˆ†=+++= 224321 2 22 )()var( ฯƒฮถ (6) tppppvvaa โˆ†=โˆ’+โˆ’= ฯฯƒฯƒฮถฮถ 2143212121 )(),cov( agar persamaan (5) dan (6) konsisten, harus ditentukan 21 ฮปฮปฮป == sehingga diperoleh empat persamaaan independen untuk lima nilai probabilitas sebagai berikut 1 2 1 4321 2 ฮปฯƒ ฯƒ tr pppp โˆ†๏ฃท๏ฃท ๏ฃธ ๏ฃถ ๏ฃฌ๏ฃฌ ๏ฃญ ๏ฃซ โˆ’ =โˆ’โˆ’+ 2 2 2 4321 2 ฮปฯƒ ฯƒ tr pppp โˆ†๏ฃท๏ฃท ๏ฃธ ๏ฃถ ๏ฃฌ๏ฃฌ ๏ฃญ ๏ฃซ โˆ’ =+โˆ’โˆ’ 24321 1 ฮป =+++ pppp 24321 ฮป ฯ =โˆ’+โˆ’ pppp karena jumlahan probabilitas harus sama dengan satu, maka diberikan kondisi berikut 154321 =++++ ppppp mila kurniawaty dan endah rokhmati 184 volume 1 no. 4 mei 2011 sehingga didapatkan penyelesaian persamaan tersebut dan diperoleh nilai masing-masing probabilitas yang terjadi ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป ๏ฃน ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ ๏ฃฎ + ๏ฃท ๏ฃท ๏ฃท ๏ฃท ๏ฃธ ๏ฃถ ๏ฃฌ ๏ฃฌ ๏ฃฌ ๏ฃฌ ๏ฃญ ๏ฃซ โˆ’ + โˆ’โˆ† += 2 2 2 2 1 2 1 21 221 4 1 ฮป ฯ ฯƒ ฯƒ ฯƒ ฯƒ ฮปฮป rr t p ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป ๏ฃน ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ ๏ฃฎ โˆ’ ๏ฃท ๏ฃท ๏ฃท ๏ฃท ๏ฃธ ๏ฃถ ๏ฃฌ ๏ฃฌ ๏ฃฌ ๏ฃฌ ๏ฃญ ๏ฃซ โˆ’ โˆ’ โˆ’โˆ† += 2 2 2 2 1 2 1 22 221 4 1 ฮป ฯ ฯƒ ฯƒ ฯƒ ฯƒ ฮปฮป rr t p ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป ๏ฃน ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ ๏ฃฎ + ๏ฃท ๏ฃท ๏ฃท ๏ฃท ๏ฃธ ๏ฃถ ๏ฃฌ ๏ฃฌ ๏ฃฌ ๏ฃฌ ๏ฃญ ๏ฃซ โˆ’ โˆ’ โˆ’ โˆ’ โˆ† += 2 2 2 2 1 2 1 23 221 4 1 ฮป ฯ ฯƒ ฯƒ ฯƒ ฯƒ ฮปฮป rr t p ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃบ ๏ฃป ๏ฃน ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฏ ๏ฃฐ ๏ฃฎ โˆ’ ๏ฃท ๏ฃท ๏ฃท ๏ฃท ๏ฃธ ๏ฃถ ๏ฃฌ ๏ฃฌ ๏ฃฌ ๏ฃฌ ๏ฃญ ๏ฃซ โˆ’ + โˆ’ โˆ’ โˆ† += 2 2 2 2 1 2 1 24 221 4 1 ฮป ฯ ฯƒ ฯƒ ฯƒ ฯƒ ฮปฮป rr t p 25 1 1 ฮป โˆ’=p , dengan ฮป โ‰ฅ 1 adalah parameter bebas. estimasi harga multi-state european call option menggunakan model binomial. dalam model binomial, perubahan harga saham tiap periode dari interval waktu ฮดh diasumsikan mempunyai dua kemungkinan hasil, yaitu e dengan probabilitas ๏ฟฝ dan a dengan probabilitas 1 ๏ฟฝ &e ๏ฟฝ a' seperti pada gambar berikut gambar 1. kontruksi pohon binomial jika harga saham (stock option) saat ini ๏ฟฝ-, maka harga saham pada saat h adalah sebagai berikut ๏ฟฝc ๏ฟฝ ๏ฟฝ-efac*f, h ๏ฟฝ 1,2,โ€ฆ,g dimana 0 $ a $ 1 $ e dan h ๏ฟฝ 0,1,โ€ฆ,h. harga call saat ini dinotasikan dengan #, dan #iโˆ†c dan #jโˆ†c menunjukkan harga call setelah satu periode (waktu jatuh tempo dalam konteks sekarang) yang bersesuaian dengan pergerakan naik dan turunnya harga aset, misal ๏ฟฝ menyatakan strike price dari call, maka payoff dari call pada saat jatuh tempo adalah sebagai berikut k#iโˆ†c ๏ฟฝ max&e๏ฟฝ ๏ฟฝ,0'dengan probabilitas ๏ฟฝ #jโˆ†c ๏ฟฝ max&a๏ฟฝ ๏ฟฝ,0'dengan probabilitas 1 ๏ฟฝ๏ฟฝ (7) nilai terkini dari call diberikan sebagai berikut # ๏ฟฝ t๏ฟฝuโˆ†[v&j*t'๏ฟฝwโˆ†[x dengan ๏ฟฝ ๏ฟฝ x*ji*j dan y ๏ฟฝ )+โˆ†c. jika ๏ฟฝ dan ๏ฟฝโˆ†c menyatakan harga aset saat ini dan harga aset satu periode setelah โˆ†h, maka mean dan varians dari !โˆ†[! adalah ๏ฟฝe ๏ฟฝ &1 ๏ฟฝ'a dan ๏ฟฝe ๏ฟฝ &1 ๏ฟฝ'a z๏ฟฝe ๏ฟฝ &1 ๏ฟฝ'a{ . dengan derajat akurasi |&โˆ†h' nilai dari parameter e dan a adalah e ๏ฟฝ )๏ฟฝโˆšโˆ†c dan a ๏ฟฝ )*๏ฟฝโˆšโˆ†c. karena terdapat dua aset dasar yang mendasari harga european call option yaitu ๏ฟฝj dan ๏ฟฝ , maka kemungkinan yang terjadi dapat digambarkan sebagai berikut gambar 2. kontruksi pohon binomial dua aset dasar jika ๏ฟฝ], ๏ฟฝ ๏ฟฝ 1,2,โ€ฆ,h menyatakan harga aset dasar ๏ฟฝ dan }&๏ฟฝj,๏ฟฝ ,โ€ฆ,๏ฟฝf,g' menyatakan nilai dari sekuritas derivatif, maka secara umum fungsi payoff-nya dinyatakan sebagai fungsi linier berikut }&๏ฟฝ,0' ๏ฟฝ max&โˆ‘ ๏ฟฝ]๏ฟฝ] ๏ฟฝ ๏ฟฝ,0f]๏ฟฝj ' (8) dimana ๏ฟฝ dan ๏ฟฝ], ๏ฟฝ ๏ฟฝ 1,2,โ€ฆ,h adalah konstanta. dengan menggunakan fungsi payoff untuk multi-state option pada (8) dan persamaan (7), maka dapat dijabarkan sebagai berikut ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ #i๏ฟฝi๏ฟฝฮดc ๏ฟฝ max&ej๏ฟฝj ๏ฟฝ e ๏ฟฝ ๏ฟฝ,0',dengan peluang ๏ฟฝj#i๏ฟฝj๏ฟฝฮดc ๏ฟฝ max&ej๏ฟฝj ๏ฟฝ a ๏ฟฝ ๏ฟฝ,0',dengan peluang ๏ฟฝ #j๏ฟฝj๏ฟฝฮดc ๏ฟฝ max&aj๏ฟฝj ๏ฟฝ a ๏ฟฝ ๏ฟฝ,0',dengan peluang ๏ฟฝa#j๏ฟฝi๏ฟฝฮดc ๏ฟฝ max&aj๏ฟฝj ๏ฟฝ e ๏ฟฝ ๏ฟฝ,0',dengan peluang ๏ฟฝb#-,-ฮดc ๏ฟฝ max&๏ฟฝj ๏ฟฝ ๏ฟฝ ๏ฟฝ,0',dengan peluang ๏ฟฝc ๏ฟฝ dengan e] ๏ฟฝ )๏ฟฝy,a] ๏ฟฝ )*๏ฟฝy, ๏ฟฝ ๏ฟฝ 1,2. sehingga menurut formula binomial, diperoleh harga dari multi-state call option sebagai berikut r cpcpcpcpcp c tt ud t dd t du t uu โˆ†โˆ†โˆ†โˆ†โˆ† ++++ = 0,054321 21212121 (9) jika ,1=ฮป maka 05 =p dan formula 5 titik berkurang menjadi 4 titik sebagai berikut r cpcpcpcp c t ud t dd t du t uu โˆ†โˆ†โˆ†โˆ† +++ = 21212121 4321 (10) dimana r = )+โˆ†c. simulasi untuk mengestimasi harga option hasil estimasi call option dengan model binomial dengan ฯƒ1=0.2 dan ฯƒ2=0.3, untuk ฮป bernilai 1.0 sampai 2.0 dapat digambarkan sebagai berikut: ๏ฟฝj ej๏ฟฝj aj๏ฟฝj ๏ฟฝ e ๏ฟฝ a ๏ฟฝ ๏ฟฝ ๏ฟฝ-e ๏ฟฝ-a probabilitas ๏ฟฝ probabilitas 1 ๏ฟฝ estimasi harga multi-state european call option menggunakan model binomial jurnal cauchy โ€“ issn: 2086-0382 185 gambar 3. grafik call option model binomial untuk beberapa nilai lamda dari grafik terlihat bahwa pertambahan nilai ฮป menurunkan harga call option. hal ini berarti, penggunaan formula 5 titik dapat menurunkan harga call option dari pada formula 4 titik. mean square error (mse) penghitungan eror menggunakan mean square error dituliskan sebagai berikut: m rmse m n nโˆ‘ == 1 2ฮท dimana =ฮท market option price โ€“ model option price. error dari model binomial berdasarkan mean square error sesuai penghitungan apabila ditampilkan dalam grafik sebagai berikut gambar 4. grafik harga call dan mean square error model binomial formula 4 titik dan 5 titik dari hasil penghitungan eror menggunakan mean square error didapatkan rata-rata eror sebagai berikut: tabel 2. tabel hasil average mse dari model binomial 4 titik dan 5 titik model binomial average mse formula 4 titik 0.244817 formula 5 titik 0.2271071 berdasarkan hasil penghitungan eror dari dua formula pada model binomial dapat disimpulkan bahwa formula 5 titik mempunyai eror yang lebih kecil daripada formula 4 titik . oleh karena itu formula 5 titik pada model binomial dapat dinyatakan sebagai formula yang yang lebih baik daripada formula 4 titik. penutup berdasarkan hasil pembahasan mengenai estimasi harga multi-state european call option dengan model binomial dapat disimpulkan bahwa estimasi harga multi-state european call option dengan model binomial diperoleh dengan pendekatan proses return yang mempunyai variabel acak normal didekati dengan sepasang variabel acak diskrit untuk mendapatkan nilai probabilitas yang terjadi pada masing-masing aset dasar sehingga dapat diestimasi menggunakan model binomial. estimasi harga multi-state european call option menggunakan model binomial diperoleh dua formula, yaitu: 1. formula 5 titik # ๏ฟฝ ๏ฟฝj#i๏ฟฝi๏ฟฝฮดc ๏ฟฝ ๏ฟฝ #i๏ฟฝj๏ฟฝฮดc ๏ฟฝ ๏ฟฝa#j๏ฟฝj๏ฟฝฮดc ๏ฟฝ ๏ฟฝb#j๏ฟฝi๏ฟฝฮดc ๏ฟฝ ๏ฟฝc#-,-ฮดcy 2. formula 4 titik # ๏ฟฝ ๏ฟฝj#i๏ฟฝi๏ฟฝฮดc ๏ฟฝ ๏ฟฝ #i๏ฟฝj๏ฟฝฮดc ๏ฟฝ ๏ฟฝa#j๏ฟฝj๏ฟฝฮดc ๏ฟฝ ๏ฟฝb#j๏ฟฝi๏ฟฝฮดcy formula terbaik dalam model binomial pada multi-state option adalah formula 5 titik karena mempunyai eror rata-rata yang lebih kecil daripada formula 4 titik. dari hasil simulasi dapat dilihat bahwa estimasi harga multi-state european call option menggunakan model binomial sangat dipengaruhi oleh besarnya suatu parameter bebas ฮป. semakin tinggi nilai ฮป maka harga dari call option akan semakin turun. daftar pustaka [1] kwok, yue-kuen. 1998. mathematical models of financial derivatives. singapore: springer. [2] pliska, r. stanley. 1997. introduction tomathematical finance: discrete time model. oxford: blackwell. [3] bodie, kane, marcus. 2005. investment. sixth edition. mcgraw-hill, international edition. [4] sembel, roy, dan fardiansyah, tedy. 2002. sekuritas derivatif: madu atau racun. jakarta: salemba empat. grafik harga call option untuk 6 nilai lamda 34 34.2 34.4 34.6 34.8 35 35.2 35.4 35.6 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 data ke h ar g a ca ll o p ti o n lamda=1.0 lamda=1.2 lamda=1.4 lamda=1.6 lamda=1.8 lamda=2.0 grafik call option formula 4 titik 34 34.5 35 35.5 36 1 9 17 25 33 41 49 57 65 73 81 89 97 data keh a rg a c a ll o p ti o n c_m arket c_form ula 4 titik grafik call option formula 5 titik 34 34.5 35 35.5 36 1 9 17 25 33 41 49 57 65 73 81 89 97 data keh a rg a c a ll o p ti o n c_market c_formula 5 titik mse form ula 4 titik dan 5 titik 0 0.2 0.4 0.6 0.8 1 1 10 19 28 37 46 55 64 73 82 91 100 d at a keformula 4 t it ik formula 5 t it ik mila kurniawaty dan endah rokhmati 186 volume 1 no. 4 mei 2011 [5] rudiger, seydel. 2002. tools for computational finance. koln: springer. [6] higham, desmond j. 2004. an introduction to financial option valuation: mathematics, stochastics, and computation. cambridge: cambridge university press. [7] rahayu, s.k.t. 2006. estimasi nilai european call option menggunakan metode historical data dan filter kalman. skripsi its surabaya. [8] hull, john c. 2002. option future and other derivatives. new jersey: prentice hall. [9] ross, sheldon m. 2004. an introduction to mathematical finance: options and other topics. cambridge: cambridge university press. spatial analysis of dengue disease in jakarta province cauchy โ€“jurnal matematika murni dan aplikasi volume 7(4) (2023), pages 535-547 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 30, 2022 reviewed: february 25, 2023 accepted: march 04, 2023 doi: http://dx.doi.org/10.18860/ca.v7i4.17423 spatial analysis of dengue disease in jakarta province muhamad sobari1,4*, i gede nyoman mindra jaya2, budi nurani ruchjana3 1post-graduate program in applied statistics, universitas padjadjaran, bandung 2department of statistics, universitas padjadjaran, bandung 3department of mathematics, universitas padjadjaran, bandung 4central bureau of statistics of tasikmalaya regency, west java email: muhamad21059@mail.unpad.ac.id abstract dengue disease is a virus-borne illness spread by the bite of the female aedes aegypti mosquito. jakarta is at risk for dengue disease because it has a lot of people who live in urban slums. the objective of this study is to identify the risk factors that affect the number of dengue disease cases in jakarta by considering spatial dependencies. this study used a spatial autoregressive (sar) model with the queen contiguity spatial weight matrix to account for the spatial dependence. the number of dengue disease cases in jakarta is strongly affected by the number of flood-prone areas, the number of slum neighborhood associations, the population density, the number of hospitals and the number of public health centers per 1,000 people also the spatial lag. when dengue disease cases increase in one sub-district, the number of dengue disease cases in the sub-districts around it will increase as well because of the positive and significant spatial lag coefficient. based on the direct impact, each additional one percent of flood-prone points in one sub-district will increase the number of dengue disease cases in that sub-district by four cases. this research contributes that flood control is important in jakarta to control dengue disease. copyright ยฉ 2023 by authors, published by cauchy group. this is an open access article under the cc bysa license (https://creativecommons.org/licenses/by-sa/4.0/) keywords: dengue disease; spatial autoregressive; queen contiguity introduction the female aedes aegypti mosquito bite is the primary method of transmission for the dengue virus, which causes dengue disease. these mosquitoes can breed in slum places such as there are pools of water that are not taken care of, dark, and damp [1]. dengue disease is still one of the main health problems that threaten the indonesian people because indonesia is a tropical country that is vulnerable to vector-borne diseases, that is diseases that increase the likelihood and risk of occurrence due to changes in the weather cycle [2]. dengue virus is highly sensitive to changes in average temperature, humidity, and increased rainfall which can affect the life cycle and reproduction of the aedes aegypti mosquito that carries the virus [2], [3]. and indonesia is a tropical country with changes in two seasonal cycles, that is the dry season and the rainy season, so that dengue disease will increase during the rainy season because the weather conditions become humid and waterlogging often occurs due to water channels that do not flow or post-floods that are http://dx.doi.org/10.18860/ca.v7i4.17423 mailto:muhamad21059@mail.unpad.ac.id https://creativecommons.org/licenses/by-sa/4.0/ spatial analysis of dengue disease in jakarta province muhamad sobari 536 not cleaned immediately. based on research [1], slum areas have more potential to become a breeding ground for aedes aegypti mosquitoes, so it is necessary to have a program to eradicate mosquito nests in slum areas to eradicate mosquitoes that carry the dengue virus to reduce dengue disease cases. meanwhile, according to research [4], areas that often flood due to high rainfall have a vulnerability in the health sector, that is dengue disease because of climate change. so, it can be concluded that flooding has an indirect effect on dengue disease through climate change. several studies show that dengue disease is related to mobility and population density and people's living behavior. as done by [5], [6] shows that there will be a rise in dengue disease cases because of increased population density. this shows that dengue disease spreads more easily in areas with a high population density. mosquitoes live in the tropics with warm temperatures, in areas below 1,000 meters sea level in indonesia [7]. jakarta, in particular, is located in a region with ideal conditions for mosquito breeding. in 2019, the province with the highest population density in indonesia which reached 15,328 people per km2 was jakarta [8]. jakarta province is also the highest percentage of urban slum households (the lowest 40 percent of the population) which reached 42.73 percent. urban slum households are defined as households that: do not have access to safe drinking water sources; do not have access to proper sanitation; do not have access to floor area >= 7.2 m2 per capita; and do not have access to proper roof, floor, and wall conditions [9]. jakarta province is vulnerable to the transmission of dengue disease due to high population density, percentage of urban slum households, some characteristics that may flood if the rainfall is high, and an optimum temperature for the breeding of the aedes aegypti mosquito. this is evident in 2019 the dengue disease morbidity rate per 100,000 population jakarta province is the top 10 provinces in indonesia which reached 82.45 [10]. research on the spread of dengue disease with a spatial approach has been carried out by [11] using the moranโ€™s i method and the local indicators of spatial association (lisa) which shows that dengue disease cases, population, population density, temperature, rainfall, and wind speed have positive spatial autocorrelation between villages in padang municipality on the six variables. furthermore, research [12] using the moran and geary's c index method shows that dengue disease transmission in semarang municipality exhibits spatial autocorrelation. both studies have the same conclusion, that is there is a positive spatial autocorrelation in the number of dengue disease cases. another study was conducted by [5] using the spatial autoregressive (sar) model, and the study's findings show that factors that significantly influence the number of dengue disease cases in central java province are number of protected spring facilities, population percentage access to sustainable drinking water, population density, number of village polyclinics per 1,000 population, number of public health centers per 1,000 population, and percentage of clean water quality free of bacteria, fungi, and chemicals. in addition, research by [13] comparing spatial durbin model (sdm) and sar model revealed that sar performed better than sdm in predicting the factors that influence the transmission of dengue disease in central java province. in general, the number of residents and the average length of schooling are factors that affect the spread of dengue disease in central java province. the two studies have something in common, that is the unit observation and analysis is the regency and municipality in central java province. this study looks at how various environmental and social issues in jakarta influence the spatial analysis of dengue disease in jakarta province muhamad sobari 537 spread of dengue disease by accounting for spatial dependencies. relying on this background, the objective of this study is to identify risk factors that significantly affect the number of dengue disease cases in jakarta province, using subdistricts as observation and analysis units. methods data and variables this study relied on secondary data from the central bureau of statistics of jakarta province (bps jakarta province) and the provincial government of jakarta's office of communication, information, and statistics (diskominfotik jakarta province). the data were obtained from publications published by bps jakarta [14] and from websites managed by diskominfotik jakarta province [15]. the unit observation and analysis in this study covers 42 out of 44 sub-districts jakarta province in 2017. the data used are not all sub-districts in jakarta province and 2017 dataset is due to the limited data availability. the two sub-districts not included in this study are all sub-districts in kepulauan seribu regency. the following variables were used in this study: table 1. data source and variable name notation variable name data source y number of dengue disease cases diskominfotik jakarta province x1 number of flood-prone points diskominfotik jakarta province x2 number of slum neighborhood associations (rt) bps jakarta province x3 population density (people per km2) diskominfotik jakarta province x4 number of hospitals per 1,000 population diskominfotik jakarta province x5 number of public health centers per 1,000 population diskominfotik jakarta province data analysis steps data processing was carried out using r software version 4.1.2 and thematic map creation using q.gis desktop 3.16.15. steps of data analysis were carried out as follows: 1. exploring data for all variables using thematic maps so that the pattern of distribution of data between sub-districts can be known; 2. before modeling with spatial regression, the classical assumptions of multiple linear regression models must be tested. [16]; 3. before performing moranโ€™s i test, it is necessary to create a spatial weight matrix. the most common way to represent spatial data relationships is through the concept of contiguity. that is, areas will be considered related if their boundaries have the same points. in the concept of queen contiguity every region that touches the boundary of another region, either a side or a corner, is considered a neighbor [17]. queen contiguity is the spatial weight matrix used in this study; 4. checking whether there is an autocorrelation between sub-districts by conducting the moran's i test (moran index) [18]. the hypothesis of moran's i test is as follows: ๐ป0 : no spatial autocorrelation under given w (spatial weight matrix) ๐ป1 : there is a spatial autocorrelation under the given w moran's i is defined: spatial analysis of dengue disease in jakarta province muhamad sobari 538 ๐ผ = ๐‘ ๐‘†0 โˆ‘ โˆ‘ ๐‘ค๐‘–๐‘— (๐‘ฆ๐‘– โˆ’ ๏ฟฝฬ…๏ฟฝ)(๐‘ฆ๐‘— โˆ’ ๏ฟฝฬ…๏ฟฝ) ๐‘ ๐‘—=1 ๐‘ ๐‘–=1 โˆ‘ (๐‘ฆ๐‘– โˆ’ ๏ฟฝฬ…๏ฟฝ) 2๐‘ ๐‘–=1 (1) where ๐‘ denotes the number of observations, ๏ฟฝฬ…๏ฟฝ denotes the average value ๐‘ฆ๐‘– from ๐‘ locations, ๐‘ฆ๐‘– denotes the value at locations i, ๐‘ฆ๐‘— denotes the value at locations j, ๐‘ค๐‘–๐‘— denotes the spatial weight matrix element and moran's i test statistic is defined: ๐‘๐ผ = ๐ผ โˆ’ ๐ธ(๐ผ) โˆš๐‘‰๐‘Ž๐‘Ÿ(๐ผ) (2) where ๐‘๐ผ denotes the moran's i test statistic value, ๐ธ(๐ผ) denotes the expected value of moran's i and ๐‘‰๐‘Ž๐‘Ÿ(๐ผ) denotes variance of moran's i which defined: ๐‘‰๐‘Ž๐‘Ÿ(๐ผ) = ๐‘2. ๐‘†1 โˆ’ ๐‘. ๐‘†2 + 3. ๐‘†0 2 (๐‘ โˆ’ 1)(๐‘ + 1)๐‘†0 2 โˆ’ [๐ธ(๐ผ)]2 (3) ๐ธ(๐ผ) = โˆ’ 1 ๐‘› โˆ’ 1 (4) ๐‘†2 = โˆ‘ ๐‘ ๐‘–=1 (โˆ‘ ๐‘ค๐‘–๐‘— ๐‘ ๐‘—=1 + โˆ‘ ๐‘ค๐‘—๐‘– ๐‘ ๐‘—=1 ) 2 (5) ๐‘†1 = 1 2 โˆ‘ โˆ‘(๐‘ค๐‘–๐‘— + ๐‘ค๐‘—๐‘– ) 2 ๐‘ ๐‘—=1 ๐‘ ๐‘–=1 (6) ๐‘†0 = โˆ‘ โˆ‘ ๐‘ค๐‘–๐‘— ๐‘ ๐‘—=1 ๐‘ ๐‘–=1 (7) the decision criteria in making conclusions are to reject ๐ป0 if ๐‘๐ผ > ๐‘๐›ผ 2 ; 5. checking whether there is a spatial dependence on lag or error by using the lagrange multiplier (lm) test. the lagrange multiplier (lm) test is used to determine the type of spatial analysis that is appropriate to use [19], [20]. the general form of the sar model is defined as follows [20]โ€“[22]: ๐’š = ๐œŒ๐‘พ๐’š + ๐‘ฟ๐œท + ๐œบ; ๐œบ~๐‘(๐ŸŽ, ๐œŽ๐œบ ๐Ÿ๐‘ฐ) (8) where ๐’š denotes the response variable, ๐‘ฟ denotes the predictor variable, ๐œŒ denotes the spatial autocorrelation coefficient on the response variable, ๐‘พ denotes the spatial weight matrix, ๐œท denotes the intercept and regression coefficient and ๐œบ denotes the error. the hypotheses for the spatial dependence on lag are as follows: ๐ป0 โˆถ ๐œŒ = 0 (no spatial dependence on lag) ๐ป1 โˆถ ๐œŒ โ‰  0 (lag has a spatial dependence) the test statistic for the spatial dependence on lag are as follows: ๐ฟ๐‘€๐ฟ๐ด๐บ = [(๐‘’๐‘‡ ๐‘Š๐ด๐‘ฆ)/(๐‘’ ๐‘‡ ๐‘’/๐‘)]2 [(๐‘Š๐ด๐‘‹๏ฟฝฬ‚๏ฟฝ) 2 ๐‘€(๐‘Š๐ด๐‘‹๏ฟฝฬ‚๏ฟฝ)/(๐‘’ ๐‘‡ ๐‘’/๐‘)] + [๐‘ก๐‘Ÿ(๐‘Š๐ด ๐‘‡ ๐‘Š๐ด + ๐‘Š๐ด 2)] ~๐œ’(1โˆ’๐›ผ);๐‘‘๐‘“=1 2 (9) the decision criteria in making conclusions are to reject ๐ป0 if ๐ฟ๐‘€๐ฟ๐ด๐บ > ๐œ’(1โˆ’๐›ผ);๐‘‘๐‘“=1 2 . if ๐ป0 is rejected, the spatial autoregressive (sar) model is used. and here are the test statistics for spatial dependence on error: ๐ฟ๐‘€๐ธ๐‘…๐‘… = [(๐‘’๐‘‡ ๐‘Š๐ด๐‘’)/(๐‘’ ๐‘‡ ๐‘’/๐‘)]2 [๐‘ก๐‘Ÿ(๐‘Š๐ด ๐‘‡ ๐‘Š๐ด + ๐‘Š๐ด 2)] ~๐œ’(1โˆ’๐›ผ);๐‘‘๐‘“=1 2 (10) spatial analysis of dengue disease in jakarta province muhamad sobari 539 the decision criteria in making conclusions are to reject ๐ป0 if ๐ฟ๐‘€๐ธ๐‘…๐‘… > ๐œ’(1โˆ’๐›ผ);๐‘‘๐‘“=1 2 . if ๐ป0 is rejected, the spatial error model (sem) is used. if both ๐ฟ๐‘€๐ฟ๐ด๐บ and ๐ฟ๐‘€๐ธ๐‘…๐‘… are significant, comparing the akaike information criterion (aic) values allows one of the best models to be chosen. the best model is the one with the lowest aic value [16]. the aic calculated using the maximum likelihood estimation (mle) method is as follows [23]: ๐ด๐ผ๐ถ = โˆ’2๐ฟ๐‘š + 2๐‘š (11) where ๐ฟ๐‘š denotes the maximum log-likelihood and ๐‘š denotes the number of model parameters; 6. estimate the parameters of the sar model. the sar model is a model whose dependent variables are spatially correlated. parameter estimation using the maximum likelihood method is defined as follows [24], [25]: ๏ฟฝฬ‚๏ฟฝ๐‘€๐ฟ = (๐‘ฟ ๐‘ป๐‘ฟ)โˆ’1๐‘ฟ๐‘ป๐’š โˆ’ ๐œŒ(๐‘ฟ๐‘ป๐‘ฟ)โˆ’1๐‘ฟ๐‘ป๐‘พ๐’‘๐’š = ๏ฟฝฬ‚๏ฟฝ๐‘‚๐ฟ๐‘† โˆ’ ๐œŒ๏ฟฝฬ‚๏ฟฝ๐ฟ (12) with ๏ฟฝฬ‚๏ฟฝ๐ฟ is a regression parameter estimator based on weight matrix (w) and spatial autocorrelation ๐œŒ. equation (12), however, cannot be directly solved because the value ๐œŒ is unavailable. as a result, the log-likelihood concentrated function (๐ฟ๐‘ ) is employed, as defined below [18]: ln ๐ฟ๐‘ (๐œŒ) = ๐ถ โˆ’ ๐‘› 2 ๐‘™๐‘› [ 1 ๐‘› (๐’†๐ŸŽ โˆ’ ๐œŒ๐’†๐‘ณ) ๐‘‡ (๐’†๐ŸŽ โˆ’ ๐œŒ๐’†๐‘ณ)] + ๐‘™๐‘›|๐‘ฐ โˆ’ ๐œŒ๐‘พ๐œŒ| (13) with c is a constant. equation (13) is a non-linear function in one parameter and is maximized using a numerical technique with direct search; 7. interpretation of the obtained sar model, including the direct impact of covariates; 8. diagnostic testing of the sar model. results and discussion descriptive analysis figure 1 depicts the distribution of dengue disease cases number in the jakarta province. considering figure 1 the sub-districts with a high dengue disease cases number are shown in dark red, with the majority located in the municipalities of east jakarta and north jakarta and a tiny portion in the municipalities of west jakarta and south jakarta. the sub-districts with a moderate number of dengue disease cases are denoted in light red, with the majority found in the municipalities of west jakarta and south jakarta and a tiny portion in the municipalities of east jakarta and north jakarta. and the sub-districts with a low number of dengue disease cases are marked in white, with the majority of these sub-districts being in the municipality of central jakarta and a tiny portion in the municipalities of south jakarta and north jakarta. this indicates that sub-districts with high dengue disease cases likely to be located near sub-districts with moderate dengue disease cases. spatial analysis of dengue disease in jakarta province muhamad sobari 540 figure 2 shows that cilincing, koja, tanjung priok, cengkareng, and pulo gadung are the sub-districts with the highest number of flood-prone points. in comparison to dengue disease cases number in these sub-districts, the number of dengue disease cases is also high. in addition, it can be noticed that pademangan, taman sari, gambir, senen, menteng, johar baru, and cilandak are the sub-districts with the lowest flood-prone points. moreover, as compared to dengue disease cases number in these sub-districts, the number of dengue disease cases is comparatively low. this indicates that there is a positive correlation between the number of flood-prone points and the dengue disease cases number in jakarta province. figure 2 also shows that cilincing, koja, cengkareng, and jatinegara are the subdistricts with the highest number of slum neighborhood associations. in comparison to dengue disease cases number in these sub-districts, the number of dengue disease cases is also high. cempaka putih and pancoran can be noted to have the fewest slum neighborhood associations. comparatively to dengue disease cases number in these subdistricts, the number of dengue disease cases is comparatively low. this indicates a substantial correlation between the number of slum neighborhood associations and dengue disease cases number in jakarta province. we can see in figure 2 that koja, kramat jati, and jatinegara are the sub-districts with a high population density, and these sub-districts also have a significant prevalence of dengue disease cases. penjaringan and cilandak are the sub-districts with the lowest population density, and both sub-districts also have the lowest number of dengue disease. this indicates a positive correlation between population density and the number of cases of dengue disease in jakarta province. we can also see in figure 2 that cilincing, cakung, cengkareng, and cipayung are sub-districts with a low number of hospitals per 1,000 populations. however, when compared with dengue disease cases number, these sub-districts are classified as subfigure 1. map of the distribution of dengue disease cases in jakarta province spatial analysis of dengue disease in jakarta province muhamad sobari 541 districts with a high dengue disease cases number, indicating a negative relationship between the number of hospitals per 1,000 populations and the number of cases of dengue disease in jakarta province. figure 2. map of distribution of predictor variable spatial analysis of dengue disease in jakarta province muhamad sobari 542 and we can also notice from figure 2 the sub-districts with the lowest public health centers per 1,000 people number are cakung, koja, cengkareng, and ciracas. however, when compared to the number of dengue disease cases, these sub-districts are classified as sub-districts with a high number of dengue disease cases. this indicates a negative correlation between the number of public health centers per 1,000 people and dengue disease case number in jakarta province. relying on figures 1 and 2, we can conclude that descriptively there is a relationship between the number of cases of dengue disease and all predictor variables used in this study. however, in order to be more convincing, a spatial regression analysis must be performed. spatial analysis table 2 shows the results of the linear regression model's classical assumption test. the p-values of the normality assumption test and the homoscedasticity assumption test are greater than 0.05, implying that the normality and homoscedasticity assumptions are fulfilled. table 2 also shows that the durbin watson (๐‘‘) value is between 4โˆ’๐‘‘๐‘ˆ<๐‘‘<4โˆ’๐‘‘๐ฟ which can be concluded that the non-autocorrelation assumption is fulfilled, and the vif value lower than 5 for all variables can be concluded that the non-multicollinearity assumption is fulfilled. table 2. the results of the classical assumption of linear regression model statistic test result normality (shapiro-wilk) p-value = 0.3081 non-autocorrelation (durbin-watson) 2.0914 (dl=1.2546 du=1.7814) nonmulticollinearity (vif) (x1) 1.4457, (x2) 1.4091, (x3) 1.2851, (x4) 1.1829, (x5) 1.0831 homoscedasticity (breusch-pagan) p-value = 0.3219 even though the linear regression model has all of the assumptions fulfilled, it is still necessary to investigate whether there is an autocorrelation between sub-districts by performing the moran's i test. before carrying out the moran's i test, a spatial weight matrix is needed. and the spatial weight matrix used in this study is the neighbor (contiguity) spatial weight matrix with the neighboring type is (queen). the following table shows the results of the spatial autocorrelation test using moran's i test. table 3. spatial autocorrelation test results with moran's i variable statistic moranโ€™s i p-value (ฮฑ=5%) number of dengue disease cases 0.4140 1.893x10-6* number of flood-prone points 0.2926 0.0004* number of slum neighborhood associations (rt) 0.1591 0.05191 population density (people per km2) 0.1596 0.0363* number of hospitals per 1,000 population 0.1217 0.0877 number of public health centers per 1,000 population 0.0919 0.2044 *) significant according to table 3, there is a spatial autocorrelation in dengue disease cases number because the p-value is less than 0.05. two of the five predictor variables also spatial analysis of dengue disease in jakarta province muhamad sobari 543 showed that there was a spatial autocorrelation. moran's i statistical values are all between 0 and 1, indicating that the closer an area is, the more similar the variable values are. table 4. lr dan lm test results and aic value test value p-value (ฮฑ=5%) aic lr 9.9310 0.0016 451.7152 lmlag 7.6763 0.0056 443.7842 lmerr 5.1326 0.0235 446.3620 the likelihood ratio (lr) test is used to determine which model performs better, spatial regression or linear regression. and the lagrange multiplier (lm) test is employed to find whether the spatial dependence is on the dependent variables (lag), on unresearched variables (error), or both (error and lag). table 4 shows the output of the lr and lm tests that were performed. according to the results in table 4, the lr test is significant because the p-value is less than 0.05, indicating that there is a significant difference between the spatial regression model and the linear regression model. it can also be seen that the aic of the linear regression model is the largest when compared to the two spatial regression models. and it is clear that both the spatial dependence in lag and the spatial dependence in error are significant, as indicated by the p-value less than 0.05. however, this study use the sar model because its aic value is lower than the aic value in the sem model. table 5 below shows the estimation results of the sar model parameters. table 5. estimation of sar model parameters estimate std error z-value pr (>|z|) (intercept) 20.839 29.102 0.7161 0.4739 number of flood-prone points 3.5296 0.9152 3.8568 0.0001* number of slum neighborhood associations (rt) 0.1752 0.1336 1.3116 0.1896 population density (people per km2) -0,0003 0.0006 -0.4603 0.6453 number of hospitals per 1,000 population 2.8001 315.00 0.0089 0.9929 number of public health centers per 1,000 population -792.52 539.49 -1.4690 0.1418 spasial lag (rho) 0.56618 0.12682 4.4644 0.000008* statistic wald: 19.931; p-value: 0.000008 *) significant according to table 5, the spatial lag variable (rho) has a statistically significant and positive coefficient, indicating that as dengue disease cases number in one sub-district increases, so will dengue disease cases number in neighboring sub-districts. and the wald test p-value is less than 0.05, indicating a significant relationship between the number of dengue disease cases in jakarta province and all predictor factors. dengue disease cases number in jakarta province is significantly affected by the number of flood-prone points, the number of slum neighborhood associations, the population density, the number of hospitals and the number of public health centers per 1,000 populations, and the spatial lag. at a significance level of 5%, only the number of flood-prone points and spatial lag have a significant impact on the number of cases of spatial analysis of dengue disease in jakarta province muhamad sobari 544 dengue disease in jakarta province. this is consistent with lilis wijaya's 2018 research, which found that floods led to post-flood ailments such as diarrhea, dengue disease, leptospirosis, acute respiratory infection (ari), intestinal worms, skin problems, and many more [26]. wang et al. (2016) reported that the aedes aegypti mosquito will live longer if the humidity level is high, such as during the rainy season, particularly in areas prone to floods, where the huge volume of standing water will make the disease more likely to spread [2]. the number of slum neighborhood associations and the number of public health centers per 1,000 people has a same coefficient sign with previous studies [1], [5]. the sign of the coefficient indicates the direction of the relationship between the predictor variable and the number of cases of dengue disease. although in this study the effect is almost significant with the p-value still below 0.2, which means the error rate is still below 20%. meanwhile, the population density variable and the number of hospitals per 1,000 population have different coefficient signs from previous studies [5], [6]. however, the pvalue shows that the effect is highly insignificant because the p-value exceeds 0.5, which means the error rate is above 50%. based on the parameter estimation results in table 5, the form of the sar model in this study is as follows: ๏ฟฝฬ‚๏ฟฝ๐‘– = 0.56618 โˆ‘ ๐‘ค๐‘–๐‘— ๐‘ฆ๐‘— ๐‘› ๐‘—=1,๐‘–โ‰ ๐‘— + 20.839 + 3.5296 ๐‘‹1๐‘– + 0.1752 ๐‘‹2๐‘– โˆ’ 0,0003๐‘‹3๐‘– +2.8001๐‘‹4๐‘– โˆ’ 792.52๐‘‹5๐‘– (14) the impact of covariates in the sar model could be classified into three categories: total impact; indirect impact; and direct impact; [16]. total impact refers to the changes that occur in one sub-district as a consequence of changes in that sub-district and its surroundings. indirect impact refers to the effect that takes place when the predictor factors in the bordering sub-district change. and impacts that occur locally in an area, which in this study is a sub-district, as a consequence of changes in predictor factors in that sub-district are referred to as direct impacts. the magnitude of direct and indirect impact of table 6 shows the sar model used in this study. table 6. measures of direct, indirect and total impact of the sar model variable direct impact p-value direct impact indirect impact p-value indirect impact total impact p-value total impact number of flood-prone points 3.8601 0.0002* 4.2760 0.0859 8.1361 0.0110* number of slum neighborhood associations (rt) 0.1916 0.2004 0.2123 0.3637 0.4039 0.2751 population density (people per km2) -0.0003 0.6310 -0.0004 0.7318 -0.0007 0.6816 number of hospitals per 1,000 population 3.0623 0.9833 3.3923 0.9584 6.4546 0.9671 number of public health centers per 1,000 population -866.74 0.1388 -960.11 0.2705 -1826.8 0.1908 *) significant table 6 shows the number of flood-prone points in jakarta province has a substantial direct effect on the number of dengue disease cases. no variable has a significant indirect effect on dengue disease in jakarta province, based on an examination of indirect effects. the number of flood-prone points in jakarta province has a significant impact on the total number of dengue disease cases. the growth in the number of floodspatial analysis of dengue disease in jakarta province muhamad sobari 545 prone points will have a direct impact on dengue disease cases number in jakarta province. each one percent increase in flood-prone points in a sub-district will result in a rise of 3.86 cases of dengue disease in that sub-district. table 7. sar model diagnostic test statistic test p-value conclusion normality (shapiro-wilk) 0.8740 residuals are normally distributed lm test for residual autocorrelation 0.7339 there is no autocorrelation between residuals homogeneity (breusch-pagan) 0.6246 the homogeneity assumption is met it is important to conduct a diagnostic test that involves the assumptions of homogeneity, normality and non-autocorrelation to determine the quality of the sar model. the sar model satisfies all the assumptions, as shown in table 7. conclusions moran's i test showed the dengue disease cases number, the number of flood-prone points, and the population density have spatial correlation whereas the number of slum neighborhood associations, the number of hospitals per 1,000 populations, and the number of public health centers per 1,000 population have no geographical correlation. relying on the lagrange multiplier test, the best spatial model is the spatial autoregressive (sar) model. the growth in the flood-prone points number in jakarta province will have a direct effect on the number of instances of dengue disease. each additional one percent of flood-prone points in a sub-district will result in 3.86 additional cases of dengue disease in that sub-district. the derived sar model is valid since it satisfies the assumptions of normality, absence of autocorrelation, and homogeneity. recommendations are made for the jakarta provincial government to enhance flood management regulations in order to lower the incidence of dengue disease cases. additional variables with a substantial association to the frequency of dengue disease cases can be included in future investigations. in addition, the spatial durbin model (sdm) technique can be utilized for more research on the number of dengue disease cases if all predictor variables exhibit a spatial lag. or geographically weighted poisson regression (gwpr) can also be utilized, which overcomes the presence of spatial heterogeneity in the response data in the form of count data (amount). or the conditional autoregressivebessag york mollie (car-bym) can also be utilized, which can accommodate geographical and non-spatial features induced by the heterogeneity of cases between regions. acknowledgments the authors would like to thank the rector of universitas padjadjaran, who offered financial help to disseminate studies reports. this research is part of pdkn contract dikti: 094/e5/pg.02.00.pt/2022 and drpm: 1318/un6.3.1/pt.00/2022 and also it is part of academic leadership grant (alg) contract 2023/un6.3.1/pt.00/2022. we are also thankful for the discussion on social media analytics through the rise_sma project funded through the european union year 2019-2024 and also studies center of modeling and computation universitas padjadjaran. spatial analysis of dengue disease in jakarta province muhamad sobari 546 references [1] h. n. avida et al., โ€œpemberantasan sarang nyamuk (psn) sebagai upaya pencegahan kasus demam berdarah dengue (dbd) di yogyakarta,โ€ jurnal pengabdian serulingmas, vol. 2, no. 1, pp. 23โ€“25, apr. 2022. [2] r. k. sari, i. djamaluddin, q. djamโ€™an, and t. sembodo, โ€œpemberdayaan masyarakat dalam upaya pencegahan demam berdarah dengue dbd di puskesmas karangdoro,โ€ jurnal abdimas-ku: jurnal pengabdian masyarakat kedokteran, vol. 1, no. 1, pp. 25โ€“33, jan. 2022, doi: 10.30659/abdimasku.1.1.25-33. [3] l. faridah et al., โ€œtemporal correlation between urban microclimate, vector mosquito abundance, and dengue cases,โ€ j med entomol, vol. 59, no. 3, pp. 1008โ€“ 1018, may 2022, doi: 10.1093/jme/tjac005. [4] d. tarmana, โ€œpotensi peluang demam berdarah dengue (dbd) berdasarkan proyeksi perubahan iklim (study kasusโ€ฏ: dki jakarta),โ€ the indonesian journal of infectious disease, vol. 1, no. 2, pp. 14โ€“22, 2013. [5] i. f. fatati, h. wijayanto, and a. m. sholeh, โ€œanalisis regresi spasial dan pola penyebaran pada kasus demam berdarah dengue (dbd) di provinsi jawa tengah,โ€ media statistika, vol. 10, no. 2, pp. 95โ€“105, dec. 2017, doi: 10.14710/medstat.10.2.95-105. [6] jajang, b. pratikno, and mashuri, โ€œdisease mapping kasus dbd menggunakan model car-bym,โ€ in pengembangan sumber daya perdesaan dan kearifan lokal berkelanjutan xi, oct. 2021, pp. 1โ€“10. [7] i. g. n. m. jaya, f. kristiani, y. andriyana, and b. n. ruchjana, โ€œmodeling dengue disease transmission for juvenile in bandung, indonesia,โ€ communications in mathematical biology and neuroscience, vol. 2021, 2021, doi: 10.28919/cmbn/5435. [8] badan pusat statistik, โ€œkependudukan menurut badan pusat statistik,โ€ kepadatan penduduk menurut provinsi, 2019. https://bps.go.id/subject/12/kependudukan.html#subjekviewtab3 (accessed jun. 12, 2022). [9] badan pusat statistik, โ€œkemiskinan menurut badan pusat statistik,โ€ persentase rumah tangga kumuh perkotaan, 2019. https://bps.go.id/subject/23/kemiskinan-danketimpangan.html#subjekviewtab3 (accessed jun. 12, 2022). [10] kementerian kesehatan republik indonesia, โ€œkasus demam berdarah dengue (dbd) menurut jenis kelamin dan provinsi di indonesia,โ€ in profil kesehatan indonesia 2019, jakarta: kementerian kesehatan republik indonesia, 2020, p. 458. [11] r. yuliana, m. rahmaniati, i. apriantini, and r. triarjunet, โ€œanalisis autokorelasi spasial kasus demam berdarah dengue di kota padang,โ€ jik (jurnal ilmu kesehatan), vol. 6, no. 1, pp. 34โ€“42, apr. 2022, doi: 10.33757/jik.v6i1.484.g210. [12] n. faiz, r. rahmawati, and d. safitri, โ€œanalisis spasial penyebaran penyakit demam berdarah dengue dengan indeks moran dan gearyโ€™s c (studi kasus di kota semarang tahun 2011),โ€ jurnal gaussian, vol. 2, no. 1, pp. 69โ€“78, 2013, [online]. available: http://ejournal-s1.undip.ac.id/index.php/gaussian [13] a. p. n. taryono, d. ispriyanti, and a. prahutama, โ€œanalisis faktor-faktor yang mempengaruhi penyebaran penyakit demam berdarah dengue (dbd) di provinsi jawa tengah dengan metode spatial autoregressive model dan spatial durbin model,โ€ indonesian journal of applied statistics, vol. 1, no. 1, pp. 1โ€“13, may 2018. spatial analysis of dengue disease in jakarta province muhamad sobari 547 [14] badan pusat statistik provinsi dki jakarta, โ€œjumlah rt kumuh menurut kecamatan,โ€ in pendataan rw kumuh dki jakarta 2017, 1st ed., jakarta: badan pusat statistik provinsi dki jakarta, 2017, pp. 190โ€“194. [15] dinas komunikasi informatika dan statistik pemprov dki jakarta, โ€œdata terbuka pemerintah provinsi dki jakarta,โ€ jumlah kasus dbd, jumlah titik rawan banjir, kepadatan penduduk, jumlah rs per 1000 penduduk, jumlah puskesmas per 1000 penduduk, 2017. https://data.jakarta.go.id/ (accessed jun. 12, 2022). [16] h. i. zebua and i. g. n. m. jaya, โ€œspatial autoregressive model of tuberculosis cases in central java province 2019,โ€ cauchy โ€“jurnal matematika murni dan aplikasi, vol. 7, no. 2, pp. 240โ€“248, dec. 2022, doi: 10.18860/ca.v7i2.13451. [17] r. dubin, โ€œspatial weight,โ€ in the sage handbook of spatial analysis, a. s. fotheringham and p. a. rogerson, eds. london: sage publications ltd, 2009, pp. 125โ€“130. [18] l. anselin, โ€œspatial econometrics,โ€ in a companion to theoretical econometrics , b. h. baltagi, ed. blackwell publishing ltd, 2001, pp. 310โ€“330. [19] l. anselin, โ€œlagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity,โ€ geogr anal, vol. 20, no. 1, pp. 1โ€“17, jan. 1988. [20] c. song et al., โ€œdisease relative risk downscaling model to localize spatial epidemiologic indicators for mapping hand, foot, and mouth disease over china,โ€ stochastic environmental research and risk assessment, vol. 33, no. 10, pp. 1815โ€“ 1833, oct. 2019, doi: 10.1007/s00477-019-01728-5. [21] h. yasin, a. r. hakim, and b. warsito, โ€œspatial autoregressive, spatial error model,โ€ in regresi spasial (aplikasi dengan r), 1st ed., pekalongan: wade group, 2020, pp. 21โ€“48. [22] w. wang et al., โ€œreclaiming independence in spatial-clustering datasets: a series of data-driven spatial weights matrices,โ€ stat med, vol. 41, no. 15, pp. 2939โ€“2956, jul. 2022, doi: 10.1002/sim.9395. [23] a. a. grasa, โ€œcriteria bic and aic,โ€ in econometric model selection: a new approach, vol. 16, dordrecht: springer netherlands, 1989, p. 132. doi: 10.1007/978-94-0171358-0. [24] j. p. lesage, โ€œlecture 1,โ€ in maximum likelihood estimation of spatial regression models, toledo: university of toledo, 2004, pp. 1โ€“16. [25] s. s. handajani, h. pratiwi, and y. susanti, โ€œhybrid ensemble spatial regression model for case number of dengue hemorrhagic fever in central java province,โ€ in international symposium on advanced intelligent informatics (sain)โ€ฏ: โ€œrevolutionize intelligent informatics spectrum for humanity,โ€ aug. 2018, pp. 148โ€“152. [26] m. g. saputra and f. ummah, โ€œkesiapan masyarakat dalam menghadapi penyakit pasca banjir di dusun lohgawe desa gawerejo kecamatan karangbinangun kabupaten lamongan,โ€ jurnal asri (administrasi rumah sakit indonesia), vol. 7, no. 2, pp. 54โ€“62, 2021. bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 270-278 p-issn: 2086-0382; e-issn: 2477-3344 submitted: january 22, 2021 reviewed: april 24, 20201 accepted: april 30 , 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.11482 bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar1, rahmi febriyuni2, izzati rahmi hg3 1,2,3mathematics department, faculty of mathematics and natural sciences, universitas andalas, padang email: ferrayanuar@sci.unand.ac.id, raahmifebriyuni@gmail.com, izzatirahmihg@sci.unand.ac.id abstract the purposes of this study are to estimate the scale parameter of invers rayleigh distribution under mle and bayesian generalized square error loss function (self). the posterior distribution is considered to use two types of prior, namely jeffreyโ€™s prior and exponential distribution. the proposed methods are then employed in the real data. several criteria for the selection model are considered in order to identify the method which results in a suitable value of parameter estimated. this study found that bayesian generalized self under jeffreyโ€™s prior yielded better estimation values than mle and bayesian generalized self under exponential distribution. keywords: bayesian generalized self; exponential distribution; inverse rayleigh; jeffreyโ€™s prio; mle. introduction rayleigh distribution is a special form of weibull distribution, meanwhile, inverse rayleigh distribution is a special form of inverse weibull distribution. the inverse rayleigh distribution is very useful lifetime model that can be used for analyzing infant mortality, survival analysis, reliability and quality control. the probability density function (pdf) of the inverse rayleigh distribution with scale parameter ๐œƒ is defined as follows [1]: ๐‘“(๐‘ฅ; ๐œƒ) = 2๐œƒ ๐‘ฅ3 exp (โˆ’ ๐œƒ ๐‘ฅ2 ) , ๐œƒ > 0, ๐‘ฅ > 0. (1) the cumulative distribution function (cdf) of the inverse rayleigh distribution is given by ๐น(๐‘ฅ; ๐œƒ) = exp (โˆ’ ๐œƒ ๐‘ฅ2 ) , ๐œƒ > 0, ๐‘ฅ > 0 . (2) here ๐œƒ is the scale parameter. the behavior of instantaneous failure rate of the inverse rayleigh distribution has been increasing and decreasing failure rate patterns for lifetime data. a significant amount of work has been done related to the inverse rayleigh distribution model in the classical framework but not much in a bayesian setup, especially in bayesian generalized self (squared error loss function). several studies http://dx.doi.org/10.18860/ca.v6i4.11482 mailto:ferrayanuar@sci.unand.ac.id mailto:raahmifebriyuni@gmail.com mailto:izzatirahmihg@sci.unand.ac.id bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar 271 have used inverse rayleigh distribution for several cases. soliman and al-aboud [2] used classical method and bayesian for parameter estimation based on a set of upper record values from the rayleigh distribution. aslam and jun [3] derived an acceptance sampling plan from a truncated life test where multiple items in a group could be tested simultaneously by a tester when the lifetime of an item followed either an inverse rayleigh or a log-logistic distribution. soliman et al. [4] discussed the parameter estimation for an inverse rayleigh distribution based on lower record values. they implemented a maximum likelihood (ml) estimator of the unknown parameter and bayesian analysis with informative prior used to derive these estimators and the predictive intervals. ali [5] explored the modeling of the heterogeneity existing in the lifetime processes using the mixture of the inverse rayleigh distribution, and the spotlight is the bayesian inference of the mixture model using non-informative (the jeffreys and the uniform) and informative (gamma) priors. studied by dey & dey [6] derived bayesian estimation of the scale parameter and reliability function of an inverse rayleigh distribution. yousef & lafta [7] explored how to estimate the scale parameter for distribution of inverse rayleigh using different methods, such as the method of maximum likelihood estimator and moment method. dey [8] obtained bayesian estimates of an inverse rayleigh distribution using squared error and linex loss functions. meanwhile, rasheed [9] designed some bayesian estimators for the parameter scale and reliability function of the inverse rayleigh distribution under the generalized squared error loss function (self). in the present study, we consider the estimation of unknown parameters in an inverse rayleigh distribution. the aim of this study is to estimate the scale parameter of inverse rayleigh distributions using frequentist method (mle) and the bayesian approach which are employed to empirical data. the bayesian approach here is bayesian generalized self under two types of priors, namely jeffreyโ€™s prior and exponentialโ€™s prior. the criteria to determine better performance of estimation method are based on the smallest value of akaike information criteria (aic), akaike information criteria correction (aicc) and bayesian information criteria (bic). the remainder of this study is organized as follows: the maximum likelihood estimation (mle), bayesian generalized self, jeffreyโ€™s method, exponential distribution, criteria for the goodness of fit of parameter estimation method are derived in section 2. estimation method using bayesian generalized self under two types of priors and implementation of the proposed method to the real data are discussed in section 3. finally, section 4 as the last section provides some concluding remarks. methods in this section, we explore all methods which are implemented in this present study. the maximumm likelihood estimation method in the beginning and then followed by bayesian approach and criteria for model selection. maximum likelihood estimation in this section, we derived the classical estimator of the scale parameter for the inverse rayleigh distribution represented by the maximum likelihood estimator. let ๐‘‹1, ๐‘‹2, โ€ฆ ๐‘‹๐‘› be a sequence of i.i.d random variables from invers rayleigh distribution with scale parameter ฮธ, written as ๐‘‹ ~ ๐ผ๐‘…๐ท (๐œƒ), with probability density function of ๐‘‹ is ๐‘“(๐‘ฅ ; ๐œƒ) as presented by eq. (1). thus, the maximum likelihood estimation is formulated as follows [10]: bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar 272 ๐ฟ(๐œƒ) = โˆ ๐‘“(๐‘ฅ๐‘– , ๐œƒ) ๐‘› ๐‘–=1 = 2๐‘› ๐œƒ๐‘› (โˆ 1 ๐‘ฅ๐‘– 3 ๐‘› ๐‘–=1 ) ๐‘’๐‘ฅ๐‘ (โˆ’๐œƒ โˆ‘ 1 ๐‘ฅ๐‘– 2 ๐‘› ๐‘–=1 ) (3) to obtained the estimate for ฮธ is derived by maximizing eq. (3) until we have: ๐œƒ๐‘€๏ฟฝฬ‚๏ฟฝ = ๐‘› โˆ‘ 1 ๐‘ฅ ๐‘– 2 ๐‘› ๐‘–=1 = ๐‘› ๐‘‡ , ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘‡ = โˆ‘ 1 ๐‘ฅ๐‘– 2 ๐‘› ๐‘–=1 (4) bayesian generalized self method this section deals with the problem of obtaining bayesian estimators for the scale parameter ฮธ from the inverse rayleigh distribution the bayes method is a parameter estimation method based on the bayes theorem. the basic concepts of the bayes method are as follows. suppose that ๐‘‹1, ๐‘‹2, โ€ฆ . , ๐‘‹๐‘› is a random example of the distribution ๐‘“(๐’™ ; ๐œƒ) where ๐œƒ is the parameter of the distribution. estimation of parameter ๐œƒ will be based on random example ๐‘‹1, ๐‘‹2, โ€ฆ . , ๐‘‹๐‘›. the bayes method is an estimation method based on combining information obtained from samples (objective knowledge), known as the likelihood function, with prior information regarding the distribution of estimated parameters [11], [12]. multiplying the likelihood function by the prior distribution gives the posterior distribution. in other words, the posterior distribution is a conditional probability density function of a parameter ฮธ which is given the observation ๐ฑ = (๐‘‹1, ๐‘‹2, โ€ฆ . , ๐‘‹๐‘›). the formula for defining the posterior distribution is stated by the following formula [13]: ๐‘“(๐œƒ|๐’™) = ๐‘“(๐’™|๐œƒ)๐‘“(๐œƒ) โˆซ ๐‘“(๐’™|๐œƒ)๐‘“(๐œƒ)๐‘‘๐œƒ = ๐‘“(๐’™,๐œƒ) ๐‘“(๐’™) (5) meanwhile, the estimator for the scale parameter (๐œƒ) using the bayes generalized self method will be described as follows [9]: ๐ฟ(๐œƒ ; ๐œƒ) = โˆ‘ ๐›ผ๐‘— ๐œƒ ๐‘— (๐œƒ โˆ’ ๐œƒ) ๐‘› ๐‘–=1 = (๐›ผ0 + ๐›ผ1๐œƒ + โ‹ฏ + ๐›ผ๐‘˜ ๐œƒ ๐‘˜ ) (๐œƒ โˆ’ ๐œƒ) (6) the estimator for parameter ๐œƒ is obtained by minimizing the expectation for ๐œƒ, which is denoted by ๐ฟ(๐œƒ ; ๐œƒ). the expected value of this function can be found by combining ๐ฟ(๐œƒ ; ๐œƒ) and the probability density function of ๐œƒ, here denoted by โ„Ž(๐œƒ |๐‘ฅ). thus, the expectation of ๐œƒ using the bayes generalized self is as follows: ๐ธ[๐ฟ(๐œƒ ; ๐œƒ)] = โˆซ ๐ฟ(๐œƒ ; ๐œƒ) โ„Ž(๐œƒ |๐‘ฅ) ๐‘‘๐œƒ โˆž 0 ๐ธ[๐ฟ(๐œƒ ; ๐œƒ)] = ๐›ผ0 ๐œƒ 2 โˆ’ 2 ๐›ผ0 ๐œƒ ๐ธ(๐œƒ | ๐‘ฅ) + ๐›ผ0 ๐ธ(๐œƒ 2 | ๐‘ฅ) + ๐›ผ1 ๐œƒ 2๐ธ(๐œƒ | ๐‘ฅ) โˆ’ 2 ๐›ผ1 ๐œƒ ๐ธ(๐œƒ 2 | ๐‘ฅ) + ๐›ผ1 ๐ธ(๐œƒ 3 | ๐‘ฅ) + โ‹ฏ + ๐›ผ๐‘˜ ๐œƒ 2๐ธ(๐œƒ๐‘˜ | ๐‘ฅ) โˆ’ 2 ๐›ผ๐‘˜ ๐œƒ ๐ธ(๐œƒ ๐‘˜+1 | ๐‘ฅ) + ๐›ผ๐‘˜ ๐ธ(๐œƒ ๐‘˜+2 | ๐‘ฅ). (7) to obtain the estimated value for ๐œƒ with the bayesian generalized self method, the eq. (7) is derived on ๐œƒ , so that: ๐œƒ๐ต๏ฟฝฬ‚๏ฟฝ = ๐›ผ0 ๐ธ(๐œƒ | ๐‘ฅ) + ๐›ผ1 ๐ธ(๐œƒ 2 | ๐‘ฅ) + โ‹ฏ + ๐›ผ๐‘˜ ๐ธ(๐œƒ ๐‘˜+1 | ๐‘ฅ) ๐›ผ0 + ๐›ผ1 ๐ธ(๐œƒ | ๐‘ฅ) + โ‹ฏ + ๐›ผ๐‘˜ ๐ธ(๐œƒ ๐‘˜ | ๐‘ฅ) (8) bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar 273 jeffreysโ€™ prior as non-informative prior the most widely used noninformative priors in bayesian analysis is jeffreysโ€™ prior. this method is also attractive because it is proper under mild conditions and requires no elicitation of hyperparameters. jeffreysโ€™ rule is derived from likelihood function then take the prior distribution to be the determinant of the square root of the fisher information matrix, denoted by ๐‘“(๐œƒ) โˆ โˆš๐ผ(๐œƒ). fisher's information for the parameter ๐œƒ, defined as [13], [14] ๐ผ(๐œƒ) = โˆ’๐‘› ๐ธ ( ๐œ•2 ln(๐‘“(๐‘ฅ๐‘– ; ๐œƒ)) ๐œ•๐œƒ2 ) let b is constant, thus : ๐‘“(๐œƒ) โˆ โˆš๐ผ(๐œƒ) = ๐‘ โˆšโˆ’๐‘› ๐ธ ( ๐œ•2 ln(๐‘“(๐‘ฅ๐‘– ; ๐œƒ)) ๐œ•๐œƒ2 ) (9) for inverse rayleigh distribution, itโ€™s found that ๐œ•2 ln(๐‘“(๐‘ฅ๐‘– ; ๐œƒ)) ๐œ•๐œƒ2 = โˆ’ 1 ๐œƒ2 . thus, itโ€™s also obtained that ๐ธ ( ๐œ•2 ln(๐‘“(๐‘ฅ๐‘– ; ๐œƒ)) ๐œ•๐œƒ2 ) = โˆ’ 1 ๐œƒ2 (10) by substituting eq. (10) into eq. (9), then it results ๐‘“(๐œƒ) = ๐‘ ๐œƒ โˆš๐‘› , ๐œƒ > 0 (11) by combining this jeffreyโ€™s prior and likelihood function, it yields the following posterior distribution : โ„Ž1(๐œƒ | ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘› ) = ๐‘‡๐‘› ๐œƒ๐‘›โˆ’1 exp(โˆ’๐œƒ๐‘‡) ะณ(๐‘›) (12) the posterior distribution in eq. (12) has identic form with gamma distribution with scale parameter 1 ๐‘‡ and shape parameter n, written as ๐œƒ | ๐‘ฅ ~ ๐บ๐‘Ž๐‘š๐‘š๐‘Ž ( 1 ๐‘‡ , ๐‘›). exponential distribution as conjugate prior we also derive the parameter estimation for ๐œƒ based on bayesian generalized self with exponential distribution as prior. the probability distribution function for random variable ๐œƒ which has exponential distribution with scale parameter ๐œ†, written as ๐œƒ~๐ธ๐‘ฅ๐‘(๐œ†), is formulated as follows: ๐‘”(๐œƒ) = 1 ๐œ† exp ( โˆ’๐œƒ ๐œ† ) , ๐œƒ > 0, ๐œ† > 0 (13) eq. (13) then is combined with likelihood function in eq. (3) until we have the posterior distribution as follows: โ„Ž2(๐œƒ | ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘› ) = (๐‘‡ + 1 ๐œ† ) ๐‘›+1 ๐œƒ๐‘› exp (โˆ’๐œƒ (๐‘‡ + 1 ๐œ† )) ะณ(๐‘› + 1) (14) bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar 274 this posterior distribution has a similar form with gamma distribution with scale parameter is 1 ๐‘‡+ 1 ๐œ† and shape parameter is n+1, written as ๐œƒ | ๐‘ฅ ~ ๐บ๐‘Ž๐‘š๐‘š๐‘Ž ( 1 ๐‘‡+ 1 ๐œ† , ๐‘› + 1) or ๐œƒ | ๐‘ฅ ~ ๐บ๐‘Ž๐‘š๐‘š๐‘Ž ( 1 ๐‘ƒ , ๐‘› + 1) with ๐‘ƒ = ๐‘‡ + 1 ๐œ† . criteria model selection the akaike information criterion (aic) which is widely used for statistical inference, is an estimator of out-of-sample prediction error and thereby the relative quality of statistical models for a given set of data [15]. given several models for the data, aic estimates the quality of each model, relative to each of the other models. this method provides a means for each model. when a statistical model is used to represent the process that generated the data, the representation will almost never be exact; so some information will be lost by using the model to represent the process. aic estimates the relative amount of information lost by a given model: the less information a model loses, the higher the quality of that model. in estimating the amount of information lost by a model, aic deals with the trade-off between the goodness of fit of the model and the simplicity of the model. in other words, aic deals with both the risk of overfitting and the risk of underfitting. suppose that we have a statistical model of some data. let k be the number of estimated parameters in the model. let ๏ฟฝฬ‚๏ฟฝ be the maximum value of the likelihood function for the model. then the aic value of the model is the following [15]: ๐ด๐ผ๐ถ = 2๐‘˜ โˆ’ 2๐‘™๐‘›(๏ฟฝฬ‚๏ฟฝ) for condition ๐‘› ๐‘˜ < 40 with n represent the amount of data, itโ€™s suggested to use aicc (akaike information criteria correction): ๐ด๐ผ๐ถ๐‘ = ๐ด๐ผ๐ถ + 2๐‘˜(๐‘˜ + 1) ๐‘› โˆ’ ๐‘˜ โˆ’ 1 another method to estimate the quality of each model relative to each of the other models is bayesian information criteria (bic), which is represented by following: ๐ต๐ผ๐ถ = ๐‘˜๐‘™๐‘›(๐‘›) โˆ’ 2๐‘™๐‘› (๐ฟ(๐œƒ)). given a set of candidate models for the data, the preferred model is the one with the minimum aic, aicc and bic value. results and discussion in this current study, we then employ the bayesian generalized self under non informative prior that is jeffreys prior to estimate the scale parameter of invers rayleight distribution. we also consider the bayesian self under informative prior namely an exponential distribution. both methods as well as mle are employed to the empirical data then. the most suitable method to be implemented is determined based on the smallest values of aic, aicc and bic. https://en.wikipedia.org/wiki/statistical_inference https://en.wikipedia.org/wiki/estimator https://en.wikipedia.org/wiki/out-of-sample https://en.wikipedia.org/wiki/statistical_model https://en.wikipedia.org/wiki/goodness_of_fit https://en.wikipedia.org/wiki/overfitting https://en.wikipedia.org/wiki/statistical_model https://en.wikipedia.org/wiki/statistical_parameter https://en.wikipedia.org/wiki/likelihood_function bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar 275 bayesian generalized self under jeffreyโ€™s prior based on eq. (12) is obtained that ๐œƒ | ๐‘ฅ ~ ๐บ๐‘Ž๐‘š๐‘š๐‘Ž ( 1 ๐‘‡ , ๐‘›). it can be derived that ๐ธ (๐œƒ | ๐‘ฅ) = ๐‘› ๐‘‡ and in general we also obtain ๐ธ (๐œƒ๐‘š | ๐‘ฅ) = ะณ (๐‘›+๐‘š) ะณ(๐‘›) ๐‘‡๐‘š . these expected values then be substituted into eq. (8) to derive the formula to estimate ๐œƒ, under jeffreyโ€™s prior, denoted here as ๐œƒ๏ฟฝฬ‚๏ฟฝ : ๐œƒ๏ฟฝฬ‚๏ฟฝ = ๐›ผ0 ( ๐‘› ๐‘‡ ) + ๐›ผ1 ( (๐‘›+1)๐‘› ๐‘‡2 ) + โ‹ฏ + ๐›ผ๐‘˜ ( (๐‘›+๐‘˜)(๐‘›+๐‘˜โˆ’1)โ€ฆ(๐‘›+1)๐‘› ๐‘‡๐‘˜+1 ) ๐›ผ0 + ๐›ผ1 ( ๐‘› ๐‘‡ ) + โ‹ฏ + ๐›ผ๐‘˜ ( (๐‘›+๐‘˜โˆ’1)(๐‘›+๐‘˜โˆ’2)โ€ฆ(๐‘›+1)๐‘› ๐‘‡๐‘˜ ) in this study, we choose first polynomial until fourth polynomial to be applied to estimate ๐œƒ: ๐œƒ๐ฝ1ฬ‚ = ๐›ผ0 ( ๐‘› ๐‘‡ ) + ๐›ผ1 ( (๐‘›+1)๐‘› ๐‘‡2 ) ๐›ผ0 + ๐›ผ1 ( ๐‘› ๐‘‡ ) (15) ๐œƒ๐ฝ2ฬ‚ = ๐›ผ0 ( ๐‘› ๐‘‡ ) + ๐›ผ1 ( (๐‘›+1)๐‘› ๐‘‡2 ) + ๐›ผ2 ( (๐‘›+2)(๐‘›+1)๐‘› ๐‘‡3 ) ๐›ผ0 + ๐›ผ1 ( ๐‘› ๐‘‡ ) + ๐›ผ2 ( (๐‘›+1)๐‘› ๐‘‡2 ) (16) ๐œƒ๐ฝ3ฬ‚ = ๐›ผ0 ( ๐‘› ๐‘‡ ) + ๐›ผ1 ( (๐‘›+1)๐‘› ๐‘‡2 ) + โ‹ฏ + ๐›ผ3 ( (๐‘›+3)(๐‘›+2)(๐‘›+1)๐‘› ๐‘‡4 ) ๐›ผ0 + ๐›ผ1 ( ๐‘› ๐‘‡ ) + โ‹ฏ + ๐›ผ3 ( (๐‘›+2)(๐‘›+1)๐‘› ๐‘‡3 ) (17) ๐œƒ๐ฝ4ฬ‚ = ๐›ผ0 ( ๐‘› ๐‘‡ ) + ๐›ผ1 ( (๐‘›+1)๐‘› ๐‘‡2 ) + โ‹ฏ + ๐›ผ4 ( (๐‘›+4)(๐‘›+3)โ€ฆ(๐‘›+1)๐‘› ๐‘‡5 ) ๐›ผ0 + ๐›ผ1 ( ๐‘› ๐‘‡ ) + โ‹ฏ + ๐›ผ4 ( (๐‘›+3)(๐‘›+2)(๐‘›+1)๐‘› ๐‘‡4 ) (18) bayesian generalized self under exponential distribution it has been proved that ๐œƒ | ๐‘ฅ ~ ๐บ๐‘Ž๐‘š๐‘š๐‘Ž ( 1 ๐‘‡+ 1 ๐œ† , ๐‘› + 1) or ๐œƒ | ๐‘ฅ ~ ๐บ๐‘Ž๐‘š๐‘š๐‘Ž ( 1 ๐‘ƒ , ๐‘› + 1) with ๐‘ƒ = ๐‘‡ + 1 ๐œ† . then, it can be proved that ๐ธ (๐œƒ๐‘š | ๐‘ฅ) = ะณ (๐‘› + 1 + ๐‘š) ะณ(๐‘› + 1) ๐‘ƒ๐‘š (19) by substituting ๐‘š = 1,2, . . . , ๐‘˜ to eq. (19), we then derive the estimate formula for scale parameter, ๐œƒ under exponential prior, denoted here as ๐œƒ๏ฟฝฬ‚๏ฟฝ : ๐œƒ๏ฟฝฬ‚๏ฟฝ = ๐›ผ0 ( ๐‘›+1 ๐‘ƒ ) + ๐›ผ1 ( (๐‘›+2)(๐‘›+1) ๐‘ƒ2 ) + โ‹ฏ + ๐›ผ๐‘˜ ( (๐‘›+๐‘˜+1)โ€ฆ(๐‘›+1) ๐‘ƒ๐‘˜+1 ) ๐›ผ0 + ๐›ผ1 ( ๐‘›+1 ๐‘ƒ ) + โ‹ฏ + ๐›ผ๐‘˜ ( (๐‘›+๐‘˜)(๐‘›+๐‘˜โˆ’1)โ€ฆ(๐‘›+1) ๐‘ƒ๐‘˜ ) (20) in this study, we choose first polinomial until fourth polinomial based eq. (20) to be used to estimate ๐œƒ๏ฟฝฬ‚๏ฟฝ . bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar 276 ๐œƒ๐ธ1ฬ‚ = ๐›ผ0 ( ๐‘›+1 ๐‘ƒ ) + ๐›ผ1 ( (๐‘›+2)(๐‘›+1) ๐‘ƒ2 ) ๐›ผ0 + ๐›ผ1 ( ๐‘›+1 ๐‘ƒ ) (21) ๐œƒ๐ธ2ฬ‚ = ๐›ผ0 ( ๐‘›+1 ๐‘ƒ ) + ๐›ผ1 ( (๐‘›+2)(๐‘›+1) ๐‘ƒ2 ) + ๐›ผ2 ( (๐‘›+3)(๐‘›+2)(๐‘›+1) ๐‘ƒ3 ) ๐›ผ0 + ๐›ผ1 ( ๐‘›+1 ๐‘ƒ ) + ๐›ผ2 ( (๐‘›+2)(๐‘›+1) ๐‘ƒ2 ) (22) ๐œƒ๐ธ3ฬ‚ = ๐›ผ0 ( ๐‘›+1 ๐‘ƒ ) + ๐›ผ1 ( (๐‘›+2)(๐‘›+1) ๐‘ƒ2 ) + โ‹ฏ + ๐›ผ3 ( (๐‘›+4)โ€ฆ(๐‘›+1) ๐‘ƒ4 ) ๐›ผ0 + ๐›ผ1 ( ๐‘›+1 ๐‘ƒ ) + โ‹ฏ + ๐›ผ3 ( (๐‘›+3)(๐‘›+2)(๐‘›+1) ๐‘ƒ3 ) (23) ๐œƒ๐ธ4ฬ‚ = ๐›ผ0 ( ๐‘›+1 ๐‘ƒ ) + ๐›ผ1 ( (๐‘›+2)(๐‘›+1) ๐‘ƒ2 ) + โ‹ฏ + ๐›ผ4 ( (๐‘›+5)โ€ฆ(๐‘›+1) ๐‘ƒ5 ) ๐›ผ0 + ๐›ผ1 ( ๐‘›+1 ๐‘ƒ ) + โ‹ฏ + ๐›ผ4 ( (๐‘›+4)โ€ฆ(๐‘›+1) ๐‘ƒ4 ) (24) implementation of proposed method to real data the result of analytical study above then implemented to real data. the real data set represents the 72 exceedances for the years 1958โ€“1984 (rounded to one decimal place) of flood peaks (in m3/s) of the wheaton river near carcross in yukon territory, canada [16]. the data are as follows: 1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3 1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6 9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0 1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0 in this present study, we fix several values for ๐›ผ0=100, ๐›ผ1=50, ๐›ผ2=10, ๐›ผ3=8, ๐›ผ4=7 and ๐œ†=0.8 to be applied to estimate the scale parameter ๐œƒ. based on this real data, we calculate that: ๐‘‡ = โˆ‘ 1 ๐‘ฅ๐‘– 2 = 138,99 โˆ‘ ๐‘™๐‘› ( 1 ๐‘ฅ1 3 ) 72 ๐‘–=1 72 ๐‘–=1 = โˆ’388,38 ๐‘ƒ = โˆ‘ 1 ๐‘ฅ๐‘– 2 72 ๐‘–=1 + 1 ๐œ† = 140,24 we then employ both proposed methods and mle to this empirical data. the comparison of criteria for model selection based on three methods are provided in table 1. table 1. estimated values for aic, aicc, and bic prior mean criteria model selection aic aicc bic mle 0.5180 917.6820 917.7391 919.9587 jeffreyโ€™s prior ๐œƒ๐ฝ1ฬ‚ 0.5195 917.6778 917.7349 919.9545 ๐œƒ๐ฝ2ฬ‚ 0.5198 917.6748 917.7319 919.9515 bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar 277 ๐œƒ๐ฝ3ฬ‚ 0.5200 917.6728 917.7299 919.9495 ๐œƒ๐ฝ4ฬ‚ 0.5201 917.6718 917.7289 919.9485 exponentialโ€™s prior ๐œƒ๐ธ1ฬ‚ 0.5220 917.6816 917.7387 919.9583 ๐œƒ๐ธ2ฬ‚ 0.5223 917.6786 917.7357 919.9553 ๐œƒ๐ธ3ฬ‚ 0.5225 917.6766 917.7337 919.9533 ๐œƒ๐ธ4ฬ‚ 0.5226 917.6756 917.7327 919.9523 table 1 informs us that this present study yielded almost similar values for estimated mean for all three methods (in the third column). based on the criteria model selection, this study found that jeffreyโ€™s prior as noninformation prior, tends to result smaller values than mle and exponential โ€˜s prior for all four polynomials. the smallest values for these criteria are at jeffreyโ€™s prior at fourth polynomial (๐œƒ๐ฝ4ฬ‚). these results inform us that the method to estimate scale parameter of invers rayleigh distribution using bayesian generalized self under jeffreyโ€™s prior tends to result better values than mle and bayesian generalized self under exponentialโ€™s prior. this present study proved it by employing all proposed method to real data with size sample is relatively moderate, n = 72. conclusions this study employed the mle, bayesian generalized self under jeffreyโ€™s prior and bayesian generalized self under exponentialโ€™s prior to estimate the scale parameter of invers rayleight distribution of a real data. all 72 sample of flood peaks data in canada are involved in this study. this real data has invers rayleigh distribution. this study found that estimation mean of scale parameter from invers rayleigh distribution based on mle, bayesian generalized self under jeffreyโ€™s prios and bayesian generalized self under exponentialโ€™s prior tend to result similar values. based on criteria of selection model, this study proved that bayesian generalized self under jeffreyโ€™s prior tend to result the smallest value of aic, aicc and bic. acknowledgments this research was partly funded by drpm, the deputy for strengthening research and development of the ministry of research and technology / national research and innovation agency of indonesia, in accordance with contract number 123/sp2h/amd/lt/drpm/2020. bayesian generalized self method to estimate scale parameter of inverse rayleigh distribution ferra yanuar 278 references [1] a. rasheed, โ€œreliability estimation in inverse rayleigh distribution using precautionary loss function,โ€ mathematics and statistics journal, vol. 2, no. 3, pp. 9โ€“15, 2016. [2] a. a. soliman and f. m. al-aboud, โ€œbayesian inference using record values from rayleigh model with application,โ€ european journal of operational research, vol. 185, no. 2, pp. 659โ€“672, mar. 2008, doi: 10.1016/j.ejor.2007.01.023. [3] m. aslam and c.-h. jun, โ€œa group acceptance sampling plans for truncated life tests based on the inverse rayleigh and log-logistic distributions,โ€ pakistan journal of statistics, vol. 25, no. 2, pp. 107โ€“119, 2009. [4] a. soliman, e. a. amin, and a. a. a.-e. aziz, โ€œestimation and prediction from inverse rayleigh distribution based on lower record values,โ€ applied mathematical sciences, vol. 4, no. 62, pp. 3057โ€“3066, 2010. [5] s. ali, โ€œmixture of the inverse rayleigh distribution: properties and estimation in a bayesian framework,โ€ applied mathematical modelling, vol. 39, no. 2, pp. 515โ€“ 530, jan. 2015, doi: 10.1016/j.apm.2014.05.039. [6] s. dey and t. dey, โ€œbayesian estimation and prediction on inverse rayleigh distribution,โ€ international journal of information and management sciences, vol. 22, pp. 1โ€“15, 2011. [7] a. h. yousef and a. lafta, โ€œcomparison between methods of the scale parameter,โ€ fes: finance, economy, strategy, vol. 58, no. 9, pp. 22โ€“30, 2012. [8] s. dey, โ€œbayesian estimation and prediction on inverse rayleigh distribution,โ€ malaysian journal of mathematical sciences, vol. 6, no. 1, pp. 113โ€“124, 2012. [9] h. a. rasheed, โ€œcomparison of bayes estimators for parameter and relia-bility function for inverse rayleigh distribution by using generalized square error loss function,โ€ mjs, vol. 28, no. 2, pp. 162โ€“168, 2017, doi: 10.23851/mjs.v28i2.512. [10] a. ahmad, s. p. ahmad, and a. ahmed, โ€œtransmuted inverse rayleigh distribution: a generalization of the inverse rayleigh distribution.,โ€ mathematical theory and modeling, vol. 4, no. 7, pp. 90โ€“98, 2014. [11] f. yanuar, โ€œthe health status model in urban and rural society in west sumatera, indonesia: an approach of structural equation modeling,โ€ indian journal of science and technology, vol. 9, p. 8, 2016. [12] f. yanuar, k. ibrahim, and a. a. jemain, โ€œbayesian structural equation modeling for the health index,โ€ journal of applied statistics, vol. 40, no. 6, pp. 1254โ€“1269, jun. 2013, doi: 10.1080/02664763.2013.785491. [13] f. yanuar, h. yozza, and r. v. rescha, โ€œcomparison of two priors in bayesian estimation for parameter of weibull distribution,โ€ sci. technol. indones., vol. 4, no. 3, p. 82, jul. 2019, doi: 10.26554/sti.2019.4.3.82-87. [14] c. muharisa, f. yanuar, and d. devianto, โ€œsimulation study the using of bayesian quantile regression in nonnormal error,โ€ cauchy, vol. 5, no. 3, p. 121, dec. 2018, doi: 10.18860/ca.v5i3.5633. [15] k. p. burnham and d. r. anderson, model selection and multimodel inference: a practical information-theoretic approach, 2. ed., [4. printing]. new york, ny: springer, 2002. [16] k. fatima and s. p. ahmad, โ€œweighted inverse rayleigh distribution,โ€ international journal of statistics and systems, vol. 12, no. 1, pp. 119โ€“137, 2017. levi decomposition of frobenius lie algebra of dimension 6 cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 394-400 p-issn: 2086-0382; e-issn: 2477-3344 submitted: april 03, 2022 reviewed: april 11, 2022 accepted: april 14, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.15656 levi decomposition of frobenius lie algebra of dimension 6 henti*, edi kurniadi, ema carnia departement of mathematics of fmipa, universitas padjadjaran, indonesia email: henti17001@mail.unpad.ac.id abstract in this paper, we study notion of the frobenius lie algebra m2,1(โ„) โ‹Š ๐”ค๐”ฉ2(โ„) of dimension 6. the finite dimensional lie algebra can be expressed in terms of decomposition between levi subalgebra and the radical (maximal solvable ideal). this form of decomposition is called levi decomposition. our main object is further denoted by ๐”ž๐”ฃ๐”ฃ(2) โ‰” m2,1(โ„) โ‹Š ๐”ค๐”ฉ2(โ„). the work aims to obtain levi decomposition of frobenius lie algebra ๐”ž๐”ฃ๐”ฃ(2) of dimension 6. to obtained levi subalgebra and the radical, we apply literature reviews about lie algebra and decomposition levi in dagli result. the main result of this paper is frobenius lie algebra ๐”ž๐”ฃ๐”ฃ(2) can be decomposition be semisimple levi subalgebra ๐”ฅ of dimension 4 and radical solvable rad(๐”ค) of dimension 2. thus, the levi decomposition form of the frobenius lie algebra is given. keywords: frobenius lie algebra; levi decomposition; lie algebra; radical introduction a vector space over a field that is equipped by lie brackets which is neither commutative nor associative is called lie algebra [1]. any finite dimensional lie algebra can be expressed as semidirect sum between levi subalgebra (lie subalgebra) and its radical (maximal solvable ideal) and this form is called a levi decomposition [1]. we denote a finite dimensional lie algebra by ๐”ค. on the other hand, for finite dimensional case, the lie algebra ๐”ค can be written in levi decomposition form which is given in the following form ๐”ค = ๐”ฅ โ‹‰ rad(๐”ค) (1) where ๐”ฅ is a levi subalgebra of ๐”ค and rad(๐”ค) is a radical or solvable maximal ideal of ๐”ค. let ๐‘† = {๐‘’1, ๐‘’2, โ€ฆ , ๐‘’๐‘›} be a basis of ๐”ค and we define ๐ถ(๐”ค) = (๐ถ(๐”ค)๐‘–,๐‘—) be a matrix whose lie brackets entries of ๐”ค are given by ๐ถ(๐”ค)๐‘–,๐‘— โ‰” [๐‘’๐‘–, ๐‘’๐‘—]๐”ค , 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘›. (2) this matrix ๐ถ(๐”ค) โˆˆ ๐‘€๐‘Ž๐‘ก(๐‘› ร— ๐‘›, ๐‘†(๐”ค)) is called a structure matrix of ๐”ค where ๐‘†(๐”ค) denotes as symmetric algebra of ๐”ค [2]. the notion of lie algebras has been widely studied. one of which is the investigation of lie algebra with dimension 8 which can be carried out by levi's decomposition [3]. rais introduced the lie algebra notion ๐‘€๐‘›,๐‘(โ„) โ‹Š ๐”ค๐”ฉ๐‘›(โ„) where ๐‘€๐‘›,๐‘(โ„) is a vector space of matrices of size ๐‘› ร— ๐‘ with real number entries and ๐”ค๐”ฉ๐‘›(โ„) is the lie algebra of a vector space of matrices of size ๐‘› ร— ๐‘› equipped with lie brackets [4]. furthermore, we can see the notions of lie algebra in [5] and [6]. http://dx.doi.org/10.18860/ca.v7i3.15656 mailto:henti17001@mail.unpad.ac.id* levi decomposition of frobenius lie algebra of dimension 6 henti 395 let ๐”ค be a lie algebra with ๐”คโˆ— is a dual vector space of ๐”ค where ๐”คโˆ— consisting of real valued all linear functional on ๐”ค. the lie algebra ๐”ค is said to be a frobenius lie algebra if there exists a linear functional ๐œ‘ โˆˆ ๐”คโˆ— so that the skew-symmetric bilinear form ๐ต๐œ‘ (๐‘ฅ, ๐‘ฆ) โ‰” ๐œ‘([๐‘ฅ, ๐‘ฆ]) is non degenerate. many studies of frobenius lie algebras have been carried out over the years. for instance, the properties of principal elements on frobenius lie algebra one of them is frobenius lie algebra cannot be unimodular [7]. an example of frobenius lie algebra is the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) can be seen in the classification of frobenius lie algebra with dimension less than or equal to 6 [8]. kurniadi have constructed frobenius lie algebra with dimension less than or equal to 6 from non-commutative nilpotent lie algebra with dimension less than or equal to 4 [9]. other example of frobenius lie algebra, notation lie algebra ๐‘€๐‘›,๐‘(โ„) โ‹Š ๐”ค๐”ฉ๐‘›(โ„) where ๐‘› = ๐‘ = 3 is frobenius lie algebra of dimension 18 [10]. moreover, the lie algebra ๐‘€3(โ„) โ‹Š ๐”ค๐”ฉ3(โ„) has quasi-associative algebra structure [11]. the frobenius lie algebra m2(โ„) โ‹Š ๐”ค๐”ฉ2(โ„) is the left-symmetric algebra [12]. it has been proven that the affine lie algebra that is denoted by ๐”ž๐”ฃ๐”ฃ(๐‘›) โ‰” โ„๐‘› โ‹Š ๐”ค๐”ฉ๐‘›(โ„) is frobenius lie algebra where โ„ ๐‘› is another form of ๐‘€๐‘›,1(โ„) [13]. readers can study more about frobenius lie algebra in the following articles: [14], [15], [16], and [17]. in this paper, we study about decompose frobenius lie algebra for special case ๐‘› = 2 of the affine lie algebra ๐”ž๐”ฃ๐”ฃ(๐‘›). the notion m2,1(โ„) โ‹Š ๐”ค๐”ฉ2(โ„) can be written in simpler formulas as โ„2 โ‹Š ๐”ค๐”ฉ2(โ„) and we can denote it by ๐”ž๐”ฃ๐”ฃ(2) which is known as the affine lie algebra. in the nice formula, the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) โ‰” โ„2 โ‹Š ๐”ค๐”ฉ2(โ„) can be expressed in the form of a matrix ๐”ž๐”ฃ๐”ฃ(2) โ‰” {( ๐‘‹ ๐‘Œ 0 0 ) ; ๐‘‹ โˆˆ ๐”ค๐”ฉ2(โ„), ๐‘Œ โˆˆ โ„ 2} โŠ† ๐”ค๐”ฉ3(โ„) (3) where ๐”ค๐”ฉ3(โ„) is 3 ร— 3 real matrix. the purpose of this research is to give decompose this lie algebra into levi subalgebra and radical. methods we used literature study for the research method, especially the study of frobenius lie algebra ๐”ž๐”ฃ๐”ฃ(2) and about levi decomposition of lie algebra in [18]. first, we given an affine lie algebra ๐”ž๐”ฃ๐”ฃ(2). we proved the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) not solvable. then, it is proved that lie algebra ๐”ž๐”ฃ๐”ฃ(2) can be decomposed into its subalgebra and radical. before going into the discussion, we would like to introduce the theoretical foundations used in this study as follows: definition 1 [19] let ๐”ค be a vector space and a bilinear form [. , . ]: ๐”ค ร— ๐”ค โˆ‹ (๐‘ฅ, ๐‘ฆ) โ†ฆ [๐‘ฅ, ๐‘ฆ] โˆˆ ๐”ค. the bilinear form [. , . ] is called a lie bracket for ๐”ค if the following condisitions are satisfied: 1. [๐‘ฅ, ๐‘ฆ] = โˆ’[๐‘ฆ, ๐‘ฅ]; โˆ€ ๐‘ฅ, ๐‘ฆ โˆˆ ๐”ค 2. [๐‘ฅ, [๐‘ฆ, ๐‘ง]] + [๐‘ฆ, [๐‘ง, ๐‘ฅ]] + [๐‘ง, [๐‘ฅ, ๐‘ฆ]] = 0; โˆ€ ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐”ค. the vector space ๐”ค equipped by lie brackets is called lie algebra. definition 2 [19] a linear subspace ๐”ฅ of ๐”ค is called a lie sub-algebra if [๐”ฅ, ๐”ฅ] โŠ† ๐”ฅ, we denote by ๐”ฅ < ๐”ค. if we have [๐”ค, ๐”ฅ ] โŠ† ๐”ฅ, we call ๐”ฅ as an ideal of ๐”ค and then write ๐”ฅ โŠด ๐”ค. definition 3 [19] let ๐”ค be a lie algebra. the derived series of ๐”ค is defined by ๐ท0(๐”ค) = ๐”ค and ๐ท๐‘›(๐”ค) = [๐ท๐‘›โˆ’1(๐”ค), ๐ท๐‘›โˆ’1(๐”ค)] โˆ€๐‘› โˆˆ โ„• (4) the lie algebra ๐”ค is said to be solvable, if there exists an ๐‘› โˆˆ โ„• with ๐ท๐‘›(๐”ค) = {0}. theorem 1 let ๐”ค be lie algebra then, levi decomposition of frobenius lie algebra of dimension 6 henti 396 i. if ๐”ค is solvable then the subalgebras and homomorphic images of ๐”ค are solvable. ii. if ๐”ฅ is a solvable ideal of ๐”ค and ๐”ค/๐”ฅ is solvable, then ๐”ค is solvable iii. if ๐”ฅ and ๐”ฆ are solvable ideals of ๐”ค then ๐”ฅ + ๐”ฆ is also a solvable ideal of ๐”ค. this theorem shows that the sum of all solvable ideals of a lie algebra is a solvable ideal. so, in every finite-dimensional lie algebra ๐”ค, there exists a maximal solvable ideal. this ideal is called the radical of ๐”ค and denoted by ๐‘…๐‘Ž๐‘‘(๐”ค). theorem 2 [18] let ๐‘‰ be vector space over a field and let ๐”ค be a subalgebra of ๐”ค๐”ฉ(๐‘‰), the ๐”ค is solvable if tr(๐‘ฅ๐‘ฆ) = 0 for all ๐‘ฅ โˆˆ ๐”ค and ๐‘ฆ โˆˆ [๐”ค, ๐”ค]. theorem 3 [18] let ๐”ค be lie algebra over a field ๐”ฝ, then ๐‘…๐‘Ž๐‘‘(๐”ค) = {๐‘ฅ โˆˆ ๐”ค | ๐‘‡๐‘Ÿ(ad ๐‘ฅ โ‹… ad ๐‘ฆ) = 0} (5) for all ๐‘ฆ โˆˆ [๐”ค, ๐”ค]. definition 4 [19] let ๐”ค be a lie algebra. if its radical is trivial i.e ๐‘…๐‘Ž๐‘‘(๐”ค) = {0} then ๐”ค is called semisimple. the lie algebra ๐”ค is said to be simple if it is not abelian and if it contains no ideal other than ๐”ค and {0}. definition 5 [1] let ๐‘‰ be a space vector. a linear map ๐œŒ: ๐‘‰ โ†’ ๐‘‰ is said to be endomorphism on ๐‘‰ if the following condition satisfied: 1. ๐œŒ(๐‘ฅ + ๐‘ฆ) = ๐œŒ(๐‘ฅ) + ๐œŒ(๐‘ฆ) 2. ๐œŒ(๐‘ฅ๐‘ฆ) = (๐œŒ(๐‘ฅ))๐‘ฆ = ๐‘ฅ(๐œŒ(๐‘ฆ)) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰. the set of all endomorphism on ๐‘‰ is denoted by ๐ธ๐‘›๐‘‘(๐‘‰). furthermore, the endomorphism ๐ธ๐‘›๐‘‘(๐‘‰) equipped by lie bracket [๐‘ฅ, ๐‘ฆ] = ๐‘ฅ๐‘ฆ โˆ’ ๐‘ฆ๐‘ฅ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐ธ๐‘›๐‘‘(๐‘‰) is lie algebra and it is called a general linear algebra, we denoted by ๐”ค๐”ฉ(v). definition 6 [19] let ๐”ค be a lie algebra and ๐‘ฅ โˆˆ ๐”ค. the map ๐‘Ž๐‘‘: ๐”ค โ†’ ๐”ค defined by ad ๐‘ฅ โˆถ ๐”ค โˆˆ ๐‘ฆ โ†ฆ ad ๐‘ฅ(๐‘ฆ) = [๐‘ฅ, ๐‘ฆ] โˆˆ ๐”ค (6) is a derivation. the map ad: ๐”ค โ†’ ๐”ค๐”ฉ(๐”ค) is called an adjoint representation. let a representation of lie algebra ๐”ค in the dual vector space ๐”คโˆ— is denoted by adโˆ— whose value on ๐”ค is defined by โŒฉadโˆ—(๐‘ฅ)๐œ‘, ๐‘ฆโŒช = โŒฉ๐œ‘, adโˆ—(โˆ’๐‘ฅ)๐‘ฆโŒช = โŒฉ๐œ‘, [๐‘ฆ, ๐‘ฅ]โŒช (7) for ๐œ‘ โˆˆ ๐”คโˆ—, for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐”ค. a stabilizer of lie algebra ๐”ค at the point ๐œ‘ โˆˆ ๐”คโˆ— is given in the following form: ๐”ค๐œ‘ = {๐‘ฅ โˆˆ ๐”ค | adโˆ—(๐‘ฅ)๐œ‘ = 0} (8) definition 7 [20] let ๐”ค be a lie algebra whose ๐”คโˆ— be a dual vector space of ๐”ค. a lie algebra ๐”ค is said to be frobenius lie algebra if there exist linear functional ๐œ‘ โˆˆ ๐”คโˆ— such that the stabilizer of ๐”ค on ๐œ‘ is equal to 0. furthermore, we review briefly some basic notations needed in levi decomposition. we explain leviโ€™s theorem which states that a finite dimensional lie algebra can be expressed as the semidirect sum of the levi subalgebra and the radical. theorem 4 [18] let ๐”ค be a lie algebra and let ๐”ค be not solvable, then ๐”ค/๐‘…๐‘Ž๐‘‘(๐”ค) is a semisimple lie subalgebra. theorem 5 [18] let ๐”ค be a finite dimensional lie algebra. if ๐”ค is not solvable, then there is a semisimple subalgebra ๐”ฐ of ๐”ค such that ๐”ค = ๐”ฐ โŠ• ๐‘…๐‘Ž๐‘‘(๐”ค). (9) in this decomposition, ๐”ฐ โ‰… ๐”ค/๐‘…๐‘Ž๐‘‘(๐”ค) and we have commutation relations as follows [๐”ฐ, ๐”ฐ] = ๐”ฐ, [๐”ฐ, ๐‘…๐‘Ž๐‘‘(๐”ค)] โŠ† ๐‘…๐‘Ž๐‘‘(๐”ค), [๐‘…๐‘Ž๐‘‘(๐”ค), ๐‘…๐‘Ž๐‘‘(๐”ค)] โŠ† ๐‘…๐‘Ž๐‘‘(๐”ค). (10) the example of levi decomposition can be seen in the work of [18], one of all example its levi decomposition as follows example 1 [18] let ๐”ค be a lie algebra spanned by levi decomposition of frobenius lie algebra of dimension 6 henti 397 {๐‘ฅ1 = ( 0 1 0 1 0 0 0 0 1 ) , ๐‘ฅ2 = ( 1 0 0 0 โˆ’1 0 0 0 1 ) , ๐‘ฅ3 = ( 0 1 0 0 0 0 0 0 1 ) , ๐‘ฅ4 = ( 0 1 0 1 0 0 0 0 0 )} (11) where lie bracket non-zero is [๐‘ฅ1, ๐‘ฅ2] = 4๐‘ฅ1 โˆ’ 4๐‘ฅ3 โˆ’ 2๐‘ฅ4, [๐‘ฅ1, ๐‘ฅ3] = ๐‘ฅ1 โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ4, [๐‘ฅ2, ๐‘ฅ3] = โˆ’2๐‘ฅ1 + 2๐‘ฅ3 + 2๐‘ฅ4, [๐‘ฅ2, ๐‘ฅ4] = โˆ’4๐‘ฅ1 + 4๐‘ฅ3 + 2๐‘ฅ4, [๐‘ฅ3, ๐‘ฅ4] = โˆ’๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ4. the lie algebra ๐”ค can be express in ๐”ค = ๐‘…๐‘Ž๐‘‘(๐”ค) โ‹Š ๐”ฅ where radical ๐‘…๐‘Ž๐‘‘(๐”ค) = ๐‘ ๐‘๐‘Ž๐‘› {( 0 0 0 0 0 0 0 0 1 )} and levi subalgebra ๐”ฅ is spanned by {๐‘ง1 = ( 0 1 0 1 0 0 0 0 0 ) , ๐‘ง2 = ( 1 0 0 0 โˆ’1 0 0 0 0 ) , ๐‘ง3 = ( 0 1 0 0 0 0 0 0 0 )}. results and discussion in this section, let ๐”ž๐”ฃ๐”ฃ(2) be the affine lie algebra and let ๐”ž๐”ฃ๐”ฃ(2) be realized in the following matrix form ๐”ž๐”ฃ๐”ฃ(2) = {( ๐‘Ž ๐‘ ๐‘ฅ ๐‘ ๐‘‘ ๐‘ฆ 0 0 0 ) | ๐‘Ž, ๐‘, ๐‘, ๐‘‘, ๐‘ฅ, ๐‘ฆ โˆˆ โ„} โŠ† ๐”ค๐”ฉ3(โ„), (12) with the standard basis for ๐”ž๐”ฃ๐”ฃ(2), we have ๐‘† = {๐‘ฅ1 = ( 1 0 0 0 0 0 0 0 0 ) , ๐‘ฅ2 = ( 0 1 0 0 0 0 0 0 0 ) , ๐‘ฅ3 = ( 0 0 0 1 0 0 0 0 0 ) , ๐‘ฅ4 = ( 0 0 0 0 1 0 0 0 0 ) , ๐‘ฅ5 = ( 0 0 1 0 0 0 0 0 0 ) , ๐‘ฅ6 = ( 0 0 0 0 0 1 0 0 0 )}. (13) the lie brackets for the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) is defined by [๐‘Ž, ๐‘] = ๐‘Ž๐‘ โˆ’ ๐‘๐‘Ž, โˆ€ ๐‘Ž, ๐‘ โˆˆ ๐”ž๐”ฃ๐”ฃ(2) such that the non-zero lie brackets for the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) as follows (14) theorem 5 [8] let ๐”ž๐”ฃ๐”ฃ(2) be a lie algebra of dimension 6 with basis in the equation (13). let ๐”ž๐”ฃ๐”ฃ(2)โˆ— be its dual vector space of ๐”ž๐”ฃ๐”ฃ(2). then there exist a linear functional ๐œ‘ = ๐‘ฅ2 โˆ— + ๐‘ฅ6 โˆ— โˆˆ ๐”ž๐”ฃ๐”ฃ(2)โˆ— such that ๐”ค๐œ‘ = {0}. therefore, the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) is frobenius. in this section of the discussion is our main result, we will prove the proposition 1 and the proposition 2 as follows. proposition 1. the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) is not solvable. proof. we have that ๐ท1(๐”ž๐”ฃ๐”ฃ(2)) = [๐ท(๐”ž๐”ฃ๐”ฃ(2)), ๐ท(๐”ž๐”ฃ๐”ฃ(2))] = ๐‘ ๐‘๐‘Ž๐‘›{๐‘ฅ1 โˆ’ ๐‘ฅ4, ๐‘ฅ2, ๐‘ฅ3, ๐‘ฅ5, ๐‘ฅ6}. next, we compute ๐ท2(๐”ž๐”ฃ๐”ฃ(2)) also obtained ๐ท2(๐”ž๐”ฃ๐”ฃ(2)) = [๐ท1(๐”ž๐”ฃ๐”ฃ(2)), ๐ท1(๐”ž๐”ฃ๐”ฃ(2))] = ๐‘ ๐‘๐‘Ž๐‘›{๐‘ฅ1 โˆ’ ๐‘ฅ4, ๐‘ฅ2, ๐‘ฅ3, ๐‘ฅ5, ๐‘ฅ6}. therefore, there not exist ๐‘› > 0 that causes ๐ท๐‘›(๐”ž๐”ฃ๐”ฃ(2)) = {0}. thus, the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) is not solvable. โˆŽ proposition 2. let ๐”ž๐”ฃ๐”ฃ(2) be frobenius affine lie algebra whose basis ๐‘† = {๐‘ฅ๐‘–}๐‘–=1 6 where the non-zero brackets for ๐”ž๐”ฃ๐”ฃ(2) in the equation (14). the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) is not [๐‘ฅ1, ๐‘ฅ2] = ๐‘ฅ2, [๐‘ฅ1, ๐‘ฅ3] = โˆ’๐‘ฅ3, [๐‘ฅ1, ๐‘ฅ5] = ๐‘ฅ5, [๐‘ฅ2, ๐‘ฅ3] = ๐‘ฅ1 โˆ’ ๐‘ฅ4, [๐‘ฅ2, ๐‘ฅ4] = ๐‘ฅ2, [๐‘ฅ2, ๐‘ฅ6] = ๐‘ฅ5, [๐‘ฅ3, ๐‘ฅ4] = โˆ’๐‘ฅ3, [๐‘ฅ3, ๐‘ฅ5] = ๐‘ฅ6, [๐‘ฅ4, ๐‘ฅ6] = ๐‘ฅ6. levi decomposition of frobenius lie algebra of dimension 6 henti 398 solvable then there exist ๐”ฅ = ๐‘ ๐‘๐‘Ž๐‘›{๐‘ฅ1, ๐‘ฅ2 + ๐‘ฅ5 + ๐‘ฅ6, ๐‘ฅ3 + ๐‘ฅ5 + ๐‘ฅ6, ๐‘ฅ4} is the semisimple lie subalgebra of ๐”ž๐”ฃ๐”ฃ(2) and ๐‘…๐‘Ž๐‘‘(๐”ž๐”ฃ๐”ฃ(2)) = ๐‘ ๐‘๐‘Ž๐‘›{๐‘ฅ5, ๐‘ฅ6} is the radical of ๐”ž๐”ฃ๐”ฃ(2) such that ๐”ž๐”ฃ๐”ฃ(2) = ๐‘ ๐‘๐‘Ž๐‘›{๐‘ฅ5, ๐‘ฅ6} โ‹Š ๐‘ ๐‘๐‘Ž๐‘›{๐‘ฅ1, ๐‘ฅ2 + ๐‘ฅ5 + ๐‘ฅ6, ๐‘ฅ3 + ๐‘ฅ5 + ๐‘ฅ6, ๐‘ฅ4}. (15) proof. firstly, we have the structure matrix of ๐”ž๐”ฃ๐”ฃ(2) is ๐ถ(๐”ž๐”ฃ๐”ฃ(2)) = ( 0 ๐‘ฅ2 โˆ’๐‘ฅ3 0 ๐‘ฅ5 0 โˆ’๐‘ฅ2 0 ๐‘ฅ1 โˆ’ ๐‘ฅ4 ๐‘ฅ2 0 ๐‘ฅ5 ๐‘ฅ3 ๐‘ฅ4 โˆ’ ๐‘ฅ1 0 โˆ’๐‘ฅ3 ๐‘ฅ6 0 0 โˆ’๐‘ฅ2 ๐‘ฅ3 0 0 ๐‘ฅ6 โˆ’๐‘ฅ5 0 โˆ’๐‘ฅ6 0 0 0 0 โˆ’๐‘ฅ5 0 โˆ’๐‘ฅ6 0 0 ) . (16) then, we find the maximal linearly independent set in the structure matrix such that basis ๐ต = {๐‘ฆ1 = ๐‘ฅ1 โˆ’ ๐‘ฅ4, ๐‘ฆ2 = ๐‘ฅ2, ๐‘ฆ3 = ๐‘ฅ3, ๐‘ฆ4 = ๐‘ฅ5, ๐‘ฆ5 = ๐‘ฅ6} of the product space [๐”ž๐”ฃ๐”ฃ(2), ๐”ž๐”ฃ๐”ฃ(2)]. next, calculate ad ๐‘ฅ๐‘– and ad ๐‘ฆ๐‘— for 1 โ‰ค ๐‘– โ‰ค 6, 1 โ‰ค ๐‘— โ‰ค 5, we get ad ๐‘ฅ1 = [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 โˆ’1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] , ad ๐‘ฅ2 = [ 0 0 1 0 0 0 โˆ’1 0 0 1 0 0 0 0 0 0 0 0 0 0 โˆ’1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0] , ad ๐‘ฅ3 = [ 0 โˆ’1 0 0 0 0 0 0 0 0 0 0 1 0 0 โˆ’1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0] , ad ๐‘ฅ4 = [ 0 0 0 0 0 0 0 โˆ’1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1] , ad ๐‘ฅ5 = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 โˆ’1 0 0 0 0 0 0 0 โˆ’1 0 0 0] , ad ๐‘ฅ6 = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 โˆ’1 0 0 0 0 0 0 0 โˆ’1 0 0] , ad ๐‘ฆ1 = ad ๐‘ฅ1 โˆ’ ๐‘ฅ4 = [ 0 0 0 0 0 0 0 2 0 0 0 0 0 0 โˆ’2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 โˆ’1] . (17) furthermore, compute the radical of ๐”ž๐”ฃ๐”ฃ(2) where ๐‘ฅ = โˆ‘ ๐›ผ๐‘–๐‘ฅ๐‘– 6 ๐‘–=1 โˆˆ ๐‘…๐‘Ž๐‘‘(๐”ž๐”ฃ๐”ฃ(2)), then find value ๐›ผ๐‘– using equations (17), we have โˆ‘ ๐›ผ๐‘– 6 ๐‘–=1 ๐‘‡๐‘Ÿ (๐‘Ž๐‘‘ ๐‘ฅ๐‘– โ‹… ๐‘Ž๐‘‘ ๐‘ฆ๐‘—) = 0 ; 1 < ๐‘— โ‰ค 5 ๐›ผ1 [ 5 0 0 0 0] + ๐›ผ2 [ 0 5 5 0 0] + ๐›ผ3 [ 0 5 0 0 0] + ๐›ผ4 [ โˆ’5 0 0 0 0 ] + ๐›ผ5 [ 0 0 0 0 0] + ๐›ผ6 [ 0 0 0 0 0] = [ 0 0 0 0 0] . (18) levi decomposition of frobenius lie algebra of dimension 6 henti 399 next, we solve linear equations (18) such we find that ๐›ผ1 โˆ’ ๐›ผ4 = 0, ๐›ผ2 = 0, ๐›ผ3 = 0, ๐›ผ5 = ๐‘ , ๐›ผ6 = ๐‘ก, and with ๐›ผ1 = 0, then we get ๐‘ฅ = โˆ‘ ๐›ผ๐‘–๐‘ฅ๐‘– 6 ๐‘–=1 = 0๐‘ฅ1 + 0๐‘ฅ2 + 0๐‘ฅ3 + 0๐‘ฅ4 + ๐‘ ๐‘ฅ5 + ๐‘ก๐‘ฅ6 = ๐‘ ๐‘ฅ5 + ๐‘ก๐‘ฅ6. therefore, we obtain the radical of ๐”ž๐”ฃ๐”ฃ(2) is ๐‘…๐‘Ž๐‘‘(๐”ž๐”ฃ๐”ฃ(2)) = ๐‘ ๐‘๐‘Ž๐‘›{๐‘ฅ5, ๐‘ฅ6} = ๐‘ ๐‘๐‘Ž๐‘›{๐‘Ÿ1, ๐‘Ÿ2}. (19) next, we find basis levi subalgebra of ๐”ž๐”ฃ๐”ฃ(2). in this cases, ๐‘…๐‘Ž๐‘‘(๐”ž๐”ฃ๐”ฃ(2)) is abelian because [๐‘Ÿ๐‘–, ๐‘Ÿ๐‘—] = 0 for all 1 โ‰ค ๐‘–, ๐‘— โ‰ค 2. complement on ๐”ž๐”ฃ๐”ฃ(2) respect to ๐‘…๐‘Ž๐‘‘(๐”ž๐”ฃ๐”ฃ(2)) spanned by {๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, ๐‘ฅ4}. the quotient algebra ๐”ž๐”ฃ๐”ฃ(2)/๐‘…๐‘Ž๐‘‘(๐”ž๐”ฃ๐”ฃ(2)) is spanned by ๏ฟฝฬ…๏ฟฝ1, ๏ฟฝฬ…๏ฟฝ2, ๏ฟฝฬ…๏ฟฝ3, ๏ฟฝฬ…๏ฟฝ4 and we have its brackets as follows [๏ฟฝฬ…๏ฟฝ1, ๏ฟฝฬ…๏ฟฝ2] = ๏ฟฝฬ…๏ฟฝ2, [๏ฟฝฬ…๏ฟฝ1, ๏ฟฝฬ…๏ฟฝ3] = โˆ’๏ฟฝฬ…๏ฟฝ3, [๏ฟฝฬ…๏ฟฝ2, ๏ฟฝฬ…๏ฟฝ3] = ๏ฟฝฬ…๏ฟฝ1 โˆ’ ๏ฟฝฬ…๏ฟฝ4, [๏ฟฝฬ…๏ฟฝ2, ๏ฟฝฬ…๏ฟฝ4] = ๏ฟฝฬ…๏ฟฝ2, [๏ฟฝฬ…๏ฟฝ3, ๏ฟฝฬ…๏ฟฝ4] = โˆ’๏ฟฝฬ…๏ฟฝ3. (20) we set levi subalgebra spanned by ๐‘ง1 = ๐‘ฅ1 + ๐›ผ1๐‘Ÿ1 + ๐›ผ2๐‘Ÿ2, ๐‘ง2 = ๐‘ฅ2 + ๐›ฝ1๐‘Ÿ1 + ๐›ฝ2๐‘Ÿ2, ๐‘ง3 = ๐‘ฅ3 + ๐›พ1๐‘Ÿ1 + ๐›พ2๐‘Ÿ2, ๐‘ง4 = ๐‘ฅ4 + ๐›ฟ1๐‘Ÿ1 + ๐›ฟ2๐‘Ÿ2. (21) next, we calculate to determine the four unknown ๐›ผ, ๐›ฝ, ๐›พ, ๐›ฟ such that ๐‘ง1, ๐‘ง2, ๐‘ง3, ๐‘ง4 span a semisimple lie algebra that is isomorphic to ๐”ž๐”ฃ๐”ฃ(2)/๐‘…๐‘Ž๐‘‘(๐”ž๐”ฃ๐”ฃ(2)). since ๐‘ง1, ๐‘ง2, ๐‘ง3, ๐‘ง4 have the same commutation relations as ๏ฟฝฬ…๏ฟฝ๐‘–, 1 โ‰ค ๐‘– โ‰ค 4 written in equations (20), we then get [๐‘ง1, ๐‘ง2] = ๐‘ง2, [๐‘ง1, ๐‘ง3] = โˆ’๐‘ง3, [๐‘ง2, ๐‘ง3] = ๐‘ง1 โˆ’ ๐‘ง4, [๐‘ง2, ๐‘ง4] = ๐‘ง2, [๐‘ง3, ๐‘ง4] = โˆ’๐‘ง3. (22) we substitution the equation (22) onto (23) such that equation can be written as [๐‘ฅ1 + ๐›ผ1๐‘Ÿ1 + ๐›ผ2๐‘Ÿ2, ๐‘ฅ2 + ๐›ฝ1๐‘Ÿ1 + ๐›ฝ2๐‘Ÿ2] = ๐‘ฅ2 + ๐›ฝ1๐‘Ÿ1 + ๐›ฝ2๐‘Ÿ2, (23) [๐‘ฅ1 + ๐›ผ1๐‘Ÿ1 + ๐›ผ2๐‘Ÿ2, ๐‘ฅ3 + ๐›พ1๐‘Ÿ1 + ๐›พ2๐‘Ÿ2] = โˆ’(๐‘ฅ3 + ๐›พ1๐‘Ÿ1 + ๐›พ2๐‘Ÿ2), (24) [๐‘ฅ2 + โˆ‘ ๐›ฝ๐‘—๐‘Ÿ๐‘— 2 ๐‘—=1 , ๐‘ฅ3 + โˆ‘ ๐›พ๐‘—๐‘Ÿ๐‘— 2 ๐‘—=1 ] = (๐‘ฅ1 + โˆ‘ ๐›ผ๐‘—๐‘Ÿ๐‘— 2 ๐‘—=1 ) โˆ’ (๐‘ฅ4 + โˆ‘ ๐›ฟ๐‘—๐‘Ÿ๐‘— 2 ๐‘—=1 )(25) [๐‘ฅ2 + ๐›ฝ1๐‘Ÿ1 + ๐›ฝ2๐‘Ÿ2, ๐‘ฅ4 + ๐›ฟ1๐‘Ÿ1 + ๐›ฟ2๐‘Ÿ2] = ๐‘ฅ2 + ๐›ฝ1๐‘Ÿ1 + ๐›ฝ2๐‘Ÿ2, (26) [๐‘ฅ3 + ๐›พ1๐‘Ÿ1 + ๐›พ2๐‘Ÿ2, ๐‘ฅ4 + ๐›ฟ1๐‘Ÿ1 + ๐›ฟ2๐‘Ÿ2] = โˆ’(๐‘ฅ3 + ๐›พ1๐‘Ÿ1 + ๐›พ2๐‘Ÿ2). (27) then, we apply the equations (23), (24), (25), (26), and (27) to compute ๐›ผ๐‘–, ๐›ฝ๐‘–, ๐›พ๐‘–, ๐›ฟ๐‘–, 1 โ‰ค ๐‘– โ‰ค 2. from equations (23) and (26) obtained that ๐›ฝ1 = ๐›ฝ2 = 1. from equations (24) and (27) obtained that ๐›พ1 = ๐›พ2 = 1. for equations (25), we obtained that ๐›ผ1 โˆ’ ๐›ฟ1 = ๐›ผ2 โˆ’ ๐›ฟ2 = 0 and let ๐›ผ๐‘– = 0, such that we have ๐‘ง1 = ๐‘ฅ1, ๐‘ง2 = ๐‘ฅ2 + ๐‘Ÿ1 + ๐‘Ÿ2, ๐‘ง3 = ๐‘ฅ3 + ๐‘Ÿ1 + ๐‘Ÿ2, ๐‘ง4 = ๐‘ฅ4. thus, the levi subalgebra spanned by {๐‘ง1 = ( 1 0 0 0 0 0 0 0 0 ) , ๐‘ง2 = ( 0 1 1 0 0 1 0 0 0 ) , ๐‘ง3 = ( 0 0 1 1 0 1 0 0 0 ) , ๐‘ง4 = ( 0 0 0 0 1 0 0 0 0 )}. (28) โˆŽ conclusions it has been proven in proposition 2 that the affine lie algebra ๐”ž๐”ฃ๐”ฃ(2) can be decomposed into its subalgebra and radicals which written in the equations (15). from our result of this paper, other research can study about decomposition of the general formula affine lie algebra ๐”ž๐”ฃ๐”ฃ(n) of dimension ๐‘›(๐‘› + 1). for future research, the decomposition process can be expanded from the decomposition result of ๐”ž๐”ฃ๐”ฃ(๐‘›) in its radical and levi subalgebra form such that we can find structure frobenius lie algebra ๐”ž๐”ฃ๐”ฃ(๐‘›) of its decomposition. levi decomposition of frobenius lie algebra of dimension 6 henti 400 references [1] j. e. humphreys, introduction to lie algebras and representation theory. springer, 1972. [2] m. a. alvarez, m. c. rodrรญguez-vallarte, and g. salgado, โ€œcontact and frobenius solvable lie algebras with abelian nilradical,โ€ commun. algebr., vol. 46, no. 10, pp. 4344โ€“4354, 2018, doi: 10.1080/00927872.2018.1439048. [3] p. turkowski, โ€œlow-dimensional real lie algebras,โ€ j. math. phys., vol. 29, no. 10, pp. 2139โ€“2144, 1988, doi: 10.1063/1.528140. [4] m. rais, โ€œla reprรฉsentation coadjointe du groupe affine,โ€ vol. 4, pp. 913โ€“937, 1978. [5] m. a. alvarez, m. c. rodrรญguez-vallarte, and g. salgado, โ€œcontact nilpotent lie algebras,โ€ proc. am. math. soc., vol. 145, no. 4, pp. 1467โ€“1474, 2017, doi: 10.1090/proc/13341. [6] i. v. mykytyuk, โ€œstructure of the coadjoint orbits of lie algebras,โ€ j. lie theory, vol. 22, no. 1, pp. 251โ€“268, 2012. [7] a. diatta and b. manga, โ€œon properties of principal elements of frobenius lie algebras,โ€ j. lie theory, vol. 24, no. 3, pp. 849โ€“864, 2018. [8] b. csikรณs and l. verhรณczki, โ€œclassification of frobenius lie algebras of dimension โ‰ค 6,โ€ publ. math., vol. 70, no. 3โ€“4, pp. 427โ€“451, 2007. [9] e. kurniadi, โ€œdekomposisi dan sifat matriks struktur pada aljabar lie frobenius berdimensi 4,โ€ no. 1, pp. 392โ€“399, 2021. [10] henti, e. kurniadi, and e. carnia, โ€œon frobenius functionals of the lie algebra m3(โ„) โŠ• gl3(โ„),โ€ j. phys. conf. ser., vol. 1872, no. 1, 2021, doi: 10.1088/17426596/1872/1/012015. [11] henti, e. kurniadi, and e. carnia, โ€œquasi associative algebras on the frobenius lie algebra m3(โ„) โŠ• gl3(โ„),โ€ al-jabar j. pendidik. mat., vol. 12, no. 1, pp. 1โ€“16, 2021, [online]. available: http://ejournal.radenintan.ac.id/index.php/aljabar/article/view/2014/1564. [12] e. kurniadi, n. gusriani, and b. subartini, โ€œa left-symmetric structure on the semi-direct sum real frobenius lie algebra of dimension 8,โ€ cauchy, vol. 7, no. 2, pp. 267โ€“280, 2022, doi: 10.18860/ca.v7i2.13462. [13] e. kurniadi and h. ishi, โ€œharmonic analysis for 4-dimensional real frobenius lie algebras,โ€ springer proc. math. stat., vol. 290, no. march, pp. 95โ€“109, 2019, doi: 10.1007/978-3-030-26562-5_4. [14] diatta, a., b. manga, and a. mbaye, โ€œon systems of commuting matrices, frobenius lie algebras and gerstenhaberโ€™s theorem,โ€ arxiv:2002.08737., 2020. [15] d. n. pham, โ€œ$\frak{g}$-quasi-frobenius lie algebras,โ€ arch. math., vol. 52, pp. 233โ€“262, 2016, [online]. available: http://arxiv.org/abs/1701.01680. [16] m. goze and e. remm, โ€œcontact and frobenius forms on lie groups,โ€ differ. geom. its appl., vol. 35, pp. 74โ€“94, 2014, doi: 10.1016/j.difgeo.2014.05.008. [17] t. barajas, e. roque, and g. salgado, โ€œprincipal derivations and codimension one ideals in contact and frobenius lie algebras,โ€ commun. algebr., vol. 47, no. 12, pp. 5380โ€“5391, 2019, doi: 10.1080/00927872.2019.1623238. [18] m. dagli, โ€œlevi decomposition of lie algebras; algorithms for its computation,โ€ iowa state university, 2004. [19] j. hilgert and k.-h. neeb, structure and geometry of lie groups. new york: springer monographs in mathematics, 2012. [20] a. i. ooms, on frobenius lie algebras, vol. 8, no. 1. 1980. microsoft word 1 sampul depan.doc 1ย  super edge-magic labeling pada graph ulat dengan himpunan derajat {1, 4} dan n titik berderajat 4 abdussakir jurusan matematika, fakultas sains dan teknologi universitas islam negeri maulana malik ibrahim malang, indonesia e-mail: abdussakir1975@yahoo.co.id abstrak pelabelan total sisi ajaib super (edge magic total labeling) pada suatu graph (v, e) dengan order p dan ukuran q adalah fungsi bijektif f dari v โˆช e ke himpunan {1, 2, 3, โ€ฆ, p + q} sehingga untuk masing-masing sisi xy di g berlaku f(x) + f(xy) + f(y) = k, dengan k konstanta. pelabelan total sisi ajaib yang memetakan v ke {1, 2, โ€ฆ, p} disebut pelabelan sisi ajaib super (super edge-magic labeling). graph yang dapat dikenakan pelabelan sisi ajaib super disebut graph sisi ajaib super. pada artikel ini akan dijelaskan bahwa graph ulat dengan himpunan derajat d = {1, 4} dan n titik berderajat 4, untuk n bilangan asli, adalah sisi ajaib super. kata kunci: graph, pelabelan, total sisi ajaib. 1. pendahuluan graph g adalah pasangan (v, e) dengan v adalah himpunan tidak kosong dan berhingga dari objek-objek yang disebut titik, dan e adalah himpunan (mungkin kosong) pasangan takberurutan dari titik-titik berbeda di v yang disebut sisi. banyaknya unsur di v disebut order dari g dan dilambangkan dengan p(g), dan banyaknya unsur di e disebut ukuran dari g dan dilambangkan dengan q(g). jika yang dibicarakan hanya satu graph, maka order dan ukuran masing-masing akan ditulis p dan q. sisi e = (u, v) dikatakan menghubungkan titik u dan v. jika e = (u, v) adalah sisi di graph g, maka u dan v disebut terhubung langsung, v dan e serta u dan e disebut terkait langsung, dan u, v disebut ujung dari e. derajat dari titik v di graph g, ditulis degg v, adalah banyaknya sisi di g yang terkait langsung dengan v. titik yang berderajat satu disebut titik ujung. untuk selanjutnya, sisi e = (u, v) akan ditulis e = uv. himpunan derajat dari graph g, ditulis dg, adalah himpunan yang memuat derajat semua titik di g. pada graph g berikut, g : diperoleh bahwa degg w = 2, degg x = 2, degg y = 3, dan degg y = 1. jadi himpunan derajat dari graph g adalah dg = {1, 2, 3}. jika yang dibicarakan hanya satu graph, maka himpunan derajat akan ditulis d. jalan u-v dalam graph g adalah barisan berhingga yang berselang-seling w : u = vo, e1, v1, e2, v2, โ€ฆ, en, vn = v antara titik dan sisi, yang dimulai dari titik dan diakhiri dengan titik, dengan ei = vi-1vi adalah sisi di g. v0 disebut titik awal, vn disebut titik akhir, v1, v2, โ€ฆ, vn-1 disebut titik internal, dan n menyatakan panjang w. jalan yang tidak mempunyai sisi disebut jalan trivial. jika v0 = vn, maka w disebut jalan tertutup. jika semua sisi di w berbeda, maka w disebut trail. jika semua titik di w berbeda, maka w disebut lintasan. graph berbentuk lintasan disebut graph lintasan. โ€ข โ€ข โ€ข x z y w โ€ข abdussakirย  2 volumeย 1ย no.ย 1ย novemberย 2009 2. graph ulat graph ulat (caterpillar) adalah graph yang jika semua titik ujungnya dibuang akan menghasilkan lintasan. perlu diingat kembali bahwa titik ujung adalah titik yang berderajat satu. berikut ini adalah beberapa contoh graph ulat. (a) (b) (c) himpunan derajat pada (a), (b), dan (c) masing-masing adalah {1, 3, 4}, {1, 3, 4}, dan {1, 4}. pada (c) terdapat 3 titik berderajat 4. pada artikel ini, yang akan dibahas adalah graph ulat dengan himpunan derajat d = {1, 4} dan n titik berderajat 4, untuk n bilangan asli. graph ulat dengan himpunan derajat d = {1, 4} dan n titik berderajat 4 akan memuat sebanyak 2n titik ujung, untuk n bilangan asli. pelabelan total sisi ajaib (edge-magic total labeling) pada suatu graph (v, e) dengan order p dan ukuran q adalah fungsi bijektif f dari v โˆช e ke {1,2,3,โ€ฆ, p+q} sehingga untuk masing-masing sisi xy di g berlaku f(x) + f(xy) + f(y) = k, dengan k konstanta. konstanta k disebut bilangan ajaib. pelabelan total sisi ajaib dapat dimaknai bahwa jumlah label suatu sisi dan label titik yang terkait langsung dengan sisi tersebut adalah sama, untuk semua sisi. graph yang dapat dikenakan pelabelan total sisi ajaib disebut graph total sisi ajaib. pelabelan total sisi ajaib yang memetakan himpunan titik v ke {1,2,โ€ฆ, p} disebut pelabelan sisi ajaib super (super edge-magic labeling). graph yang dapat dikenakan pelabelan sisi ajaib super disebut graph sisi ajaib super. pada contoh berikut, gambar (a) adalah pelabelan total sisi ajaib dan gambar (b) adalah pelabelan sisi ajaib super. konstanta pada gambar (a) adalah 12, sedangkan pada gambar (b) adalah 9. perhatikan pada gambar (b), titik dipetakan pada himpunan {1, 2, 3}. pada artikel ini akan dijelaskan bahwa graph ulat dengan himpunan derajat d = {1, 4} dan n titik berderajat 4 adalah sisi ajaib super, untuk n bilangan asli. dengan tujuan mempermudah penulisan, dalam artikel ini graph ulat dengan himpunan derajat d = {1, 4} dan n titik berderajat 4 akan disimbolkan dengan un. untuk membuktikan bahwa un adalah sisi ajaib super, perlu ditunjukkan adanya suatu fungsi bijektif f dari v(un) โˆช e(un) ke {1, 2, 3, โ€ฆ, โv(un)โ+ โe(un)โ} sehingga untuk masing-masing sisi xy di g berlaku f(x) + f(xy) + f(y) = k, dengan k adalah konstanta. selain itu, perlu ditunjukkan bahwa f memetakan v(un) ke {1, 2, 3, โ€ฆ, โv(un)โ}. 3. pembahasan pembahasan bahwa graph ulat dengan himpunan derajat d = {1, 4} dan n titik berderajat 4 adalah sisi ajaib super, untuk n bilangan asli, disajikan dalam teorema berikut beserta buktinya, dan beberapa contoh sebagai aplikasi fungsi/pelabelan yang disajikan dalam teorema. โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข 4 6 5 2 1 3 โ€ข โ€ข โ€ข 1 3 2 5 4 6 (a) (b) ย superย edgeยญmagicย labellingย padaย graphย ulatย denganโ€ฆย  volumeย 1ย no.ย 1ย novemberย 2009 3 teorema 1. graph ulat dengan himpunan derajat d = {1, 4} dan n titik berderajat 4 adalah sisi ajaib super, untuk n bilangan asli. bukti: graph ulat un dengan himpunan derajat d = {1, 4} dan n titik berderajat 4, n bilangan asli, dapat digambar sebagai berikut. un : berdasarkan gambar, himpunan titik pada un adalah v(un) = { x1, x2, x3,โ€ฆ, xn, y1, y2, y3, โ€ฆ, yn + 2, z1, z2, z3, โ€ฆ, zn} dan himpunan sisi pada un adalah e(un) = { x1y2, x2y3, โ€ฆ, xnyn + 1, y1y2, y2y3, โ€ฆ, yn + 1yn + 2, z1y2, z2y3, โ€ฆ, znyn + 1}. jadi, order dari un adalah p(un) = โv(un)โ= 3n + 2 dan ukuran dari un adalah q(un) = โe(un)โ= 3n + 1. jadi, p(un) + q(un) = 6n + 3. dalam hal ini terdapat dua kasus, yaitu untuk n bilangan asli ganjil dan n bilangan asli genap. a. pelabelan pada un, dengan n bilangan asli ganjil definisikan fungsi f dari v(un) โˆช e(un) ke {1, 2, 3, โ€ฆ, 6n + 3} sebagai berikut. f(xi) = 2 13 +i , untuk i ganjil dan 1 โ‰ค i โ‰ค n. f(xi) = 2 333 ++ in , untuk i genap dan 1 โ‰ค i โ‰ค n. f(yi) = 2 13 โˆ’i , untuk i ganjil dan 1 โ‰ค i โ‰ค n + 2. f(yi) = 2 133 ++ in , untuk i genap dan 1 โ‰ค i โ‰ค n + 2. f(zi) = 2 33 +i , untuk i ganjil dan 1 โ‰ค i โ‰ค n. f(zi) = 2 533 ++ in , untuk i genap dan 1 โ‰ค i โ‰ค n. f(yiyi + 1) = 6n โ€“ 3i + 6, 1 โ‰ค i โ‰ค n + 1. f(xiyi + 1) = 6n โ€“ 3i + 5, 1 โ‰ค i โ‰ค n. f(ziyi + 1) = 6n โ€“ 3i + 4, 1 โ‰ค i โ‰ค n. dengan mengecek pada masing-masing interval indeks titik (genap atau ganjil) akan dapat ditunjukkan bahwa f adalah fungsi injektif. karena f fungsi injektif dengan domain dan kodomain yang mempunyai banyak anggota sama dan berhingga, maka f adalah fungsi surjektif. jadi f adalah fungsi bijektif. (1) untuk 1 โ‰ค i โ‰ค n + 1 dan i ganjil diperoleh f(yi) + f(yiyi + 1) + f(yi + 1) = ( 2 13 โˆ’i ) + (6n โ€“ 3i + 6) + ( 2 1)1(33 +++ in ) = 2 1515 +n โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ฆ x1 x2 x3 โ€ฆ xn z1 z2 z3 โ€ฆ zn y1 y2 y3 y4 yn +1 yn + 2 abdussakirย  4 volumeย 1ย no.ย 1ย novemberย 2009 (2) untuk 1 โ‰ค i โ‰ค n + 1 dan i genap diperoleh f(yi) + f(yiyi + 1) + f(yi + 1) = ( 2 133 ++ in ) + (6n โ€“ 3i + 6) + ( 2 1)1(3 โˆ’+i ) = 2 1515 +n (3) untuk 1 โ‰ค i โ‰ค n dan i ganjil diperoleh f(xi) + f(xiyi + 1) + f(yi + 1) = ( 2 13 +i ) + (6n โ€“ 3i + 5) + ( 2 1)1(33 +++ in ) = 2 1515 +n (4) untuk 1 โ‰ค i โ‰ค n dan i genap diperoleh f(xi) + f(xiyi + 1) + f(yi + 1) = ( 2 333 ++ in ) + (6n โ€“ 3i + 5) + ( 2 1)1(3 โˆ’+i ) = 2 1515 +n (5) untuk 1 โ‰ค i โ‰ค n dan i ganjil diperoleh f(zi) + f(ziyi + 1) + f(yi + 1) = ( 2 33 +i ) + (6n โ€“ 3i + 4) + ( 2 1)1(33 +++ in ) = 2 1515 +n (6) untuk 1 โ‰ค i โ‰ค n dan i genap diperoleh f(zi) + f(ziyi + 1) + f(yi + 1) = ( 2 533 ++ in ) + (6n โ€“ 3i + 4) + ( 2 1)1(3 โˆ’+i ) = 2 1515 +n dengan demikian diperoleh bahwa un adalah total sisi ajaib dengan bilangan ajaib k = 2 1515 +n . selanjutnya dapat ditunjukkan bahwa f memetakan v(un) ke {1, 2, 3, โ€ฆ, 3n + 2}. jadi f adalah pelabelan sisi ajaib super pada un dengan n bilangan asli ganjil. b. pelabelan pada un, dengan n bilangan asli genap definisikan fungsi f dari v(un) โˆช e(un) ke {1, 2, 3, โ€ฆ, 6n + 3} sebagai berikut. f(xi) = 2 13 +i , untuk i ganjil dan 1 โ‰ค i โ‰ค n. f(xi) = 2 33 in + , untuk i genap dan 1 โ‰ค i โ‰ค n. f(yi) = 2 13 โˆ’i , untuk i ganjil dan 1 โ‰ค i โ‰ค n + 2. f(yi) = 2 233 โˆ’+ in , untuk i genap dan 1 โ‰ค i โ‰ค n + 2. f(zi) = 2 33 +i , untuk i ganjil dan 1 โ‰ค i โ‰ค n. f(zi) = 2 233 ++ in , untuk i genap dan 1 โ‰ค i โ‰ค n. f(yiyi + 1) = 6n โ€“ 3i + 6, 1 โ‰ค i โ‰ค n + 1. f(xiyi + 1) = 6n โ€“ 3i + 5, 1 โ‰ค i โ‰ค n. ย superย edgeยญmagicย labellingย padaย graphย ulatย denganโ€ฆย  volumeย 1ย no.ย 1ย novemberย 2009 5 f(ziyi + 1) = 6n โ€“ 3i + 4, 1 โ‰ค i โ‰ค n. dengan mengecek pada masing-masing interval indeks titik (genap atau ganjil) akan dapat ditunjukkan bahwa f adalah fungsi injektif. karena f fungsi injektif dengan domain dan kodomain yang mempunyai banyak anggota sama dan berhingga, maka f adalah fungsi surjektif. jadi f adalah fungsi bijektif. (1) untuk 1 โ‰ค i โ‰ค n + 1 dan i ganjil diperoleh f(yi) + f(yiyi + 1) + f(yi + 1) = ( 2 13 โˆ’i ) + (6n โ€“ 3i + 6) + ( 2 2)1(33 โˆ’++ in ) = 2 1215 +n (2) untuk 1 โ‰ค i โ‰ค n + 1 dan i genap diperoleh f(yi) + f(yiyi + 1) + f(yi + 1) = ( 2 233 โˆ’+ in ) + (6n โ€“ 3i + 6) + ( 2 1)1(3 โˆ’+i ) = 2 1215 +n (3) untuk 1 โ‰ค i โ‰ค n dan i ganjil diperoleh f(xi) + f(xiyi + 1) + f(yi + 1) = ( 2 13 +i ) + (6n โ€“ 3i + 5) + ( 2 2)1(33 โˆ’++ in ) = 2 1215 +n (4) untuk 1 โ‰ค i โ‰ค n dan i genap diperoleh f(xi) + f(xiyi + 1) + f(yi + 1) = ( 2 33 in + ) + (6n โ€“ 3i + 5) + ( 2 1)1(3 โˆ’+i ) = 2 1215 +n (5) untuk 1 โ‰ค i โ‰ค n dan i ganjil diperoleh f(zi) + f(ziyi + 1) + f(yi + 1) = ( 2 33 +i ) + (6n โ€“ 3i + 4) + ( 2 2)1(33 โˆ’++ in ) = 2 1215 +n (6) untuk 1 โ‰ค i โ‰ค n dan i genap diperoleh f(zi) + f(ziyi + 1) + f(yi + 1) = ( 2 233 ++ in ) + (6n โ€“ 3i + 4) + ( 2 1)1(3 โˆ’+i ) = 2 1215 +n dengan demikian diperoleh bahwa un adalah total sisi ajaib dengan bilangan ajaib k = 2 1215 +n . selanjutnya dapat ditunjukkan bahwa f memetakan v(un) ke {1, 2, 3, โ€ฆ, 3n + 2}. jadi f adalah pelabelan sisi ajaib super pada un dengan n bilangan asli genap. berdasarkan dua kasus pada n, maka diperoleh bahwa graph ulat un dengan himpunan derajat {1, 4} dan n titik berderajat empat adalah sisi ajaib super, untuk semua n bilangan asli. berikut ini contoh pelabelan sis ajaib super pada graph ulat u3 dan u4 menggunakan teorema di atas. perhatikan bahwa label titik dan sisi sesuai dengan rumus pada teorema. abdussakirย  6 volumeย 1ย no.ย 1ย novemberย 2009 u3 : pada u3, diperoleh bahwa bilangan ajaib adalah 30 = 2 15)3(15 + . u4 : pada u4, diperoleh bahwa bilangan ajaib adalah 36 = 2 12)4(15 + . 4. kesimpulan berdasarkan pembahasan dapat disimpulkan bahwa bahwa graph ulat un dengan himpunan derajat {1, 4} dan n titik berderajat empat adalah sisi ajaib super, untuk semua n bilangan asli. untuk n bilangan asli ganjil dan genap masing-masing bilangan ajaib adalah k = = 2 1515 +n dan k = 2 1215 +n . pelabelan seperti yang dijelaskan dalam teorema dimungkinkan bukan satu-satu pelabelan sisi ajaib super pada graph ulat un. dengan demikian, disarankan kepada pembaca untuk mencari rumus pelabelan yang berbeda pada graph ulat un. selain itu, karena graph ulat banyak jenisnya, maka disarankan kepada pembaca untuk melakukan penelitian pada beberapa jenis graph ulat yang lain. daftar pustaka bondy, j.a. & murty, u.s.r., (1976), graph theory with applications, the macmillan press ltd, london. chartrand, g. & lesniak, l., (1986), graph and digraph, 2nd edition, california: wadsworth, inc. miller, mirka., (2000), open problems in graph theory: labelings and extremal graphs, prosiding konferensi nasional x matematika di bandung, juli, 17-20. โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข 2 9 5 3 10 6 1 21 8 18 4 15 11 12 7 20 17 14 19 16 13 โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข โ€ข 2 9 5 12 3 10 6 13 1 27 8 24 4 21 11 18 7 15 14 26 23 20 17 25 22 19 16 a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 474-482 p-issn: 2086-0382; e-issn: 2477-3344 submitted: february 10, 2022 reviewed: august 27, 2022 accepted: september 13, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.15398 a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi*, nina salsabila sulistiani, pringgo widyo laksono industrial engineering department universitas sebelas maret jalan ir. sutami 36 a surakarta, indonesia 57126 email: cucuknur@staff.uns.ac.id* abstract in an intensed business competition, a company has to improve its competitiveness by focus more on supply chain management. one of the crucial problems in supply chain deals with the allocation of orders. more and more companies are starting to adopt mass customization logistics service (mcls) mode to determine the optimal allocations of order both from suppliers and to customized logistics services at the possible lowest cost. for this purpose, logistics service integrator (lsi) is needed to integrate the logistics tasks which operationally done by functional logistics service provider (flsp). this research aims at developing an optimization model to determine optimal decisions concerning order allocations of the needed items from the manufacturer to the respective suppliers and logistics tasks from lsi to flsps. the problems were formulated using mixed integer linear programming (milp). the results of the analysis show that the demand becomes the only sensitive parameter towards both decision variables and objective function, while the purchasing cost only impact significantly to the objective function. keywords: mixed integer linear programming; order allocation; mass customization logistics services. introduction in an intensed business competition, many companies made their best effort to improve their competitiveness through highly product adjustments, increase product quality, and reduce product costs with timely distribution. hence, supply chain management has become more important in increasing the company competitiveness [1]. the company has to manage its supply chain efficiently to cope with increasing customer variety and demand, the advances of communication technology and information systems, and high competition in the era of globalization, and environmental awareness [2]. the short-term goal of supply chain management is to increase productivity while in the same time reduce total inventory costs and total cycle time. in the long-term, the goal of supply chain management is to increase customer satisfaction, market share, and profits for all parties involved in the supply chain, namely suppliers, manufacturers, distribution centers, and customers [3]. to achieve this goal, it is necessary to have good coordination of each element in the supply chain. several important decisions should be made by the decision makers in the supply http://dx.doi.org/10.18860/ca.v7i3.15398 mailto:cucuknur@staff.uns.ac.id a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi 475 chain such as supplier selection, order allocation, and third-party logistics selection. supplier selection activities are important for the company and involving multi criteria decision making techniques due to its problem nature [4-6]. order allocation problem is usually solved using constrained mathematical programming approach which formulated in single or multi-objective formulation. the common objective of the model is to minimize cost or maximizing profit and maximizing total value purchasing [7]. with optimal order allocation the company can run the entire supply chain with its best performance [8]. supplier selection and order allocation have attracted many researchers. for example, the model in [9] proposed multi attribute utility theory determine the optimal order allocation with two stages. in the first stage, supplier selection was performed using and in the second stage the optimal order allocation was found using multi-objective integer linear programming involving social and environmental objectives. other recent model in supplier selection and order allocation were developed by [10]. in the research, the sustainable criteria were used to determine the weight of criteria using best-worst method (bwm). afterwards, the results of the weight were used to determine the suppliers rating and rating were found by the measurement alternatives and ranking according to compromise solution (marcos) method. research [11] only developed an optimization model to determine the optimal order allocation. research [12] considered the transportation alternatives and lateral transhipment in order allocation problem. the model was used to determine the optimal order allocation and transportation alternative for three echelon supply chain consisting of supplier, manufacturer, and retailer. supply chain transportation has to be managed efficiently. hence, according to [1315], more and more companies adopted mass customization logistic service (mcls) mode to make the oprations more efficient. in mcls, customized logistics services are provided where the order allocation of logistics tasks are conducted by logistic service integrator (lsi). the lsi allocates the logistics tasks to functional logistics service providers (flsp). the research to solve mcls problems has been conducted by many researchers. for example, the scheduling problems of the mcls have been solved by [13] for deterministic and by [16] for uncertain flspโ€™s time. the optimization models have been developed to solve the order allocation problems of mcls such as in [17, 18]. both researches only considered the order allocation of logistics tasks from lsi to flsps. in fact, the manufacturer that uses the lsi services need to determine the optimal allocation of the needed items from the suppliers. hence, an optimization model needs to develop in order to integrating the decision making of order allocations of needed items and logistics tasks. the problem is formulated using mixed integer linear programming (milp) method to determine the allocation of orders to suppliers and the allocation of logistics tasks to flsp to minimize the total supply chain costs. methods the model is formulated using milp method. the objective function of the model is to minimize manufacturerโ€™s costs which comprise of supplier cost, outsourcing services cost, and transportation cost. there are two decision variables in the model, namely the allocation of order from each supplier and the assignment of logistics tasks to the respective flsp. several assumptions that involved in the modeling process are: (1) each supplier can supply more than one product, (2) the quantity of orders to each supplier is assumed to be constant for each period, (3) the budget for purchasing of orders is assumed to be constant for each period, and (4) each has different outsourcing price and a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi 476 service capacity. model notations index i : supplier index (i=1โ€ฆi) f : flsp index (f=1โ€ฆf) j : procedure index (j=1โ€ฆj) k : product index (k=1โ€ฆk) decision variables ๐‘‹๐ถ๐‘˜๐‘– : the order quantity of product k from supplier i ๐‘„๐‘“๐‘—๐‘˜ : the number of logistics tasks assigned by the lsi to the flsp f for procedure j for product k ๐‘‹๐‘“๐‘—๐‘˜ { 1, if flsp ๐‘“ of procedure ๐‘— is selected for product ๐‘˜ 0, otherwise parameters cki : unit cost of product k from supplier i ($) tc : unit transportation cost per kg ($) wcfjk : the mass of product k in procedure j processed by flsp f (kg) ocki : unit order cost of product k from supplier i ($) b : total budget for procurement ($) dck : demand for product k (unit) capcki : product k capacity from supplier i (unit) pfjk : unit service price of product k processed by flsp f for procedure j ($) afjk : maximum service capacity of flsp f for procedure j and for product k varfjk : variable for linearization m : big positive number (assumption of m value = 1000000) model formulation the formulation of the cost components is shown in equations (1)-(3). equation (1) expresses the supplier cost which determines by multiplying the order allocation with the summation of unit product cost and order cost. equation (2) calculates the total cost of outsourcing services incurred by the company for flsp and lsi services. the total cost was calculated by multiplying the order quantity with service price and the number of logistics tasks performed by flsp. equation (3) calculate total transportation cost which expressed as the function of the mass of product. tbp = (โˆ‘ โˆ‘ ๐ถ๐‘–๐‘˜ + ๐‘‚๐ถ๐‘–๐‘˜ ๐‘๐‘˜ ๐‘˜ ๐‘๐‘– ๐‘– ) ๐‘ฅ ๐‘‹๐ถ๐‘–๐‘˜ (1) tblo = โˆ‘ โˆ‘ โˆ‘ ๐‘‹๐‘“๐‘—๐‘˜ ๐‘๐‘˜ ๐‘˜ ๐‘ฅ ๐‘ƒ๐‘“๐‘—๐‘˜ ๐‘ฅ ๐‘„๐‘“๐‘—๐‘˜ ๐‘๐‘— ๐‘— ๐‘๐‘– ๐‘“ (2) tbt = โˆ‘ โˆ‘ โˆ‘ ๐‘‡๐ถ . ๐‘๐‘— ๐‘˜ ๐‘Š๐ถ๐‘“๐‘—๐‘˜ ๐‘๐‘— ๐‘— ๐‘๐‘– ๐‘“ (3) the constraints of the model are expressed in equations (4)-(12). equation (4) ensures the expenditure to cover all the costs is not over budget. equations (5) and (6) ensure the order quantity covers all the demand and does not exceed the supplier capacity. equation (7) ensures at least one flsp is selected to prevent the service delays. equation (8) is needed to ensure all the demand are processed by flsp. equation (9) is a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi 477 needed to ensure the number of logistics tasks assigned to the flsp for each procedure does not exceed the capacity of each flsp for each procedure. equations (10) and (11) express the non-negative and integer values of the decision variables. equation (12) defines the binary decision variable. (โˆ‘ โˆ‘ ๐ถ๐‘–๐‘˜ + ๐‘‚๐ถ๐‘–๐‘˜ ) โ€ค ๐‘‹๐ถ๐‘–๐‘˜ + (โˆ‘ โˆ‘ โˆ‘ ๐‘‹๐‘“๐‘—๐‘˜ ๐‘๐‘˜ ๐‘˜ . ๐ถ1๐‘“๐‘—๐‘˜ . ๐‘„๐‘“๐‘—๐‘˜ . ๐‘‡๐ถ . ๐‘Š๐ถ๐‘“๐‘—๐‘˜ ) ๐‘๐‘— ๐‘— ๐‘๐‘– ๐‘“ ๐‘๐‘˜ ๐‘˜ ๐‘๐‘– ๐‘– โ‰ค ๐ต (4) โˆ‘ ๐‘‹๐ถ๐‘–๐‘˜ โ‰ฅ ๐ท๐ถ๐‘˜ ๐‘๐‘– ๐‘– (5) ๐‘‹๐ถ๐‘–๐‘˜ โ‰ค ๐ถ๐ด๐‘ƒ๐ถ๐‘–๐‘˜ (6) โˆ‘ ๐‘‹๐‘“๐‘—๐‘˜ โ‰ฅ 1 ๐‘๐‘– ๐‘“ (7) โˆ‘ ๐‘„๐‘“๐‘—๐‘˜ = ๐ท๐ถ๐‘˜ ๐‘๐‘– ๐‘“ (8) ๐‘„๐‘“๐‘—๐‘˜ โ‰ค ๐ด๐‘“๐‘—๐‘˜ (9) ๐‘‹๐ถ๐‘–๐‘˜ โ‰ฅ 0 ๐‘Ž๐‘›๐‘‘ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ (10) ๐‘„๐‘“๐‘—๐‘˜ โ‰ฅ 0 (11) ๐‘‹๐‘“๐‘—๐‘˜ โˆˆ {0,1} (12) in equation (4), there is a non-linear function as the result of multiplication of two decision variables. hence, we have to conduct linearization by adding a surrogate variable. equation (13) and (14) show the lower bound and upper bounds of the surrogate variable. in this case, the surrogate variable should not be greater than the integer decision variable to ensure the consistency of the model. ๐‘‰๐‘Ž๐‘Ÿ๐‘“๐‘—๐‘˜ โ‰ฅ ๐‘„๐‘“๐‘—๐‘˜ โˆ’ (1 โˆ’ ๐‘‹๐‘“๐‘—๐‘˜ ) ๐‘ฅ ๐‘€ (13) ๐‘‰๐‘Ž๐‘Ÿ๐‘“๐‘—๐‘˜ โ‰ค ๐‘€ ๐‘ฅ ๐‘‹๐‘“๐‘—๐‘˜ (14) ๐‘‰๐‘Ž๐‘Ÿ๐‘“๐‘—๐‘˜ โ‰ค ๐‘„๐‘“๐‘—๐‘˜ (15) results and discussion optimization results in this section, we give a numerical example and sensitivity analysis to show the implementation of the model and how sensitive the model to the change of some input parameters. in the numerical example, a single manufacturer has to order three kinds of raw materials form three suppliers. all raw materials can be supplied by all suppliers except for raw material a which only supplied by supplier 1 and 2. after determines the order allocation for each supplier, the delivery of the orders is done by single lsi which then order the logistics services to three flsp with eight procedures. unit product cost and unit order cost are shown in table 1. the demand for each product is set at 9,500 units; the maximum budget for procurement expenditure is $5,000 and transportation cost per kg is $0.00023. the other parameters which deal with the flsp activities are shown in table 2. a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi 478 table 1. unit product and order cost raw material supplier unit product cost ($) unit order cost ($) supplier capacity (unit) a 1 7.75 0.210 10,000 2 6.15 0.210 5,000 3 b 1 320 0.013 15,000 2 290 0.014 1,000 3 278.6 0.007 8,000 c 1 151.33 0.021 8,000 2 34 0.004 10,000 3 39.65 0.005 1,000 table 2. service cost and fls capacity. flsp procedure raw material service cost ($) flsp capacity (unit) a b c a b c 1 2.2 2.2 2.2 3350 3369 2576 2 2.8 2.8 2.8 4557 3148 5560 3 4.3 4.3 4.3 5847 5288 1170 4 4.3 4.3 4.3 3573 3150 4734 1 5 4.4 4.4 4.4 2311 3395 2048 6 5.5 5.5 5.5 4500 4561 6751 7 5.1 5.1 5.1 3457 2390 4286 8 6.5 6.5 6.5 7890 6732 7865 1 2.3 2.3 2.3 2576 1096 3711 2 3.2 3.2 3.2 2278 5589 3402 3 4.5 4.5 4.5 3553 2911 2999 4 5.2 5.2 5.2 4428 2152 3350 2 5 4.8 4.8 4.8 4113 4866 5821 6 4.6 4.6 4.6 3235 2387 4598 7 4.8 4.8 4.8 2389 8798 6851 8 5.6 5.6 5.6 6541 4531 3452 1 3.4 3.4 3.4 3711 5241 3350 2 3.5 3.5 3.5 3947 4335 4756 3 3.5 3.5 3.5 1320 3350 5899 4 4.8 4.8 4.8 2987 4850 1887 3 5 5.1 5.1 5.1 3541 1741 2435 6 5.0 5.0 5.0 3576 5768 1578 7 5.2 5.2 5.2 8976 2566 1897 8 5.8 5.8 5.8 5456 3459 1765 lingo 18.0 was used to solve the model using the embedded branch and bound method. the global optimum was found in the sixth iteration resulted a minimum cost at $1676.58. the optimal order for each supplier and the order for each flsp is shown in a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi 479 table 3 and table 4 respectively. from table 3, the manufacturer should order raw material a from supplier 1 and 2, raw material b from supplier 1 and 3, and raw material c only from supplier 2. as shown in table 4, all flsp are assigned to process the procedure for all materials. table 3. optimal raw material order allocation raw material supplier order allocation (unit) a 1 4500 2 5000 3 0 b 1 1500 2 0 3 8000 c 1 0 2 9500 3 0 table 4. order allocation for each flsp flsp procedure order allocation (unit) a b c 1 1 3350 3369 2576 2 4557 3148 5560 3 5847 5288 1170 4 3573 3150 4734 5 2311 3395 2048 6 4500 4561 6751 7 3457 2390 4286 8 7890 6732 7865 2 1 2439 890 3574 2 996 2017 1 3 2333 862 2431 4 2940 1500 2879 5 3648 4364 5017 6 1424 1 1171 7 1 4544 3317 8 1 1 1 3 1 3711 5241 3350 2 3947 4335 3939 3 1320 3350 5899 4 2987 4850 1887 5 3541 1741 2435 6 3576 4938 1578 7 6042 2566 1897 8 1609 2767 1634 sensitivity analysis the scenario for sensitivity analysis is shown in table 5. six parameters are studied to determine how sensitive the model towards the change of those parameters. for each parameter, we set four values each with the decrease and increase of 15% and 30% from the base line. resume of the results of sensitivity analysis are shown in table 6. from the table we can see that the change of all parameters value has the same effect on the decision variables, both the order allocation and outsourcing decisions. all the parameters value change are insensitive to both decision variables except for the demand. the increase of a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi 480 demand by 15% made the model infeasible. this result indicates that when the demand increases by 15% the manufacturer should find other suppliers to fulfill the demand or otherwise requires some suppliers to increase their capacities. two parameters are sensitive towards the objective function, namely the purchasing cost and demand. this becomes an indication for the manufacturer to have high awareness to those parameters especially when their value of those parameters increases. table 5. sensitivity analysis scenarios parameter value changes (%) c -30 -15 0 15 30 tc -30 -15 0 15 30 oc -30 -15 0 15 30 b -30 -15 0 15 30 dc -30 -15 0 15 30 p -30 -15 0 15 30 table 6. resume of the results of sensitivity analysis parameter order allocation objective function suppliers flsp purchasing cost insensitive insensitive sensitive unit transportation cost insensitive insensitive insensitive order cost insensitive insensitive insensitive maximum expenditure cost insensitive insensitive insensitive demand sensitive sensitive sensitive unit outsourcing cost insensitive insensitive insensitive conclusions in this research, we developed a milp model to solve order allocation problem in a supply chain consists of multi supplier, single manufacturer considering mcls to minimize total supply chain costs. mcls was represented by single lsi which responsible to process the delivery of the raw material through a serial procedure done by several flsps. the costs of the supply chain comprise of purchasing cost, transportation cost, order cost, and outsourcing service cost. based on the results of sensitivity analysis, among six parameters there are only one parameter has significant effect on the decision variables, namely the demand. on the other side, two variables have significant effect on the objective function, namely the unit purchasing cost and the demand. the model can be further developed by incorporating some decision variables such carrier selection, inventory, and lateral transhipment. references [1] s. anwar, "manajemen rantai pasokan (supply chain management): konsep dan hikayat", jurnal dinamika informatika, 3(2), 2011. [2] m. tracey, and c. l. tan, โ€œempirical analysis of supplier selection and involvement, customer satisfaction, and firm performanceโ€, supply chain management: an international journal, vol. 6 no.4, pp. 174-188, 2001 [3] k. c. tan, v. r. kannan, and r. b. handfield, โ€œsupply chain management: supplier performance and firm performance,โ€ international journal of purchasing & material management, vol. 34, no. 3, pp. 2โ€“9, 1998. a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi 481 [4] govindaraju, r., & sinulingga, j. p., โ€œpengambilan keputusan pemilihan pemasok di perusahaan manufaktur dengan metode fuzzy anpโ€, jurnal manajemen teknologi, vol. 16 no. 1, pp. 1-16, 2017 [5] r. sulistyoningarum, c. n. rosyidi, and t. rochman, โ€œsupplier selection of recycled plastic materials using best worst and topsis methodโ€, journal of physics: conference series, vol. 1367, no. 1, 2019. [6] sulistyoningarum, c. n. rosyidi, and t. rochman, โ€œsupplier selection and order allocation of recycled plastic materials: a case study in a plastic manufacturing companyโ€, international journal of information and management sciences, vol. 31 no. 4, pp.315โ€“330, 2020. [7] s. p. venkatesan, and m. goh, โ€œmulti-objective supplier selection and order allocation under disruption riskโ€, transportation research part e: logistics and transportation review, vol. 95, pp. 124-142, 2016. [8] k. s. moghaddam, โ€œfuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertaintyโ€, expert systems with applications, vol. 42 no. 15-16, pp. 6237-6254, 2015. [9] k. park, g. e.o kremer, and j. ma, โ€œa regional information-based multi-attribute and multi-objective decision-making approach for sustainable supplier selection and order allocationโ€, journal of cleaner production, vol. 187, pp. 590-604, 2018 [10] c. n. rosyidi, r. a. yudhatama, and p. w. laksono, โ€œmulti-objective optimization model of supplier selection and order allocation problem in a hospital: a case studyโ€, international journal of procurement management, in press, 2022. [11] b. a. k. dewi, c. n. rosyidi, and a. aisyati, โ€œan optimization model of drug order quantity and distribution using continuous review approach by considering secondary suppliersโ€, international journal of mathematics in operational research, in press, 2022. [12] a. maharani, c. n. rosyidi, and p. w. laksono, โ€œorder allocation model considering transportation alternatives and lateral transhipmentโ€, jurnal optimasi sistem industri, vol. 21 no. 1, pp. 38-44, 2022. [13] w. liu, y. yang, x. li, h. xu, and d. xie, โ€œa time scheduling model of logistics service supply chain with mass customized logistics serviceโ€, discrete dynamics in nature and society, pp.1-18, 2012. [14] w. liu, m. ge, w. xie, y. yang, and h. xu, โ€œan order allocation model in logistics service supply chain based on the pre-estimate behavior and competitive-bidding strategyโ€. international journal of production research, vol. 52 no.8, pp. 2327-2344, 2014 [15] x. liu, k. zhang, b. chen, j. zhou, and l. miao, โ€œanalysis of logistics service supply chain for the one belt and one road initiative of chinaโ€. transportation research part e: logistics and transportation review, vol. 117, pp. 23-39, 2018. [16] w. liu, q. wang, q. mao, s. wang, and d. zhu, โ€œa scheduling model of logistics service supply chain based on the mass customization service and uncertainty of flspโ€™s operation timeโ€, transportation research part e, vol.83, pp. 189-215, 2015. [17] x. hu, g. wang, x. li, y. zhang, s. feng, and a. yang, โ€œjoint decision model of supplier selection and order allocation for the mass customization of logistics servicesโ€, transportation research part e: logistics and transportation review, vol. 120, pp. 76-95, 2018. a mixed integer linear programming model of order allocation involving mass customization logistic service (mcls) cucuk nur rosyidi 482 [18] g. wang, x. hu, x. li, y. zhang, s. feng, and a. yang, โ€œmulti-objective decisions for provider selection and order allocation considering the position of the codp in a logistics service supply chainโ€, computers & industrial engineering, vol. 140, 2020. 11254-yundari fix cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4)(2021), pages 246-259 p-issn: 2086-0382; e-issn: 2477-3344 submitted: january 05, 2021 reviewed: march 16, 2021 accepted: march 30, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.11254 invertibility of generalized space-time autoregressive model with random weight yundari1, setyo wira rizki2 1mathematics department, faculty of mathematics and natural science, universitas tanjungpura pontianak, indonesia 2statistics department, faculty of mathematics and natural science, universitas tanjungpura pontianak, indonesia email: yundari@math.untan.ac.id abstract the generalized linear process accomplishes stationarity and invertibility properties. the invertibility property must be having a series of convergence conditions of the process parameter. the generalized space-time autoregressive (gstar) model is one of the stationary linear models therefore it is necessary to reveal the invertibility through the convergence of the parameter series. this article studies the invertibility of model gstar(1;1) with kernel random weight. the result shows that the model gstar(1;1) under kernel random weight fulfills the invertibility property and obtains a finite order of generalized space-time moving average (gstma) process. the other result obtained is the time order of the finite orde 7 ๏ฟฝ ๏ฟฝ ๏ฟฝ 30 . on the triangular kernel resulted in the relatively great value n, so that it does not apply to the kernel with a finite value n. the gstar(1;1) model with random kernel weight is applied to the data of tea production in six plantantion area in west java. the rmse value of data estimation obtained is quite small. it follows the original data pattern at each research location respectively. keywords: autoregressive process; generalized linear process; invertibility; stationarity introduction theoretically, the first order of the autoregressive model, ar(1), of the univariate time series is equivalent to the moving average model with infinity order, ma ( )โˆž [1]. it happens to the multivariate model that the vector autoregressive model, var(1), is comparable with the model vma( )โˆž [2]. these properties are known as the invertibility property of the autoregression model orde 1. the gstar(1;1) model is a member of the autoregression model family [3]. the question of research, is the gstar(1;1) model also equivalent to the gstma(โˆž;1) model? the theoretical study of the gstar model has be done in [4] about the model stationarity using the inverse of the autocorrelation matrix. furthermore, [5] tells about the estimation property of the parameter gstar using the least square method, observes the error assumption of the model gstar [6] and the gstar containing outlier [7]. also, the development of the gstar model has been carried out by several researchers such as gstar-garch [8], gstar-sur [9], gstar-kriging [10] and others. invertibility of generalized space-time autoregressive model with random weight yundari 247 several researchers have developed the spatial weight matrix determination, such as [11] using a uniform spatial weight matrix namely the closest neighbors are given the same weight. [5] uses a binary weight matrix considering the uniform weight as a comparison. the weight matrix determination using cross-correlation have also be done by [12]. all of the researchers use distance as the basis of the weight matrix determination. [13] proposes a fuzzy set approach based on observational data in determining the weight matrix, but the approach still produces the weights assigned is not random. determining random weight matrix have be be done by author by using some kernel functions approach [3]. furthermore, the spatial weight effect of the random kernel is also examined for its stationary properties [14]. some of the space-time data applied using the gstar model are the tourist number data at several tourist attractions [15], the tea production data [5], the gdp data in the countries in europe [11], the chili prices prediction [16], the data of log gamma ray [3], the rainfall data [10] and so on. this paper discusses the gstar model with a random weight using the kernel function. the kernel function used is uniform, triangular, epanechnikov, cosine dan gaussian. the kernel functions present the constant function, linear, square, cosine, dan exponential. moreover, the research talks about the weight matrix effect of kernel spatial to its invertibility. in notation, the weight matrix using the kernel function is denoted by ๏ฟฝ ( )ijw=w ษถ and the parameter matrix gstar(1;1) is represented by ๏ฟฝฯ† . besides, the study discloses the convergence of each kernel function to its invertibility. the article begins with the invertibility theory of the ar(1) model and var(1). the next section explains the kernel function and continued with the study of the gstar(1;1) model under the kernel weight. both results and discussion will be conferred in the next section about the invertibility of the gstar model under both the kernel weight and the convergence to determine the order of the gstma model. in the last section, the paper implements the gstar(1;1) model with the gaussian kernel weight on the tea production data in the six plantation area in west java. methods this section will discuss the theories underlying the research namely the ar(1) model and var(1) which is the basis of the gstar(1;1) model formation. after that, the research studies the properties of each invertibility. the last, it will have conversed about the kernel function used to form the spatial weight matrix of the gstar(1;1) model. invertibility of ar(1) and var(1) process the autoregression process (ar(p)) is defined as below [1]: 1 1 ...t t p t p ty y y aฯ† ฯ†โˆ’ โˆ’= + + + with 1 2, , ..., pฯ† ฯ† ฯ† are the autoregression parameters and ta is white noise process with mean is zero and variance is 2aฯƒ . if 1p = then it will be known as process ar(1), which is formulated as: 1t t ty y aฯ† โˆ’= + . besides, the process ar(1) is one of stationer linear models under a stationarity condition 1ฯ† < , model ar(1) has the invertibility property such as: 1 1 2 ( 1) 2 1 t t t k k t t k t k t t t y y a y a a a a a ฯ† ฯ† ฯ† ฯ† ฯ† โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ = + = + + + + + +โ‹ฏ โ‹ฏ invertibility of generalized space-time autoregressive model with random weight yundari 248 the last model obtained is the ma( โˆž )model and the ma model surely stationer with 1ฯ† < and over convergence process. it results in the ar(1) is invertible to ar(1) โ‰ˆ ma( โˆž ). on the process ar(1), it considers one random variable with some times. if the observation is worked by using several random variables which each of them through the process ar(1) so it is known as the first order of the vector of autoregressive (var(1)). the model var(1) can be framed as follows: 1 tt t aฯ† โˆ’= +y y ๏ฟฝ the necessary and sufficient condition of stationarity of the var(1) is a solution of 1 0ki bฯ†โˆ’ = less than one. the process var(1) can also be represented in the vector of moving average (vma) or in the other words satisfied the invertibility property [2]. the kernel function the continuous real function is denoted as the kernel function if satisfied the sum of integral is one, symmetrically for each , the mean equal to zero and the finite variance. an example of the kernel function along with its efficiency properties which learned in table 1. the notation { }2(k) ( )r k x dx= โˆซ states โ€œroughnessโ€ of the kernel function k. the notation 2 2 ( )k x k x dxฯƒ = โˆซ is a variance of the kernel function, while the efficiency of the kernel function is obtained from { }5 / 4( *) / (k) 1c k c = , where ( ){ }1/ 524 2( ) ( ) kc k r k ฯƒ= . table 1. the shape of kernel function and its properties. the bound of its domain between -1 and 1 (and 0 for outside the domain), except for the gaussian kernel is applicable for all the real numbers [17]. the kernel the form of function ( )r k 2 kฯƒ the efficiency the domain uniform (seragam kernel) ( ) 1 / 2k x = 1 2 1 3 0.9295 (-1,1) triangular ( ) 1k x x= โˆ’ 2 3 1 6 0.9859 (-1,1) epanechnikov ( )23( ) 1 4 k x x= โˆ’ 3 5 1 5 1 (-1,1) cosinus ( ) cos 4 2 k x ฯ€ ฯ€ = ๏ฃซ ๏ฃถ ๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ 2 16 ฯ€ 2 8 1 ฯ€ โˆ’ 0.9897 (-1,1) gaussian 21 ( ) e x p 22 x k x ฯ€ = โˆ’ ๏ฃฑ ๏ฃผ ๏ฃฒ ๏ฃฝ ๏ฃณ ๏ฃพ 1 2 ฯ€ 1 0.9512 โ„ the approximation of the kernel function as the weight function is generally used to estimate density and regression function. the procedure of the kernel function is the sum of some kernel function to each point corresponded to every surrounding point (see figure 1). in general, the kernel function of a point linked to itโ€™s the nearest point, for invertibility of generalized space-time autoregressive model with random weight yundari 249 example, x and y are x y k h โˆ’๏ฃซ ๏ฃถ ๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ . the notation h is a bandwidth controlling smoothness of the kernel function. figure 1. the plot of kernel density estimation. if there are a lot of observations which is close to point x then f(x) has great value. on other hand, if there are less ๏ฟฝ๏ฟฝ closed to the point x then f(x) has a small value. the gstar(1;1) model with the kernel weight the novel method to determine the spatial weight matrix of the model gstar recommended is by using the kernel function. kernel location weight is attained by adopting the kernel estimator of nadaraya-watson [18] and using an average value of the observation on every single location .iy average value selection of observation in each location is intended to find overall data property (data centering) by ignoring outlier of an observation data. centralization process { }( )iy t following a model gstar (1;1) kernel weight is written as: ๏ฟฝ 0 1 1 ( ) ( 1) ( 1) ( ), 1,..., , 1,..., n iji i j ii i j wy t y t y t t t t i nฯ† ฯ† ฮต = = โˆ’ + โˆ’ + = =โˆ‘ (1) this model has a spatial weight 1 i j ij n i i y y k h w y y k h= โ‰  ๏ฃซ ๏ฃถ ๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ ๏ฃซ ๏ฃถ ๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ โˆ’ = โˆ’ โˆ‘ โ„“ โ„“ โ„“ ษถ , with notation (.)k is the kernel function, h represents a smoother parameter of the kernel function k and ( )iy t declares an observation on-time t at location i. the term weight matrix can be written as, invertibility of generalized space-time autoregressive model with random weight yundari 250 ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ 12 1 21 2 1 2 0 0 0 n n n n w w w w w w = ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ๏ฃฐ ๏ฃป w โ‹ฏ โ‹ฏ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฏ the result of the weight matrix w , by the kernel function approach, appears to satisfy the properties of the random weight matrix. it is caused by the weight that originated from the random variable data. it is the observation data and fulfilled the property 1 1 n ij j w = =โˆ‘ , 1n > . after obtaining the matrix of kernel spatial weight, the parameter estimation of the gstar (1;1) model is carried out using the least squares method followed by validating model. the model validating is held by doing 2 steps namely the parameter significance test and the residual test. the parameter significance test uses the parameter matrix eigen value of the gstar(1;1) model and the residual test using the plot of data error (error randomness) and the qq plot of error (normality). results and discussion the symbol writing of parameter matrix for the gstar(1;1) model based on equation (1) to 0 01 0( , , )ndiag ฯ† ฯ†=ฯ† โ‹ฏ , 1 11 1( , , )ndiag ฯ† ฯ†=ฯ† โ‹ฏ dan =(wij), so that the model gstar(1;1) can be expressed in the matrix as follows ๏ฟฝ ๏ฟฝ( ) ( ) ( 1) ( 1) ( ) ( ) ( 1) ( ). t t t t t t t = โˆ’ + โˆ’ + = โˆ’ + 0 1 0 1 y ฯ† y ฯ† wy ฮต y ฯ† +ฯ† w y ฮต representation of the gstma model from the gstar(1;1) model as below, ( ) ( ) ( ){ } ( ) ( 1) ( ) = ( 2) ( 1) ( ) t t t t t t = โˆ’ + โˆ’ + โˆ’ + 0 1 0 1 0 1 y ฯ† +ฯ† w y ฮต ฯ† +ฯ† w ฯ† +ฯ† w y ฮต ฮต ( ) ( ) ( ) ( ) 2 2 = ( 2) ( 1) ( ) = ( ) ( 1) ( 2) t t t t t t โˆ’ + โˆ’ + + โˆ’ + โˆ’ 0 1 0 1 0 1 0 1 ฯ† +ฯ† w y ฯ† +ฯ† w ฮต ฮต ฮต ฯ† +ฯ† w ฮต ฯ† +ฯ† w y โ‹ฎ ( ) ( ) ๏ฟฝ 2 0 = ( ) ( 1) ( 2) = ( ) i i t t t t i โˆž = + โˆ’ + โˆ’ + โˆ’โˆ‘ 0 1 0 1ฮต ฯ† +ฯ† w ฮต ฯ† +ฯ† w ฮต ฯ†ฮต โ‹ฏ with ๏ฟฝ 0 1ฯ†=(ฯ† +ฯ† w) . for the gstar(1;1) model which is stationer, all of the eigenvalues ๏ฟฝฯ† are between -1 and 1 so that ๏ฟฝ 0 for i iโ†’ โ†’ โˆžฯ† . this is stated in theorem 1. invertibility of generalized space-time autoregressive model with random weight yundari 251 theorem 1. if ๏ฟฝ 0 1ฯ†= (ฯ† +ฯ† w), and eigenvalue of ๏ฟฝฯ† is between -1 dan 1 so ๏ฟฝlim , n nโ†’โˆž =ฯ† 0 for n =0,1,2,โ€ฆ. proof: the matrix ๏ฟฝ ๏ฟฝ'ฯ† ฯ† is positive definite so that the matrix ๏ฟฝ ckร—โˆˆฯ† โ„“ can be stated by the singular value decomposition (svd), i.e a diagonal matrix r , min{ , }r r r kร—โˆˆ โ‰คd โ„“ and matrix c , ck kร— ร—โˆˆ โˆˆu v โ„“ โ„“ , so that ๏ฟฝ ๏ฟฝ โ‡” n n ฯ† = u d v ฯ† = u d v because of matrix elements, d is a root of the eigenvalue of matrix ๏ฟฝฯ† and eigenvalue of ๏ฟฝ ฯ† is between -1 dan 1 so lim n nโ†’โˆž =d 0 . it resulted ๏ฟฝlim n nโ†’โˆž =ฯ† 0. this caused the invertibility property of the gstar(1;1) model satisfied because of the coefficient of process { }( )t iโˆ’y limits to zero. it confirms that gstar (1;1) gstma( ;1)โˆžโ‰ƒ . the orde determination of gstma is theoretically done by considering the convergence level of every kernel function used. if it is reviewed from every viewpoint of the kernel function, the limit value approaching zero (table 2). the invertibility property stated that gstar(1;1) gstma( ;1)โˆžโ‰ƒ . in statistics, the orde of time gstma on the gstma( ;1)โˆž model does not mean infinite, but it can be determined by a finite order such as n. it is stated in theorem 2. table 2. the limit result of each kernel function. it seems that the overall kernel function having a limit value is zero. the kernel the limit result of the function the uniform 1 lim 0 2 n nโ†’โˆž ๏ฃซ ๏ฃถ =๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ the triangular ( )lim (1 ) 0n n x โ†’โˆž โˆ’ = the epanechnikov 23lim (1 ) 0 4 n n x โ†’ โˆž ๏ฃซ ๏ฃถโˆ’ =๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ the cosinus lim cos( ) 0 4 2 n n x ฯ€ ฯ€ โ†’โˆž ๏ฃซ ๏ฃถ =๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ the gaussian 21 lim exp 0 22 n n x ฯ€โ†’โˆž ๏ฃซ ๏ฃถ๏ฃฑ ๏ฃผ โˆ’ =๏ฃฌ ๏ฃท๏ฃฒ ๏ฃฝ ๏ฃณ ๏ฃพ๏ฃญ ๏ฃธ theorem 2. if given a process { }( )iy t following the model gstar(1;1) with a weight matrix of kernel spatial and satisfied the invertibility property so that gstar (1;1) gstma( ;1)โˆžโ‰ƒ then ๏ฟฝ ๏ฟฝ 0 ( 1 ) ( ) ( ) 0 n i i t t t i = โˆ’ + โˆ’ โˆ’ โ†’โˆ‘ฯ† y ฮต ฯ† ฮต , for n โ†’โˆž . invertibility of generalized space-time autoregressive model with random weight yundari 252 proof: given the gstar(1;1) model and the gstma(โˆž,1) model, with the help of matrix norm from the difference of both equivalent models, obtained 0 1 1 ( 1) ( ) ( ) ( 1) ( ) = ( 1) ( ( ) ( 1)) = ( 1) ( n ni i i i n i i t t t i t t i t t i t i t t = = = โˆ’ + โˆ’ โˆ’ = โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ‘ โˆ‘ โˆ‘ ฯ†y ฮต ฯ†ฮต ฯ†y ฯ†ฮต ฯ†y ฯ† y ฯ†y ฯ†y ฯ†y 2 2 2 2 3 1) ( 2) ( ( ) ( 1)) = ( 2) ( 2) ( ( ) ( 1)) n i i n i i t t i t i t t t i t i = = + โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ‘ โˆ‘ ฯ†y ฯ† y ฯ†y ฯ† y ฯ† y ฯ† y ฯ†y โ‹ฎ = ( ) n t nโˆ’ฯ† y furthermore, by using the property of matrix norm, it can be written as, ษถ ษถ ษถ ษถ( ) ( ) n n n n t n t n c cโˆ’ โ‰ค โˆ’ โ‰ค โ‰คฯ† y ฯ† y ฯ† ฯ† , for a constant c โˆˆโ„ . it is defined previously that ๏ฟฝ ๏ฟฝ 0 1 = ฯ† + ฯ†ฯ† w so ษถ( ) ษถ0 1 0 1 n n n n n = ฯ† + ฯ† โ‰ค ฯ† + ฯ†ฯ† w wษถ (2) the value of diagonal matrix elements iฯ† is between -1 and 1, so that ( )0 0 0 0 n n nn i i maks aฯ†โ‰ค = =๏ฃซ ๏ฃถ๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ โˆ‘ฯ† ฯ† for 00 1a< < . similar to the parameter ar concerning location that is ( )1 1 1 0 n n nn i i m a k s bฯ†๏ฃซ ๏ฃถโ‰ค = =๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ โˆ‘ฯ† ฯ† for 0 0 1b< < . it results in equation (2) being: ๏ฟฝ 0 0 nn n na bโ‰ค +ฯ† w (3) the matrix is a spatial weight matrix and obtained through the kernel function. for each, the kernel function converges to zero (table 2) and 0lim 0 n n a โ†’โˆž = 0limb 0 n n โ†’ โˆž = . by using norm โˆžโ„“ on matrix [19] is ๏ฟฝ ๏ฟฝ 1 , m a k s ij i j n w โˆž โ‰ค โ‰ค =w , therefore that can be attained the norm of rank n of the spatial weight matrix towards zero. in other words, the gstar(1;1) model is equivalent to the gstma(n;1) model.โ–ก by using theorem 2 of every kernel function forming the weight matrix will produce a convergence rate differently. the convergence rate resulted in the discovery of a finite value n which is an orde of the gstma model. the value n for each kernel function with an error of 0.001 can be seen in figure 2. from figure 2, it can be classified into 3 groups based on the size of n, such as the group 1 15nโ‰ค โ‰ค , 16 30nโ‰ค โ‰ค , and 30n > . on the group1 15nโ‰ค โ‰ค applies to the uniform kernel function, n = 11 and the gaussian, n = 9. the functions describe that the convergence reached is relatively fast to head zero. the next group is16 30nโ‰ค โ‰ค satisfied by the epanechnikov kernel function, and the cosinus, . both groups can be categorized into finite n, but the triangular kernel function, n invertibility of generalized space-time autoregressive model with random weight yundari 253 = 688, can be said .n โ†’โˆž it caused by the triangular function containing a differentiable absolute value function, therefore that it takes time to get convergence. each kernel function raised to the power of n forms a geometric sequence. as a result, the ratio of the gaussian function becomes the smallest, therefore, that the convergence is also faster. the next smallest ratio in a row is the kernel function of the uniform, the epanechnikov, the cosine, and the triangular. it proved that the invertibility property of the model gstar(1;1) can approached by using the gstma(n;1) model with .n < โˆž some error values can be seen in table 3. the kerne l the convergency of the parameter matrix ( )( )( ) 0nnn x m aks k xฯ† โ‰ค โ‰ˆ โ†’w the convergency plot of error 0.001 1 ( ) 2 k x = , 1x < . ( ) (1 )k x x= โˆ’ , 1x < . 23( ) (1 ) 4 k x x= โˆ’ , 1x < . ( ) 4 2 k x cos x ฯ€ ฯ€ = , 1x < . ( ) 2 1/ 2 exp 2 ( ) 2 x k x ฯ€ ๏ฃซ ๏ฃถ โˆ’๏ฃฌ ๏ฃท ๏ฃญ ๏ฃธ= , rx โˆˆ . 0 20 40 60 80 100 0 .0 0 .5 1 .0 1 .5 2 .0 n y 0 20 40 60 80 100 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 .0 n y 0 20 40 60 80 100 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 n y 0 20 40 60 80 100 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 n y 0 20 40 60 80 100 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 n y t h e u n if o rm t h e t ri a n g u la r t h e e p a n e c h n ik o v t h e c o s in u s t h e g a u s s ia n n=11 n=688 n=25 n=30 n=9 invertibility of generalized space-time autoregressive model with random weight yundari 254 note: for i jy y x h โˆ’= figure 2. the order value of the gstma model is equivalent to the gstar(1;1) model for every single kernel function and the error 0.001. table 3. the finite order of the gstma model satisfied the invertibility property of the model gstar(1;1) the kernel the order of the model gstma on some errors 0.01 0.001 0.0001 the uniform 8 11 14 the triangular 459 688 917 the epanechnikov 17 25 33 the cosinus 20 29 39 the gaussian 6 8 11 case study the gstar(1;1) model with the kernel weight will be applied to the tea production data in the 6 plantation field in west java. the data plot can be seen on figure 3. the figure 3 presents the modelling data with time t=200 by 6 observation locations. the plot of each location shows the data stationary has not been fulfilled (weak stationary), so it is necessary to doing differencing of the data. figure 3. the data plot of each location. the plot illustrates the data is under weak stationary condition and needs differencing so that the data plot is stationary invertibility of generalized space-time autoregressive model with random weight yundari 255 the data is stationary to the mean dan variance after passing once differencing process. the modelling carried out in this paper is the gstar(1;1) model. it does not need to identify model. the next step is to determine the spatial weight matrix using the gaussian kernel (table 1.) with the optimum bandwith value. this spatial weight matrix is random because it uses the function of tea plantation random variable from each the plantation area. the spatial weight matrix with the gaussian kernel is represented as following. ๏ฟฝ = ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ 0 0.25 0.27 0.21 0 0.24 0.23 0.24 0 0.10 0.27 0.11 0.16 0.23 0.16 0.14 0.25 0.14 0.12 0.22 0.18 0.24 0.24 0.25 0.12 0.22 0.17 0 0.17 0.32 0.13 0 0.13 0.32 0.17 0 ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ the next step is to determine the parameter value through the least square estimation method and the parameter significance by considering the eigen value obtained of the parameter matrix of the gstar(1;1) model. the value of parameter estimation with its validation can be seen on table 4. table 4. the result of paremeter estimation using least square method and its validation the parameter of each location the value of parameter estimation confidence interval 95% validation (the eigen value of parameter matrix < 1) phi01; phi 11 -0.32; 0.01 (-0.37;-0.27); (-0.03;0.06) valid phi02; phi12 -0.48; 0.34 (-0.52;-0.44); (0.27;0.40) valid phi03; phi13 -0.56; 0.59 (-0.60;-0.51); (0.53;0.66) valid phi04; phi 14 -0.30; 0.37 (-0.34;-0.27); (0.33;0.42) valid phi05; phi15 -0.49; 0.25 (-0.54;-0.45); (0.19;0.30) valid phi06; phi16 -0.37; 0.18 (-0.40;-0.34); (0.13;0.22) valid the result of the parameter estimation of the gstar(1;1) model with the gaussian kernel weight is shown as below, ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ( )( ) ( 1)t t= โˆ’0 1y + w yฯ† ฯ† with ๏ฟฝ 0.32 0 0 0 0 0 0 0.48 0 0 0 0 0 0 0.56 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0.49 0 0 0 0 0 0 0.37 โˆ’๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบโˆ’ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ = ๏ฃฏ ๏ฃบโˆ’๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบโˆ’ ๏ฃฏ ๏ฃบ โˆ’๏ฃฐ ๏ฃป 0ฯ† and ๏ฟฝ 1 0.01 0 0 0 0 0 0 0.34 0 0 0 0 0 0 0.59 0 0 0 0 0 0 0.37 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0.18 ๏ฃฎ ๏ฃน ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ = ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฏ ๏ฃบ ๏ฃฐ ๏ฃป ฯ† , invertibility of generalized space-time autoregressive model with random weight yundari 256 the data plot estimated from each location with the gstar(1;1) model can be viewed in figure 4 with its rmse value respectively. it concludes that the estimation value to follow the original value pattern and the rmse value is quite small. figure 4. the plot of the both estimation and original value of the gstar(1;1) model with the gaussian kernel weight. the black line presents the original value and the red line is the estimation value. the residual test of this model can be viewed in figure 5. the residual scatter plot and qq plot show that the assumptions of randomness and normality are met. invertibility of generalized space-time autoregressive model with random weight yundari 257 (a) (b) figure 5. the results of the residual test plot that meet the assumption of randomness (a) and normality (b) conclusion the use of the kernel weight matrix also affects the invertibility property of the model gstar(1;1) to the order of the gstma( โˆž ,1). the result obtained is the time order of the finite orde 7 < ๏ฟฝ < 30 . on the triangular kernel resulted in the relatively great value n, so that it does not apply to the kernel with a finite value n. the model implementation of the tea production data over 6 plantation area in west java can be applied to this research. invertibility of generalized space-time autoregressive model with random weight yundari 258 this is because the spatial weight to use production data applied to the gaussian kernel function according to the data description from each research location. references [1] g. box, g. jenkins and g.reinsel, time series analysis, forecasting and control, 3rd edition, new jersey: prentice hall, 1994. [2] r. tsay, multivariate time series analysis with r and financial application, new jersey: john willey & sons, 2014. [3] y. yundari, u. s. pasaribu, u. mukhaiyar and m.n.heriawan, "spatial weight determination of gstar(1;1) model by using kernel function," in iop conf, series: journal of physics , 2018. [4] y. yundari, u. pasaribu and u.mukhaiyar, "assumption errors of generalized star model," j. math. fund. sci., vol. 49, no. 2, pp. 136-155, 2017. [5] u. mukhaiyar and u.s.pasaribu, "a new procedure of generalized star modelling using iacm approach," itb j. sci., vol. 44a, no. 2, pp. 179-192, 2012. [6] s. borovkova, b. ruchjana and h. lopuhaa, "least squares estimation of generalized space time autoregressive (gstar) model and its properties," in aip conf. proc. , 2012. [7] d. masteriana, m. riani and u.mukhaiyar, "generalized star(1;1) with outlier-case study of begal in medan, north sumatera," in j.phys.:conf. ser., 2019. [8] h. bonar, b. ruchjana and g. darmawan, "development of generalized space time autoregressive integrated with arch galat (gstari-arch) model based on consumer price index phenomenon at several cities in north sumatera province," in aip conference proceedings, 2013. [9] a. iriany, suhariningsih, b. ruchjana and setiawan, "prediction of precipitation data at batu town using the gstar(1,p)-sur model," journal of basic and applied scietific research, vol. 3, no. 1, pp. 860-865, 2013. [10] a. s. abdullah, s. matoha, d. a. lubis, a. n. falah, m. jaya, e. hermawan and b. n. r. b, "implementation of generalized space time autoregressive (gstar)-kriging model for predicting rainfall data at unobserved locations in west java," applied mathematics & information sciences, vol. 12, no. 3, pp. 607-615, 2018. [11] n. nurhayati, u. s. pasaribu and o. neswan, "application of generalized space-time autoregressive model on gdp data in west european countries," journal of probability and statistics, vol. 2012, 2012. [12] suhartono and subanar, "the optimal determination of space weight in gstar model by using cross-correlation inference," quantitativ methods, vol. 2, no. 2, pp. 45-53, 2006. [13] r. nugraha, s. setyowati, u. mukhaiyar and a. yuliawati, "prediction of oil palm production using the weight average of fuzzy sets concept approach," in aip conference proceeding, bandung, 2015. [14] yundari, n. huda, u. pasaribu, u. mukhaiyar and k. sari, "stationary process in gstar(1;1) through kernel function approach," in aip conference proceeding, pontianak, 2020. invertibility of generalized space-time autoregressive model with random weight yundari 259 [15] d. u. wutsqa and suhartono, "seasonal multivariate time series forecasting on tourism data by using var-gstar model," jurnal ilmu dasar, vol. 11, no. 1, pp. 101109, 2010. [16] n. fadlilah, u. mukhiayar and f. fahmi, "the generalized star(1;1) modeling with time correlated galats to red chili weekly prices of some traditional markets in bandung," in aip conference proceeding, bandung, 2015. [17] m. wand and m. jones, kernel smoothing, new york: springerscience+business media b.v, 1995. [18] m. michalack, "time series pediction with periodic kernels," pattern analitic application, vol. 14, no. 0, pp. 283-293, 2011. [19] r. horn and c. johnson, matrix analysis, 2nd, new york: cambridge univesity press, 2013. average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 231-239 p-issn: 2086-0382; e-issn: 2477-3344 submitted: september 18, 2021 reviewed: december 08, 2021 accepted: december 21, 2021 doi: http://dx.doi.org/10.18860/ca.v7i1.13371 average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto*, zaenurrohman, titi udjiani srrm department of mathematics, faculty science and mathematics, diponegoro university, indonesia *corresponding author email: susilohariyanto@lecturer.undip.ac.id*, zaenurrohman8.zr@gmail.com, udjianititi@yahoo.com abstract every day, new covid-19 positive cases are discovered in central java. many research has used various methodologies to try to forecast new positive instances. the fuzzy time series (fts) approach is one of them. many fts are now in development, including the fts markov chain. the duration of the gap in the fts must be determined carefully because it will affect the flr, which will be used to estimate the forecast value. the average-based method can be used to determine the optimum interval length; however, other research use frequency density partitioning to determine the optimal interval length in order to produce superior predicting values. the goal of this research is to improve the accuracy of forecasting values by modifying the frequency density partition on the average based-fts markov chain. the approach utilized is average-based, with the length of the interval determined by the average, the forecast value determined by the fts markov chain, and the frequency density partition modified to provide the ideal interval. the average-based fts markov chain approach with adjustments to the frequency density partition achieves an accuracy rate of 89.3 percent, according to the findings of this study. because changes to the frequency density partition can produce a good level of accuracy in forecasting new positive cases of covid-19 in central java, it is hoped that this modification of the frequency density partition on the average-based fts markov chain can be used as a model for forecasting in fields other than new positive cases. covid-19. keywords: average based; fts markov chain; modified frequency density partitioning; covid19; mape introduction covid-19 first appeared in the city of wuhan, hubei province, china, which spread almost all over the world, including indonesia. at the beginning of 2020, indonesia experienced a covid-19 pandemic, which, to this day, new positive cases are still being found[1]. the government is still thinking about how to make indonesia free from covid-19. many experts have estimated the amount of new covid-19 positive cases in indonesia. forecasting is the process of predicting what will happen in the future over a lengthy period of time[2]. however, no approach for accurately forecasting anything, http://dx.doi.org/10.18860/ca.v7i1.13371 mailto:susilohariyanto@lecturer.undip.ac.id* mailto:zaenurrohman8.zr@gmail.com mailto:udjianititi@yahoo.com average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto 232 including new covid-19 positive cases, has been developed to yet. the fuzzy time series (fts) is one of the forecasting approaches for determining the number of new positive cases in indonesia. the concept of fuzzy logic is used in the forecasting of fts. song and chissom introduced the fts in 1993[3], and it has since been widely developed, including the markov method[4], chenโ€™s method[5], chen and hsuโ€™s method[6], the weighted method[7], the multiple-attribute fuzzy time series method[8], the percentage change method[9], and markov chain method[10]. ruey chyn tsaur, developing fuzzy time series by merging the fuzzy time series method with the markov chain concept [10]. markov chain is a stochastic process in which future events only depend on today's events. markov chain is used in the defuzzification process [11]. the determination of the length of the interval in the fuzzy time series does not have a definite formula, but the determination of the length of the interval in the fuzzy time series is based on the researcher. as a result, even if each researcher is utilizing the same data, the length of the interval will vary[3]. even though the determination of the length of the interval is a very influential part in the formation of a fuzzy logical relationship (flr).[12]. one method that can be used to determine the length of the interval is the average based. this average based uses an average-based method in determining the length of the interval [12]. chen and hsu in 2004 also developed a fuzzy time series. chen and hsu developed fuzzy time series by repartitioning based on frequency density. chen and hsu's frequency density repartitioning algorithm divides the interval with the highest frequency density into four sub-intervals, the interval with the second highest density into three sub-intervals, the interval with the third highest density into two subintervals, and the interval with the lowest density into one sub-interval.[6][13]. based on the description above, the researcher is interested in modifying the frequency density partitioning algorithm used by chen and hsu, namely by exchanging the partition between the interval with the first densest frequency with the third densest interval, which was originally the first densest interval partitioned into 4 subintervals, the researcher changed the first densest was partitioned into 2 sub-intervals, and for the interval with the third densest frequency initially partitioned into 2 subintervals the researcher changed it to 4 sub-intervals. furthermore, the researcher will use the average-based method to determine the interval length in the fuzzy time series type markov chain, and apply it to forecasting new positive cases of covid-19 in central java. methods fuzzy time series the definition of fuzzy time series was first introduced by song dan chisom (1993). let ๐‘ˆ universe of discourse, with ๐‘ˆ = {๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘›} on a fuzzy set ๐ด๐‘– , defined as[3]: ๐ด๐‘– = ๐‘“๐ด(๐‘ข1) ๐‘ข1 + ๐‘“๐ด(๐‘ข2) ๐‘ข2 + โ‹ฏ + ๐‘“๐ด(๐‘ข๐‘›) ๐‘ข๐‘› (1) where ๐‘“๐ด is theemembership ofkthe fuzzypset ๐ด๐‘– and ๐‘ข๐‘˜ is anxelementuof the fuzzy set ๐ด๐‘– and ๐‘“๐ด(๐‘ข๐‘˜ ) shows the degreebof membership of ๐‘ข๐‘˜ in ๐ด๐‘– where ๐‘˜ = 1,2,3, โ€ฆ , ๐‘›. definition. if ๐น(๐‘ก) is causeddby ๐น(๐‘ก โˆ’ 1), then thecrelation in the first orderrmodel ๐น(๐‘ก) cantbe stated assfollows: [5]. average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto 233 ๐น(๐‘ก) = ๐น(๐‘ก โˆ’ 1) โ—‹ ๐‘…(๐‘ก, ๐‘ก โˆ’ 1) (2) where โ€œโ—‹โ€ is max-min composition operator, and ๐‘…(๐‘ก, ๐‘ก โˆ’ 1) is a relation matrix to describe the fuzzy relationship between ๐น(๐‘ก โˆ’ 1) dan ๐น(๐‘ก). average-based average based is an algorithm that can be used to set the interval length that is determined at the initial stage of forecasting when using fuzzy time series. the steps of the average based algorithm are as follows [12], [14]: a. determine the absolute difference (lag) between data ๐‘› + 1 and data ๐‘› with the formula: ๐‘™๐‘Ž๐‘”๐ท๐‘› = |(๐ท๐‘Ž๐‘ก๐‘Ž ๐‘› + 1) โˆ’ (๐ท๐‘Ž๐‘ก๐‘Ž ๐‘›)| (3) b. determine the length of the interval ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘ฃ๐‘Ž๐‘™ = ( ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘™๐‘Ž๐‘” ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘‘๐‘Ž๐‘ก๐‘Ž ) : 2 (4) c. determine the basis value of the interval length according to table 1. following: table 1. basis mapping table range basis 0,1 โ€“ 1,0 0,1 1,1 -10 1 11-100 10 101-1000 100 d. the length of the interval is then rounded up according to the interval basis table. modification frequency density partition in this study, modifications to the frequency density partition were used, the algorithm used is as follows: a. the interval with the first densest frequency is divided into 2 subintervals. b. the interval with the second densest frequency is divided into 3 subintervals. c. the interval with the third densest frequency is divided into 4 subintervals d. eliminates intervals that have no frequency. fuzzy time series markov chain markov chain's fuzzy time series forecasting procedure is as follows[10]: step 1. collecting historical data (๐‘Œ๐‘ก). step 2. defines the u universe set of data, with d1 and d2 being the corresponding positive numbers. ๐‘ˆ = [๐ท๐‘š๐‘–๐‘› โˆ’ d1, ๐ท๐‘š๐‘Ž๐‘ฅ + d2] (5) step 3. specify the number of fuzzy intervals. step 4. defining the fuzzy set in the universe of discourse u, the fuzzy ai set declares the linguistic variable of the share price by 1 โ‰ค ๐‘– โ‰ค ๐‘›. step 5. fuzzification of historical data. if a time series data is included in the ๐‘ข๐‘– interval, then that data is fuzzification into ๐ด๐‘– . step 6. specifies fuzzy logical relationship (flr) and fuzzy logical relationships group (flrg). step 7. calculate forecasting results for time series data, using flrg, a probability can be obtained from a state heading to the next state. in order to calculate the predicting value, a markov probability transition matrix with a dimension of ๐‘› ๐‘ฅ ๐‘› was used. if average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto 234 state ๐ด๐‘– transition to a state ๐ด๐‘— and pass the state ๐ด๐‘˜ , ๐‘–, ๐‘— = 1, 2, . . . , ๐‘›, then we can obtain flrg. the transition probability formula is as follows: ๐‘ƒ๐‘–๐‘— = ๐‘€๐‘–๐‘— ๐‘€๐‘– , ๐‘–, ๐‘— = 1, 2, โ€ฆ , ๐‘› (6) with: ๐‘ƒ๐‘–๐‘— = probability of transition from state ๐ด๐‘– to state ๐ด๐‘— one step ๐‘€๐‘–๐‘— = number of transitions from state ๐ด๐‘– to state ๐ด๐‘— one step ๐‘€๐‘– = the amount of data included in the ๐ด๐‘– the probability matrix r of all states can be written as follows: ๐‘… = [ ๐‘ƒ11 โ‹ฏ ๐‘ƒ1๐‘› โ‹ฎ โ‹ฑ โ‹ฎ ๐‘ƒ๐‘›1 โ‹ฏ ๐‘ƒ๐‘›๐‘› ] (7) matrix r reflects the transition of the entire system. if ๐น(๐‘ก โˆ’ 1) = ๐ด๐‘– , then the process will be defined in the ๐ด๐‘– at the time of (๐‘ก โˆ’ 1), then the forecasting results ๐น(๐‘ก) will be calculated using the [๐‘ƒ๐‘–1, ๐‘ƒ๐‘–2, โ€ฆ , ๐‘ƒ๐‘–๐‘› ] on the matrix r. forecasting results ๐น(๐‘ก) is the weighted average value of the ๐‘š1, ๐‘š2, ..., ๐‘š๐‘› (midpoint of ๐‘ข1, ๐‘ข2, ..., ๐‘ข๐‘› ). the forecasting output result value on ๐น(๐‘ก) can be determined by using the following rules: rule 1: if fuzzy logical relationship group ๐ด๐‘– is one-to-one (suppose ๐ด๐‘– โ†’ ๐ด๐‘˜ where ๐‘ƒ๐‘–๐‘˜ = 1 and ๐‘ƒ๐‘–๐‘— = 0, ๐‘— โ‰  ๐‘˜) then the forecasting value of ๐น(๐‘ก) is ๐‘š๐‘˜ the middle value of the ๐‘ข๐‘˜ . ๐น(๐‘ก) = ๐‘š๐‘˜ ๐‘ƒ๐‘–๐‘˜ = ๐‘š๐‘˜ (8) rulet2: if the flrg ๐ด๐‘– is one-to-many (e.g. ๐ด๐‘— โ†’ ๐ด1, ๐ด2, . . . , ๐ด๐‘› . ๐‘— = 1, 2, . . . , ๐‘›), when ๐‘Œ(๐‘ก โˆ’ 1) at time (๐‘ก โˆ’ 1) is included in state ๐ด๐‘— then the forecasting ๐น(๐‘ก), is: ๐น(๐‘ก) = ๐‘š1๐‘ƒ๐‘—1 + ๐‘š2๐‘ƒ๐‘—2 + โ€ฆ + ๐‘š๐‘—โˆ’1๐‘ƒ๐‘—(๐‘—โˆ’1) + ๐‘Œ(๐‘ก โˆ’ 1)๐‘ƒ๐‘—๐‘— + ๐‘š๐‘—+1๐‘ƒ๐‘—(๐‘—+1) + โ€ฆ + ๐‘š๐‘›๐‘ƒ๐‘—๐‘› (9) where ๐‘š1, ๐‘š2, . . . , ๐‘š๐‘—โˆ’1, ๐‘š๐‘—+1, โ€ฆ , ๐‘š๐‘› is the middle value ๐‘ข1, ๐‘ข2, . . . , ๐‘ข๐‘—โˆ’1, ๐‘ข๐‘—+1, . . . , ๐‘ข๐‘› , and ๐‘Œ(๐‘ก โˆ’ 1) are state values ๐ด๐‘— at time ๐‘ก โˆ’ 1. rule 3: if the flrg ๐ด๐‘– is empty (๐ด๐‘– โ†’ โˆ…) forecast value ๐น(๐‘ก) is ๐‘š๐‘– which is the middle value of ๐‘ข๐‘– with the following equation: ๐น(๐‘ก) = ๐‘š๐‘– (10) step 8. adjusting the trend of forecasting values with the following rules: ๏‚ท if state ๐ด๐‘– communicates with ๐ด๐‘– , startingffrom state ๐ด๐‘– at time ๐‘ก โˆ’ 1 expressed as ๐น(๐‘ก โˆ’ 1) = ๐ด๐‘– , and undergoing an increasingatransition to state ๐ด๐‘— at the time ๐‘ก where (๐‘– < ๐‘—), thendthe adjustment value is: ๐ท๐‘ก1 = ( ๐‘™ 2 ) (11) where ๐‘™ is the basis interval. ๏‚ท ifestate ๐ด๐‘– communicatesswith ๐ด๐‘– , startinggfrom state ๐ด๐‘– atpthestime ๐‘ก โˆ’ 1 expressed as ๐น(๐‘ก โˆ’ 1) = ๐ด๐‘– , anddexperiencing a decreasingmtransitionxto state ๐ด๐‘— atzthevtime ๐‘ก where (๐‘– > ๐‘—) the adjustment valueeis: ๐ท๐‘ก1 = โˆ’ ( ๐‘™ 2 ) (12) average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto 235 ๏‚ท ifzstate ๐ด๐‘– at the time ๐‘ก โˆ’ 1 is expressed ๐น(๐‘ก โˆ’ 1) = ๐ด๐‘– , and undergoes a jumpbforward transitionrtoqstate ๐ด๐‘–+๐‘  atythegtime ๐‘ก where (1 โ‰ค ๐‘  โ‰ค ๐‘› โˆ’ ๐‘–) then the adjustment value is: ๐ท๐‘ก2 = ( ๐‘™ 2 )๐‘  (13) where ๐‘  is the number of forward jumps. ๏‚ท if state ๐ด๐‘– atpthemtime ๐‘ก โˆ’ 1 is as ๐น(๐‘ก โˆ’ 1) = ๐ด๐‘– , andhundergoes anjumpbackwardxtransition topstate ๐ด๐‘–โˆ’๐‘ฃ at thertime ๐‘ก where (1 โ‰ค ๐‘ฃ โ‰ค ๐‘–) thenlthe adjustment value is: ๐ท๐‘ก2 = โˆ’ ( ๐‘™ 2 )๐‘ฃ (14) where ๐‘ฃ is the number of jumps backward. step 9. determine the final forecast value based on the adjustment of the trend of the forecasting value if flrg ๐ด๐‘– is one-to-many and state ๐ด๐‘–+1 can be accessed from state ๐ด๐‘– where state ๐ด๐‘– is related to ๐ด๐‘– then the forecasting result becomes โ€™(๐‘ก) = ๐น(๐‘ก) + ๐ท๐‘ก1 + ๐ท๐‘ก2 = ๐น(๐‘ก) + ( ๐‘™ 2 ) + ( ๐‘™ 2 ) . ifqflrg ๐ด๐‘– isoone-too-many andastate ๐ด๐‘–+1 can be accessed from ๐ด๐‘– wherewstate ๐ด๐‘– is not related to ๐ด๐‘– then the forecasting values becomes ๐นโ€™(๐‘ก) = ๐น(๐‘ก) + ๐ท๐‘ก2 = ๐น(๐‘ก) + ( ๐‘™ 2 ). if flrg ๐ด๐‘– is one to many and state ๐ด๐‘–โˆ’2 can be accessed from state ๐ด๐‘– where ๐ด๐‘– is not related to ๐ด๐‘– then the forecasting result is ๐นโ€™(๐‘ก) = ๐น(๐‘ก) โˆ’ ๐ท๐‘ก2 = ๐น(๐‘ก) โˆ’ ( ๐‘™ 2 ) ๐‘ฅ 2 = ๐น(๐‘ก)โ€“ ๐‘™. if ๐‘ฃ is jumpxstep, theggeneralmform ofpthe forecast is: ๐นโ€™(๐‘ก) = ๐น(๐‘ก) ยฑ ๐ท๐‘ก1 ยฑ ๐ท๐‘ก2 = ๐น(๐‘ก) ยฑ ( ๐‘™ 2 ) ยฑ ( ๐‘™ 2 ) ๐‘ฃ. (15) forecasting error measurement the reliability of a forecast can be determined by looking at mean average percentage error (mape), this mape formulas[15]: ๐‘€๐ด๐‘ƒ๐ธ = 1 ๐‘› โˆ‘ |๐‘Œ(๐‘ก) โˆ’ ๐นโ€ฒ(๐‘ก)| ๐‘Œ(๐‘ก) ๐‘ฅ 100% ๐‘› ๐‘ก=1 (16) with ๐‘Œ๐‘ก : actual data period ๐‘ก, ๐นโ€ฒ๐‘ก : ๐‘ก period forecasting value, and ๐‘› : the predictable amount of data. results and discussion forecasting with an average based-fts markov chain with modified frequency density partitioning, the first step is to collect covid-19 in the central java period june 25, 2021 until august 20, 2021 as a universe discourse (u). next, determine the greatest value (๐ท๐‘š๐‘Ž๐‘ฅ = 5655) and smallest values (๐ท๐‘š๐‘–๐‘› = 1428), and the value of d1 = 8 and d2 = 5, so it can be defined ๐‘ˆ = [1428 โˆ’ 8, 5655 + 5] = [1420, 5660]. then, calculate the absolute difference from historical data, the average absolute difference from 57 data points is 658,554, which is then divided by 2 to yield 329,277. the value of 329,277 is then determined using table 1. the basis of the length of the interval is 100, so that u can be partitioned into the same interval length, namely ๐‘ข1, ๐‘ข2, ๐‘ข3, ๐‘ข4, ๐‘ข5, โ€ฆ , ๐‘ข39, ๐‘ข40, ๐‘ข41, ๐‘ข42, ๐‘ข43 successively the value for each interval is average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto 236 table 2. universe discourse of new positive cases of covid-19 ๐‘ข1 = [1420, 1520] โ‹ฎ ๐‘ข2 = [1520, 1620] ๐‘ข41 = [5420, 5520] ๐‘ข3 = [1620, 1720] ๐‘ข42 = [5520,5620] ๐‘ข4 = [1720, 1820] ๐‘ข43 = [5620, 5720] the next step is to distribute the data to each interval and determine the frequency density, resulting in the densest interval, which is then repartitioned using a modified method. the following outcomes were achieved: table 3. frequency density and repartition interval interval frequency redivided interval ๐‘ข29 = [4220, 4320] 5 ๐‘ข29,1 = [4220, 4270], ๐‘ข29,2 = [4270, 4320] ๐‘ข28 = [4120, 4220] 4 ๐‘ข28,1 = [4120, 4153.33] ๐‘ข28,2 = [4153.33, 4186.67] ๐‘ข28,3 = [4186.67, 4220] ๐‘ข16 = [2920, 3020] 3 ๐‘ข16,1 = [2920, 2945], ๐‘ข16,2 = [2945, 2970], ๐‘ข16,3 = [2970, 2995] ๐‘ข16,3 = [2995, 3020] ๐‘ข17 = [3020, 3120] 3 ๐‘ข17,1 = [3020, 3045], ๐‘ข17,2 = [3045, 3070], ๐‘ข17,3 = [3070, 3095], ๐‘ข17,4 = [3095, 3120] ๐‘ข19 = [3220, 3320] 3 ๐‘ข19,1 = [3220, 3245], ๐‘ข19,2 = [3245, 3270], ๐‘ข19,3 = [3270, 3295], ๐‘ข19,4 = [3295, 3320] ๐‘ข27 = [4020, 4120] 3 ๐‘ข27,1 = [4020, 4045], ๐‘ข27,2 = [4045, 4070], ๐‘ข27,3 = [4070, 4095], ๐‘ข27,4 = [4095, 4120] ๐‘ข32 = [4520, 4620] 3 ๐‘ข32,1 = [4520, 4545], ๐‘ข32,2 = [4545, 4570], ๐‘ข32,3 = [4570, 4590], ๐‘ข32,4 = [4590, 4620] ๐‘ข33 = [4620, 4720] 3 ๐‘ข33,1 = [4620, 4645], ๐‘ข33,2 = [4645, 4670], ๐‘ข33,3 = [4670, 4695], ๐‘ข33,4 = [4695, 4720] ๐‘ข2, ๐‘ข3, ๐‘ข4, ๐‘ข5, ๐‘ข6, ๐‘ข8, ๐‘ข11, ๐‘ข14, ๐‘ข20, ๐‘ข23, ๐‘ข26, ๐‘ข34, ๐‘ข42 0 removed next, look for the middle value (๐‘š1) for each interval, we get: table 4. middle value ๐’–๐’Š ๐’Ž๐’Š ๐’–๐’Š ๐’Ž๐’Š ๐‘ข1 1470 โ‹ฎ โ‹ฎ ๐‘ข7 2070 ๐‘ข39 5270 ๐‘ข9 2270 ๐‘ข40 5370 ๐‘ข10 2370 ๐‘ข41 5470 ๐‘ข12 2570 ๐‘ข43 5670 average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto 237 furthermore, defining fuzzy sets, fuzzy sets that can be formed from the universe conversation are 44 fuzzy sets. the fuzzy sets formed is as follows: ๐ด1 = { 1 ๐‘ข1โ„ + 0,5 ๐‘ข7 โ„ + 0 ๐‘ข9โ„ + 0 ๐‘ข10โ„ + โ‹ฏ + 0 ๐‘ข40โ„ + 0 ๐‘ข41โ„ + 0 ๐‘ข43โ„ } ๐ด2 = { 0,5 ๐‘ข1 โ„ + 1 ๐‘ข7โ„ + 0,5 ๐‘ข9 โ„ + 0 ๐‘ข10โ„ + โ‹ฏ + 0 ๐‘ข40โ„ + 0 ๐‘ข41โ„ + 0 ๐‘ข43โ„ } ๐ด3 = { 0 ๐‘ข1โ„ + 0,5 ๐‘ข7 โ„ + 1 ๐‘ข9โ„ + 0,5 ๐‘ข10 โ„ + โ‹ฏ + 0 ๐‘ข40โ„ + 0 ๐‘ข41โ„ + 0 ๐‘ข43โ„ } โ‹ฎ ๐ด49 = { 0 ๐‘ข1โ„ + 0 ๐‘ข7โ„ + 0 ๐‘ข9โ„ + 0 ๐‘ข10โ„ + โ‹ฏ + 1 ๐‘ข40โ„ + 0,5 ๐‘ข41 โ„ + 0 ๐‘ข43โ„ } ๐ด50 = { 0 ๐‘ข1โ„ + 0 ๐‘ข7โ„ + 0 ๐‘ข9โ„ + 0 ๐‘ข10โ„ + โ‹ฏ + 0,5 ๐‘ข40 โ„ + 1 ๐‘ข41โ„ + 0,5 ๐‘ข43 โ„ } ๐ด51 = { 0 ๐‘ข1โ„ + 0 ๐‘ข7โ„ + 0 ๐‘ข9โ„ + 0 ๐‘ข10โ„ + โ‹ฏ + 0 ๐‘ข40โ„ + 0,5 ๐‘ข41 โ„ + 1 ๐‘ข43โ„ } the next step is to perform fuzzification, the data from the fuzzification results are presented in the following table: table 5. fuzzification results t actual data fuzzy data t actual data fuzzy data 1 2311 ๐ด3 โ‹ฎ โ‹ฎ โ‹ฎ 2 2064 ๐ด2 54 3263 ๐ด18 3 3079 ๐ด14 55 3078 ๐ด14 4 2702 ๐ด6 56 1428 ๐ด1 5 2932 ๐ด8 57 1432 ๐ด1 the next step, determine the flr and flrg, as shown in table 6. and table 7: table 6. flr data order flr data order flr 1-2 ๐ด3 โ†’ ๐ด2 โ‹ฎ โ‹ฎ 2-3 ๐ด2 โ†’ ๐ด14 54-55 ๐ด18 โ†’ ๐ด14 3-4 ๐ด14 โ†’ ๐ด6 55-56 ๐ด14 โ†’ ๐ด1 4-5 ๐ด6 โ†’ ๐ด8 56-57 ๐ด1 โ†’ ๐ด1 table 7. flrg current state next state current state next state ๐ด1 (1)๐ด1 โ‹ฎ โ‹ฎ ๐ด2 (1)๐ด14 ๐ด49 (1)๐ด35, (1)๐ด42 ๐ด3 (1)๐ด2 ๐ด50 (1)๐ด48 ๐ด4 (1)๐ด6 ๐ด51 (1)๐ด43 the initial forecast will be calculated next. for example, for ๐‘ก = 2, june 26, 2021, the forecast computation based on formulas (8), (9), and (10) is ๐น(2) = ๐‘š๐‘˜ ๐‘ƒ๐‘–๐‘˜ = ๐‘š๐‘˜ = 2070. the summary of the initial forecasting results is as follows: table 8. initial forecasting results (๐น(๐‘ก)) period actual data ๐‘ญ(๐’•) period actual data ๐‘ญ(๐’•) 6/25/21 2311 na โ‹ฎ โ‹ฎ โ‹ฎ 6/26/21 2064 2070 8/19/21 1428 2070 6/27/21 3078 3082,5 8/20/21 1432 1428 average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto 238 after we get the initial forecasting, the next step is to adjust the forecasting trend. for example, adjustment value for june 26, 2021, the next step is ๐ด2 and the current state is ๐ด3 then the adjustment calculation uses the forecast adjustment rule (14) we get ๐ท๐‘ก2 = โˆ’ ( ๐‘™ 2 ) ๐‘ฃ = โˆ’ ( 100 2 ) 1 = โˆ’(50). dor the calculation of other forecasting value adjustment using equations (11), (12), (13), and (14). the following is a forecast adjustment table. table 8. forecasting trend adjustment value period flr ๐ท๐‘ก๐‘› period flr ๐ท๐‘ก2 6/25/21 ๐ด3 โ†’ ๐ด2 na โ‹ฎ โ‹ฎ โ‹ฎ 6/26/21 ๐ด2 โ†’ ๐ด14 -50 8/19/21 ๐ด14 โ†’ ๐ด1 -650 6/27/21 ๐ด14 โ†’ ๐ด9 600 8/20/21 ๐ด1 โ†’ ๐ด1 0 calculate the final forecast value. the final forecast is the sum of the initial forecast value with the forecast adjustment value by following the equation (15). for example, the final forecast value for june 26, 2021 data is ๐นโ€ฒ2 = ๐น2 ยฑ ๐ท๐‘ก2 = 2070 + (โˆ’50) = 2020. by doing the same way, the summary of the final forecasting result is as follows: table. 9. final forecast value period y(t) ๐นโ€ฒ๐‘ก period y(t) ๐นโ€ฒ๐‘ก 6/25/21 2311 na โ‹ฎ โ‹ฎ โ‹ฎ 6/26/21 2064 2020 8/19/21 1428 1907.5 6/27/21 3078 3682,5 8/20/21 1432 1428 furthermore, the average based-fts markov chain is based on the modified frequency density partition to forecast data for new positive cases on august 21, 2021, the current state is ๐ด1, from flrg it is known that the next state of ๐ด1 is ๐ด1, then based on equations (8), (9), and (10) the forecasting result is 1 times the data of the previous new positive case ๐‘Œ(๐‘ก โˆ’ 1) is 1432. the last step is to calculate the forecast accuracy value using mape. the mape values of average based-fts based on a modified frequency density partitioning is 10,7%. for forecasting results using average based-fts based on a modified frequency density partitioning, are presented in the following figure: figure 1. graph of forecasting results using average based-fts markov chain based on modified frequency density partitioning 0 1000 2000 3000 4000 5000 6000 7000 actual data forecasting value average based-fts markov chain with modifications to the frequency density partition to predict covid-19 in central java susilo hariyanto 239 conclusions forecasting new positive cases of covid-19 in central java using average based-fts markov chain based on modified frequency density partitioning has a good level of accuracy, this can be seen from the mape value obtained which is 10.7%. and for the predicted value of new positive cases on august 21, 2021, it is 1432 new positive cases of covid-19 in central java. references [1] d. handayani, โ€œpenyakit virus corona 2019,โ€ j. respirologi indones., vol. 40, no. 2, 2020. [2] d. c. montgomery, c. l. jennings, and m. kulahci, introduction time series analysis and forecasting, willey, 2015. [3] q. song and b. s. chissom, โ€œforecasting enrollments with fuzzy time series part i,โ€ fuzzy sets syst., vol. 54, no. 1, pp. 1โ€“9, 1993. [4] j. sullivan and w. h. woodall, โ€œa comparison of fuzzy forecasting and markov modeling,โ€ fuzzy sets syst., vol. 64, no. 3, pp. 279โ€“293, 1994. [5] s. m. chen, โ€œforecasting enrollments based on fuzzy time series,โ€ fuzzy sets syst., vol. 81, no. 3, 1996. [6] s. m. chen and c.-c. hsu, โ€œa new method to forecast enrollments using fuzzy time series,โ€ int. j. appl. sci. eng., vol. 2, no. 3, pp. 234โ€“244, 2004. [7] h. k. yu, โ€œweighted fuzzy time series models for taiex forecasting,โ€ phys. a stat. mech. its appl., vol. 349, no. 3โ€“4, 2005. [8] c. h. cheng, g. w. cheng, and j. w. wang, โ€œmulti-attribute fuzzy time series method based on fuzzy clustering,โ€ expert syst. appl., vol. 34, no. 2, 2008. [9] m. stevenson and j. porter, โ€œfuzzy time series forecasting using percentage change as the universe of discourse,โ€ change, vol. 1971, no. 3.89, 1972. [10] r. c. tsaur, โ€œa fuzzy time series-markov chain model with an application to forecast the exchange rate between the taiwan and us dollar,โ€ int. j. innov. comput. inf. control, vol. 8, no. 7 b, 2012. [11] y. a. r. langi, โ€œpenentuan klasifikasi state pada rantai markov dengan menggunakan nilai eigen dari matriks peluang transisi,โ€ j. ilm. sains, vol. 11, no. 1, 2011. [12] s. xihao and l. yimin, โ€œaverage-based fuzzy time series models for forecasting shanghai compound index *,โ€, vol. 4, no. 2, pp. 104-111, 2008. [13] t. a. jilani and s. m. a. burney, โ€œa refined fuzzy time series model for stock market forecasting,โ€ phys. a stat. mech. its appl., vol. 387, no. 12, 2008. [14] j. noh, w. wijono, and e. yudaningtiyas, โ€œmodel average based fts markov chain untuk peramalan penggunaan bandwidth jaringan komputer,โ€ j. eeccis, vol. 9, no. 1, 2015. [15] s. makridakis, s. wheelwright c, and v. e. mcgee, metode dan aplikasi peramalan. binarupa aksara, 1999. 1 abdul aziz analisis critical value analisis critical root value pada data nonstationer abdul aziz dosen jurusan matematika fakultas sains dan teknologi universitas islam negeri (uin) maulana malik ibrahim malang e-mail : abdulaziz_uinmlg@yahoo.com abstract a stationery process can be done t-test, on the contrary at non stationery process t-test cannot be done again because critical value of this process isnโ€™t t-distribution. at this research, we will do simulation of time series ar(1) data in four non stationery models and doing unit root test to know critical value at ttest of non stationery process. from the research is yielded that distribution of critical point for t-test of non stationery process comes near to normal with restating simulation of random walk process which ever greater. result of acquirement of this critical point has come near to result of dickey-fuller test. from this research has been obtained critical point for third case which has not available at tables result of dickey-fuller test. key words: non stationery, unit root test, critical value, distribution, simulation abstrak pada sebuah data stationer dapat dilakukan t-test, sebaliknya pada data nonstationer t-test tidak dapat dilakukan lagi karena critical root value (titik akar kritis) untuk proses ini tidak berdistribusi t. pada penelitian ini, kami akan melakukan simulasi data time series ar(1) dalam empat model nonstationer dan dilakukan unit root test untuk mengetahui critical value pada t-test proses nonstationer. dari penelitian dihasilkan bahwa distribusi titik kritis untuk t-test proses nonstationer mendekati normal dengan perulangan simulasi proses random walk yang semakin besar. hasil perolehan titik kritis ini sudah mendekati dari hasil dickey-fuller test. dari penelitian ini telah diperoleh titik akar kritis untuk kasus ketiga yang belum ada di tabel hasil dickey-fuller test. kata kunci: nonstationer, unit root test, critical root value, distribusi, simulasi pendahuluan multivariate time series banyak dipakai dalam permodelan ekonomi. dengan beberapa time series yang saling berpengaruh sehingga membentuk suatu model time series baru yang dinamakan sebagai vector autoregression (var). pada proses stationer dapat dilakukan t-test, sebaliknya pada proses nonstationer t-test tidak dapat dilakukan lagi karena critical value untuk proses ini tidak berdistribusi t. pada penelitian ini, kami akan melakukan simulasi data time series ar(1) nonstationer dan dilakukan unit root test untuk mengetahui critcal value pada t-test proses nonstationer. berdasarkan latar belakang tersebut, maka pada penelitian ini kami merumuskan permasalahan yaitu bagaimana critical value dan distribusinya untuk t-test pada proses nonstationer secara simulasi dengan kasus: a. true process: 1t t ty y eโˆ’= + dengan estimated regression: 1t t ty y eฮฒ โˆ’= + b. true process: 1t t ty y eโˆ’= + dengan estimated regression: 0 1 1t t ty y eฮฒ ฮฒ โˆ’= + + c. true process: 0 1t t ty y eฮฒ โˆ’= + + dengan estimated regression: 0 1 1t t ty y eฮฒ ฮฒ โˆ’= + + d. true process: 0 1t t ty y eฮฒ โˆ’= + + dengan estimated regression: 0 1 1 2t t ty y t eฮฒ ฮฒ ฮฒโˆ’= + + + masing-masing model dengan siginifikansi kepercayaan 5% dan 10%. metode yang akan digunakan pada penelitian ini adalah metoda simulasi. unit root test dilakukan dengan perulangan data simulasi menggunakan software matlab versi 6.5., hingga diperoleh suatu nilai yang konvergen. kajian pustaka misalkan suatu proses time series ar(1), 1t t ty y eฮฒ โˆ’= + (1) dengan et white noise. jika |ฮฒ| < 1 maka ma(โˆž) representasinya adalah 1 i t t i i y eฮฒ โˆž โˆ’ = = โˆ‘ (2) abdul aziz 2 volume 2 no. 1 november 2011 dengan [ ] 0te y = (3) dan ( ) 2 21 tvar y ฯƒ ฮฒ = โˆ’ (4) yang bebas dari variabel t, sehingga dikatakan sebagai stationary process. sebaliknya, jika ฮฒ = 1 maka ma(โˆž) representasinya adalah 1 0 t t i i i i y e e โˆž โˆž โˆ’ = = = =โˆ‘ โˆ‘ (5) dengan [ ] 0te y = (6) dan ( ) 2tvar y tฯƒ= (7) yang merupakan fungsi dari variabel t, sehingga dikatakan sebagai nonstationary process. jika {yt} stationary process maka hipotesis 0 1: 0, : 0h hฮฒ ฮฒ= โ‰  (8) adalah t-test valid. sebaliknya, hipotesis 0 1: 1, : 1h hฮฒ ฮฒ= < (9) adalah t-test yang tidak valid, karena {yt} adalah proses nonstasioner di bawah h0. untuk melakukan uji t dengan hipotesis kedua di atas perlu dibuat critical value tersendiri agar menjadi valid. critical value t-test untuk proses nonstasioner dapat diperoleh dengan dua cara: 1. menggunakan estimasi koefisien autoregressive ๏ฟฝ( )1t t ฮฒ= โˆ’ (10) 2. menggunakan estimasi ols terhadap residual variance ๏ฟฝ ๏ฟฝ( ) 1 testt var ฮฒ ฮฒ โˆ’ = (11) dengan ๏ฟฝ ( ) 1' 'x x x yฮฒ โˆ’= (12) dan ๏ฟฝ( ) ๏ฟฝ ( ) ( )1 12 '' ' 1 e e cov x x x x t ฮฒ ฯƒ โˆ’ โˆ’= = โˆ’ ษต ษต (13) yang distribusinya dapat diketahui secara simulasi dengan siginifikansi kepercayaan tertentu dengan aturan tolak hipotesis null jika nilai statistik (t-test) kurang dari nilai kritis (critical value). metode penelitian dalam melakukan penelitian ini, kami menyusun beberapa langkah prosedur yang dilakukan dari awal hinga akhir penelitian dengan bantuan bahasa pemrograman komputer, yaitu: 1. membangkitkan dua true process dengan model random walk tanpa drift (konstanta), 1t t t y y eโˆ’= + (14) dan dengan drift (konstanta), 1 1t t ty y eโˆ’= + + (15) masing-masing berukuran 50 x 1. 2. melakukan perhitungan t-test untuk kasus pertama: kasus 1, time series yang dibangkitkan dengan model true process tanpa drift, 1t t ty y eโˆ’= + , yang akan diestimasi dengan model regresi tanpa konstanta ataupun time trend, 1t t ty y eฮฒ โˆ’= + dengan hipotesis: 0 1: 1, : 1h hฮฒ ฮฒ= < (14) dan ( ) 1 testt var ฮฒ ฮฒ โˆ’ = (15) dimana: (16) (17) (18) (19) (20) (21) 3. melakukan perhitungan t-test untuk kasus kedua: kasus 2, time series yang dibangkitkan dengan model true process tanpa drift, 1t t ty y eโˆ’= + , yang akan diestimasi dengan model regresi dengan konstanta tanpa time trend, 0 1 1t t ty y eฮฒ ฮฒ โˆ’= + + dengan hipotesis: 0 1 1 1: 1, : 1h hฮฒ ฮฒ= < (22) dan (23) dimana : ( ) [ ]1 0 1' ' 'x x x yฮฒ ฮฒ ฮฒ โˆ’ = = (24) (25) (26) (27) ( ) 1' 'x x x yฮฒ โˆ’= 1tx y โˆ’= ty y= ( ) ( ) 12 'var x xฮฒ ฯƒ โˆ’= 2 ' 1 e e t ฯƒ = โˆ’ e y x ฮฒ= โˆ’ ( ) 1 1 1 testt var ฮฒ ฮฒ โˆ’ = [ ]11 tx y โˆ’= ty y= ( ) ( ) 12 'covar x xฮฒ ฯƒ โˆ’= analisis critical root value pada data nonstationer jurnal cauchy โ€“ issn: 2086-0382 3 (28) (29) 4. melakukan perhitungan t-test untuk kasus ketiga: kasus 3, time series yang dibangkitkan dengan model true process dengan drift, 11t t ty y eโˆ’= + + , yang akan diestimasi dengan model regresi dengan konstanta tanpa time trend, 0 1 1t t ty y eฮฒ ฮฒ โˆ’= + + dengan hipotesis: 0 1 1 1: 1, : 1h hฮฒ ฮฒ= < (30) dan (31) dimana : ( ) [ ]1 0 1' ' 'x x x yฮฒ ฮฒ ฮฒ โˆ’ = = (32) (33) (34) (35) (36) (37) 5. melakukan perhitungan t-test untuk kasus keempat: kasus 4, time series yang dibangkitkan dengan model true process dengan drift, 11t t ty y eโˆ’= + + , yang akan diestimasi dengan model regresi dengan konstanta dan time trend, 0 1 1 2t t ty y t eฮฒ ฮฒ ฮฒโˆ’= + + + dengan hipotesis: 0 1 1 1: 1, : 1h hฮฒ ฮฒ= < (38) dan (39) dimana : ( ) [ ]1 0 1 2' ' 'x x x yฮฒ ฮฒ ฮฒ ฮฒ โˆ’ = = (40) (41) (42) (43) (44) (45) 6. mengulangi langkah (1) sampai dengan (5) hingga 50.000 kali. 7. menentukan titik kritis pada signifikansi 0.05 (dengan mengambil data persentil ke 5) dan 0.10 (dengan mengambil data persentil ke 10) dari data t-test (berukuran 5.000) untuk masing-masing kasus. 8. melakukan time plot terhadap dua true process yang dibangkitkan terakhir kali. 9. melakukan histogram untuk distribusi t-test pada keempat kasus. 10. menganalisis hasil ouput program. 11. mengambil kesimpulan. hasil dan pembahasan berikut ini merupakan hasil output simulasi komputer untuk mengetahui distribusi dan nilai kritis t-test pada proses non stationer dengan menggunakan estimasi ols terhadap residual variance dengan menggunakan data simulasi berukuran 50 yang dilakukan perulangan hingga 50.000 perulangan dengan dua model true process, persamaan (14) dan (15). gambar 1: time plot data terakhir 2 ' 2 e e t ฯƒ = โˆ’ e y x ฮฒ= โˆ’ ( ) 1 1 1 testt var ฮฒ ฮฒ โˆ’ = [ ]11 tx y โˆ’= ty y= ( ) ( ) 12 'covar x xฮฒ ฯƒ โˆ’= 2 ' 2 e e t ฯƒ = โˆ’ e y x ฮฒ= โˆ’ ( ) 1 1 1 testt var ฮฒ ฮฒ โˆ’ = [ ]11 tx y tโˆ’= ty y= ( ) ( ) 12 'covar x xฮฒ ฯƒ โˆ’= 2 ' 3 e e t ฯƒ = โˆ’ e y x ฮฒ= โˆ’ abdul aziz 4 volume 2 no. 1 november 2011 perolehan data t-test untuk masing-masing kasus berukuran 50.000 adalah sebagai berikut: tabel 1. statistitik deskriptif critical value mean median minimum maximum kasus 1 -0.4146 -0.4934 -4.4895 3.8730 kasus 2 -1.5403 -1.5587 -6.2006 2.1809 kasus 3 -0.2422 -0.2413 -5.1322 4.7800 kasus 4 -2.2031 -2.1837 -5.9714 1.4687 dari 50.000 data tersebut diambil data percentil ke-5 dan ke-10, sehingga diperoleh critical value masing-masing sebagai berikut: tabel 2. tabel critical value ฮฑ = 0.05 ฮฑ = 0.10 kasus 1 -1.96 -1.62 kasus 2 -2.95 -2.62 kasus 3 -1.92 -1.55 kasus 4 -3.52 -3.20 hasil ini dapat berbeda untuk setiap kali dilakukan penelitian simulasi. namun dengan besarnya ukuran data simulasi (50.000) maka dapat dijamin untuk diterima sesuai dengan hukum bilangan besar. sedangkan dari tabel dickey-fuller test pada tabel b.6 hamilton j.d.(1994) diperoleh tabel 3. tabel dickey-fuller test ฮฑ = 0.05 ฮฑ = 0.10 kasus 1 -1.95 -1.62 kasus 2 -2.86 -2.57 kasus 3 kasus 4 -3.41 -3.12 distribusi titik kritis untuk masing-masing kasus tampak seperti empat gambar berikut: gambar 2: distribusi critical value kasus 1 gambar 3: distribusi critical value kasus 2 analisis critical root value pada data nonstationer jurnal cauchy โ€“ issn: 2086-0382 5 gambar 4: distribusi critical value kasus 3 gambar 5: distribusi critical value kasus 4 penutup distribusi titik kritis untuk t-test proses nonstationer mendekati normal dengan perulangan simulasi proses random walk yang semakin besar. hasil perolehan titik kritis ini sudah mendekati dari hasil dickey-fuller test. dari penelitian ini telah diperoleh titik kritis untuk kasus ketiga yang belum ada di tabel hasil dickey-fuller test. untuk pengembangan penelitian selanjutnya dapat dilakukan untuk metode selain simulasi atau distribusi critical value pada proses dengan model yang lain. daftar pustaka [1]. bibby, john, prediction and improved estimation in linear models, john wiley & sons, 1979. [2]. gujarati, d., basic econometrics, mcgrawhill, inc., 1978 [3]. greene, william.h, econometrics analysis, macmillan, inc., 1995 [4]. hamilton, d.j., time series analysis, princeton university press, new jersey, 1994. [5]. hogg & craig, introduction to mathematical statistics, macmillan, inc., 1978. [6]. judge, g.g., et.al., the theory and practice of econometrics, john wiley & sons, inc., 1985. abdul aziz 6 volume 2 no. 1 november 2011 [7]. judge, g.g., et.al., introduction to theory and practice of econometrics, john wiley & sons, inc., 1988. [8]. netter, j., et.al., applied linear statistical models, richard d.irwin, inc., 1990. [9]. wonnacot, j.r. & thomas wonnacott, econometrics, john wiley and sons, inc., 1979. [10]. walpole & myers, probability and statistics for engineers and scientists, macmillan inc., 1989. dynamical of ratio-dependent eco-epidemical model with prey refuge cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 227-237 p-issn: 2086-0382; e-issn: 2477-3344 submitted: november 17, 2020 reviewed: february 11, 2021 accepted: march 16, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.10827 dynamical of ratio-dependent eco-epidemical model with prey refuge adin lazuardy firdiansyah department of tadris matematika, stai muhammadiyah probolinggo jl. soekarno hatta 94b, sukabumi, mayangan, probolinggo, indonesia email: adin.lazuardy@gmail.com abstract this paper discusses the dynamic analysis of three species in the eco-epidemiology model by considering the ratio-dependent function and prey refuge. the prey refuge is applied under the fact that infected prey has protection instincts that allow it to reduce predation risk. here, we get the boundedness and three equilibrium points where are existence under certain conditions. in the model, three equilibrium points are locally asymptotically stable and one of the equilibrium points is globally asymptotically stable. we find that the system undergoes hopf bifurcation around the interior equilibrium point by choosing prey refuge as a bifurcation parameter. we also find a condition for uniform persistence. finally, several simulations of numerical are performed not only to illustrate the analytical results but also to illustrate the effect of the prey refuge. keywords: eco-epidemiology model; global stable; hopf bifurcation; local stable; persistence introduction one of the natural phenomena that described the interaction between one species and another individual is the prey-predator interaction. this interaction depends on whether the effects are profitable or detrimental. in the real world, prey-predator interaction also can be influenced by infectious diseases. these diseases can affect population size in the predator-prey interaction. since then, the combination of epidemiological and ecological becomes important issues that are often discussed by many researchers. mathematical studies have considered this issue into an ecoepidemiology model that contains the class of susceptible and infective populations. currently, several studies have focused on the spread of disease in prey only, e.g. [1]โ€“[3]. it is well known that predators prefer to capture infected prey because they are easier to catch than susceptible prey. however, the predator can become infected after eating them. therefore, several researchers are interested to investigate the spread of disease not only in prey but also in predators, e.g. [4][5]. moreover, some studies have reviewed the spread of disease in both populations, e.g. [6]. base on several experiments, the spread of infectious disease becomes an important factor to know the regulation of population density [7]. in this paper, we focus on the situation where predators can eat infected prey only. it appropriates to the fact that infected prey tends to change its behavior. infected prey shall live in an area that is accessible to predators [8]. moreover, infected prey is less agile than healthy prey and can be predated by predators easily [1]. hudson et al. [9] have http://dx.doi.org/10.18860/ca.v6i4.10827 mailto:adin.lazuardy@gmail.com dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 228 observed that predators selectively capture heavily infected red grouse. predators that consumed infected prey populations are described by the response functions. it is well known that response functions are an important component in the eco-epidemiology model. generally, several researchers use holling types as a response function in their model. according to [10], holling types are divide into three types, namely holling type i, holling type ii, and holling type iii. holling type i means that the consumption rate of predator increases linearly with the density of prey but it achieves a constant value if predators are surfeit, e.g. [6][5]. holling type ii means that the consumption rate of predators increases if the density of prey is low, e.g. [1]โ€“[4]. meanwhile, holling type iii means that the consumption rate of predator increases when the density of prey is large but it decreases when the density of prey is low, e.g. [11]. in holling type iii, predators easily switch to eat one prey to another or they focus to eat prey in a location where it is most abundant [12]. the response function for the holling type depends on the density of prey. this is unrealistic because it ignores the effects of predator interference. base on the experiment, the density of predators can influence the consumption rate. in the modeling, the consumption rate that depended on the density of prey canโ€™t describe the dynamics behavior when the density of predator influences the system [12]. currently, several researchers have considered the density of both populations as a ratio-dependent function. this function depends on the ratio of prey to predator density [13]. according to [14], the ratio-dependent model is a more reasonable dynamic than the previous model. one of the phenomena that reduce predation risk is prey refuge. it can avoid the extinction of prey and influence the stability of the dynamic behavior [15]. according to [3], the prey refuge that is incorporated in the model is divided into two types, namely the refuge for a constant-number of prey and the refuge for a constant-proportion of prey. it is well known that the refuge for a constant-number of prey has a stronger stabilizing effect than the refuge for a constant-proportion of prey [14]. therefore, the model is more realistic by incorporating prey refuge and it gives an accessible factor to the predator. in this study, we modify the eco-epidemiology model from [1] by changing holling type ii into a ratio-dependent function. here, we also observe the effect of prey refuge in the system. further, this article presents the results in the form of model analysis. moreover, it is well observed that there are hopf bifurcations around the positive equilibrium point and the condition for uniform persistence. finally, several simulations are performed to illustrate the analytical results. methods we use several methods to modify the eco-epidemiology model from [1]. the method is presented as follows. 1. reviewing and studying the eco-epidemiology model from previous literature. 2. modifying the eco-epidemiology model by changing the holling ii type into the ratiodependent function. 3. investigating the boundedness, equilibrium points, and dynamical behavior in the modified model. 4. investigating hopf bifurcation and persistence in the modified model. 5. performing numerical simulation by using the 5th-order predictor-corrector method as a numerical method to support the analytical results. dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 229 results and discussion the mathematical model in this paper, the eco-epidemiology model consists of three populations, namely susceptible prey, infected prey, and predator. let ๐‘‹๐‘†(๐‘ก), ๐‘‹๐ผ(๐‘ก), and ๐‘Œ(๐‘ก) is respectively defined as the density of susceptible prey, infected prey, and predator at the time ๐‘ก. according to [1], the general eco-epidemiology model is presented as follows. ๐‘‹๏ฟฝฬ‡๏ฟฝ = ๐‘… โˆ’ ๐›ฝ๐‘‹๐‘†๐‘‹๐ผ โˆ’ ๐›ฟ๐‘‹๐‘†, ๐‘‹๐ผฬ‡ = ๐›ฝ๐‘‹๐‘†๐‘‹๐ผ โˆ’ ๐‘“(๐‘‹๐ผ, ๐‘Œ)๐‘Œ โˆ’ ๐œ‚๐‘‹๐ผ, ๏ฟฝฬ‡๏ฟฝ = ๐‘’๐‘“(๐‘‹๐ผ, ๐‘Œ)๐‘Œ โˆ’ ๐›พ๐‘Œ, (1) with ๐‘‹๐‘† โ‰ฅ 0, ๐‘‹๐ผ โ‰ฅ 0, ๐‘Œ โ‰ฅ 0. the first equation of system (1) expresses that in the absence of disease, the prey population grows by following the equation as below. ๐‘‹๏ฟฝฬ‡๏ฟฝ = ๐‘… โˆ’ ๐›ฟ๐‘‹๐‘†, where ๐‘… is expressed as the level of recruitment in prey populations such as immigrants and new-born and ๐›ฟ is defined as the natural death rate of susceptible prey. here, the growth of the prey population is affected by factors such as disease. the spread of disease is denoted by bilinear incidence rate ๐›ฝ๐‘‹๐‘†๐‘‹๐ผ with ๐›ฝ is the transmission rate. we assume that the prey is not infected because of inherited disease but other sources. moreover, the disease spreads on susceptible prey only. we also assume that the infected prey populations do not recover nor reproduce. the second equation of system (1) describes the development of the infected prey population. they will be erased by the natural death rate ๐œ‚ and the predation of the predator. here, predation is denoted by the response function ๐‘“(๐‘‹๐ผ, ๐‘Œ). we assume that infected prey can hide. hiding behavior gives protection for infected prey which can protect from predation. the protection of infected prey is denoted by constant ๐‘š. predators can capture infected prey by following a ratio-dependent function as in [14]. ๐‘“(๐‘‹๐ผ, ๐‘Œ) = { 0 , if 0 โ‰ค ๐‘‹๐ผ โ‰ค ๐‘š, ๐‘Ž(๐‘‹๐ผ โˆ’ ๐‘š) ๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ , if ๐‘‹๐ผ > ๐‘š, with ๐‘Ž is expressed as the predation rate and ๐œ‰ is defined as half capturing saturation constant. according to [1], if the density of infected prey populations is below the constant ๐‘š, then predators cannot eat them and will die exponentially. meanwhile, if the density of infected prey populations is above the constant ๐‘š, then predators can eat them. thus, when ๐‘‹๐ผ > ๐‘š, then system (1) shall become as follows. ๐‘‹๏ฟฝฬ‡๏ฟฝ = ๐‘… โˆ’ ๐›ฝ๐‘‹๐‘†๐‘‹๐ผ โˆ’ ๐›ฟ๐‘‹๐‘†, ๐‘‹๐ผฬ‡ = ๐›ฝ๐‘‹๐‘†๐‘‹๐ผ โˆ’ ๐‘Ž(๐‘‹๐ผ โˆ’ ๐‘š)๐‘Œ ๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ โˆ’ ๐œ‚๐‘‹๐ผ, ๏ฟฝฬ‡๏ฟฝ = ๐‘Ž๐‘’(๐‘‹๐ผ โˆ’ ๐‘š)๐‘Œ ๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ โˆ’ ๐›พ๐‘Œ, (2) with ๐‘‹๐‘†(0) โ‰ฅ 0, ๐‘‹๐ผ(0) โ‰ฅ 0, ๐‘Œ(0) โ‰ฅ 0. the last equation represents the behavior of the predator population. predators only consume the infected prey and donโ€™t consume the susceptible prey. when the infected prey population is absent, then the predator experiences a natural death rate ๐›พ. here, it is assumed that disease does not spread from infected prey to predator. in the model, all parameters are positive values. the meaning of parameter and their units are summarized in table 1. dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 230 table 1. units and the meaning of parameters in system (2) parameters biological meaning units ๐‘‹๐‘† the number of susceptible prey number ๐‘‹๐ผ the number of infected prey number ๐‘Œ the number of predators number ๐‘… the level of recruitment in prey time-1 ๐›ฝ the level of infection of disease mass-1 time-1 ๐›ฟ the level of natural mortality in susceptible prey time-1 ๐œ‚ the level of natural mortality in infected prey time-1 ๐›พ the level of natural mortality in predators time-1 ๐œ‰ half saturation constant number ๐‘Ž the level of predation in predators mass-1 time-1 ๐‘’ the level of alteration from prey into predators time-1 ๐‘š the measure of prey in the refuge number the boundedness to show the biological validity, we shall prove the boundedness of the system (2) as follows. theorem 1. all solutions of the system (2) are uniformly bounded. proof: we define ๐‘Š = ๐‘‹๐‘† + ๐‘‹๐ผ + 1 ๐‘’ ๐‘Œ. by differentiating ๐‘Š to ๐‘ก, we get ๐‘‘๐‘Š ๐‘‘๐‘ก = ๐‘‘๐‘‹๐‘† ๐‘‘๐‘ก + ๐‘‘๐‘‹๐ผ ๐‘‘๐‘ก + 1 ๐‘’ ๐‘‘๐‘Œ ๐‘‘๐‘ก . by substituting system (3), we get, ๐‘‘๐‘Š ๐‘‘๐‘ก = ๐‘… โˆ’ (๐›ฟ๐‘‹๐‘† + ๐œ‚๐‘‹๐ผ + ๐›พ ๐‘Œ ๐‘’ ). next, we choose ๐‘ž = min{๐›ฟ, ๐œ‚, ๐›พ}. thus, we get ๐‘‘๐‘Š ๐‘‘๐‘ก โ‰ค ๐‘… โˆ’ ๐‘ž๐‘Š, by using the theory of differential equation, we get ๐‘Š(๐‘ก) โ‰ค ๐‘… ๐‘ž + ๐ถ๐‘’โˆ’๐‘ž๐‘ก, where ๐ถ is the arbitrary positive constant. for ๐‘ก โ†’ โˆž, we get lim ๐‘กโ†’โˆž sup ๐‘Š(๐‘ก) โ‰ค ๐‘… ๐‘ž . thus, all solutions of system (2) enter into ๐›บ = {(๐‘‹๐‘†, ๐‘‹๐ผ, ๐‘Œ) โˆˆ โ„+ 3 : ๐‘Š(๐‘ก) โ‰ค ๐‘… ๐‘ž }. the equilibrium points by setting ๐‘‹๏ฟฝฬ‡๏ฟฝ = ๐‘‹๐ผฬ‡ = ๏ฟฝฬ‡๏ฟฝ = 0, we get the possible equilibrium points as below. 1. axial equilibrium ๐ธ0 ( ๐‘… ๐›ฟ , 0,0) always existent. dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 231 2. planar equilibrium ๐ธ1 ( ๐œ‚ ๐›ฝ , ๐›ฝ๐‘…โˆ’๐›ฟ๐œ‚ ๐œ‚๐›ฝ , 0) exists when ๐›ฝ๐‘… > ๐›ฟ๐œ‚. 3. interior equilibrium ๐ธโˆ—(๐‘‹๐‘† โˆ—, ๐‘‹๐ผ โˆ—, ๐‘Œโˆ—), where ๐‘‹๐‘† โˆ— = ๐‘… ๐›ฝ๐‘‹๐ผ โˆ—+๐›ฟ , ๐‘Œโˆ— = (๐‘Ž๐‘’โˆ’๐›พ)(๐‘‹๐ผ โˆ—โˆ’๐‘š) ๐›พ๐œ‰ , and ๐‘‹๐ผ โˆ— is the positive root of the quadratic equation (3) as follows. ๐ด1(๐‘‹๐ผ โˆ—)2 + ๐ด2๐‘‹๐ผ โˆ— + ๐ด3 = 0, (3) with ๐ด1 = โˆ’๐›ฝ(๐‘Ž๐‘’ โˆ’ ๐›พ + ๐‘’๐œ‚๐œ‰), ๐ด2 = ๐›ฝ๐‘š(๐‘Ž๐‘’ โˆ’ ๐›พ) โˆ’ ๐›ฟ(๐‘Ž๐‘’ โˆ’ ๐›พ + ๐‘’๐œ‚๐œ‰) + ๐‘’๐‘…๐›ฝ๐œ‰, ๐ด3 = ๐›ฟ๐‘š(๐‘Ž๐‘’ โˆ’ ๐›พ). this point ๐ธโˆ— exists when it satisfies the condition ๐‘Ž๐‘’ > ๐›พ and ๐‘‹๐ผ โˆ— > ๐‘š. it is clear to show that ๐ด1 < 0 and ๐ด3 > 0. thus, the determinant of the equation (3) is ๐ท = (๐ด2) 2 โˆ’ ๐ด1๐ด3 โ‰ฅ 0. therefore, to get the explicit form of the root of the equation (3), we have to check the following two cases: a. for ๐ท = 0, the equation (3) has a twin positive root where ๐‘‹๐ผ โˆ— = โˆ’ ๐ด2 2๐ด1 with ๐ด2 > 0. b. for ๐ท > 0, the probability that equation (3) has positive roots is as follows. ๏‚ท if ๐ด2 > 0, then the equation (3) has two positive roots where ๐‘‹๐ผ1,2 โˆ— = โˆ’๐ด2ยฑโˆš๐ท 2๐ด1 . ๏‚ท if ๐ด2 < 0, then the equation (3) has a single positive root where ๐‘‹๐ผ โˆ— = โˆ’๐ด2โˆ’โˆš๐ท 2๐ด1 . dynamical behaviour to investigate the stability in system (2), we have to determine the eigenvalues of the jacobian matrix. here, we identify the jacobian matrix at ๐ธ(๐‘‹๐‘†, ๐‘‹๐ผ, ๐‘Œ) as follows. ๐ฝ(๐ธ) = [ โˆ’๐›ฝ๐‘‹๐ผ โˆ’ ๐›ฟ โˆ’๐›ฝ๐‘‹๐‘† 0 ๐›ฝ๐‘‹๐ผ ๐›ฝ๐‘‹๐‘† โˆ’ ๐‘Ž๐œ‰๐‘Œ2 (๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ) 2 โˆ’ ๐œ‚ โˆ’ ๐‘Ž(๐‘‹๐ผ โˆ’ ๐‘š) 2 (๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ) 2 0 ๐‘Ž๐‘’๐œ‰๐‘Œ2 (๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ) 2 ๐‘Ž๐‘’(๐‘‹๐ผ โˆ’ ๐‘š) 2 (๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ) 2 โˆ’ ๐›พ ] . (4) to check the stability of ๐ธ0 ( ๐‘… ๐›ฟ , 0,0), we get the jacobian matrix by replacing ๐ธ(๐‘‹๐‘†, ๐‘‹๐ผ, ๐‘Œ) in the equation (4) with ๐ธ0 ( ๐‘… ๐›ฟ , 0,0). hence, we obtain the eigenvalues of the jacobian matrix, namely ๐œ†1 = โˆ’๐›ฟ, ๐œ†2 = ๐›ฝ๐‘… ๐›ฟ โˆ’ ๐œ‚, and ๐œ†3 = ๐‘Ž๐‘’ โˆ’ ๐›พ. the point ๐ธ0 is locally asymptotically stable when ๐‘Ž๐‘’ < ๐›พ and ๐›ฝ๐‘… < ๐›ฟ๐œ‚. to investigate the stability of ๐ธ1 ( ๐œ‚ ๐›ฝ , ๐›ฝ๐‘…โˆ’๐›ฟ๐œ‚ ๐œ‚๐›ฝ , 0), we have to identify the jacobian matrix by replacing ๐ธ(๐‘‹๐‘†, ๐‘‹๐ผ, ๐‘Œ) in the equation (4) with ๐ธ1 ( ๐œ‚ ๐›ฝ , ๐›ฝ๐‘…โˆ’๐›ฟ๐œ‚ ๐œ‚๐›ฝ , 0). thus, we get the eigenvalues ๐œ†1 = ๐‘Ž๐‘’ โˆ’ ๐›พ and other eigenvalues are the roots of the quadratic equation ๐œ†2 + ๐œ‘1๐œ† + ๐œ‘2 = 0 with ๐œ‘1 = ๐›ฝ๐‘…โˆ’๐›ฟ๐œ‚ ๐œ‚ + ๐›ฟ and ๐œ‘2 = ๐›ฝ๐‘… โˆ’ ๐›ฟ๐œ‚. by using the routh-hurwitz criteria, the eigenvalues have negative real roots when ๐›ฝ๐‘… > ๐›ฟ๐œ‚. hence, the point ๐ธ1 is locally asymptotically stable when ๐‘Ž๐‘’ < ๐›พ and ๐›ฝ๐‘… > ๐›ฟ๐œ‚. from the above discussion, we get the following theorem as follows. theorem 2. the axial equilibrium ๐ธ0 is locally asymptotically stable when ๐‘Ž๐‘’ < ๐›พ and ๐›ฝ๐‘… < ๐›ฟ๐œ‚ and the planar equilibrium ๐ธ1 is locally asymptotically stable when ๐‘Ž๐‘’ < ๐›พ and ๐›ฝ๐‘… > ๐›ฟ๐œ‚. theorem 2 means that if the level of natural mortality in predator is lower than a certain value and the level of infection is lower than a certain value, then the point ๐ธ0 dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 232 becomes stable. meanwhile, if the level of infection is greater than a certain value, then the point ๐ธ1 becomes stable. now, we shall investigate the stability of ๐ธโˆ—(๐‘‹๐‘† โˆ—, ๐‘‹๐ผ โˆ—, ๐‘Œโˆ—). by replacing ๐ธ(๐‘‹๐‘†, ๐‘‹๐ผ, ๐‘Œ) in the equation (4) with ๐ธโˆ—(๐‘‹๐‘† โˆ—, ๐‘‹๐ผ โˆ—, ๐‘Œโˆ—), we get the jacobian matrix where ๐‘ข๐‘–๐‘— is the entry of matrix with row ๐‘– and column ๐‘— as follows. ๐ฝ(๐ธโˆ—) = [ ๐‘ข11 ๐‘ข12 0 ๐‘ข21 ๐‘ข22 ๐‘ข23 0 ๐‘ข32 ๐‘ข33 ], with ๐‘ข11 = โˆ’๐›ฝ๐‘‹๐ผ โˆ— โˆ’ ๐›ฟ; ๐‘ข12 = โˆ’๐›ฝ๐‘‹๐‘† โˆ—; ๐‘ข21 = ๐›ฝ๐‘‹๐ผ โˆ—, ๐‘ข22 = ๐›ฝ๐‘‹๐‘† โˆ— โˆ’ ๐‘Ž๐œ‰(๐‘Œโˆ—)2 (๐‘‹๐ผ โˆ— โˆ’ ๐‘š + ๐œ‰๐‘Œโˆ—)2 โˆ’ ๐œ‚; ๐‘ข23 = โˆ’ ๐‘Ž(๐‘‹๐ผ โˆ— โˆ’ ๐‘š)2 (๐‘‹๐ผ โˆ— โˆ’ ๐‘š + ๐œ‰๐‘Œโˆ—)2 , ๐‘ข32 = ๐‘Ž๐‘’๐œ‰(๐‘Œโˆ—)2 (๐‘‹๐ผ โˆ— โˆ’ ๐‘š + ๐œ‰๐‘Œโˆ—)2 ; ๐‘ข33 = โˆ’ ๐‘Ž๐‘’๐œ‰๐‘Œโˆ—(๐‘‹๐ผ โˆ— โˆ’ ๐‘š) (๐‘‹๐ผ โˆ— โˆ’ ๐‘š + ๐œ‰๐‘Œโˆ—)2 . hence, we obtain the characteristic equation of ๐ธโˆ—, namely ๐œ†3 + ๐œ‡1๐œ† 2 + ๐œ‡2๐œ† + ๐œ‡3 = 0 (5) with ๐œ‡1 = โˆ’(๐‘ข11 + ๐‘ข22 + ๐‘ข33), ๐œ‡2 = ๐‘ข11๐‘ข22 + ๐‘ข11๐‘ข33 + ๐‘ข22๐‘ข33 โˆ’ ๐‘ข12๐‘ข21 โˆ’ ๐‘ข23๐‘ข32, ๐œ‡3 = โˆ’๐‘ข11๐‘ข22๐‘ข33 + ๐‘ข11๐‘ข23๐‘ข32 + ๐‘ข12๐‘ข21๐‘ข33. by using the routh-hurwitz criteria, the eigenvalues have negative real roots when ๐œ‡1 > 0, ๐œ‡3 > 0, ๐œ‡1๐œ‡2 > ๐œ‡3. thus, the point ๐ธ โˆ— is locally asymptotically stable when ๐œ‡1 > 0, ๐œ‡3 > 0, ๐œ‡1๐œ‡2 > ๐œ‡3. therefore, we get the following theorem. theorem 3. the interior equilibrium ๐ธโˆ— is locally asymptotically stable when it satisfies the condition ๐œ‡1 > 0, ๐œ‡3 > 0, ๐œ‡1๐œ‡2 > ๐œ‡3. in the next theorem, we shall prove that the point ๐ธ1 is globally asymptotically stable under a certain condition. theorem 4. the point ๐ธ1 is globally asymptotically stable in the ๐‘‹๐‘† โˆ’ ๐‘‹๐ผ plane. proof: by applying the dulac function as ๐ป(๐‘‹๐‘†, ๐‘‹๐ผ) = 1 ๐‘‹๐ผ , we have ๐ป(๐‘‹๐‘†, ๐‘‹๐ผ) = 1 ๐‘‹๐ผ , โ„Ž1(๐‘‹๐‘†, ๐‘‹๐ผ) = ๐‘… โˆ’ ๐›ฝ๐‘‹๐‘†๐‘‹๐ผ โˆ’ ๐›ฟ๐‘‹๐‘†, โ„Ž2(๐‘‹๐‘†, ๐‘‹๐ผ) = ๐›ฝ๐‘‹๐‘†๐‘‹๐ผ โˆ’ ๐œ‚๐‘‹๐ผ, where ๐ป(๐‘‹๐‘†, ๐‘‹๐ผ) > 0 in the ๐‘‹๐‘† โˆ’ ๐‘‹๐ผ plane. thus, we get โˆ†(๐‘‹๐‘†, ๐‘‹๐ผ) = ๐œ• ๐œ•๐‘‹๐‘† (โ„Ž1๐ป) + ๐œ• ๐œ•๐‘‹๐ผ (โ„Ž2๐ป) = โˆ’๐›ฝ โˆ’ ๐›ฟ ๐‘‹๐ผ < 0. base on bendixson-dulac criteria, there is no limit cycle in the ๐‘‹๐‘† โˆ’ ๐‘‹๐ผ plane. thus, the point ๐ธ1 is globally asymptotically stable in the ๐‘‹๐‘† โˆ’ ๐‘‹๐ผ plane. hopf bifurcation in this section, we shall investigate hopf bifurcation around ๐ธโˆ—(๐‘‹๐‘† โˆ—, ๐‘‹๐ผ โˆ—, ๐‘Œโˆ—). hopf bifurcation guarantees that all solutions of system (2) enter a limit cycle around ๐ธโˆ—(๐‘‹๐‘† โˆ—, ๐‘‹๐ผ โˆ—, ๐‘Œโˆ—). here, we choose the constant ๐‘š as a bifurcation parameter. hopf bifurcation around ๐ธโˆ—(๐‘‹๐‘† โˆ—, ๐‘‹๐ผ โˆ—, ๐‘Œโˆ—) is presented in the following theorem. dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 233 theorem 5. the system (2) undergoes a hopf bifurcation around ๐ธโˆ—(๐‘‹๐‘† โˆ—, ๐‘‹๐ผ โˆ—, ๐‘Œโˆ—) when ๐‘š passes through a critical value ๐‘š = ๐‘š๐‘. proof: we consider equation (5) as the characteristic equation at ๐ธโˆ—. next, we choose ๐‘š = ๐‘š๐‘ such that ๐œ‡1๐œ‡2 = ๐œ‡3 where ๐œ‡1, ๐œ‡2, ๐œ‡3 > 0. therefore, we get (๐œ†2 + ๐œ‡2)(๐œ† + ๐œ‡1) = 0 (6) with the roots are ๐œ†1,2 = ยฑ๐‘–โˆš๐œ‡2 and ๐œ†3 = โˆ’๐œ‡1. for all ๐‘š, the roots become ๐œ†1,2 = ๐‘ฃ1(๐‘š) ยฑ ๐‘–๐‘ฃ2(๐‘š) and ๐œ†3 = โˆ’๐œ‡1(๐‘š) where ๐‘ฃ1(๐‘š) and ๐‘ฃ2(๐‘š) are real. next, we shall prove the transversality condition as follows. ๐‘‘ (๐‘…๐‘’ ๐œ†๐‘—(๐‘š)) ๐‘‘๐‘š | ๐‘š=๐‘š๐‘ โ‰  0, ๐‘— = 1,2. by substituting ๐œ†1 = ๐‘ฃ1(๐‘š) + ๐‘–๐‘ฃ2(๐‘š) into equation (6) and differentiating to ๐‘š, we obtain ๐พ๐‘ฃ1ฬ‡ โˆ’ ๐ฟ๐‘ฃ2ฬ‡ + ๐‘€ = 0, ๐ฟ๐‘ฃ1ฬ‡ + ๐พ๐‘ฃ2ฬ‡ + ๐‘ = 0, (7) where ๐พ = 3(๐‘ฃ1 2 โˆ’ ๐‘ฃ2 2) + ๐œ‡2 + 2๐‘ฃ1๐œ‡1, ๐ฟ = 6๐‘ฃ1๐‘ฃ2 + 2๐‘ฃ2๐œ‡1, ๐‘€ = ๐œ‡1ฬ‡(๐‘ฃ1 2 โˆ’ ๐‘ฃ2 2) + ๐‘ฃ1๐œ‡2ฬ‡ + ๐œ‡3ฬ‡, and ๐‘ = 2๐‘ฃ1๐‘ฃ2๐œ‡1ฬ‡ + ๐‘ฃ2๐œ‡2ฬ‡. next, we solve equation (7). thus, we have ๐‘ฃ1ฬ‡ = โˆ’ ๐พ๐‘€ + ๐ฟ๐‘ ๐พ2 + ๐ฟ2 . since ๐พ๐‘€ + ๐ฟ๐‘ โ‰  0 and ๐œ‡1ฬ‡ โ‰  0, we obtain ๐‘‘ (๐‘…๐‘’ ๐œ†๐‘—(๐‘š)) ๐‘‘๐‘š | ๐‘š=๐‘š๐‘ = โˆ’ ๐พ๐‘€ + ๐ฟ๐‘ ๐พ2 + ๐ฟ2 | ๐‘š=๐‘š๐‘ โ‰  0, ๐‘— = 1,2, and ๐œ†3(๐‘š๐‘) = โˆ’๐œ‡1(๐‘š๐‘) < 0. thus, the system (2) occurs hopf bifurcation when ๐‘š passes through a critical value ๐‘š = ๐‘š๐‘. persistence to show that all species are present and are not extinct in the future time, we shall prove that system (2) is uniform persistence. theorem 6. let the assumption of theorem 4 holds. if the inequalities ๐‘Ž๐‘’ > ๐›พ and ๐›ฝ๐‘… > ๐›ฟ๐œ‚ hold, then the system (2) is uniform persistence. proof: we consider average lyapunov function ๐œŽ(๐‘‹) = ๐‘‹๐‘† ๐‘Ÿ1๐‘‹๐ผ ๐‘Ÿ2๐‘Œ๐‘Ÿ3 with ๐‘Ÿ1, ๐‘Ÿ2, ๐‘Ÿ3 > 0. here, ๐œŽ(๐‘‹) is nonnegative ๐ถ1 in โ„+ 3 . thus, we have ๐œ—(๐‘‹) = 1 ๐œŽ ๐‘‘๐œŽ ๐‘‘๐‘ก = ๐‘Ÿ1 ๐‘‹๏ฟฝฬ‡๏ฟฝ ๐‘‹๐‘† + ๐‘Ÿ2 ๐‘‹๐ผฬ‡ ๐‘‹๐ผ + ๐‘Ÿ3 ๏ฟฝฬ‡๏ฟฝ ๐‘Œ , = ๐‘Ÿ1 ( ๐‘… ๐‘‹๐‘† โˆ’ ๐›ฝ๐‘‹๐ผ โˆ’ ๐›ฟ) + ๐‘Ÿ2 (๐›ฝ๐‘‹๐‘† โˆ’ ๐‘Ž(๐‘‹๐ผ โˆ’ ๐‘š)๐‘Œ ๐‘‹๐ผ(๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ) โˆ’ ๐œ‚) + ๐‘Ÿ3 ( ๐‘Ž๐‘’(๐‘‹๐ผ โˆ’ ๐‘š) ๐‘‹๐ผ โˆ’ ๐‘š + ๐œ‰๐‘Œ โˆ’ ๐›พ). in the system, the point ๐ธ1 is the only equilibrium point which is no limit cycle around the equilibrium point. therefore, theorem 4 holds. hence, it is enough to prove that ๐œ—(๐‘‹) > 0 for all equilibrium point ๐‘‹ โˆˆ ๐‘๐‘‘ โ„+ 3 . thus, we get ๐œ—(๐ธ0) = ๐‘Ÿ2 ( ๐›ฝ๐‘… โˆ’ ๐›ฟ๐œ‚ ๐›ฟ ) + ๐‘Ÿ3(๐‘Ž๐‘’ โˆ’ ๐›พ) > 0, ๐œ—(๐ธ1) = ๐‘Ÿ3(๐‘Ž๐‘’ โˆ’ ๐›พ) > 0. dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 234 we note that if the inequalities ๐‘Ž๐‘’ > ๐›พ and ๐›ฝ๐‘… > ๐›ฟ๐œ‚ hold, then ๐œ—(๐ธ0) > 0 holds. meanwhile, if the inequalities ๐‘Ž๐‘’ > ๐›พ holds, then ๐œ—(๐ธ1) > 0 holds. therefore, theorem 6 expresses the instability of the point ๐ธ0 and ๐ธ1. numerical solutions the analytical results obtained are incomplete without numerical investigation. in this section, we present the numerical solution by using the 5th-order predictor-corrector method at โˆ†๐‘ก = 0.01. here, we will give four simulations to verify our analytical results and also to demonstrate the effect of the prey refuge. we choose several parameters as in (8). their units are given as in table 1. ๐‘… = 2, ๐›ฝ = 1, ๐›ฟ = 1, ๐œ‚ = 0.5, ๐›พ = 0.5, ๐œ‰ = 1, ๐‘Ž = 2, ๐‘’ = 0.75, ๐‘š = 0.5. (8) simulation 1. it confirms that system (2) has an equilibrium ๐ธโˆ—(1.0685,0.8717,0.7434). on simulation 1, theorem 3 and theorem 6 are satisfied. we observe that all solutions converge to the point ๐ธโˆ—, see figure 1(a). thus, the point is locally asymptotically stable, see figure 1(b), and the system (2) is uniform persistence. (a) (b) figure 1. the dynamics of system (2) with ๐‘š = 0.5 and other parameters as in (8) simulation 2. we replace ๐‘š = 0.5 into ๐‘š = 0.0002. here, we investigate that system (2) has an equilibrium point ๐ธโˆ—(1.8305,0.0926,0.1848). on simulation 2, theorem 3 is not satisfied but theorem 6 is satisfied. therefore, system (2) is uniform persistence but the equilibrium point ๐ธโˆ— is unstable, see figure 2. (a) (b) figure 2. this figure shows the instability of system (2) dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 235 simulation 3. to see hopf bifurcation in the system (2), we choose ๐‘š = ๐‘š๐‘ = 0.0004 as a bifurcation parameter. thus, we identify that the equilibrium point of system (2) is ๐ธโˆ—(1.8277,0.0943,0.1878). if we choose ๐‘š = 0.005 > ๐‘š๐‘ = 0.0004, then all solutions of the system (2) convergent to ๐ธโˆ—(1.7795,0.1239,0.2378), see figure 3(a). meanwhile, figure 3(b) shows the phase portrait of the system (2) with ๐‘š = 0.005 which means that the point ๐ธโˆ— is stable. furthermore, if we choose ๐‘š = 0.0001 < ๐‘š๐‘ = 0.0004, then the point ๐ธโˆ—(1.8319,0.0918,0.1833) is unstable, see figure 4(a). meanwhile, the phase portrait in the system (2) with ๐‘š = 0.0001 that is presented in figure 4(b) means that the solution of the system (2) enter a limit cycle around ๐ธโˆ—. thus, theorem 5 is satisfied. simulation 4. to see the effect of prey refuge in the system (2), we use several values of prey refuge, namely ๐‘š1 = 0.1, ๐‘š2 = 0.65, and ๐‘š3 = 1.3. figure (5) shows the time graph of the system (2) by using ๐‘š makes different values. here, we obtain that all populations exist no matter how large ๐‘š with ๐‘š < ๐‘‹๐ผ. this prey refuge creates the system (2) to become stable rapidly and no extinction occurs. here, it is worthy to attention that when we choose the constant ๐‘š with ๐‘š < ๐‘‹๐ผ, then the measure of prey refuge doesnโ€™t lead to predator extinction. (a) (b) figure 3. the dynamics of system (2) with ๐‘š = 0.005 and other parameters as in (8) (a) (b) figure 4. the dynamics of system (2) with ๐‘š = 0.0001 and other parameters as in (8) dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 236 figure 5. the effect of prey refuge by using ๐‘š makes different values conclusions in this study, we have observed three species in the eco-epidemiology model with the ratio-dependent function incorporating prey refuge. we obtain three equilibrium points where all points, i.e. axial equilibrium, planar equilibrium, and interior equilibrium, are locally asymptotically stable under certain conditions. moreover, the planar equilibrium point in the system (2) is globally asymptotically stable. next, we find that hopf bifurcation occurs around the interior equilibrium by choosing a bifurcation parameter in the constant ๐‘š. when ๐‘š > ๐‘š๐‘ = 0.0004, the system (2) is stable. however, when ๐‘š < ๐‘š๐‘ = 0.0004, the system (2) is unstable. furthermore, we also find a condition for uniform persistence. if the level of natural mortality in predators is lower than a certain value and the level of infection is greater than a certain value, then all species exist in the future time. next, by applying the prey refuge, all populations exist no matter how large ๐‘š with ๐‘š < ๐‘‹๐ผ. we conclude that system (2) is stable faster and there is no extinction. references [1] c. maji, d. kesh, and d. mukherjee, โ€œbifurcation and global stability in an ecoepidemic model with refuge,โ€ energy, ecol. environ., vol. 4, no. 3, pp. 103โ€“115, 2019, doi: 10.1007/s40974-019-00117-6. [2] a. k. pal and g. p. samanta, โ€œstability analysis of an eco-epidemiological model incorporating a prey refuge,โ€ nonlinear anal. model. control, vol. 2014, 2014, doi: 10.1155/2014/978758. [3] b. mukhopadhyay and r. bhattacharyya, โ€œeffects of deterministic and random refuge in a prey-predator model with parasite infection,โ€ math. biosci., vol. 239, no. 1, pp. 124โ€“130, 2012, doi: 10.1016/j.mbs.2012.04.007. [4] c. huang, h. zhang, j. cao, and h. hu, โ€œstability and hopf bifurcation of a delayed prey-predator model with disease in the predator,โ€ int. j. bifurc. chaos, vol. 29, no. 7, p. 23, 2019, doi: 10.1142/s0218127419500913. [5] s. a. wuhaib and y. a. b. u. hasan, โ€œpredator-prey interactions with harvesting of predator with prey in refuge,โ€ commun. math. biol. neurosci., vol. 2013, no. 1, pp. 1โ€“19, 2013. [6] s. p. bera, a. maiti, and g. p. samanta, โ€œa prey-predator model with infection in both prey and predator,โ€ filomat, vol. 29, no. 8, pp. 1753โ€“1767, 2015, doi: dynamical of ratio-dependent eco-epidemiology model with prey refuge adin lazuardy firdiansyah 237 10.2298/fil1508753b. [7] r. k. upadhyay and p. roy, โ€œspread of a disease and its effect on population dynamics in an eco-epidemiological system,โ€ commun. nonlinear sci. numer. simul., vol. 19, no. 12, pp. 4170โ€“4184, 2014, doi: 10.1016/j.cnsns.2014.04.016. [8] d. mukherjee, โ€œhopf bifurcation in an eco-epidemic model,โ€ appl. math. comput., vol. 217, no. 5, pp. 2118โ€“2124, 2010, doi: 10.1016/j.amc.2010.07.010. [9] p. j. hudson, a. p. dobson, and d. newborn, โ€œdo parasites make prey vulnerable to predation? red grouse and parasites,โ€ j. anim. ecol., vol. 61, no. 3, p. 681, 1992, doi: 10.2307/5623. [10] n. apreutesei and g. dimitriu, โ€œon a prey-predator reactiondiffusion system with holling type iii functional response,โ€ j. comput. appl. math., vol. 235, no. 2, pp. 366โ€“ 379, 2010, doi: 10.1016/j.cam.2010.05.040. [11] a. l. firdiansyah, โ€œeffect of prey refuge and harvesting on dynamics of ecoepidemiological model with holling type iii,โ€ vol. 3, no. 1, pp. 16โ€“25, 2021. [12] a. k. misra and b. dubey, โ€œa ratio-dependent predator-prey model with delay and harvesting,โ€ j. biol. syst., vol. 18, no. 2, pp. 437โ€“453, 2010, doi: 10.1142/s021833901000341x. [13] u. de lausanne and s. brook, โ€œcoupling in predator-prey dynamics: ratiodependence,โ€ j. theor. biol., vol. 139, pp. 311โ€“326, 1989. [14] m. verma and a. k. misra, โ€œmodeling the effect of prey refuge on a ratio-dependent predatorโ€“prey system with the allee effect,โ€ bull. math. biol., vol. 80, no. 3, pp. 626โ€“ 656, 2018, doi: 10.1007/s11538-018-0394-6. [15] s. wang, z. ma, and w. wang, โ€œdynamical behavior of a generalized ecoepidemiological system with prey refuge,โ€ adv. differ. equations, vol. 2018, no. 1, pp. 1โ€“20, 2018, doi: 10.1186/s13662-018-1704-x. local hรถlder regularity of weak solutions for singular parabolic systems of p-laplacian type cauchy โ€“jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 136-141 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 07, 2021 reviewed: october 11, 2021 accepted: october 21, 2021 doi: https://doi.org/10.18860/ca.v7i1.13105 local hรถlder regularity of weak solutions for singular parabolic systems of p-laplacian type khoirunisa khoirunisa1, corina karim2, m. muslikh3 1,2,3department of mathematics, universitas brawijaya email: khoir.n97@gmail.com, co_mathub@ub.ac.id, mslk@ub.ac.id abstract local hรถlder regularity of weak solutions for degenerate parabolic systems of p-laplacian type was proved by corina, k. in this paper, we aim to show the local hรถlder regularity of weak solutions in the singular case with 2๐‘š ๐‘š+2 < ๐‘ < 2, ๐‘š โ‰ฅ 2, so that the local hรถlder regularity of weak solutions for parabolic systems of p-laplacian type can hold for both cases. by applying poincarรฉ inequality, we show that its weak solutions within hรถlder space, or we can tell that the local hรถlder regularity for the singular case is valid. keywords: hรถlder regularity; singular case; weak solutions introduction hรถlder regularity of weak solutions for parabolic equations in singular and degenerate case was introduced in [1] dan [2], where the coefficients are measurable and satisfy elliptic condition. however, the result in [2] is not showing the boundary estimates. after that, bรถgelein was interested to prove for the boundary regularity from the previous result in [2], see [3]. then, [4] investigated the same problem for nonlinear parabolic equations in the degenerate case. in 2002, dibenedetto et al discussed about the regularity of weak solutions for quasilinear parabolic equations in singular and degenerate case to proving their hรถlder character in [5]. the result in [2] was extended by misawa to a larger class of right-hand side terms, but the singular case was ecluded here, see [6]. meanwhile, for singular case, we can see the hรถlder regularity in [7]. in addition, the holder regularity of gradient solutions for all cases was proved in [8]. the study about hรถlder regularity of gradients solution was continued in [9] for evolutionary p-laplacian systems where the coefficients is hรถlder continuous. based on [10], the global weak solutions for similar case is exist. they used variational method to prove the existence of weak solutions globally. in 2018, karim started to investigated about simpler p-laplacian type in singular parabolic systems and showed that the weak solutions is bounded [11]. to prove the local boundedness in [11], we can adopt the method to prove energy estimates of singular parabolic equations in [12]. on the other hand, the existence of weak solutions in singular case was proved in [13] by using the galerkin method. furthermore, the intrinsic scaling method was used to treat the weak solutions to prove the hรถlder regularity for degenerate case [14]. the intrinsic scaling https://doi.org/10.18860/ca.v7i1.13105 mailto:khoir.n97@gmail.com mailto:co_mathub@ub.ac.id local hรถlder regularity of weak solutions for singular parabolic systems of p-laplacian type khoirunisa khoirunisa 137 method is based on [15], which used the intrinsic scaling method to approach the regularity in degenerate and singular partial differential equations. motivated by the last result in[14], we would investigated the hรถlder regularity of weak solutions in singular case. let ฯ‰ โŠ‚ โ„๐‘› be a bounded domain, ๐‘› โ‰ฅ 2, and ๐œ•ฯ‰ is smooth boundary. the unknown function ๐‘ข: (0, ๐‘‡) ร— ฯ‰ โ†’ โ„๐‘šis vector valued function, ๐‘ข = (๐‘ข1(๐‘ง), ๐‘ข2(๐‘ง), โ€ฆ , ๐‘ข๐‘š(๐‘ง)), where ๐‘ง = (๐‘ก, ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘› ). let 2๐‘š ๐‘š+2 < ๐‘ < 2, ๐‘š โ‰ฅ 2, consider the parabolic systems { ๐œ•๐‘ก ๐‘ข โˆ’ div (|๐ท๐‘ข| ๐‘โˆ’2๐ท๐‘ข) = 0 in(0, ๐‘‡) ร— ฯ‰, ๐‘ข(0, ๐‘ฅ) = ๐‘ข0(๐‘ฅ) on ๐œ•๐‘(0, ๐‘‡) ร— ฯ‰, (1) where ๐‘ข0(๐‘ฅ) โˆˆ ๐‘Š 1,๐‘(ฯ‰, โ„๐‘š). the result in [13] shows that for any initial condition, there exists weak solutions of (1) from ฯ‰ into โ„๐‘š. on the other hand, the local boundedness of the weak solution of (1) was proved by karim in [11]. they modified the intrinsic scaling from the original work by dibenedetto [12]. they used the intrinsic scaling for singular case. their main theorem established that intrinsic scaling well-worked to prove the local boundedness of weak solution of (1). we now turn to notion of hรถlder continuous functions. for any ๐‘ฅ, ๐‘ฆ โˆˆ ฯ‰ฬ…, if ๐‘ข โˆˆ ๐ถ0(ฯ‰ฬ…) satisfy sup ๐‘ฅ,๐‘ฆโˆˆ ฯ‰ฬ…,๐‘ฅโ‰ ๐‘ฆ |๐‘ข(๐‘ฅ) โˆ’ ๐‘ข(๐‘ฆ)| |๐‘ฅ โˆ’ ๐‘ฆ|๐›ผ < โˆž, then ๐‘ข โˆˆ ๐ถ0,๐›ผ (ฯ‰ฬ…). karim in [14] shows that the weak solutions of (1) in degenerate case satisfy the following theorem. theorem 1.[14] let ๐‘ โ‰ฅ 2 and u is weak solutions of (1) in ๐‘„(๐œ†2โˆ’๐‘๐œŒ2, ๐œŒ)(๐‘ง0). then, ๐‘ข is locally hรถlder continuous with some 0 < ๐›ผ < 1. furthermore, for any ๐‘„3๐œŒ0 (๐‘ง0 โ€ฒ ) โŠ‚ ๐‘„ with ๐‘ง0 โ€ฒ โˆˆ ๐‘„ and 0 < ๐œŒ0 < 1, there exist ๐ถ > 0 such that |๐‘ข(๐‘ง) โˆ’ ๐‘ข(๐‘งโ€ฒ)| โ‰ค ๐ถ {|๐‘ก โˆ’ ๐‘กโ€ฒ | ๐›ผ ๐‘ + |๐‘ฅ โˆ’ ๐‘ฅโ€ฒ|๐›ผ }, holds for any ๐‘ง, ๐‘งโ€ฒ โˆˆ ๐‘„๐œŒ0 where ๐‘„๐‘Ÿ (๐‘ง0) โŠ‚ ๐‘„(๐œ† 2โˆ’๐‘๐œŒ2, ๐œŒ)(๐‘ง0) โŠ‚ ๐‘„๐œŒ0 (๐‘ง0 โ€ฒ ) โŠ‚ ๐‘„3๐œŒ0 (๐‘ง0 โ€ฒ ). theorem 1 implies that the local hรถlder regularity of weak solutions (1) in degenerate case is proved. here, we aim to prove for the singular case, so that the local hรถlder regularity of weak solutions (1) can be proven for both cases or 2๐‘š ๐‘š+2 < ๐‘ < โˆž. methods we can prove the local hรถlder regularity of weak solutions for parabolic systems of plaplacian type in singular case by showing that the weak solutions are elements of hรถlder space. our method is using poincarรฉ inequality to show that the weak solutions within campanato space, then by isomorphism between campanato and hรถlder space, it is easy to see that its weak solutions are elements of hรถlder space. the poincarรฉ inequality that we use is in the following theorem. theorem 2. (poincarรฉ inequality).[16] let ฯ‰ โŠ‚ โ„๐‘› be a bounded open set and 1 โ‰ค ๐‘ โ‰ค โˆž. then, there exists positive constant ๐ถ = ๐ถ(ฯ‰, ๐‘) so that ||๐‘ข โˆ’ ๐‘ขฯ‰||๐ฟ๐‘ โ‰ค ๐ถ||๐ท๐‘ข|| ๐ฟ๐‘ , (2) local hรถlder regularity of weak solutions for singular parabolic systems of p-laplacian type khoirunisa khoirunisa 138 where ๐‘ขฯ‰ = 1 |ฯ‰| โˆซ ๐‘ข ฯ‰ ๐‘‘๐‘ฅ. results and discussion for singular equation (1) with 1 < ๐‘ < 2, we have the cylinder of the type ๐‘„(๐œŒ)(๐‘ง0)(๐‘ก0 โˆ’ ๐œŒ 2, ๐‘ก0 + ๐œŒ 2) ร— ๐ต (๐œ† ๐‘โˆ’2 2 ๐œŒ, ๐‘ฅ0). by switching the cylinder ๐‘„(๐œŒ)(๐‘ง0) to ๐‘„(1), we have ๐‘ฃ(๐‘ , ๐‘ฆ) = ๐‘ข(๐‘ก0 + ๐œ† 2โˆ’๐‘๐œŒ๐‘ , ๐‘ฅ0 + ๐œŒ๐‘ฆ) ๐œ†๐œŒ ; (๐‘ , ๐‘ฆ) โˆˆ ๐ต(1) ร— (โˆ’1,1) โ‰ก ๐‘„(1). suppose that on such a certain cylinder the relations 1 |๐‘„(๐œŒ)(๐‘ง0)| โˆซ |๐ท๐‘ข|๐‘๐‘‘๐‘ง โ‰ˆ ๐œ†๐‘. (3) ๐‘„(๐œŒ)(๐‘ง0) hence, we have ๐œ•๐‘ก ๐‘ข โˆ’ ๐œ† ๐‘โˆ’2div(๐ท๐‘ข) = 0, in ๐‘„(๐œŒ)(๐‘ง0). let ๐‘ข โˆˆ ๐ฟโˆž(0 , ๐‘‡; ๐‘Š1,๐‘(ฯ‰, โ„๐‘š)) be a weak solutions of (1) in cylinder ๐‘„ = (0, ๐‘‡) ร— ฯ‰ where ๐‘ง0 = (๐‘ก0, ๐‘ฅ0) โˆˆ ๐‘„, ๐œ† โ‰ฅ 1and 0 < ๐œŒ < 1 such that ๐‘„ (๐œŒ 2, ๐œ† ๐‘โˆ’2 2 ๐œŒ) โŠ‚ ๐‘„. while, our main theorem is the following. theorem 3.let 2๐‘š ๐‘š+2 < ๐‘ < 2, ๐‘š โ‰ฅ 2 and u is a weak solution of (1) in ๐‘„(๐œŒ2, ๐œ† ๐‘โˆ’2 2 ๐œŒ)(๐‘ง0). then ๐‘ข is locally ๐›ผ-hรถlder continuous with some 0 < ๐›ผ < 1. furthermore, for any ๐‘„3๐œŒ0 (๐‘ง0 โ€ฒ ) โŠ‚ ๐‘„ with ๐‘ง0 โ€ฒ โˆˆ ๐‘„ and 0 < ๐œŒ0 < 1, there ๐ถ > 0 such that |๐‘ข(๐‘ง) โˆ’ ๐‘ข(๐‘งโ€ฒ)| โ‰ค ๐ถ {|๐‘ก โˆ’ ๐‘กโ€ฒ | ๐›ผ ๐‘ + |๐‘ฅ โˆ’ ๐‘ฅโ€ฒ|๐›ผ }, holds for any ๐‘ง, ๐‘งโ€ฒ โˆˆ ๐‘„๐œŒ0 (๐‘ง0 โ€ฒ ) where ๐‘„๐‘Ÿ (๐‘ง0) โŠ‚ ๐‘„(๐œŒ 2, ๐œ† ๐‘โˆ’2 2 ๐œŒ)(๐‘ง0) โŠ‚ ๐‘„๐œŒ0 (๐‘ง0 โ€ฒ ) โŠ‚ ๐‘„3๐œŒ0 (๐‘ง0 โ€ฒ ) proof. figure 1. any cylinder in ๐‘„ local hรถlder regularity of weak solutions for singular parabolic systems of p-laplacian type khoirunisa khoirunisa 139 let ๐‘„3๐œŒ0 (๐‘ง0 โ€ฒ ) โ‰” ๐‘„ (3(๐œŒ0) 2, 3(๐œŒ0) 2 ๐‘) โŠ‚ ๐‘„ is any cylinder centered in ๐‘ง0 โ€ฒ = (๐‘ก0 โ€ฒ , ๐‘ฅ0 โ€ฒ ) โˆˆ ๐‘„, and 0 < ๐œŒ0 < 1. let ๐‘ง0 = (๐‘ก0, ๐‘ฅ0) โˆˆ ๐‘„๐œŒ0 (๐‘ง0 โ€ฒ ) โ‰” ๐‘„ ((๐œŒ0) 2, (๐œŒ0) 2 ๐‘) (๐‘ง0 โ€ฒ ), where ๐œ† โ‰ฅ 1. it is easy to see that โˆซ |๐ท๐‘ข|๐‘ ๐‘‘๐‘ง โ‰ค |๐‘„๐‘Ÿ (๐‘ง0)| 1 |๐‘„(๐œŒ2, ๐œ† ๐‘โˆ’2 2 ๐œŒ)(๐‘ง0)| โˆซ |๐ท๐‘ข|๐‘ ๐‘‘๐‘ง ๐‘„(๐œŒ2,๐œ† ๐‘โˆ’2 2 ๐œŒ)(๐‘ง0)๐‘„๐‘Ÿ(๐‘ง0) by using relation (3) we have 1 |๐‘„๐‘Ÿ(๐‘ง0)| โˆซ |๐ท๐‘ข|๐‘ ๐‘‘๐‘ง ๐‘„๐‘Ÿ(๐‘ง0)) โ‰ค ๐ถ๐‘Ÿ๐‘š+๐‘๐›ผ (4) where0 < ๐‘Ÿ < 1, 0 < ๐›ผ < 1, and ๐ถ = ๐œ‹๐‘Ÿ2โˆ’๐‘š. next, recall the poincarรฉ inequality. then, substitute (4) to (2) we have โˆซ |๐‘ข โˆ’ ๐‘ข๐‘Ÿ | ๐‘ ๐‘‘๐‘ง โ‰ค ๐ถ๐‘Ÿ๐‘ โˆซ |๐ท๐‘ข|๐‘ ๐‘‘๐‘ง, ๐‘„๐‘Ÿ(๐‘ง0)๐‘„๐‘Ÿ(๐‘ง0) โ‰ค ๐ถ๐‘Ÿ๐‘š+๐‘+๐‘๐›ผ , holds for any ๐‘ง0 โˆˆ ๐‘„๐œŒ0 (๐‘ง0) and 0 < ๐‘Ÿ < 2(๐œŒ0) 2 ๐‘. we apply the characterization between hรถlder continuous functions and campanato space, which implies that for ๐‘ข โˆˆ ๐ฟ๐‘ (๐‘„๐œŒ0 (๐‘ง0 โ€ฒ )) and sup ๐‘„๐œŒ0 (๐‘ง0 โ€ฒ ) 1 ๐‘Ÿ๐‘š+๐‘+๐‘๐›ผ โˆซ |๐‘ข โˆ’ ๐‘ข๐‘Ÿ | ๐‘ ๐‘‘๐‘ง โ‰ค ๐ถ, (5) ๐‘„๐‘Ÿ(๐‘ง0) then ๐‘ข โˆˆ ๐ถ0,๐›ผ (๐‘„๐œŒ0 (๐‘ง0 โ€ฒ )). thus, we have for any two points (๐‘ก1, ๐‘ฅ1), (๐‘ก2, ๐‘ฅ2) โˆˆ ๐‘„๐œŒ0 (๐‘ง0 โ€ฒ )with |๐‘ก1 โˆ’ ๐‘ก2| = ๐‘Ÿ ๐‘, |๐‘ข(๐‘ก1, ๐‘ฅ1) โˆ’ ๐‘ข(๐‘ก2, ๐‘ฅ1)| โ‰ค ๐ถ|๐‘ก1 โˆ’ ๐‘ก2| ๐›ผ ๐‘ , (6) and let |๐‘ฅ1 โˆ’ ๐‘ฅ2| = ๐‘Ÿ, then |๐‘ข(๐‘ก2, ๐‘ฅ2) โˆ’ ๐‘ข(๐‘ก2, ๐‘ฅ1)| โ‰ค ๐ถ|๐‘ฅ1 โˆ’ ๐‘ฅ2| ๐›ผ . (7) moreover, we can conclude from (6),(7) and triangle inequality that |๐‘ข(๐‘ง) โˆ’ ๐‘ข(๐‘งโ€ฒ)| โ‰ค ๐ถ {|๐‘ก โˆ’ ๐‘กโ€ฒ | ๐›ผ ๐‘ + |๐‘ฅ โˆ’ ๐‘ฅโ€ฒ|๐›ผ }, in ๐‘„๐œŒ0 (๐‘ง0 โ€ฒ ) or we have local hรถlder regularity of weak solutions for singular parabolic systems of p-laplacian type khoirunisa khoirunisa 140 ๐‘ข โˆˆ ๐ถ , ๐›ผ ๐‘ ,๐›ผ (๐‘„๐œŒ0 (๐‘ง0 โ€ฒ )). since, ๐‘„3๐œŒ0 (๐‘ง0 โ€ฒ ) โŠ‚ ๐‘„ is arbitrary, then ๐‘ข โˆˆ ๐ถ ๐‘™๐‘œ๐‘ , ๐›ผ ๐‘ ,๐›ผ (๐‘„, โ„๐‘› ). by this result, we can tell that the local hรถlder regularity of weak solutions for parabolic systems of p-laplacian type in singular case is proved. conclusions based on the previous results and discussion, it can be concluded that in singular case the weak solutions for parabolic systems of p-laplacian type are elements of hรถlder space, ๐‘ข โˆˆ ๐ถ , ๐›ผ ๐‘ ,๐›ผ (๐‘„๐œŒ0 (๐‘ง0 โ€ฒ )). since ๐‘„3๐œŒ0 (๐‘ง0 โ€ฒ ) โŠ‚ ๐‘„ is arbitrary, then ๐‘ข โˆˆ ๐ถ ๐‘™๐‘œ๐‘ , ๐›ผ ๐‘ ,๐›ผ (๐‘„, โ„๐‘› ) or we can say that the local hรถlder regularity of weak solutions is proved. acknowledgement this paper partially supported by the doctoral grant no. 44/un10.f09/pn/2020 at mathematics and natural sciences faculty, universitas brawijaya. references [1] c. ya-zhe and e. dibenedetto, โ€œhรถlder estimates of solutions of singular parabolic equations with measurable coefficients,โ€ archive for rational mechanics and analysis, vol. 118, no. 3, pp. 257โ€“271, 1992. [2] e. dibenedetto, โ€œon the local behaviour of solutions of degenerate parabolic equations with measurable coefficients,โ€ annali della scuola normale superiore di pisa-classe di scienze, vol. 13, no. 3, pp. 487โ€“535, 1986. [3] v. bรถgelein, โ€œglobal gradient bounds for the parabolic p-laplacian system,โ€ proceedings of the london mathematical society, vol. 111, no. 3, pp. 633โ€“680, 2015. [4] m. m. porzio and v. vespri, โ€œholder estimates for local solutions of some doubly nonlinear degenerate parabolic equations,โ€ journal of differential equations, vol. 103, no. 1, pp. 146โ€“178, 1993. [5] e. dibenedetto, j. m. urbano, and v. vespri, โ€œcurrent issues on singular and degenerate evolution equations,โ€ in handbook of differential equations: evolutionary equations, vol. 1, elsevier, 2002, pp. 169โ€“286. [6] m. misawa, โ€œa hรถlder estimate for nonlinear parabolic systems of p-laplacian type,โ€ journal of differential equations, vol. 254, no. 2, pp. 847โ€“878, 2013. [7] c. karim and m. misawa, โ€œhรถlder regularity for singular parabolic systems of $ p $laplacian type,โ€ advances in differential equations, vol. 20, no. 7/8, pp. 741โ€“772, 2015. [8] c. karim and m. misawa, โ€œgradient hรถlder regularity for nonlinear parabolic systems of $ p $-laplacian type,โ€ differential and integral equations, vol. 29, no. 3/4, pp. 201โ€“228, 2016. [9] m. misawa, โ€œlocal hรถlder regularity of gradients for evolutional p-laplacian systems,โ€ annali di matematica pura ed applicata, vol. 181, no. 4, pp. 389โ€“405, 2002. local hรถlder regularity of weak solutions for singular parabolic systems of p-laplacian type khoirunisa khoirunisa 141 [10] c. karim and m. misawa, โ€œexistence of global weak solutions for cauchy-dirichlet problem for evolutional p-laplacian systems,โ€ in aip conference proceedings, 2017, vol. 1913, no. 1, p. 020001. [11] c. karim, โ€œlocal boundedness of weak solutions for singular parabolic systems of p-laplacian type,โ€ the australian journal of mathematical analysis and applications, vol. 15, no. 2โ€“8, pp. 1โ€“5, 2018. [12] e. dibenedetto, degenerate parabolic equations. springer science & business media, 2012. [13] p. r. akbar, c. karim, and r. b. ew, โ€œthe existence of global weak solutions for singular parabolic system of p-laplacian type,โ€ in journal of physics: conference series, 2020, vol. 1562, no. 1, p. 012009. [14] c. karim, โ€œlocal hรถlder regularity of weak solutions for degenerate parabolic type,โ€ in aip conference proceedings, 2019, vol. 2192, no. 1, p. 050003. [15] j. m. urbano, โ€œthe method of intrinsic scaling,โ€ lecture notes in mathematics, vol. 1930, 1930. [16] b. dacorogna, introduction to the calculus of variations. world scientific publishing company, 2014. the ring homomorphisms of matrix rings over skew generalized power series rings cauchy โ€“jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 129-135 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 25, 2021 reviewed: august 26, 2021 accepted: october 11, 2021 doi: https://doi.org/10.18860/ca.v7i1.13001 the ring homomorphisms of matrix rings over skew generalized power series rings ahmad faisol1, fitriani2 1,2department of mathematics, faculty of mathematics and natural sciences universitas lampung, bandar lampung email: ahmadfaisol@fmipa.unila.ac.id, fitriani.1984@fmipa.unila.ac.id abstract let ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) be a matrix rings over skew generalized power series rings, where ๐‘…1, ๐‘…2 are commutative rings with an identity element, (๐‘†1, โ‰ค1), (๐‘†2, โ‰ค2) are strictly ordered monoids, ๐œ”1: ๐‘†1 โ†’ ๐ธ๐‘›๐‘‘(๐‘…1), ๐œ”2: ๐‘†2 โ†’ ๐ธ๐‘›๐‘‘(๐‘…2) are monoid homomorphisms. in this research, we define a mapping ๐œ from ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) to ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) by using a strictly ordered monoid homomorphism ๐›ฟ: (๐‘†1, โ‰ค1) โ†’ (๐‘†2, โ‰ค2), and ring homomorphisms ๐œ‡: ๐‘…1 โ†’ ๐‘…2 and ๐œŽ: ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] โ†’ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]. furthermore, we prove that ๐œ is a ring homomorphism, and also we give the sufficient conditions for ๐œ to be a monomorphism, epimorphism, and isomorphism. keywords: matrix rings; homomorphisms; skew generalized power series rings. introduction in [1], it has been explained that a matrix is an arrangement of mathematical objects in rectangular rows and columns enclosed by square brackets or regular brackets. these mathematical objects are commonly called entries. if the matrix entries are members of a ring, the matrix is called the matrix over the ring [2]. a ring is a nonempty set with two binary operations and satisfies several axioms [3]. the skew generalized power series rings (sgpsr) ๐‘…[[๐‘†, โ‰ค, ๐œ”]] is one example of a ring [4]. this ring is defined as the set of all functions ๐‘“ from a strictly ordered monoid (๐‘†, โ‰ค) to a ring ๐‘… with an identity element, that supp(๐‘“) is artinian and narrow, with pointwise addition operation and convolution multiplication operation using a monoid homomorphism ๐œ”: ๐‘† โ†’ end(๐‘…). some research related to the properties of sgpsr ๐‘…[[๐‘†, โ‰ค, ๐œ”]], can be seen in mazurek et al. [5]-[10] and faisol et al. [11]-[16]. a set of matrices over a ring that forms a ring under matrix addition and matrix multiplication is called a matrix ring [17]. furthermore, the set of all ๐‘› ร— ๐‘› matrices with entries in ring ๐‘… is a matrix ring denoted by ๐‘€๐‘› (๐‘…). in 2021, rugayah et al. [18] have constructed the set of all matrices over sgpsr ๐‘…[[๐‘†, โ‰ค, ๐œ”]], denoted by ๐‘€๐‘› (๐‘…[[๐‘†, โ‰ค, ๐œ”]]). moreover, they have defined the ideal of matrix ring over sgpsr ๐‘…[[๐‘†, โ‰ค, ๐œ”]] and studied its ideal properties. one of the essential concepts in the ring structure is a ring homomorphism, a mapping from ring to ring that preserves binary operations on these rings. in [19], the matrix ring homomorphism from ๐‘€๐‘›(๐‘…1) to ๐‘€๐‘› (๐‘…2) defined by ๐œŽ([๐‘Ž๐‘–๐‘— ]) = [๐œ‡(๐‘Ž๐‘–๐‘— )] for https://doi.org/10.18860/ca.v7i1.13001 mailto:ahmadfaisol@fmipa.unila.ac.id mailto:fitriani.1984@fmipa.unila.ac.id the ring homomorphisms of matrix rings over skew generalized power series rings ahmad faisol 130 every ๐‘Ž๐‘–๐‘— โˆˆ ๐‘…1 where ๐œ‡: ๐‘…1 โ†’ ๐‘…2 is a ring homomorphism has constructed. several studies related to matrix ring homomorphism can be seen in [20],[21]. this construction motivates us to study the ring homomorphism on the ring matrix over sgpsr ๐‘…[[๐‘†, โ‰ค , ๐œ”]]. therefore, in this research, matrix rings over the sgpsr ๐‘…[[๐‘†, โ‰ค, ๐œ”]] were constructed, i.e., ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) where ๐‘…1, ๐‘…2 are rings, (๐‘†1, โ‰ค1), (๐‘†2, โ‰ค2) are strictly ordered monoids, and ๐œ”1: ๐‘†1 โ†’ ๐ธ๐‘›๐‘‘(๐‘…1), ๐œ”2: ๐‘†2 โ†’ ๐ธ๐‘›๐‘‘(๐‘…2) are monoid homomorphisms. next, the maping ๐œ from ๐‘€๐‘›(๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) to ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) is defined by using a strictly ordered monoid homomorphism ๐›ฟ: (๐‘†1, โ‰ค1) โ†’ (๐‘†2, โ‰ค2), and ring homomorphisms ๐œ‡: ๐‘…1 โ†’ ๐‘…2 and ๐œŽ: ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] โ†’ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]. furthermore, it is proved that ๐œ is a matrix ring homomorphism, and the sufficient conditions for ๐œ to be a monomorphism, epimorphism, and isomorphism are also given. methods the method used in this research is a literature study from books and scientific journals. the following steps can be obtained in the results. we construct the matrix rings over sgpsr ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]), where ๐‘…1, ๐‘…2 are given rings, strictly ordered monoid (๐‘†1, โ‰ค1), (๐‘†2, โ‰ค2), strictly ordered monoid homomorphism ๐›ฟ: (๐‘†1, โ‰ค1) โ†’ (๐‘†2, โ‰ค2), and monoid homomorphisms ๐œ”1: ๐‘†1 โ†’ end(๐‘…1), ๐œ”2: ๐‘†2 โ†’ end(๐‘…2). next, we define a mapping ฯ„ from mn(r1[[s1, โ‰ค1, ฯ‰1]]) to mn(r2[[s2, โ‰ค2, ฯ‰2]]), by using a strictly ordered monoid homomorphism ๐›ฟ: (๐‘†1, โ‰ค1) โ†’ (๐‘†2, โ‰ค2), ring homomorphisms ๐œ‡: ๐‘…1 โ†’ ๐‘…2 and ๐œŽ: ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] โ†’ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]. furthermore, we prove that ฯ„ is a ring homomorphism. finally, we give sufficient conditions for ฯ„ to be a monomorphism, epimorphism, and isomorphism. results and discussion mazurek and ziembowski [4] give the structure of skew generalized power series rings (sgpsr) as follows. let ๐‘…1, ๐‘…2 are rings, (๐‘†1, โ‰ค1), (๐‘†2, โ‰ค2) are strictly ordered monoids, and ๐œ”1: ๐‘†1 โ†’ ๐ธ๐‘›๐‘‘(๐‘…1), ๐œ”2: ๐‘†2 โ†’ ๐ธ๐‘›๐‘‘(๐‘…2) are monoid homomorphisms. homomorphic image of ๐œ”1 and ๐œ”2 are denoted by ๐œ”1 ๐‘  and ๐œ”2 ๐‘ข for all ๐‘  โˆˆ ๐‘†1 and โˆˆ ๐‘†2 . therefore, ๐œ”1 ๐‘ +๐‘ก = ๐œ”1(๐‘  + ๐‘ก) = ๐œ”1(๐‘ ) + ๐œ”1(๐‘ก) = ๐œ”1 ๐‘  + ๐œ”1 ๐‘ก , (1) and ๐œ”2 ๐‘ข+๐‘ฃ = ๐œ”2(๐‘ข + ๐‘ฃ) = ๐œ”2(๐‘ข) + ๐œ”2(๐‘ฃ) = ๐œ”2 ๐‘ข + ๐œ”2 ๐‘ฃ , (2) for every all ๐‘ , ๐‘ก โˆˆ ๐‘†1 and ๐‘ข, ๐‘ฃ โˆˆ ๐‘†2. next, let ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] = {๐‘“: ๐‘†1 โ†’ ๐‘…1|supp(๐‘“) artinian and narrow} and ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]] = {๐›ผ: ๐‘†2 โ†’ ๐‘…2|supp(๐›ผ) artinian and narrow}, where supp(๐‘“) = {๐‘  โˆˆ ๐‘†1|๐‘“(๐‘ ) โ‰  0} and supp(๐›ผ) = {๐‘ข โˆˆ ๐‘†2|๐›ผ(๐‘ข) โ‰  0}. under pointwise addition and convolution multiplication defined by (๐‘“ + ๐‘”)(๐‘ ) = ๐‘“(๐‘ ) + ๐‘”(๐‘ ), (3) (๐›ผ + ๐›ฝ)(๐‘ข) = ๐›ผ(๐‘ข) + ๐›ฝ(๐‘ข), (4) and (๐‘“๐‘”)(๐‘ ) = โˆ‘ ๐‘“(๐‘ฅ)๐œ”1 ๐‘ฅ (๐‘”(๐‘ฆ))๐‘ฅ+๐‘ฆ=๐‘  , (5) (๐›ผ๐›ฝ)(๐‘ข) = โˆ‘ ๐›ผ(๐‘)๐œ”2 ๐‘ (๐›ฝ(๐‘ž))๐‘+๐‘ž=๐‘ข , (6) ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] and ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]] be a skew generalized power series rings, for every ๐‘  โˆˆ ๐‘†1, ๐‘“, ๐‘” โˆˆ ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]], and ๐‘ข โˆˆ ๐‘†2, ๐›ผ, ๐›ฝ โˆˆ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]. the ring homomorphisms of matrix rings over skew generalized power series rings ahmad faisol 131 according to [22], a strictly ordered monoid homomorphism ฮด: (s1, โ‰ค1) โ†’ (s2, โ‰ค2) is a monoid homomorphism such that if s <1 t, then ฮด(s) <2 ฮด(t) for every s, t โˆˆ s1. now, let ฮด be a monomorphism such that for any artinian and narrow subset ๐‘‡ of s1, ฮด(๐‘‡) is an artinian and narrow subset of s2, and ฮผ: r1 โ†’ r2 is a ring homomorphism such that for every s โˆˆ s1 the following diagram is commutative: ๐‘†1 ๐‘“ โ†“ ๐‘…1 ๐›ฟ โ†’ ๐œ‡ โ†’ ๐‘†2 โ†“ ๐›ผ ๐‘…2 ๐œ”1 ๐‘  โ†“ โ†ป โ†“ ๐œ”2 ๐›ฟ(๐‘ ) ๐‘…1 ๐œ‡ โ†’ ๐‘…2 figure 1. commutative diagram ๐œ”2 ๐›ฟ(๐‘ ) โˆ˜ ๐œ‡ = ๐œ‡ โˆ˜ ๐œ”1 ๐‘  for ๐‘“ โˆˆ r1[[s1, โ‰ค1, ฯ‰1]], let ๐›ผ: ๐‘†2 โ†’ ๐‘…2 be the map defined as follows: ๐›ผ(๐‘ก) = { ๐œ‡ โˆ˜ ๐‘“ โˆ˜ ๐›ฟ โˆ’1(๐‘ก) if ๐‘ก โˆˆ ๐›ฟ(๐‘†1) 0 otherwise. (7) since supp(๐›ผ) โŠ† ๐›ฟ(supp(๐‘“)), based on [23](1.(a)), ๐›ผ โˆˆ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]. therefore, we can define a map ๐œŽ: ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] โ†’ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]] by putting ๐œŽ(๐‘“) = ๐›ผ in (7). according to [24](lemma 8.1.6), the map ฯƒ: r1[[s1, โ‰ค1, ฯ‰1]] โ†’ r2[[s2, โ‰ค2, ฯ‰2]] is a ring homomorphism, and ker(ฯƒ) = (ker(ฮผ))[[s1, โ‰ค1, ฯ‰1]]. now, we construct the matrix rings ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]), that are the sets of all matrices over sgpsr ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] and ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]] defined by ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) = {[๐‘“๐‘–๐‘— ]|๐‘“๐‘–๐‘— โˆˆ ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]; ๐‘–, ๐‘— = 1, 2, โ‹ฏ , ๐‘›}, (8) and ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) = {[๐›ผ๐‘–๐‘— ]|๐›ผ๐‘–๐‘— โˆˆ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]; ๐‘–, ๐‘— = 1, 2, โ‹ฏ , ๐‘›}, (9) with addition matrix operation [๐‘“๐‘–๐‘— ] + [๐‘”๐‘–๐‘— ] = [๐‘“๐‘–๐‘— + ๐‘”๐‘–๐‘— ] , (10) [๐›ผ๐‘–๐‘— ] + [๐›ฝ๐‘–๐‘— ] = [๐›ผ๐‘–๐‘— + ๐›ฝ๐‘–๐‘— ] , (11) and multiplication matrix operation [๐‘“๐‘–๐‘— ][๐‘”๐‘–๐‘— ] = [โ„Ž๐‘–๐‘— ] , (12) [๐›ผ๐‘–๐‘— ][๐›ฝ๐‘–๐‘— ] = [๐›พ๐‘–๐‘— ] , (13) where โ„Ž๐‘–๐‘— = โˆ‘ ๐‘“๐‘–๐‘˜ ๐‘”๐‘˜๐‘— ๐‘› ๐‘˜=1 dan ๐›พ๐‘–๐‘— = โˆ‘ ๐›ผ๐‘–๐‘˜ ๐›ฝ๐‘˜๐‘— ๐‘› ๐‘˜=1 , for every [๐‘“๐‘–๐‘— ], [๐‘”๐‘–๐‘— ] โˆˆ ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and [๐›ผ๐‘–๐‘— ], [๐›ฝ๐‘–๐‘— ] โˆˆ ๐‘€๐‘›(๐‘…2๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]). for every [๐‘“๐‘–๐‘— ] โˆˆ ๐‘€๐‘›(๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]), we define the map ๐œ: ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) โ†’ ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) by ๐œ([๐‘“๐‘–๐‘— ]) = [๐œŽ(๐‘“๐‘–๐‘— )], (14) for every [๐‘“๐‘–๐‘— ] โˆˆ ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]). the following theorem shows that ๐œ is a ring homomorphism. the ring homomorphisms of matrix rings over skew generalized power series rings ahmad faisol 132 proposition 1 let ๐‘€๐‘›(๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘›(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) be matrix rings over sgpsr. the mapping ๐œ that is defined in (14) is a ring homomorphism. proof based on [24](lemma 8.1.6), for i, j = 1, 2, โ‹ฏ , n, there is ๐›ผ๐‘–๐‘— = ๐œŽ(๐‘“๐‘–๐‘— ) โˆˆ r2[[๐‘†2, โ‰ค2, ๐œ”2]] for every ๐‘“๐‘–๐‘— โˆˆ ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]. therefore, ๐œ([๐‘“๐‘–๐‘— ]) = [๐œŽ(๐‘“๐‘–๐‘— )] = [๐›ผ๐‘–๐‘— ] is well-defined. for any ๐‘ก โˆˆ ๐‘†2, ๐‘“๐‘–๐‘— , ๐‘”๐‘–๐‘— โˆˆ ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]], we have ๐œ‡ โˆ˜ (๐‘“๐‘–๐‘— + ๐‘”๐‘–๐‘— ) โˆ˜ ๐›ฟ โˆ’1(๐‘ก) = ๐œ‡ ((๐‘“๐‘–๐‘— + ๐‘”๐‘–๐‘— )(๐›ฟ โˆ’1(๐‘ก))) = ๐œ‡ (๐‘“๐‘–๐‘— (๐›ฟ โˆ’1(๐‘ก)) + ๐‘”๐‘–๐‘— (๐›ฟ โˆ’1(๐‘ก))) = ๐œ‡ (๐‘“๐‘–๐‘— (๐›ฟ โˆ’1(๐‘ก))) + ๐œ‡ (๐‘”๐‘–๐‘— (๐›ฟ โˆ’1(๐‘ก))) = (๐œ‡ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1)(๐‘ก) + (๐œ‡ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1)(๐‘ก), and ๐œ‡ โˆ˜ (๐‘“๐‘–๐‘— ๐‘”๐‘–๐‘— ) โˆ˜ ๐›ฟ โˆ’1(๐‘ก) = ๐œ‡ ((๐‘“๐‘–๐‘— ๐‘”๐‘–๐‘— )(๐›ฟ โˆ’1(๐‘ก))) = ๐œ‡ ( โˆ‘ ๐‘“๐‘–๐‘— (๐‘ฅ)๐œ”1 ๐‘ฅ (๐‘”๐‘–๐‘— (๐‘ฆ)) ๐‘ฅ+๐‘ฆ=๐›ฟโˆ’1(๐‘ก) ) = โˆ‘ ๐œ‡ (๐‘“๐‘–๐‘— (๐‘ฅ)๐œ”1 ๐‘ฅ (๐‘”๐‘–๐‘— (๐‘ฆ))) ๐‘ฅ+๐‘ฆ=๐›ฟโˆ’1(๐‘ก) = โˆ‘ ๐œ‡ (๐‘“๐‘–๐‘— (๐‘ฅ)) ๐œ‡ (๐œ”1 ๐‘ฅ (๐‘”๐‘–๐‘— (๐‘ฆ))) ๐‘ฅ+๐‘ฆ=๐›ฟโˆ’1(๐‘ก) = โˆ‘ ๐œ‡ (๐‘“๐‘–๐‘— (๐‘ฅ)) ๐œ”2 ๐›ฟ(๐‘ฅ) (๐œ‡ (๐‘”๐‘–๐‘— (๐‘ฆ))) ๐‘ฅ+๐‘ฆ=๐›ฟโˆ’1(๐‘ก) ๐›ฟ(๐‘ฅ)+๐›ฟ(๐‘ฆ)=๐‘ก = โˆ‘ ๐œ‡ (๐‘“๐‘–๐‘— (๐›ฟ โˆ’1(๐‘ข))) ๐œ”2 ๐‘ข (๐œ‡ (๐‘”๐‘–๐‘— (๐›ฟ โˆ’1(๐‘ฃ)))) ๐‘ข+๐‘ฃ=๐‘ก = โˆ‘ (๐œ‡ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1)(๐‘ข)๐œ”2 ๐‘ข ((๐œ‡ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1)(๐‘ฃ)) ๐‘ข+๐‘ฃ=๐‘ก = (๐œ‡ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1)(๐œ‡ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1)(๐‘ก). in other words, ๐œ‡ โˆ˜ (๐‘“๐‘–๐‘— + ๐‘”๐‘–๐‘— ) โˆ˜ ๐›ฟ โˆ’1 = (๐œ‡ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1) + (๐œ‡ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1) and ๐œ‡ โˆ˜ (๐‘“๐‘–๐‘— ๐‘”๐‘–๐‘— ) โˆ˜ ๐›ฟ โˆ’1 = (๐œ‡ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1)(๐œ‡ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1) for every ๐‘“ij, ๐‘”ij โˆˆ ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]. now, we prove that ฯ„ is a ring homomorphism. for any [๐‘“๐‘–๐‘— ], [๐‘”๐‘–๐‘— ] โˆˆ mn(๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]), we obtain: (i) ฯ„([๐‘“๐‘–๐‘— ] + [๐‘”๐‘–๐‘— ]) = ฯ„([๐‘“๐‘–๐‘— + ๐‘”๐‘–๐‘— ]) = [๐œŽ(๐‘“๐‘–๐‘— + ๐‘”๐‘–๐‘— )] = [๐œ‡ โˆ˜ (๐‘“๐‘–๐‘— + ๐‘”๐‘–๐‘— ) โˆ˜ ๐›ฟ โˆ’1] = [(ฮผ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ฮด โˆ’1) + (ฮผ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ฮด โˆ’1)] = [ฮผ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ฮด โˆ’1] + [ฮผ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ฮด โˆ’1] = [๐œŽ(๐‘“๐‘–๐‘— )] + [๐œŽ(๐‘”๐‘–๐‘— )] = ๐œ([๐‘“๐‘–๐‘— ]) + ๐œ([๐‘”๐‘–๐‘— ]). the ring homomorphisms of matrix rings over skew generalized power series rings ahmad faisol 133 (ii) ๐œ([๐‘“๐‘–๐‘— ][๐‘”๐‘–๐‘— ]) = ๐œ([โˆ‘ ๐‘“๐‘–๐‘˜ ๐‘”๐‘˜๐‘— ๐‘› ๐‘˜=1 ]) = [๐œŽ (โˆ‘ ๐‘“๐‘–๐‘˜ ๐‘”๐‘˜๐‘— ๐‘› ๐‘˜=1 )] = [๐œ‡ โˆ˜ (โˆ‘ ๐‘“๐‘–๐‘˜ ๐‘”๐‘˜๐‘— ๐‘› ๐‘˜=1 ) โˆ˜ ๐›ฟ โˆ’1] = [โˆ‘ ๐œ‡ โˆ˜ (๐‘“๐‘–๐‘˜ ๐‘”๐‘˜๐‘— ) โˆ˜ ๐›ฟ โˆ’1 ๐‘› ๐‘˜=1 ] = [โˆ‘(๐œ‡ โˆ˜ ๐‘“๐‘–๐‘˜ โˆ˜ ๐›ฟ โˆ’1)(๐œ‡ โˆ˜ ๐‘”๐‘˜๐‘— โˆ˜ ๐›ฟ โˆ’1) ๐‘› ๐‘˜=1 ] = [๐œ‡ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1][๐œ‡ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ๐›ฟ โˆ’1] = [๐œŽ(๐‘“๐‘–๐‘— )][๐œŽ(๐‘”๐‘–๐‘— )] =๐œ([๐‘“๐‘–๐‘— ])๐œ([๐‘”๐‘–๐‘— ]) according to (i) and (ii), it is proved that ฯ„ is a ring homomorphism. โˆŽ the following proposition shows that ker(๐œ) = ๐‘€๐‘› ((ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]). proposition 2 let ๐‘€๐‘›(๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘›(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) be matrix rings over sgpsr. let ๐œ: ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) โ†’ ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) is the map that is defined in (14). then, ker(๐œ) = ๐‘€๐‘› ((ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]). proof for any [๐‘“๐‘–๐‘— ] โˆˆ ker(๐œ), we have ๐œ([๐‘“๐‘–๐‘— ]) = [๐œŽ(๐‘“๐‘–๐‘— )] = [0]. therefore, for i, j = 1, 2, โ‹ฏ , n , ๐œŽ(๐‘“๐‘–๐‘— ) = 0. so, ๐‘“๐‘–๐‘— โˆˆ ker(ฯƒ). based on [24](lemma 8.1.6), ker(๐œŽ) = (ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]. therefore, ๐‘“๐‘–๐‘— โˆˆ (ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]] for all i, j = 1, 2, โ‹ฏ , n. so, [๐‘“๐‘–๐‘— ] โˆˆ ๐‘€๐‘› ((ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]). then, we get ker(๐œ) โŠ‚ ๐‘€๐‘› ((ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]). on the other side, for any [๐‘“๐‘–๐‘— ] โˆˆ ๐‘€๐‘› ((ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]), we have ๐‘“๐‘–๐‘— โˆˆ (ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]] for all i, j = 1, 2, โ‹ฏ , n. according to [24](lemma 8.1.6), ker(๐œŽ) = (ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]. therefore, ๐‘“๐‘–๐‘— โˆˆ ker(๐œŽ). then, ๐œŽ(๐‘“๐‘–๐‘— ) = 0 for all i, j = 1, 2, โ‹ฏ , n. so, we get [๐œŽ(๐‘“๐‘–๐‘— )] = [0] = ๐œ([๐‘“๐‘–๐‘— ]). in other words, [๐‘“๐‘–๐‘— ] โˆˆ ker(๐œ). hence, ๐‘€๐‘› ((ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]) โŠ‚ ker(๐œ). so, it is proved that ker(๐œ) = ๐‘€๐‘› ((ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]) โˆŽ next, we give sufficient conditions for ๐œ to be a monomorphism, epimorphism, and isomorphism. proposition 3 let ๐‘€๐‘›(๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘›(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) be matrix rings over sgpsr. let ๐œ: ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) โ†’ ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) is the map that is defined in (14). if ๐›ฟ is an isomorphism and ๐œ‡ is a monomorphism, then ๐œ is a monomorphism. proof based on proposition 1, it is clear that ๐œ is a ring homomorphism. so, we only have to show that ๐œ is injective. if ฯ„([๐‘“๐‘–๐‘— ]) = ฯ„([๐‘”๐‘–๐‘— ]), then [๐œŽ(๐‘“๐‘–๐‘— )] = [๐œŽ(๐‘”๐‘–๐‘— )]. hence, [ฮผ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ฮด โˆ’1] = [ฮผ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ฮด โˆ’1]. therefore, we get ฮผ โˆ˜ ๐‘“๐‘–๐‘— โˆ˜ ฮด โˆ’1 = ฮผ โˆ˜ ๐‘”๐‘–๐‘— โˆ˜ ฮด โˆ’1 for all i, j = the ring homomorphisms of matrix rings over skew generalized power series rings ahmad faisol 134 1, 2, โ‹ฏ , n. in other words, for any t โˆˆ s2, we have ฮผ (๐‘“๐‘–๐‘— (ฮด โˆ’1(t))) = ฮผ (๐‘”๐‘–๐‘— (ฮด โˆ’1(t))). since ฮผ is a monomorphism, ๐‘“๐‘–๐‘— (ฮด โˆ’1(t)) = ๐‘”๐‘–๐‘— (ฮด โˆ’1(t)). since ฮด is an isomorphism, ๐‘“๐‘–๐‘— (s) = ๐‘”๐‘–๐‘— (s) for every s โˆˆ s1. so, ๐‘“๐‘–๐‘— = ๐‘”๐‘–๐‘— for all ๐‘–, ๐‘— = 1, 2, โ‹ฏ , n. therefore [๐‘“๐‘–๐‘— ] = [๐‘”๐‘–๐‘— ]. so, it is proved that if ฯ„([๐‘“๐‘–๐‘— ]) = ฯ„([๐‘”๐‘–๐‘— ]), then [๐‘“๐‘–๐‘— ] = [๐‘”๐‘–๐‘— ]. hence, ฯ„ is injective. โˆŽ proposition 4 let ๐‘€๐‘›(๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘›(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) be matrix rings over sgpsr. let ๐œ: ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) โ†’ ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) is the map that is defined in (14). if ๐œŽ is an epimorphism, then ๐œ is an epimorphism. proof based on proposition 1, ๐œ is a ring homomorphism. so, we only have to show that ๐œ is surjective. in other words, we have to prove that im(๐œ) = ๐‘€๐‘›(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]). it is clear that im(๐œ) โŠ‚ ๐‘€๐‘›(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]), so it suffices to show that ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) โŠ‚ im(๐œ). for any [ฮฑij] โˆˆ mn(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]), then ฮฑ๐‘–๐‘— โˆˆ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]] for all ๐‘–, ๐‘— = 1, 2, โ‹ฏ , ๐‘›. since ๐œŽ is an epimorphism, there is ๐‘“๐‘–๐‘— โˆˆ ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] such that ๐œŽ(๐‘“๐‘–๐‘— ) = ฮฑ๐‘–๐‘— . therefore, there is [๐‘“๐‘–๐‘— ] โˆˆ ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) such that [ฮฑ๐‘–๐‘— ] = [๐œŽ(๐‘“๐‘–๐‘— )] = ฯ„([๐‘“๐‘–๐‘— ]) for every [ฮฑ๐‘–๐‘— ] โˆˆ ๐‘€๐‘›(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]). so, [ฮฑ๐‘–๐‘— ] โˆˆ im(๐œ). in other words, ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) โŠ‚ im(๐œ). hence, that ๐œ is surjective. โˆŽ corollary 5 let ๐‘€๐‘›(๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) and ๐‘€๐‘›(๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) be matrix rings over sgpsr. let ๐œ: ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) โ†’ ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) is the map that is defined in (14). if ๐›ฟ is an isomorphism, ๐œ‡ is a monomorphism, and ๐œŽ is an epimorphism, then ๐œ is an isomorphism. conclusions a ring homomorphism ๐œ from the matrix ring ๐‘€๐‘› (๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]]) to the matrix ring ๐‘€๐‘› (๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]) can be constructed by using a strictly ordered monoid homomorphism ๐›ฟ: (๐‘†1, โ‰ค1) โ†’ (๐‘†2, โ‰ค2), and ring homomorphisms ๐œ‡: ๐‘…1 โ†’ ๐‘…2 and ๐œŽ: ๐‘…1[[๐‘†1, โ‰ค1, ๐œ”1]] โ†’ ๐‘…2[[๐‘†2, โ‰ค2, ๐œ”2]]. furthermore, it also proves that ker(๐œ) is equal to the matrix ring over sgpsr (ker(๐œ‡))[[๐‘†1, โ‰ค1, ๐œ”1]]. moreover, if ๐›ฟ is an isomorphism and ๐œ‡ is a monomorphism, then ๐œ is a monomorphism. while, if ๐œŽ is an epimorphism, then ๐œ is an epimorphism. consequently, ๐œ is an isomorphism if ๐›ฟ is an isomorphism, ๐œ‡ is a monomorphism, and ๐œ is an epimorphism. references [1] h. anton and c. rorres, elementary linear algebra: applications version, 9th edition. new jersey, 2005. [2] w. c. brown, matrices over commutative rings. new york: marcel dekker inc., 1993. [3] d. s. dummit and r. m. foote, abstract algebra, third edit. john wiley and sons, inc., 2004. [4] r. mazurek and m. ziembowski, โ€œuniserial rings of skew generalized power series,โ€ j. algebr., vol. 318, no. 2, pp. 737โ€“764, 2007. [5] r. mazurek and m. ziembowski, โ€œon von neumann regular rings of skew generalized power series,โ€ commun. algebr., vol. 36, no. 5, pp. 1855โ€“1868, 2008. [6] r. mazurek and m. ziembowski, โ€œthe ascending chain condition for principal left the ring homomorphisms of matrix rings over skew generalized power series rings ahmad faisol 135 or right ideals of skew generalized power series rings,โ€ j. algebr., vol. 322, no. 4, pp. 983โ€“994, 2009. [7] r. mazurek and m. ziembowski, โ€œweak dimension and right distributivity of skew generalized power series rings,โ€ j. math. soc. japan, vol. 62, no. 4, pp. 1093โ€“1112, 2010. [8] r. mazurek, โ€œrota-baxter operators on skew generalized power series rings,โ€ j. algebr. its appl., vol. 13, no. 7, pp. 1โ€“10, 2014. [9] r. mazurek, โ€œleft principally quasi-baer and left app-rings of skew generalized power series,โ€ j. algebr. its appl., vol. 14, no. 3, pp. 1โ€“36, 2015. [10] r. mazurek and k. paykan, โ€œsimplicity of skew generalized power series rings,โ€ new york j. math., vol. 23, pp. 1273โ€“1293, 2017. [11] a. faisol, โ€œhomomorfisam ring deret pangkat teritlak miring,โ€ j. sains mipa, vol. 15, no. 2, pp. 119โ€“124, 2009. [12] a. faisol, โ€œpembentukan ring faktor pada ring deret pangkat teritlak miring,โ€ in prosiding semirata fmipa univerisitas lampung, 2013, pp. 1โ€“5. [13] a. faisol, โ€œendomorfisma rigid dan compatible pada ring deret pangkat tergeneralisasi miring,โ€ j. mat., vol. 17, no. 2, pp. 45โ€“49, 2014. [14] a. faisol, b. surodjo, and s. wahyuni, โ€œmodul deret pangkat tergeneralisasi skew t-noether,โ€ in prosiding seminar nasional aljabar, penerapan dan pembelajarannya, 2016, pp. 95โ€“100. [15] a. faisol, b. surodjo, and s. wahyuni, โ€œthe impact of the monoid homomorphism on the structure of skew generalized power series rings,โ€ far east j. math. sci., vol. 103, no. 7, pp. 1215โ€“1227, 2018. [16] a. faisol and fitriani, โ€œthe sufficient conditions for skew generalized power series module m[[s,w]] to be t[[s,w]]-noetherian r[[s,w]]-module,โ€ al-jabar j. pendidik. mat., vol. 10, no. 2, pp. 285โ€“292, 2019. [17] t. y. lam, a first course in noncommutative rings. new york: springer-verlag, 1991. [18] s. rugayah, a. faisol, and fitriani, โ€œmatriks atas ring deret pangkat tergeneralisasi miring,โ€ barekeng j. ilmu mat. dan terap., vol. 15, no. 1, pp. 157โ€“ 166, 2021. [19] a. kovacs, โ€œhomomorphisms of matrix rings into matrix rings,โ€ pacific j. math., vol. 49, no. 1, pp. 161โ€“170, 1973. [20] y. wang and y. wang, โ€œjordan homomorphisms of upper triangular matrix rings,โ€ linear algebra appl., vol. 439, no. 12, pp. 4063โ€“4069, 2013. [21] y. du and y. wang, โ€œjordan homomorphisms of upper triangular matrix rings over a prime ring,โ€ linear algebra appl., vol. 458, pp. 197โ€“206, 2014. [22] p. ribenboim, โ€œrings of generalized power series: nilpotent elements,โ€ abh. math. sem. univ. hambg., vol. 61, pp. 15โ€“33, 1991. [23] g. a. elliott and p. ribenboim, โ€œfields of generalized power series,โ€ arch. der math., vol. 54, no. 4, pp. 365โ€“371, 1990. [24] m. ziembowski, โ€œright gaussian rings and related topics,โ€ university of edinburgh, 2010. 2 ari kusumastuti pengenalan pola pengenalan pola gelombang khas dengan interpolasi ari kusumastuti dosen jurusan matematika fakultas sains dan teknologi universitas islam negeri (uin) maulana malik ibrahim malang e-mail: arikusumastuti@gmail.com abstrak pengenalan bentuk khas gelombang merupakan masalah yang penting dalam pencitraan suatu bentuk objek yang bervibrasi. prosedur pengenalan bentuk khas gelombang teridentifikasi dengan suatu fourier transform infra red. turunan kedua ftir merupakan pengenalan bentuk gelombang di daerah sidik jari objek. permasalahan yang muncul adalah belum teridentifikasi secara detail bentuk khas gelombang tersebut secara visual pada turunan kedua ftir. penelitian ini berupaya memberikan jawaban terhadap pencitraan secara detai bentuk gelombang hasil turunan kedua ftir dengan pendekatan interpolasi. prosedur interpolasi akan membaca kembali data berpasangan pada turunan kedua ftir sehingga terbaca bentuk khas gelombang objek. data berpasangan yang dimaksud adalah bilangan gelombang dan penyerapan. studi kasus penelitian ini menggunakan data spektra objek yang selanjutnya akan terbaca bentuk khas gelombangnya secara unik dengan interpolasi. keywords: interpolasi, bentuk khas gelombang. pendahuluan kajian pada bidang matematika terapan sangat bermanfaat dalam menjawab permasalahan yang muncul di luar bidang matematika. banyak permasalahan yang muncul dari berbagai latar belakang disiplin ilmu lain yang penting untuk dianalisis. permasalahan identifikasi bentuk vibrasi molekul, misalnya merupakan topik yang sangat membutuhkan peran matematika pada analisis lanjutan. penelitian pada bidang bioteknologi menggunakan fourier transform infra red untuk mendeteksi vibrasi molekuler sampai di tingkat sidik jari. hasil pembacaan ftir ini menghasilkan data bilangan gelombang (wave number) dan penyerapan (absorbansi). kelemahan ftir adalah tidak teridentifikasi visual secara detail bentuk gelombang khas suatu objek sampai di tingkat sidik jari. interpolasi merupakan teknik peramalan fungsi dari suatu data berpasangan. pada penelitian ini masalah interpolasi digunakan sebagai alat untuk mempertajam pengenalan pola gelombang di level sidik jari dari data ftir. prosedur interpolasi ini dapat mengenali bentuk khas gelombang secara detail sehingga setiap objek teridentifikasi secara unik bentuk gelombang khasnya. prosedur yang digunakan pada penelitian ini adalah; 1. pengujian secara statistik data turunan kedua ftir. uji data dilakukan untuk mendapatkan data berdistribusi normal dan uji pengaruh untuk mendapatkan data yang tidak dipengaruhi oleh waktu pengambilan sampel. 2. meramalkan data dengan interpolasi. penelitian ini ditujukan untuk mendapatkan ramalan secara detail bentuk khas gelombang pada suatu objek secara unik. kajian pustaka interpolasi interpolasi memainkan peranan yang sangat penting dalam metode numerik. fungsi yang tampak rumit menjadi lebih sederhana bila dinyatakan dalam polinom interpolasi. interpolasi berguna untuk menaksir harga-harga tengah antara titik data yang sudah tepat. interpolasi mempunyai orde atau derajat. interpolasi ada beberapa macam yaitu, interpolasi beda terbagi newton, interpolasi lagrange, interpolasi spline (munir, 2006). triatmodjo (2002) menambahkan, dalam interpolasi dicari suatu nilai yang berada diantara beberapa titik data yang telah diketahui nilainya. untuk dapat memperkirakan nilai tersebut, pertama kali dibuat suatu fungsi atau persamaan yang melalui titik-titik data. setelah persamaan kurva terbentuk, kemudian dihitung nilai fungsi yang berada diantara titik-titik data. interpolasi lagrange digunakan untuk mencari titik-titik antara dari n buah titik p1(x1,y1), p2(x2,y2), p3(x3,y3), โ€ฆ, pn(xn,yn) dengan menggunakan pendekatan fungsi polynomial yang disusun dalam kombinasi deret dan didefinisikan dengan: ari kusumastuti 8 volume 2 no. 1 november 2011 daerah penolakan h0 ( ); 1; 1k k nfฮฑ โˆ’ โˆ’ daerah penerimaan h0 kesulitan utama yang muncul dari proses interpolasi adalah teknis komputasi. oleh karena itu perlu suatu mekanisme pendukung. software matlab dapat digunakan untuk mempermudah pelaksanaan perhitungan interpolasi, bahkan sampai dengan penyusunan fungsi dan penggambaran grafiknya (djojodihardjo, 2000). deret taylor deret taylor merupakan dasar untuk menyelesaikan masalah dalam metode numerik, terutama penyelesaian persamaan diferensial. deret taylor akan memberikan suatu fungsi dengan benar jika semua suku dari deret tersebut diperhitungkan. persamaan deret taylor (triatmojo, 2002): analysis of variance analisis of variance atau sering dikenal dengan anova digunakan untuk menyelidiki hubungan antara variabel respons (dependen) dengan 1 atau beberapa variabel prediktor (independen) (irawan dan astuti, 2006). anova pada dasarnya terdiri dari dua kelompok. pengelompokan ditentukan dari jumlah variabel bebasnya. bila variabel yang akan dianalisis terdiri dari satu variabel terikat dan satu variabel bebas disebut anova satu arah (one way anova). bila variabel yang akan dianalisis terdiri dari satu variabel terikat dan lebih dari variabel bebas disebut dengan anova dua arah (two way anova) (hartono, 2004). one way anova digunakan untuk mengetahui apakah data dari sampel yang ada sudah cukup kuat untuk menggambarkan populasinya, atau apakah bisa suatu dilakukan generalisasi tentang populasi berdasarkan hasil sampel (harini, 2010). irawan dan astuti (2006) menambahkan bahwa, jika hasil analisa diperoleh p-value < ฮฑ, maka variabel prediktor tersebut mempunyai hubungan yang kuat, tetapi jika nilai p-value yang diperoleh > ฮฑ, maka variabel prediktor tersebut tidak ada hubungan dengan variabel respons. output analisis anova ditampilkan dalam window session dengan hipotesis: h0 : sampel tiap perlakuan sama (ยต1 = ยต2) h1 : ada perlakuan yang tidak sama hipotesis awal akan ditolak apabila nilai f hitung melebihi fฮฑ, k-1, k(n-1), dimana ฮฑ adalah tingkat kesalahan, k adalah banyak replikasi dan n adalah banyaknya perlakuan. nilai nya dapat dilihat pada table. selain menggunakan nilai f, dapat juga dilihat dari nilai p-value yang diperoleh. hipotesis awal akan ditolak apabila nilai p-value kurang dari ฮฑ (irawan dan astuti, 2006). gambar 1. grafik daerah penolakan untuk fฮฑ, k-1, k(n-1) (irawan dan astuti, 2006) analisis korelasi korelasi adalah hubungan, begitu pula dengan analisis korelasi yaitu suatu analisis yang digunakan untuk melihat hubungan antara dua variabel atau lebih (odi, 2008). analisis korelasi ada beberapa jenis, salah satunya adalah korelasi pearson product moment (riduwan dan sunarto, 2009). irawan dan astuti (2006) menambahkan bahwa, koefisien korelasi pearson berguna untuk mengukur tingkat keeratan hubungan linear antara 2 variabel. korelasi pearson product moment (ppm) dilambangkan โ€œrโ€ dengan ketentuan nilai r tidak lebih dari harga (-1 โ‰ค r โ‰ค +1). tabel interpretasi nilai r sebagai berikut: tabel 1. interpretasi koefisien nilai r interval koefisien tingkat hubungan 0,80 1,000 sangat kuat 0,60 0,799 kuat 0,40 0,599 cukup kuat 0,20 0,399 rendah 0,00 0,199 sangat rendah sumber: riduwan dan sunarto, 2009 nilai korelasi berkisar antara -1 sampai +1. nilai korelasi negative berarti hubungan antara 2 variabel adalah negatif. artinya, apabila salah satu variabel menurun, maka variabel lainnya akan meningkat. sebaliknya, nilai korelasi positif berarti hubungan antara kedua variabel adalah positif. artinya, apabila salah satu variabel meningkat, maka variabel lainnya akan meningkat pula dan apabila nilai korelasi bernilai pengenalan pola gelombang khas dengan interpolasi jurnal cauchy โ€“ issn: 2086-0382 9 0, artinya tidak ada korelasi (irawan dan astuti, 2006). second derivative (2d) program menghitung turunan numerik sangat sederhana. rumus-rumus turunan dinyatakan sebagai fungsi (munir, 2006). derivative dapat digunakan untuk mengumpulkan informasi tentang grafik fungsi. karena derivative menunjukkan tingkat perubahan dari suatu fungsi, untuk menentukan dimana suatu fungsi naik, maka hanya memeriksa dimana derivativenya positif. dengan cara yang sama, untuk menemukan dimana suatu fungsi turun, maka hanya memeriksa dimana derivativenya negatif. titik dimana derivative sama dengan 0 disebut titik kritis. pada titik-titik ini, fungsi itu konstan dan grafiknya horizontal (barroroh, 2009). dengan membuat turunan spektra, visualisasi dari pantulan spektra dapat ditingkatkan, sehingga pengujian yang lebih baik dapat dimungkinkan. analisis pada turunan pertama, sangat bermanfaat untuk menempatkan posisi dari puncak, lembah, dan red-edge inflection point (r-eip). turunan kedua dimaksudkan untuk menentukan posisi dari r-eip. r-eip adalah spektral region pada batas antara panjang gelombang merah dan infra merah di mana nilai spektral vegetasi meningkat tajam (ustin et al., 2000 dalam hartini, 2001). perbedaan dari posisi puncak, lembah dan r-eip digunakan untuk menjelaskan sifat dari vegetasi. gambar 2. posisi dari puncak (p), lembah (t) dan red-edge inflection point (r-eip) pada plot pantulan spektral vegetasi (hartini, 2001) pengujian derivative pertama dan kedua secara esensial memberlakukan logika yang sama, yaitu menjelaskan apa yang terjadi pada derivative fโ€™(x) didekat suatu titik kritis x0. pengujian derivative pertama mengatakan bahwa maksima dan minima itu berpasangan denfan fโ€™ melintasi nol dari satu arah ke arah yang lain, yang ditunjukkan oleh tanda dari fโ€™ dekat x0. ari kusumastuti 10 volume 2 no. 1 november 2011 pengujian derivative kedua hanyalah pengamatan dengan informasi yang sama ditunjukkan pada kemiringan dari garis singgung fโ€™(x) dititik x0 (barroroh, 2009). spektroskopi infra merah spektroskopi infra merah merupakan salah satu alat yang banyak dipakai untuk mengidentifikasi senyawa baik alami maupun buatan. bila sinar infra merah dilewatkan melalui cuplikan senyawa organik, maka sejumlah frekuensi akan diserap sedang frekuensi yang lain diteruskan atau ditransmisikan tanpa diserap. gambaran antara persen absorbansi atau persen transmitansi lawan frekuensi akan menghasilkan suatu spektrum infra merah. transisi yang terjadi didalam serapan infra merah berkaitan dengan perubahan-perubahan vibrasi dalam molekul (sastrohamidjojo, 2001). daerah radiasi spektroskopi infra merah berkisar pada bilangan gelombang 1280-10 cm-1 atau pada panjang gelombang 0,78-1000 ฮผm (khopkar 1990). hayati (2007) menambahkan bahwa, dilihat dari segi aplikasi dan instrumentasi spektroskopi infra merah dibagi ke dalam tiga jenis radiasi yaitu infra merah dekat, infra merah pertengahan, dan infra merah jauh. daerah spektroskopi infra merah dapat dilihat pada tabel 2. tabel 2. daerah spektroskopi infra merah daerah panjang gelombang ฮผm bilangan gelombang cm-1 dekat 0.78-2.5 12800-4000 pertengahan 2.5-50 4000-200 jauh 50-100 200-10 sumber: hayati (2007) energi dalam spektroskopi infra merah dibutuhkan untuk transisi vibrasi, maka radiasi infra merah hanya terbatas pada perubahan energi setingkat molekul. untuk tingkat molekul, perbedaan dalam keadaan vibrasi dan rotasi digunakan untuk mengadsorbsi sinar infra merah. jadi untuk dapat mengadsorbsi, molekul harus memiliki perubahan momen dipol sebagai akibat dari vibrasi. radiasi medan listrik yang berubah-ubah akan berinteraksi dengan molekul dan akan menyebabkan amplitudo salah satu gerakan molekul (khopkar, 1990). ada 2 jenis instrmentasi untuk absorbsi infra merah yaitu, instrumentasi dispersi (konvensional) yang hanya digunakan untuk analisis kualitatif dan instrumentasi yang menggunakan fourier transform (ftir) dapat digunakan untk analisis kuantitatif dan kualitatif (hayati, 2007). spektroskopi ftir (fourier transform infrared) merupakan salah satu teknik analitik yang sangat baik dalam proses identifikasi struktur molekul suatu senyawa. komponen utama spektroskopi ftir adalah interferometer michelson yang mempunyai fungsi menguraikan (mendispersi) radiasi infra merah menjadi komponen-komponen frekuensi. penggunaan interferometer michelson tersebut memberikan keunggulan metode ftir dibandingkan metode spektroskopi infra merah konvensional maupun metode spektroskopi yang lain. diantaranya adalah informasi struktur molekul dapat diperoleh secara tepat dan akurat (memiliki resolusi yang tinggi). keuntungan yang lain dari metode ini adalah dapat digunakan untuk mengidentifikasi sampel dalam berbagai fase (gas, padat atau cair). kesulitan-kesulitan yang ditemukan dalam identifikasi dengan spektroskopi ftir dapat ditunjang dengan data yang diperoleh dengan menggunakan metode spektroskopi yang lain (harmita, 2006). delwiche, et al (2007) telah berhasil mengukur jumlah protein glicinin dan ฮฒconglicinin yang terdapat pada biji kedelai menggunakan near-infrared spectroscopy (nir) sampai pada batas screening. sebelumnya protein ini biasa dipisahkan melalui metode ultrasentrifugasi dan elektroforesis. mossoba, et al (2007) juga telah melakukan penelitian tentang pengukuran kuantitatif asam lemak trans menggunakan spektroskopi infra merah. metode yang digunakan yaitu melalui pengukuran ketinggian pita absorbsi asam lemak trans pada 966 cm-1 menggunakan metode second derivative (2d). metode ini berhasil mengidentifikasi dan memisahkan adanya interferensi pita pada 962956 cm-1 yang dimilki lemak jenuh pada pita asam lemak trans pada 966 cm-1. keberhasilan pemisahan pita interferensi ini dapat meningkatkan sensitivitas dan akurasi penentuan asam lemak trans pada konsentrasi rendah (โ‰ค 0.5% dari lemak total) (barroroh, 2009). pembagian daerah spektra infra merah daerah spektra infra merah dapat dibagi menjadi 2, yaitu (mudasir dan candra, 2008): 1. daerah frekuensi gugus fungsional terletak pada daerah radiasi 4000โ€“1400 cm-1. pita-pita absorpsi pada daerah ini utamanya disebabkan oleh vibrasi dua atom, sedangkan frekuensinya karakteristik terhadap massa atom yang berikatan dan konstanta gaya ikatan. 2. daerah sidik jari (fingerprint) yaitu daerah yang terletak pada 1400โ€“400 cm-1. pita-pita absorpsi pada daerah ini pengenalan pola gelombang khas dengan interpolasi jurnal cauchy โ€“ issn: 2086-0382 11 berhubungan dengan vibrasi molekul secara keseluruhan. setiap atom dalam molekul akan saling mempengaruhi sehingga dihasilkan pita-pita absorpsi yang khas untuk setiap molekul. menurut hayati (2007), spektroskopi infra merah mengandung banyak serapan yang berhubungan dengan sistem vibrasi yang berinteraksi dalam suatu molekul akan memberikan puncak-puncak yang sangat karakteristik dalam spektra. corak puncak ini dikenal sebagai โ€œsidik jariโ€ molekul yang merupakan daerah yang mengandung sejumlah besar vibrasi yang tidak dapat dimengerti. dengan membandingkan spektra infra merah dari dua senyawa yang diperkirakan identik maka dapat dinyatakan kedua senyawa tersebut identik atau tidak. akan jauh lebih sulit untuk membedakan ikatan-ikatan tertentu dalam area sidik jari daripada dalam area yang lebih โ€˜bersihโ€™ yang berada dalam area dengan bilangan gelombang yang lebih besar. hal penting dalam area sidik jari ini adalah setiap senyawa yang berbeda menghasilkan pola lembah yang berbeda-beda pada spektrum bagian ini. hasil dan pembahasan data ftir gambar 3. data second derivation ftir gambar 4. hasil pengenalan pola dengan interpolasi -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0 500 1000 1500 2000 2500 3000 3500 4000 4500 ari kusumastuti 12 volume 2 no. 1 november 2011 (a). interpolasi (b). perbesaran second derivative gambar 5. a) hasil analisis interpolasi dan (b) perbesaran second derivative. ekspansi deret taylor dari data second derivation ftir: y = 4.7907e-12 x8 โ€“ 3.7484e-8 x7 + 1.2831e-4 x6 โ€“ 0.2510 x5 + 306.8267 x4 โ€“ 2.4006e+4 x3 + 1.1739e+8 x2 โ€“ 3.2802e+10 x + 4.0100e+12. penutup pada akhir penelitian ini prosedur interpolasi mampu membaca secara lebih detail dibandingkan dengan second derivation ftir. selanjutnya analisis syaraf tiruan dapat di kerjakan sehingga bentuk spectra gelombang objek mampu dikenali untuk mengganti ftir yang relatif mahal. prosedur pemberian bobot yang efektif pada langkah jst mampu mengenali pola gelombang suatu objek dengan baik. daftar pustaka [1] mathews, j.h., (1999). numerical methods using matlab [2] chopra, (2002) numerical methods for engineering, mc graw hill [3] naseem (2010), fundamental numerical analysis and error estimation, anamaya publisher, new delhi [4] barroroh (2009). identifikasi pola khas spektra inframerah dengan second derivative. penelitian [5] hayati (2007). dasar-dasar analisis spektroskopi [6] harini(2010). praktikum statistik elementer [7] riduan (2009). pengantar statistik untuk penelitian. alfabeta, bandung [8] sastrohadimidjojo(2001). spektroskopi. liberty, yogyakarta -0.00001 -0.00001 -0.00000 0 0.000005 0.00001 965 970 975 980 985 990 s ec on d d er iv at iv e (2 d ) bilangan gelombang sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 28-39 p-issn: 2086-0382; e-issn: 2477-3344 submitted: juni 09, 2021 reviewed: september 03, 2021 accepted: october 25, 2021 doi: https://doi.org/10.18860/ca.v7i1.12488 sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana1, ahmad ashril rizal2 1center of data analytic research and services, universitas jenderal achmad yani yogyakarta 2information technology, universitas islam negeri mataram email: adripriadana3202@gmail.com, ashril.rizal@gmail.com abstract the covid-19 pandemic impact has affected all industries in indonesia and even the world, including the tourism industry. the government has conducted many programs to answer the needs of the tourism industry, especially in making tourism and business destination management programs and carrying out activities oriented, especially during the covid-19 pandemic. meanwhile, the government has a role in making policies, especially in the roadmap, for developing the tourism industry. however, the government also needs a way to figure out public sentiments towards the policies that have been implemented. this study aimed to track trending topics and analyze the sentiment of public opinion in instagram to figure out government performance in tourism during the covid-19 pandemic period. the results of trending topics will be classified by sentiment analysis using a lexicon-based and naive bayes classifier. instagram data taken since january 2020 showed the five highest topics in the tourism sector, namely health protocols, hotels, homes, streets, and beaches. of the five topics, sentiment analysis was carried out with the lexicon-based and naive bayes classifier, showing that beaches get an incredibly positive sentiment, namely 80.87%, and hotels provide the highest negative sentiment, 57.89%. the accuracy of the confusion matrix's sentiment results shows that the accuracy, precision, and recall are 82.53%, 86.99%, and 83.43%, respectively. keywords: sentiment analysis; government performance in tourism; covid-19 pandemic period; lexicon based introduction the covid-19 pandemic impact has affected all industries in indonesia and even the world, including the tourism industry, and spreads to various other sectors. the tourism industry in indonesia has links with other sectors such as hotels, restaurants, transportation, and small micro medium enterprises. furthermore, it impacts on souvenir and culinary entrepreneurs, travel agents, and tour guides. the value of the decline in state revenue in the tourism sector due to covid-19 on a national scale is, of course, tremendous. the government should not count and study the impact but pay attention to concrete steps in saving the tourism industry in indonesia. a careful strategy and planning are needed to save the tourism industry in indonesia after covid-19, which can be obtained from social media. one of the social https://doi.org/10.18860/ca.v7i1.12488 sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 29 media that is widely used by indonesian people is instagram. from andi link1 shows that instagram is one of the most-used social media platforms in 2020. in indonesia, there are 63 million instagram users in 2020. data sources from social media are indeed instrumental in research. one of the studies sourced from instagram data analyzed human selfies by determining several hashtags as a basis. we have shown how image data is detected as a human face using the haar cascade method. image analysis to detect human faces using the haar cascade method shows that the applied method produces an accuracy value of 71.48% [1]. collecting data on instagram can be done using the web scraping method. simple additive weighting is successfully applied to the decision support system for selecting endorsement accounts on instagram. this studyโ€™s instagram account parameter include the number of followers, the number of likes, the number of comets, and posts that are always updated. the determination of the best parameters for selecting the endorse account on instagram has been successfully carried out, as shown by the system accuracy of 75% [2]. the instagram platform plays an increasingly central role in social media, essential for users to interact or communicate. instagram contributes to developing tourism destinations, which it is clear that instagram and its users are transforming into a new form [3]. previously, yadav conducted research related to trip mode's effect on opinions on hotel aspects using a social media analysis approach. knowing the exact customer expectations will allow service providers to focus more on those aspects that are important. it will help hoteliers prioritize their efforts, allocate resources according to customer needs, and provide tailor-made offers to customers to increase customer satisfaction and optimize resource utilization. with social media being an open source of information, positive or negative sentiments of a hotel's opinion or related aspects can affect a hotel's business. it also provides an opportunity to identify the essential features as perceived by the customer and ascertain what the main reasons for customer dissatisfaction are. the data is taken from hotel visitor reviews based on travel mode on tripadvisor. tripadvisor reviews are divided into five modes of travel with very few single travelers (4% of overall reviews), and the majority are family travelers (44%), couples giving reviews 22%, business travelers 19%, and friends 11% [4]. there is another opinion mining platform for extracting and classifying hotel reviews posted by users on tourism websites. the system visits web pages starting at the given url, extracts reviews from page content, then uses opinion mining to process the content and classifies reviews as positive, negative, and neutral. the proposed process has acceptable accuracy and has the advantage that it does not depend on domains and does not require expensive resources to operate. according to the review, it can be concluded that in the tourism domain, the analysis is made aspect oriented. it is because of the many aspects expressed by users about opinions and mixed sentiments present in a review [5]. the sentiment analysis method is also carried out to research halal tourism in europe. halal tourism has recently received significant attention from academics and practitioners. this study analyzes tweets related to halal tourism. this study's findings can help various stakeholders, such as marketers who want to target the halal tourism market. these studies have also contributed to existing knowledge about tourism in general and halal tourism in particular [6]. the government has conducted many programs to answer the needs of the tourism industry, especially in making tourism and business destination management programs and carrying out activities oriented, especially during the covid-19 pandemic. meanwhile, the government has a role in making policies, especially in the roadmap, for 1https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2020/ sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 30 developing the tourism industry. however, the government also needs a way to figure out public sentiments towards the policies that have been implemented. this study aimed to track trending topics and analyze the sentiment of public opinion in instagram to figure out government performance in tourism during the covid-19 pandemic period. some studies analyzed the sentiment of public opinion in social media that could help the government, or the relevant authorities develop responses or programs to address existing problems in the community, especially during the covid-19 pandemic. shofiya and abidi in 2021 [7] analyzed the sentiment of public opinion about social distancing programs in canada using twitter data during the covid-19 pandemic period. they used the support vector machine (svm) technique to classify sentiment. obiedat et al. in 2021 [8] analyzed the sentiment of public opinion to enhance the government decisions in jordan during covid-19 pandemic based on facebook data. they used whale optimization algorithm & support vector machines (woa-svm) methods compared with some other methods to classify sentiment. habibi et al. in 2021 [9] analyzed the sentiment and modeled the topic of public opinion about covid-19 epidemics in indonesia based on twitter data. they used latent dirichlet allocation (lda) to model topics and naive bayes methods compared with other methods to classify sentiment. prastyo et al. in 2020 [10] analyzed the sentiment of public opinion on twitter about the indonesian governmentโ€™s handling of covid-19. they used svm with normalized poly kernel to classify sentiment. in this study, the results of trending topics will be classified by sentiment analysis using a lexicon-based and naive bayes classifier. there are some studies that use lexicon-based to analyze sentiment. an arabic sentiment lexicon built through automatic lexicon expansion (moarlex) is a lexicon for a sentiment on a large scale. the lexicon is intended to provide accessible arabic resources that can be used in sentiment analysis tasks. one of the advantages of using the proposed lexicon and the techniques used in constructing it is that it can include terms commonly used in social media [11]. meanwhile, indonesian can use the sastrawi library, which can be accessed openly. a literature review needs to be carried out to provide information about sentiment analysis studies on social media. the researchers introduced various methods, but the most common methods used in the lexicon-based method are sentiwordnet and tf-idf. at the same time, those for machine learning are naรฏve bayes and svm. choosing the right sentiment analysis method depends on the data itself [12]. different preprocessing methods affect the polarity classification of sentiments on twitter. removing urls, deleting stop words, and deleting numbers affects classifier performance minimally. meanwhile, removing stop words, numbers, and urls is appropriate for reducing noise but not affecting performance [13]. methods data collection first, we did data extraction to collect instagram data by using a web data extraction method. it is used to routinely extract data from a web data source [14]. we got the instagram post data by using hashtags that are near related to tourism in indonesia. the data is used as a dataset is data with captions based on predetermined hashtags in various languages. sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 31 data cleaning process the second step in this research is the data cleaning process. figure 1 shows the data cleaning process, in which there is a processing stage inside of it. in the process, several steps are carried out namely lowercase, removing symbol, stemming, tokenizing, and bag of words. the lowercase process is the process of converting all the letters in the instagram caption to lowercase. it functions to facilitate the next process in determining sentiment. table 1 shows examples of the lowercase process. table 1. lowercase process no. real caption after lowercase process 1. trust and maximize your vacation with @ giliketapang001 guaranteed satisfying fun trust and maximize your vacation with @ giliketapang001 guaranteed satisfying fun 2. are you paid for being sent home? what if we open a small business? are you paid for being sent home? what if we open a small business? 3. just bored at home just bored at home 4. the holiday has ended. hopefully, this feeling of happiness can last even though the vacation time is over? the feeling that i want a year off the holiday has ended. hopefully, this feeling of happiness can last even though the vacation time is over? the feeling that i want a year off figure 1. data cleaning process sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 32 the removing symbol process will delete the symbol in the caption. the deleted symbols is a period (.), comma (,), exclamation (!), ask (?), (@), (#), (https: //), and several other unique symbols and emoticons. this process is done because it is assumed that the caption's scraping results do not determine the sentiment results. table 2 shows examples of captions after removing symbols. the stemming process aimed to replace affix words into root words by removing all affixes, whether it's an affix at the beginning, in the middle, or at the end of the word. at this stage, we used the sastrawi library to replace the affixed word with the root word. tokenizing process is used to collect the number of words in the data set. the data can be a single word. it means that if there are two words or more than two words in the data set, we only can use one word. bag of words is a concept from text analysis. this concept represents the document as an essential information pocket without sorting its words. this method works by counting the total of wordsโ€™ frequency who appeared in a document dataset. so the output of the bag of words model is a frequency vector. table 2. removing symbol process. no. caption after removing symbol process 1. trust and maximize your vacation with @ giliketapang001 guaranteed satisfying fun. trust and maximize your vacation with giliketapang001 guaranteed satisfying fun. 2. are you paid for being sent home? what if we open a small business? are you paid for being sent home what if we open a small business 3. just bored at home. just bored at home 4. the holiday has ended. hopefully, this feeling of happiness can last even though the vacation time is over? the feeling that i want a year off. the holiday has ended. hopefully, this feeling of happiness can last even though the vacation time is over the feeling that i want a year off determination of trending topics trending topics are determined by counting ten captions with the highest frequency. this determination is done by counting the n-grams after getting the word tokenizing results. sentiment analysis using lexicon base and naive bayes classifier in general, the sentiment analysis process is carried out with the steps shown in figure 2. the lexicon-based process is carried out after cleaning the previously obtained dataset. the number of words in the data will be calculated based on the rules in the data dictionary. the data dictionary is a collection of words in the great dictionary of the indonesian language or kbbi and has been classified into negative and positive classes. naive bayes classifier is a classification with the concept of likelihood when referring to the bayes hypothesis. bayes' hypothesis scientifically determines the relationship between the probability of two events a and b, p (a) and p (b) and the likelihood that event a is formed by b and event b is adapted by a, p (a | b) and p (b | a). so the bayes equation is shown in equation 1. ๐‘ƒ(๐ด ๐ตโ„ ) = ๐‘ƒ (๐ต ๐ด)๐‘ƒ(๐ด)โ„ ๐‘ƒ(๐ต) (1) in this case, the calculated classification is p (a | b), which is the probability that the sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 33 hypothesis is correct (valid) for the observed sample b data. the b data is sample data with an unknown class (label), and a is a hypothesis that b is data with a known class (label). p (a) is the probability of hypothesis a, p (b) is the probability of the observed sample data, p (a | b) is the probability of sample data b if it is assumed that the hypothesis is correct (valid) [15]. figure 2. sentiment analysis proses performance evaluation in this study, performance evaluation was carried out using the confusion matrix as well as precision, recall, and accuracy. precision and recall values are calculated using equation 2 and equation 3. the calculation of predictive accuracy is done using equation 4 [16], ๐‘๐‘Ÿ๐‘’๐‘๐‘–๐‘ ๐‘–๐‘œ๐‘› = ๐‘‡๐‘ƒ ๐‘‡๐‘ƒ + ๐น๐‘ƒ x 100% (2) ๐‘Ÿ๐‘’๐‘๐‘Ž๐‘™๐‘™ = ๐‘‡๐‘ƒ ๐‘‡๐‘ƒ + ๐น๐‘ x 100% (3) ๐‘Ž๐‘๐‘๐‘ข๐‘Ÿ๐‘Ž๐‘๐‘ฆ = ๐‘‡๐‘ƒ + ๐‘‡๐‘ ๐‘‡๐‘ƒ + ๐‘‡๐‘ + ๐น๐‘ƒ + ๐น๐‘ x 100% (4) results and discussion this paper's research results are in the form of trending topics in the tourism sector since the covid-19 pandemic hit. the evaluation results are based on data obtained from instagram. the data distribution used is shown in table 3. data collection was carried out by scraping method using python. the libraries used in natural language processing are the natural language toolkit (nltk) and the sastrawi library as cleaning data in indonesian. trending topics in the tourism sector in this study, the total dataset used is 195136 data. for the first time, the similarity process of each caption is carried out. this function is used because one caption uses a different hashtag, and that hashtag is used as a parameter in this paper. so that one caption will be taken as a dataset if there are the same captions. the search results for trending topics on instagram are the accumulated result of bigram and tri-gram using nltk. there is a word order from each caption that is part of a sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 34 sentence with the same pattern. examples like the caption in english translation (1) โ€œfollow health protocols for holidays, it seems complicatedโ€ and caption (2) โ€œto the beach you have to obey health protocols, prefer #dirumahajaโ€. if caption (1) and caption (2) go through the cleaning stage, caption (1) will become โ€œfollow health protocols for very complicated holidaysโ€ and caption (2) will become โ€œbeaches must comply with health protocols, at homeโ€. after going through the tokenizing stage using bi-gram, there will be a caption (1) โˆฉ caption (2) become health protocol. the number of slices becomes a parameter for determining the trending topic, which is a projection of the cumulative frequency of words that appear. table 3. frequency hashtag no. hashtag frequency 1 #pariwisata 12397 2 #indonesia 13396 3 #liburan 13997 4 #pesonaindonesia 14175 5 #jalanjalan 14196 6 #wonderfulindonesia 14114 7 #wisataindonesia 14248 8 #kuliner 13873 9 #visitindonesia 14113 10 #wisata 14115 11 #exploreindonesia 14141 12 #wisataalam 14269 13 #pantai 14157 14 #dirumahaja 13945 figure 3. wordcloud instagram caption sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 35 figure 4. top 5 instagram trending topics figure 3 and figure 4 show the results of the trending topic of the data dataset. figure 3 is a wordcloud which describes the distribution of text in the dataset. the size of the text is directly proportional to the frequency with which it appears in the dataset. graphically, figure 4 shows the top five trending topics based on the dataset used. the trending sequences that emerged were health protocols (1301), hotels (1227), homes (739), roads (772), and beaches (544). sentiment analysis at this stage, the sentiment results are based on a predefined data dictionary. the lexion-based method used refers to the data dictionary. in addition to calculating bayes's probabilities, the number of words in the caption that fall into the negative and positive class is one of the classification references. for example in english translation, โ€œfollow the health protocol for the holidays, it seems like it's very complicatedโ€ as the caption (1), will be โ€follow the health protocol for a very complicated holidayโ€ after the cleaning process. in the caption, the words, follow/protocol/health/for/holiday/very are neutral words, and the word /complicated/is negative word. figure 5 shows the sentiment results in trending tourism topics on instagram. health protocol is the highest topic among instagram users. however, most wrote positive captions to the health protocol. it is evident from the sentiment calculation results that 73.12% of captions are writing positive things related to health protocols. not a few instagram users have complained about health protocols while on vacation or traveling during a pandemic. still, many instagram users invite and emphasize complying with health protocols to reduce the number of corona cases in indonesia. besides, many hotel complaints not only from tourists but from the hotel and its employees. with the closure of hotel access and the slow pace of hotel openings, many instagram users have complained about being laid off. regarding the topic of beaches, many positive captions have appeared. for example, access to the beach is still open even though health protocols are applied. besides, a caption discusses beaches in indonesia that are getting prettier and cleaner since the covid-19 pandemic hit. we can see that beach sentiment is 80.87% positive and only 19.13% with the negative caption. sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 36 figure 5. sentiment analysis of trending topics algorithm performance the sentiment results in this paper were evaluated using a confusion matrix. the results of true positive (tp), true negative (tn), false positive (fp), and false negative (fn) are shown in table 4. table 4. confusion matrix of sentiment classification class classified as positive classified asnegative positive 2911 435 negative 578 1874 ๐‘ƒ๐‘Ÿ๐‘’๐‘๐‘–๐‘ ๐‘–๐‘œ๐‘›: ๐‘‡๐‘ƒ ๐‘‡๐‘ƒ+๐น๐‘ƒ โˆ— 100% = 2911 2911+435 โˆ— 100% = 86.99% recall: ๐‘‡๐‘ƒ ๐‘‡๐‘ƒ+๐น๐‘ โˆ— 100% = 2911 2911+578 โˆ— 100% = 83.43% accuracy: ๐‘‡๐‘ƒ+๐‘‡๐‘ ๐‘‡๐‘ƒ+๐‘‡๐‘+๐น๐‘ƒ+๐น๐‘ โˆ— 100% = 2911+1874 2911+1874+435+578 โˆ— 100% = 82.53% in this study, the lexicon-based method worked by creating a dictionary of opinion words (lexicon) compiled beforehand. the words contained in the data dictionary were divided into two classes, namely classes containing positive words and classes containing negative words. the dictionary was used to identify whether a sentence contains a certain opinion or not. in the text segmented based on word order, the lexicon method would perform a search process on the data dictionary, which words in the text contained positive or negative words. in the naive bayes classifier process, the results of the search for word classes in the data dictionary in the lexicon process would count the number of words in the dataset that fall into the positive class or the words that fall into the negative class. the naive sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 37 bayes classifier used a prior probability, a true probability value, before carrying out experiments on each label which was the frequency of each label in the training set. the purpose of this process was to classify the caption results on the data in each dataset. the naive bayes classifier method performs the text classification process based on the previously stored training data. in the implementation, there are three stages: making a list of n-grams, then making a list of word classes that have been carried out in the lexicon process and making a classifier. classifiers need to be trained and to do so requires a list of captions classified into positive and negative classes manually. in its implementation, around 250 positive captions and 250 negative tweet captions were used to train the classifier. based on the calculated confusion matrix results, we can see that the accuracy of the sentiment results is 82.53%. precision describes the level of accuracy between the requested data and the predictive results given by the model. the precision result from the sentiment is 86.99%. meanwhile, the recall which describes the success of the model in recovering considerable information is 83.43%. some captions should be positive in the negative class or negative captions classified as positive because the lexicon-based method does not use a learning method. sometimes in indonesian captions, there are ambiguous sentences that are positive, but the words chosen to make the caption classified as negative we can see on an example in the caption (3) of the dataset in english translation like โ€œfor those of you who are nagging about wanting to go on a walk, there are more victims, it's better to stay safe with #dirumahajaโ€. of course, the caption should fall into the positive class. however, words like nagging and victims are included in the negative data dictionary, and words like dirumahaja are classified as positive. thus, the caption contains more negative words so that it will enter the negative class. conclusions this study aims to track trending topics in social media instagram since covid-19 hit. the results of trending topics will be classified by sentiment analysis using a lexicon-based and naive bayes classifier. according to analysis results using instagram data taken since january 2020, it shows the five highest tourism sector topics, namely health protocols, hotels, homes, streets, and beaches. of the five topics, sentiment analysis was carried out with the lexicon-based and naive bayes classifier, showing that beaches get a very positive sentiment, namely 80.87%, and hotels provide the highest negative sentiment 57.89%. the accuracy of the confusion matrix's sentiment results shows that the accuracy, precision, and recall are 82.53%, 86.99%, and 83.43%, respectively. in the future, further investigations will be carried out on how the public perceives the government's performance in the tourism sector during the new normal. moreover, the lexicon-based method is indeed high-speed in classifying text data. however, the sentiment results are very dependent on the data dictionary used and the caption context. in indonesia, netizens often write this article with a specific purpose. captions written using this figure can make the caption fall into the wrong classification. there is a need for a learning method to understand captions with specific figures to fall into the correct classification. sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 38 acknowledgments the authors would like to thank the center of data analytic research and services, universitas jenderal achmad yani yogyakarta, for supporting the data of this research. references [1] a. priadana and m. habibi, โ€œface detection using haar cascades to filter selfie face image on instagram,โ€ in 2019 international conference of artificial intelligence and information technology (icaiit), 2019, pp. 6โ€“9, doi: 10.1109/icaiit.2019.8834526. [2] m. i. akrianto, a. d. hartanto, and a. priadana, โ€œthe best parameters to select instagram account for endorsement using web scraping,โ€ in 2019 4th international conference on information technology, information systems and electrical engineering (icitisee), 2019, pp. 40โ€“45, doi: 10.1109/icitisee48480.2019.9004038. [3] m. n. fatanti and i. w. suyadnya, โ€œbeyond user gaze: how instagram creates tourism destination brand?,โ€ procedia soc. behav. sci., vol. 211, pp. 1089โ€“1095, nov. 2015, doi: 10.1016/j.sbspro.2015.11.145. [4] m. l. yadav and b. roychoudhury, โ€œeffect of trip mode on opinion about hotel aspects: a social media analysis approach,โ€ int. j. hosp. manag., vol. 80, no. september 2018, pp. 155โ€“165, 2019, doi: 10.1016/j.ijhm.2019.02.002. [5] c. bucur, โ€œusing opinion mining techniques in tourism,โ€ procedia econ. financ., vol. 23, no. october 2014, pp. 1666โ€“1673, 2015, doi: 10.1016/s22125671(15)00471-2. [6] s. ainin, a. feizollah, n. b. anuar, and n. a. abdullah, โ€œsentiment analyses of multilingual tweets on halal tourism,โ€ tour. manag. perspect., vol. 34, no. january 2019, p. 100658, 2020, doi: 10.1016/j.tmp.2020.100658. [7] c. shofiya and s. abidi, โ€œsentiment analysis on covid-19-related social distancing in canada using twitter data,โ€ int. j. environ. res. public heal. 2021, vol. 18, page 5993, vol. 18, no. 11, p. 5993, jun. 2021, doi: 10.3390/ijerph18115993. [8] r. obiedat, o. harfoushi, r. qaddoura, l. al-qaisi, and a. m. al-zoubi, โ€œan evolutionary-based sentiment analysis approach for enhancing government decisions during covid-19 pandemic: the case of jordan,โ€ appl. sci. 2021, vol. 11, page 9080, vol. 11, no. 19, p. 9080, sep. 2021, doi: 10.3390/app11199080. [9] m. habibi, a. priadana, and m. r. maโ€™arif, โ€œsentiment analysis and topic modeling of indonesian public conversation about covid-19 epidemics on twitter,โ€ ijid (international j. informatics dev., vol. 10, no. 1, pp. 23โ€“30, jun. 2021, doi: 10.14421/ijid.2021.2400. [10] p. h. prastyo, a. s. sumi, a. w. dian, and a. e. permanasari, โ€œtweets responding to the indonesian governmentโ€™s handling of covid-19: sentiment analysis using svm with normalized poly kernel,โ€ j. inf. syst. eng. bus. intell., vol. 6, no. 2, pp. 112โ€“122, oct. 2020, doi: 10.20473/jisebi.6.2.112-122. [11] m. youssef and s. r. el-beltagy, โ€œmoarlex: an arabic sentiment lexicon built through automatic lexicon expansion,โ€ procedia comput. sci., vol. 142, pp. 94โ€“ 103, 2018, doi: 10.1016/j.procs.2018.10.464. [12] z. drus and h. khalid, โ€œsentiment analysis in social media and its application: systematic literature review,โ€ procedia comput. sci., vol. 161, pp. 707โ€“714, 2019, doi: 10.1016/j.procs.2019.11.174. [13] z. jianqiang and g. xiaolin, โ€œcomparison research on text pre-processing methods sentiment analysis on government performance in tourism during the covid-19 pandemic period with lexicon based adri priadana 39 on twitter sentiment analysis,โ€ ieee access, vol. 5, no. c, pp. 2870โ€“2879, 2017, doi: 10.1109/access.2017.2672677. [14] e. ferrara, p. de meo, g. fiumara, and r. baumgartner, โ€œweb data extraction, applications and techniques: a survey,โ€ knowledge-based syst., vol. 70, pp. 301โ€“ 323, nov. 2014, doi: 10.1016/j.knosys.2014.07.007. [15] s. rana and a. singh, โ€œcomparative analysis of sentiment orientation using svm and naive bayes techniques,โ€ proc. 2016 2nd int. conf. next gener. comput. technol. ngct 2016, no. october, pp. 106โ€“111, 2017, doi: 10.1109/ngct.2016.7877399. [16] e. m. martรญn and รก. p. del pobil, robust motion detection in real-life scenarios, 1st ed. springer-verlag london, 2012. analysis of landing airplane queue systems at juanda international airport surabaya cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 49-63 p-issn: 2086-0382; e-issn: 2477-3344 submitted: juni 29, 2021 reviewed: september 08, 2021 accepted: november 05, 2021 doi: https://doi.org/10.18860/ca.v7i1.12772 analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida1, fadilah akbar2, moh. hafiyusholeh3, moh. hartono4 1,2,3department of mathematics, faculty of science and technology, sunan ampel state islamic university surabaya 4department of mechanical engineering, politeknik negeri malang email: yuniar_farida@uinsby.ac.id, fadilakbar783@gmail.com, hafiyusholeh@uinsby.ac.id, moh.hartono@polinema.ac.id abstract before the covid-19 pandemic hit all over the world, juanda international airport was preparing to realize the construction of terminal 3. this construction project impression that juanda airport is experiencing an overload, including in the airplane landing queue. this study aims to analyze the queuing system at the juanda international airport apron before the pandemic, whether effective, quite effective, or less effective in serving the number of existing flights with two terminals. an analysis of the queuing system was conducted in several scenarios. they are in normal/regular condition, a scenario if there is an increase in flight frequency, and a scenario if there is a reduction in apronsโ€™ number because of certain exceptional situations. to analyze the airplaneโ€™s landing queue at juanda airport apron, the queuing model (m/m/51): (fcfs/โˆž/โˆž) is used. from this model, the results show that in normal conditions, the estimated waiting time for each airplane in the system is 0.18 hours with a queue of 2 up to 3 planes/hour, categorized as effective. in one apron reduction scenario, each airplaneโ€™s estimated waiting time in the system is 0.7 hours, with a queue of 6 up to 7 planes categorized as less effective. in the scenario of additional flights, only 9 other flights are allowed every day to keep the service performance still quite effective. by obtaining this results analysis, the decision of pt. angkasa pura 1 (persero) to build terminal 3 is suitable to reduce queuing time and improve juanda international airport services to be more effective. keywords: queueing system model; juanda internasional airport; landing airplane queue; waiting time; multi-channel single-phase introduction juanda international airport surabaya has been named the 3rd busiest airport in indonesia after the first position is soekarno โ€“ hatta international airport jakarta. the second position is i gusti ngurah rai international airport denpasar bali. surabaya juanda international airport has also been called the 6th largest airport after padang minangkabau international airport. [1]. due to the high activity of juanda airport every year, as seen in 2020, the average movement of its aircraft has increased by 97.2%, or 13,504 aircraft. it has grown in average passengers by 175% or 1,133,855 passengers, causing juanda international airport surabaya to realize terminal 3. this project aims to increase the number of facilities from existing services. terminal 3 construction is carried https://doi.org/10.18860/ca.v7i1.12772 mailto:yuniar_farida@uinsby.ac.id mailto:fadilakbar783@gmail.com mailto:hafiyusholeh@uinsby.ac.id mailto:moh.hartono@polinema.ac.id analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 50 out to accommodate passengersโ€™ number, which continues to grow every year. if the linkages are connected, the airplaneโ€™s more passengers will also increase [2]. an increase in airplane passengersโ€™ number usually increases each routeโ€™s flight frequency and opens new destination routes [2]. the increase in flight frequency can cause queuing problems that are getting longer. the impact of long airplane queues will make customers feel less satisfied and the potential for passengers to switch to other modes of transportation so that the airport can decrease the number of passengers for the domestic flight, but for the international flight will give a negative impression to foreign tourists and lead to a reduction in the assessment of airport services ratings in the world [3]. reducing the number of passengers will also be followed by reducing the number of airplanes used, so finally, it impacts decreasing income for pt. angkasa pura 1 (persero) as an organization that manages the juanda international airport. one of the airportsโ€™ performances is determined by the airplaneโ€™s queue that will park at the apron. with the number of aprons available, if the planeโ€™s number continues to increase, the waiting time for the plane in the queue will also be longer [4]. a situation like this can endanger the plane that will make a landing at the airport, the amount of fuel used by the plane is always adjusted to the flight route, the distance traveled, and the total capacity of the plane filled, so that the plane is only filled with sufficient fuel [5]. the danger of a very long queue in a landing airplane can cause the plane to run out of fuel to make an emergency landing or land at the nearest airport. the flight schedule will also be delayed [6], [7]. the landing planeโ€™s waiting time in the juanda international airport apron can be analyzed using the queuing system analysis concept, a statistical method used to solve a queue problem. a. k. erlang invented this method in 1909 with the research title โ€œprobability theory of telephone conversationsโ€ [8]. queuing occurs when customers who come to be served to exceed the facilities, resulting in customers waiting for service and a queue appearing [9]. in some cases, services can be improved to avoid growing queues [10]. however, the cost of improving services can cause significant losses because it requires enormous costs if it is not right on target. so that in this study, the performance analysis of the juanda airport apron was carried out using a queuing system model. in queuing at the airport, the queuing system is modeled by assuming aprons are servants while airplanes are considered customers [11], [12]. the apron is used as a parking space for an airplane, where the plane does dropping and picks up passengers, so the apron is considered a servant [13]. meanwhile, an airplane is regarded as a customer because it lands to enter the airport and leave it [14], [15]. the queuing process on an airplane occurs when the plane comes to the airport to make a landing, but with the complete apron condition so that the plane carries out a holding process or rotates in the sky before making a final approach and then landing [16]. holding is when the plane delays carrying out the final approach process and takearound flight near the airport. the plane will land until it arrives at the time the plane lands to land. in contrast, the final approach is when the aircraft has made the final approach to the runway for landing [17], [18]. the final procedure can be carried out when the airport has allowed the plane to land, provided there is an apron available for the plane to park and carry out the process of dropping and raising passengers [19]. if all the apron conditions are still used, the plane that will make the landing will hold it until there is one apron available and land according to the planeโ€™s order [20], [21]. several studies related to the airportโ€™s queuing system, including research conducted by thiagaraj and seshaiah investigated the queuing system at the bengaluru international airport devanahalli, india [22]. in this study, airport facilities considered analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 51 servants are in the form of a runway used as several servers, focusing on the aircraft queuing system. still, this research also models the passenger queuing system at the terminal. therefore, this study aims to model the queuing system to analyze the impact or effect of delays in-service performance and cost losses. however, this study does not explain whether the apron airportโ€™s service performance as a whole is effective, quite effective, or ineffective. the following research was conducted by afsah novita sari, its investigation regarding the plane queuing system model at yogyakarta adi sutjipto international airport [23]. in this study, the data were obtained from apron movement control for 21 days for commercial aircraft landing and taking off. the number of aprons is 11 pieces. that research only makes queuing models without analyzing the queuing systemโ€™s performance. the following research was conducted by anggit ratnakusuma et al., related to the queuing system analysis at semarang ahmad yani international airport [24]. the data was obtained from apron movement control for seven days for commercial airplane landing and taking off. the number of aprons used at the airport is six (6) aprons. the data obtained has a poisson distribution. this research only makes queuing models without analyzing the queuing systemโ€™s performance. referring to the various studies above, this study will model the queuing system and analyze the existing queuing systemโ€™s performance of apron at juanda international airport. an analysis of the queuing system was conducted in several scenarios; they are normal conditions, a scenario if there is an increase in flight frequency, and a scenario if there is a reduction in the number of aprons because of certain exceptional conditions. it is hoped that this research will provide an objective assessment of apron performance as one of the key performance indicators for the service of juanda international airport. finally, the analysis results can be used as input to evaluate the terminal 3 construction projectโ€™s feasibility at juanda international airport. methods data collection this research was conducted at juanda international airport by observing apron movement control (amc) from aircraft movement activities. this observation is also carried out based on monitoring from the flightradar 24 application. it aims to observe aircraft holding in the sky near the airportโ€”international juanda surabaya and data correction. the plane holding location is carried out in the sky over the gresik area if it lands on the runway direction 10, as in figure 1. the sky above the eastern sea between java and madura islands lands on the runway at 28, as in figure 2. research time for data collection was conducted for seven consecutive days starting from monday, december 23, 2019, to sunday, december 29, 2019. analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 52 (a) (b) figure 1. flight holding area of (a) runway 10 and (b) runway 28 (source: google maps) the decision to land on runway direction 10 or direction 28 is determined from the windโ€™s direction that blows in the airport area. aircraft are required to land and take off against the wind blowing. when the wind blows from the east, the plane will land and take off from the runway direction 10, and this event often occurs during the dry season in indonesia. when the wind blows from the west, the plane will land and take off from the runway at 28, and this event often occurs during indonesiaโ€™s dry season. data collection was carried out in the apron, amounting to 51 units, observing the queue system, recording the aircraft that landed, then parked at the apron, then took off. the number of planes in and out of the apron is recorded every time with an interval of 1 minute, where each point is observed for 1 hour from 04.30 wib to 22.30 wib. furthermore, the researcher interviewed several air traffic controller employees of airnav indonesia about the airportโ€™s queuing system in general. this interview aims to add references or general knowledge about the queuing system at the studied airport because each airportโ€™s queuing system is different. this difference depends on the condition of the service facilities owned by each airport. queueing system analysis this research was conducted to measure the performance of the queue time for aircraft landing under normal conditions. assuming that security procedures are met, no obstacles can hinder the landing process, such as bad weather, technical airport operations, wind direction changes, and other factors. this aims to limit the research problem so that the discussion can be more focused on time. in carrying out this research, steps are used to run systematically and precisely according to the desired target. the research steps are presented in the flow chart of figure 3. figure 2. research flowchart and data processing from the flowchart in figure 3, some of the equations needed in the calculations to process the data that have been obtained are described as follows: analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 53 1. average rate amount of airplane calculate the average number of the plane landing (๐œ†) and the number of the plane taking off (๐œ‡), by equations (1) and (2) [25]. ๐œ† = average landing airplane time (1) ๐œ‡ = average takeoff plane time (2) 2. steady-state check performing steady-state checks with equation (3). ๐œŒ = ๐œ† ๐‘†๐œ‡ < 1 (3) by the number of servers or aprons (๐‘†) in use, the steady-state condition (๐œŒ) is said to be achieved if the conditions of the average number of the plane landing are more significant than the average number of the plane taking off, or it can be written as ๐œ† > ๐œ‡ or also ๐œŒ < 1 [26]. 3. kolmogorov-smirnov distribution fit test perform a distribution fittest. form a distribution on the landing data or take-off data with the kolmogorov-smirnov test using equation (4) with a significant level (ฮฑ) of 5%. ๐ท = ๐‘†๐‘ข๐‘|๐‘†(๐‘ฅ) โˆ’ ๐น๐‘œ (๐‘ฅ)| (4) with, ๐‘†๐‘ข๐‘ : the largest value limit used ๐‘†(๐‘ฅ) : cumulative distribution of sample data ๐น0 (๐‘ฅ) : the cumulative distribution of the hypothesized data data can be said to be poisson distributed when ๐ท < ๐ท โˆ— (๐›ผ). ๐ท โˆ— (๐›ผ) is obtained from the kolmogorov smirnov table [27]. 4. determining the queue structure there are four types of queuing structures; the selection of these structures can be determined based on the systemโ€™s queuing system to be studied. below is an explanation of the four queuing forms [28], [29]. (a) single-channel single-phase this structure is used when there is only one server serving and only one incoming and outgoing path, as shown in figure 4 [30]. figure 3. single-channel single-phase structure analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 54 (b) single-channel multi-phase this structure is used when multiple servers serve consecutively and only have one incoming and outgoing path, as shown in figure 5 [30]. figure 4. single-channel multi-phase structure (c) multi-channel single-phase this structure is used when two or more servers serve simultaneously and only have two or more incoming and outgoing paths, as shown in figure 6 [31]. figure 5. multi-channel single-phase structure this queue structure is suitable for this study. the airplane landing queue in the apron uses a multi-channel single phase, where there are 51 aprons (which represent multichannel), and there is only one queue phase, namely the runaway. (d) multi-channel multi-phase this structure is used when two or more servers serve simultaneously and sequentially and have two or more incoming and outgoing paths, as shown in figure 7 [31]. figure 6. multi-channel multi-phase structure 5. the use of kendall notation kendal notation is a notation that is now the global standard for queuing system models. a series of symbols and slashes describe the queuing process with notation as follows [32], [33]: (๐‘Ž/๐‘/๐‘) โˆถ (๐‘‘/๐‘’/๐‘“) the symbols ๐‘Ž, ๐‘, ๐‘, ๐‘‘, ๐‘’, and ๐‘“ are the queue modelโ€™s essential elements with characteristics shown in table 1. analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 55 table 1. kendall distribution description characteristics notation explanation arrival time distribution (a) and service time distribution (b) ๐‘€ markovian (or poisson arrivals or equivalently exponential interarrival or service time distribution) ๐ท deterministic ๐ธ๐‘˜ erlang ๐‘˜ type ๐บ๐ผ the general distribution of interarrival time ๐บ the general distribution of service time number of parallel server (๐‘) 1, 2, โ€ฆ , โˆž finite or infinite queue discipline (๐‘‘) fcfs the first one comes served first lcfs the last one comes served first siro random selection of services pq priority queue ps processor sharing gd general discipline maximum system capacity (๐‘’) 1, 2, โ€ฆ , โˆž finite or infinite size of the calling source (๐‘“) 1, 2, โ€ฆ , โˆž finite or infinite this study illustrates the airplane landing queueing system model using (m/m/51): (fcfs/โˆž/โˆž) uses poisson arrival with exponential service time distribution. there are 51 aprons as servers, and the queuing discipline is first come first service (fcfs). there are no limited customers on the entire system, and the size of the source from which customers arrive is infinite, too. 6. modeling and calculating the queueing system because this study uses a queuing system model (m/m/51): (fcfs/โˆž/โˆž), then to measure the performance of the queuing system using the formula for the model (m/m/s):(fcfs/โˆž/โˆž). this model helps determine how to analyze the system appropriately. in most queues found, usually, the data used is poisson distributed; this is because, in the queue, there is a period. here is the explanation [34]. ๏‚ท (๐‘ด/๐‘ด/๐‘บ): (๐‘ญ๐‘ช๐‘ญ๐‘บ/โˆž/โˆž) queue model in this model, the first sign (m) shows the arrival rate with a poisson distribution. the second sign (m) shows the exponential distribution of the service time [35]. queuing model is a poisson distributed service with a server capacity limit of (s) [36]. a reasonably simple model but has several assumptions that need to be fulfilled. this model has more than one number of aprons or servers so that the maximum number of individuals can be served simultaneously by as many servers (s) [37]. in this model, the mean plane landing rate (๐œ†) and the mean take-off rate (๐œ‡) follow the poisson distribution, and the service time ( 1 ๐œ‡ ) follow the exponential distribution. by supposing ๐‘Ÿ = ๐œ† / ๐œ‡ and ๐œŒ = ๐‘Ÿ / ๐‘†, the queuing system model for (m/m/s): (fcfs/โˆž/โˆž) is, using equation (5) to equation (9) [38]. ๐‘ƒ0 = {[โˆ‘ ( ๐œ† ๐œ‡ ) ๐‘› ๐‘›! ๐‘†โˆ’1 ๐‘›=0 ] + ( ๐œ† ๐œ‡ ) ๐‘† ๐‘†! (1 โˆ’ ๐œŒ) } โˆ’1 (5) analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 56 ๐ฟ๐‘ž = ( ๐œŒ ( ๐œ† ๐œ‡ ) ๐‘† ๐‘†! (1 โˆ’ ๐œŒ)2 ) ๐‘ƒ0 (6) ๐ฟ๐‘  = ๐ฟ๐‘ž + ๐œ† ๐œ‡ (7) ๐‘Š๐‘ž = ๐ฟ๐‘ž ๐œ† (8) ๐‘Š๐‘  = ๐‘Š๐‘ž + 1 ๐œ‡ (9) with, ๐‘ƒ0 : chance of not queuing ๐ฟ๐‘ž : estimated airplane in the queue (planes) ๐ฟ๐‘  : estimated airplane in the system (planes) ๐‘Š๐‘ž : estimated waiting time in the queue (hour) ๐‘Š๐‘  : estimated waiting time in the system (hour) results and discussion an overview of the airplane queuing system model at juanda international airport surabaya in general, the queuing system at juanda international airport surabaya only consists of a single-phase (because the airport only has one runway) with multi-channels (there are 51 active aprons). the illustration of the queuing system will be explained in figure 7. figure 7. simulation of aircraft queueing system model at juanda international airport surabaya a plane can be said to land if the airplane has successfully landed on the runway, then parked on the apron, then dropped the passengers. meanwhile, an airplane can take off when a passenger has boarded the plane, then exits the apron to the runway, and then the plane manages to fly after the wheels take off from the runway. steady-state condition check from the data that has been obtained after making observations for one week, the data will be looked at for the average rate with time intervals of one hour. after obtaining the average rate of the plane landing (๐œ†) and taking off (๐œ‡), then the steady-state value (๐œŒ) is obtained as follows. the average rate of landing airplanes: ๐œ† = 220 17 = 12.94 airplanes/hour analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 57 the average rate of take-off airplanes: ๐œ‡ = 188.85 17 = 11.10 airplanes/hour with steady-state size: ๐œŒ = ๐œ† ๐‘†๐œ‡ = 12.94 51 ร— 11.10 = 0.02 because ๐œŒ = 0.02 < 1, it can be said that the steady-state conditions are met for the queuing system at juanda airport. distribution suitability test with data after the queuing system at juanda international airport can be proven that the steady-state conditions are met, the next step is to test the data distributionโ€™s suitability. the data used will be checked whether the data is included in the poisson distribution or general distribution. test the distribution of the amount landing airplane: ๐ท = ๐‘†๐‘ข๐‘|๐‘†(๐‘ฅ) โˆ’ ๐น๐‘œ (๐‘ฅ)| = 0.304 ๐ท โˆ— (๐›ผ) = 0.803 because ๐ท < ๐ท โˆ— (๐›ผ) is fulfilled, the data for the number of planes that land is a poisson distribution. test the distribution of the amount take-off airplane: ๐ท = ๐‘†๐‘ข๐‘|๐‘†(๐‘ฅ) โˆ’ ๐น0(๐‘ฅ)| = 0.604 ๐ท โˆ— (๐›ผ) = 1.598 because ๐ท < ๐ท โˆ— (๐›ผ) is fulfilled, the data for the number of planes that take off is an exponential distribution. model of the regular queuing system for juanda international airport surabaya following the minister of transportation of the republic of indonesia number pm 89 years 2015, concerning flight delays as described in chapter ii section 3 and chapter v section 9 subsection 1. we can assume the queue time for aircraft at the airport apron is categorized as effective, quite effective, and less effective if it meets the following conditions as shown in table 2 as follows [39], [40]: table 2. performance category category ๐‘พ๐’’, ๐‘พ๐’” (hour) ๐‘ณ๐’’, ๐‘ณ๐’” (planes) effective < 0,5 < 3 quite effective < 0,5 > 3 0.5 โˆ’ 1 โ‰ค 3 less effective 0.5 โˆ’ 1 > 3 > 1 โ‰ฅ 1 after checking the steady-state conditions and testing the distribution of data on the airplane number that landed and the number of airplanes that take-off using the kolmogorov-smirnov compatibility test, it is known that the queuing system model for juanda international airport follows (m/m/51) : (fcfs/โˆž/โˆž). the queuing discipline in analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 58 this model includes first come first service (fcfs), where first come first will be served by the number of planes that land and the source of calls has no limit. the distribution test found that the data were poisson distributed with 51 aprons in use. by using the formula that has been presented, the results are obtained as follows. table 3. normal queue system no performance measure result 1 average rate amount of landing airplane (๐œ†) 12.94 planes/hour 2 average rate amount of takeoff airplane (๐œ‡) 11.10 planes/hour 3 chance of not queueing (๐‘ƒ0) 31.16 % 4 estimated airplane in queue (๐ฟ๐‘ž ) 1.2 planes 5 estimated airplane in system (๐ฟ๐‘  ) 2.36 planes 6 estimated waiting time in queue (๐‘Š๐‘ž ) 0.09 hour 7 estimated waiting time in system (๐‘Š๐‘  ) 0.18 hour the queuing system analysis in table 3, indicates that under normal conditions, the apron queuing system performance in juanda international airport surabaya is categorized as effective. queuing system scenario when there is a reduction in the number of aprons it was assumed that when there is a reduction in the number of aprons used. the duration of time spent serving aircraft landing and taking off was extended, from operating 17 hours a day to 24 hours a day. this is because to serve all flights with a reduced number of aprons, it is not enough to operate for the usual duration. it will take longer to service all scheduled flights. after running the scenario, the reduction of one apron, of which only 50 aprons were left in operation. the simulation results can be used as evaluation material for the management of juanda surabaya international airport if they want to use other aprons for purposes other than commercial plane operational activities. one example is when essential state guest planes, logistics, military, and emergencies land emergency at juanda international airport. table 4. queuing system simulation when there is a reduction in the number of aprons no performance measure result 1 average rate amount of landing airplane (๐œ†) 9.16 planes/hour 2 average rate amount of takeoff airplane (๐œ‡) 7.86 planes/hour 3 chance of not queueing (๐‘ƒ0) 31.16 % 4 estimated airplane in queue (๐ฟ๐‘ž ) 5.28 planes 5 estimated airplane in system (๐ฟ๐‘  ) 6.44 planes 6 estimated waiting time in queue (๐‘Š๐‘ž ) 0.58 hour 7 estimated waiting time in system (๐‘Š๐‘  ) 0.70 hour the queuing system analysis that simulates the reduction of one apron in table 4 indicates that in the reduced condition of one apron used at juanda international airport surabaya, the queuing system service performance is categorized as less effective. queuing system scenario when there is an increase in flight frequency the scenario of adding a landing or take-off flight schedule every day is carried out as an evaluation material for the management of juanda international airport in serving airlines that want to add new flight route schedules, both domestic and international analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 59 routes. this scenario is carried out to determine the extent to which the tolerance limit for the maximum addition of juanda international airportโ€™s performance in surabaya is still sufficiently effective to turn out to be less effective. thus, the average number of planes landing and taking off within 17 hours of airport operational time is the estimate obtained. therefore, the performance of increasing the number of flights will be measured as follows. increasing the number of flights one by one using software pom qm to obtain the maximum limit that juanda international airport surabaya to maintain reasonably effective service performance. the increase in the number of flights that can be done is only 9 flights. table 5. queuing system when there is increase 9 flight frequency no performance measure result 1 average rate amount of landing airplane (๐œ†) 12.41 planes/hour 2 average rate amount of takeoff airplane (๐œ‡) 10.57 planes/hour 3 chance of not queueing (๐‘ƒ0) 30.91 % 4 estimated airplane in queue (๐ฟ๐‘ž ) 4.33 planes 5 estimated airplane in system (๐ฟ๐‘  ) 5.50 planes 6 estimated waiting time in queue (๐‘Š๐‘ž ) 0.35 hour 7 estimated waiting time in system (๐‘Š๐‘  ) 0.44 hour the queuing system analysis in table 5 indicates that with the addition of 9 flight frequencies at juanda international airport surabaya, the queuing system service performance is still considered quite effective. to measure service performance, we added back the number of flight frequencies one by one. after the addition of more than 9 flights, the queue system service performance becomes overloaded. the queueing system performance indicated this changed from quite effective to less effective. the time for the aircraft to land becomes more delayed than before. overload at juanda international airport can occur when the additional 10 flight frequencies are added. this overload is obtained from the performance measurement results shown in table 6 as follows. table 6. queueing system when there is increase 10 flights frequency no performance measure result 1 average rate amount of landing airplane (๐œ‡) 12.35 planes/hour 2 average rate amount of takeoff airplane (๐œ‡) 10.51 planes/hour 3 chance of not queueing (๐‘ƒ0) 30.88 % 4 estimated airplane in queue (๐ฟ๐‘ž ) 7.97 planes 5 estimated airplane in system (๐ฟ๐‘  ) 9.14 planes 6 estimated waiting time in queue (๐‘Š๐‘ž ) 0.65 hour 7 estimated waiting time in system (๐‘Š๐‘  ) 0.74 hour the queuing system analysis in table 6 indicates that with 10 flight frequencies at juanda international airport surabaya, the queuing system service performance is categorized as less effective. discussion this research was conducted through observation at juanda international airport surabaya by the end of 2019 when the covid-19 pandemic virus had not yet hit analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 60 indonesia. the flight schedule was running normally; unlike today (2021), there was a pandemic covid-19 virus that made the government make a social restriction policy. this policy caused a decrease drastically in the number of flight frequencies so that the airport was very rarely even had almost no queue. in the data collection during the week conducted before the pandemic, the busy conditions of domestic and international flights at juanda international airport surabaya usually went on average the number of domestic flight arrivals as many as 200.86 flights/day or 201 flights/day and international flights as many as 19.14 flights/day or 20 flights/day. while the number of domestic flights departures is as many as 169.71 flights/day or 170 flights/day, the number of international flights departures is as many as 19.14 flights/day. the number of domestic and international airlines is 14 airlines. the performance of the queuing system in three scenarios was presented in the graph as shown as in figure 9 (the y-axis represents the number of planes) and figure 10 (the y-axis represents the waiting time in an hour): figure 8. comparison graph of queueing system waiting performance figure 9. comparison graph of queueing system time performance from figure 9 and figure 10, we can conclude that under normal conditions, the performance of the queue system is effective but is prone to turning less effective in the following two scenarios: ๏‚ท in the emergency or specific conditions, which must reduce an apron, although just only one apron is reduced, it will potentially decrease juanda international 0 2 4 6 8 10 normal condition reduction one apron increase 9 frequency increase 10 frequency queueing system waiting performance lq ls 0 0,2 0,4 0,6 0,8 normal condition reduction one apron increase 9 frequency increase 10 frequency queueing system time performance wq ws analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 61 airportโ€™s service performance to be less effective because it will cause long queues. ๏‚ท in the scenario if there were an additional 10 flights. in this scenario, if there is an increase in the number of airplane passengers, then the tolerance limit for the number of different flight routes allowed is only 9 flights. this number is not comparable with the many domestic and international airlines, including 14 airlines. it does not satisfy the airline because, of course, not all additional airline flight routes can be allowed. there will be a strict review to determine which airlines are allowed to add their flight routes. from the analysis above, so the decision of pt. angkasa pura 1 (perero) to build terminal 3 is suitable to improve airport performance quality in serving passengers and airlines. also, the number of passengers can be accommodated a lot so that the airlines will also have more frequent flights, which will increase income for pt. angkasa pura 1 (persero). in the future, research can be developed by examining airports that have more than one runway. because at the airport, other variables can affect the aircraft queuing system, namely the number of runways, so that the servants in the queuing system at the airport are the apron and the runway. conclusions the queuing system model used at juanda international airport is (m/m/51): (fcfs/โˆž/โˆž). in normal conditions, the queuing systemโ€™s performance at juanda international airport surabaya can be considered effective. but, it was prone to turning into less effective in reducing aprons, although only one apron. the tolerance limit for the number of additional flight routes allowed is only 9 flights. this tolerance limits relatively small compared to the potential increase in the number of airplane passengers every year. so the decision of pt. angkasa pura 1 (persero) to build terminal 3 is suitable to improve airport performance quality in serving passengers and airlines. the development of terminal 3 will make the queuing systemโ€™s service performance will be more effective. acknowledgments we would like to express our gratitude and many thanks to pt. angkasa pura 1 (persero) surabaya juanda international airport and airnav indonesia have supported data, information, and references for this researchโ€™s convenience. references [1] e. herlambang, โ€œjumlah bandara di indonesia, 20 paling sibuk!,โ€ pariwisata indonesia, 2020. [2] redaktur, โ€œpemprov jatim desak percepatan realisasi proyek t3 bandara juanda,โ€ juandaairport.com, 2018. [3] m. wang, โ€œapplication of the queuing theory in characterizing and optimizing the passenger flow at the airport security,โ€ j. appl. math. phys., vol. 5, no. 9, pp. 1620โ€“ 1628, 2017. [4] y. zhu, j. wang, y. chen, and y. wu, โ€œcalculation of takeoff and landing performance under different environments,โ€ int. j. mod. phys. conf. ser., vol. 42, p. analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 62 1660174, 2016. [5] lukiana, โ€œkonsumsi bahan bakar maksimum maskapai penerbangan lion air untuk memenuhi tingginya permintaan penerbangan domestik,โ€ war. ardhia, vol. 24, no. 1, pp. 52โ€“58, 2012. [6] c. setyarini and e. ahyudanari, โ€œanalysis of the effect of displaced runway holding position toward runway occupancy time and runway capacity (case study: juanda international airport),โ€ war. ardhia, vol. 43, no. 2, pp. 105โ€“116, 2017. [7] v. v. satanaryana, s. dawood, karthikeyan, and n. khan, โ€œapplication of queuing theory models for optimized service to air line,โ€ int. j. curr. res., vol. 7, no. 9, pp. 20544โ€“20547, 2015. [8] h. a. taha, operations research an introduction, 10th ed. london: pearson, 2017. [9] r. r. gilliam, โ€œan application of queueing theory to airport passenger security screening,โ€ interfaces (providence)., vol. 9, no. 4, pp. 117โ€“123, 1979. [10] n. jhala and p. bhathawala, โ€œapplication of queueing theory to airport related problems,โ€ glob. j. pure appl. math., vol. 13, no. 7, pp. 3863โ€“3868, 2017. [11] i. simaiakis and h. balakrishnan, โ€œa queuing model of the airport departure process,โ€ transp. sci., vol. 50, no. 1, pp. 94โ€“109, 2016. [12] y. liu, โ€œresearch on airport security based on virtual queuing theory,โ€ adv. intell. syst. res., vol. 147, no. ncce, pp. 7โ€“11, 2018. [13] n. a. ademoh, anosike, and e. nneka, โ€œqueuing modelling of air transport passengers of nnamdi azikiwe international airport abuja, nigeria using multiserver approach,โ€ vol. 21, no. 12, pp. 2326โ€“2338, 2014. [14] h. idris, j.-p. clarke, r. bhuva, and l. kang, โ€œqueuing model for taxi-out time estimation,โ€ air traffic control q., vol. 10, no. 1, pp. 1โ€“22, 2001. [15] d. fakinos, โ€œ the g/g/ 1 queueing system with a particular queue discipline,โ€ j. r. stat. soc. ser. b, vol. 43, no. 2, pp. 190โ€“196, 1981. [16] e. itoh and m. mitici, โ€œqueue based modeling of the aircraft arrival process at a single airport,โ€ aerospace, vol. 6, no. 10, pp. 1โ€“20, 2019. [17] a. selvi and r. matthew, โ€œa queueing system for airport buses,โ€ transp. res. part b methodol., vol. 7, no. 6, pp. 427โ€“434, 1983. [18] h. s. ahn, i. duenyas, and m. e. lewis, โ€œoptimal control of a two-stage tandem queueing system with flexible servers,โ€ probab. eng. informational sci., vol. 16, no. 4, pp. 453โ€“469, 2002. [19] h. kutohadi, j. samosir, d. nusraningrum, s. rafi, and s. sidjabat, โ€œanalysis of runway utilization at soekarno-hatta international airport,โ€ j. adv. res. dyn. control syst., vol. 12, no. 10s, pp. 3242โ€“3247, 2020. [20] k. g. zografos, m. a. stamatopoulos, and a. r. odoni, โ€œan analytical model for runway system capacity analysis,โ€ ifac proc. vol., vol. 30, no. 8, pp. 29โ€“34, 1997. [21] d.-u. kim, m.-s. jie, and w.-h. choi, โ€œairport simulation based on queuing model using arena,โ€ int. j. adv. sci. technol., vol. 115, pp. 125โ€“134, 2018. [22] h. b. thiagaraj and c. v. seshaiah, โ€œa queueing model for airport capacity and delay analysis,โ€ appl. math. sci., vol. 8, no. 72, pp. 3561โ€“3575, 2014. [23] a. n. sari, โ€œmodel sistem antrian pesawat terbang di bandara internasional adisutjipto yogyakarta,โ€ gamatika, vol. 2, no. 1, pp. 16โ€“24, 2011. [24] a. ratnakusuma, a. hoyyi, and sugito, โ€œanalisis sistem antrian pesawat terbang di bandara internasional ahmad yani semarang,โ€ gaussian, vol. 4, no. 4, pp. 725โ€“733, 2015. [25] m. f. faris, y. farida, d. c. r. novitasari, n. ulinnuha, and m. hafiyusholeh, โ€œimplementation of the open jackson queuing network to reduce waiting time,โ€ analysis of landing airplane queue systems at juanda international airport surabaya yuniar farida 63 mantik, vol. 6, no. 2, pp. 83โ€“92, 2020. [26] d. gross, j. f. shortle, j. m. thompson, and c. m. harris, fundamentals of queueing theory, 4th ed. new jersey: wiley, 2008. [27] g. n. p. martha, i. k. g. sukarsa, and i. p. e. n. kencana, โ€œanalisis sistem antrian pada loket pembayaran pt. pln (persero) area bali selatan rayon kuta,โ€ e-jurnal mat., vol. 1, no. 1, pp. 6โ€“11, 2012. [28] p. t. adeke, โ€œmodelling of queuing process at airport check-in system: a case study of manchester and leeds-bradford airports,โ€ niger. j. technol., vol. 37, no. 1, p. 35, 2018. [29] l. yang, s. yin, k. han, j. haddad, and m. hu, โ€œfundamental diagrams of airport surface traffic: models and applications,โ€ transp. res. part b methodol., vol. 106, pp. 29โ€“51, 2017. [30] h. brunceel and s. wittevrongel, โ€œanalysis of a discrete-time single server queue with an occasional extra server,โ€ perform. eval., vol. 116, no. november, pp. 119โ€“ 142, 2017. [31] d. dyatmika, o. sudana, and g. a. a. putri, โ€œuntethering the queue based on multichannel access ( mca ) technology at hospital radiology section,โ€ j. inf. syst. eng. bus. intell., vol. 5, no. 2, pp. 146โ€“155, 2019. [32] d. g. kendall, โ€œstochastic processes occurring in the theory of queues and their analysis by the method of the imbedded markov chain,โ€ ann. math. stat., vol. 24, no. 3, pp. 338โ€“354, 1953. [33] m. a. m. ferreira, m. andrade, j. a. filipe, and m. p. coelho, โ€œstatistical queuing theory with some applications,โ€ int. j latest trends fin. eco. sc., vol. 1, no. 4, pp. 190โ€“195, 2011. [34] r. aniyeri and r. nadar, โ€œpassengers queue analysis in international airports terminals in kerala using the multiphase queuing system,โ€ int. j. math. oper. res., vol. 12, no. 1, pp. 1โ€“30, 2018. [35] j. w. baek, y. h. bae, h. w. lee, and s. ahn, โ€œcontinuous-type (s, q)-inventory model with an attached m/m/1 queue and lost sales,โ€ perform. eval., vol. 125, pp. 68โ€“79, 2018. [36] a. t. al-sultan, โ€œsimulation and optimization for modeling the passengers check-in system at airport terminal,โ€ rev. integr. bus. econ. res., vol. 7, no. 1, pp. 44โ€“53, 2018. [37] k. mitchell and a. van de liefvoort, โ€œapproximation models of feed-forward g/g/1/n queueing networks with correlated arrivals,โ€ perform. eval., vol. 51, no. 2โ€“4, pp. 137โ€“152, 2003. [38] e. itoh and m. mitici, โ€œanalyzing tactical control strategies for aircraft arrivals at an airport using a queuing model,โ€ j. air transp. manag., vol. 89, no. june 2019, pp. 1โ€“ 13, 2020. [39] kemenhub, โ€œpenanganan keterlambatan penerbangan (delay management) pada badan usaha angkutan udara niaga berjadwal di indonesia,โ€ no. pm 89, pp. 1โ€“20, 2015. [40] a. susetyadi, โ€œwaktu tunggu take off dan landing pesawat udara pada runway bandar udara soekarno hatta,โ€ war. penelit. perhub., vol. 24, no. 6, pp. 559โ€“566, 2012. 6. reni damayanti automorfisme graf bintang dan graf lintasan reni tri damayanti mahasiswa pascasarjana jurusan matematika universitas brawijaya email: si_cerdazzz@rocketmail.com abstrak salah satu topik yang menarik untuk dikaji pada teori graf adalah tentang automorfisme graf. automorfisme pada suatu graf g adalah isomorfisme dari graf g ke g sendiri. dengan kata lain, automorfisme graf g merupakan suatu permutasi dari himpunan titik-titik v(g) atau sisi-sisi dari graf g, e(g) yang menghasilkan graf yang isomorfik dengan dirinya sendiri. jika ฯ• adalah suatu automorfisme dari g ke g dan v๏ฟฝ v(g) maka ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ntuk mencari automorfisme pada suatu graf, biasanya dilakukan dengan menentukan semua kemungkinan fungsi yang satu-satu, onto, dan isomorfisme dari himpunan titik pada graf tersebut. sehingga berdasarkan hal itu dapat diketahui dan diuraikan automorfisme graf bintang dan graf lintasan serta penjabarannya. berdasarkan hasil pembahasan, dapat diperoleh: (1) graf bintang-๏ฟฝ ( ๏ฟฝ,๏ฟฝ) memiliki ๏ฟฝ+1 titik, banyaknya automorfisme dari graf tersebut adalah ๏ฟฝ!. permutasinya ฮฑ adalah automorfisme yang harus mengawetkan derajat titik-titiknya, oleh karena itu permutasinya harus berbentuk ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ untuk setiap ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ. jika ฮฑ๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ= (๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโ€ฆ๏ฟฝ๏ฟฝ) fungsi bijektif maka ฮฑ๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ merupakan automorfisme; (2) dari graf lintasan ๏ฟฝ๏ฟฝ maka banyaknya automorfisme hanya ada 2 fungsi permutasi yang berbentuk: (a) untuk n genap: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ!, untuk n ganjil: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ%"๏ฟฝ๏ฟฝ#$๏ฟฝ % dan (b) ๏ฟฝ๏ฟฝ =๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ . kata kunci: graf bintang ๏ฟฝ ๏ฟฝ,๏ฟฝ , graf lintasan ๏ฟฝ๏ฟฝ, isomorfisme graf, automorfisme graf, dan grup simetri pendahuluan graf didefinisikan sebagai himpunan titik (vertek) yang tidak kosong dan himpunan garis atau sisi (edge) yang mungkin kosong. himpunan titik dari suatu graf g dinyatakan dengan v(g) dan himpunan sisi dinyatakan dengan e(g). salah satu topik yang menarik untuk dikaji pada teori graf adalah tentang automorfisme graf. automorfisme dari suatu graf g merupakan suatu permutasi dari himpunan titik-titik v(g) atau himpunan sisi-sisi dari graf g (e(g)). dengan kata lain, automorfisme dari suatu graf g adalah isomorfisme dari graf g ke dirinya sendiri, yaitu fungsi yang memetakan ke dirinya sendiri. pada bab ini akan dibahas mengenai automorfisme suatu graf pada graf bintang dan graf lintasan. pada graf bintang, teorema yang dibangun adalah (1) banyaknya fungsi permutasi yang automorfisme, (2) bentuk fungsi permutasi yang automorfisme yaitu titik v1๏ฟฝ &๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ yang selalu dipetakan ke dirinya sendiri sedangkan titik lainnya dapat dipetakan ke sebarang titik kecuali v1. sedangkan pada graf lintasan, teorema yang dibangun adalah banyaknya fungsi permutasi yang automorfisme dari graf ๏ฟฝ๏ฟฝ yaitu hanya 2 fungsi yang dibedakan berdasarkan banyak titik genap dan ganjil. kemudian mengetahui bahwa grup automorfisme dari graf bintang ๏ฟฝ,๏ฟฝ isomorfik dengan grup simetri '๏ฟฝ dan grup automorfisme dari graf lintasan ๏ฟฝ๏ฟฝ isomorfik dengan grup siklik orde-2 ๏ฟฝ(๏ฟฝ . graf lintasan dan graf bintang definisi 1. graf lintasan adalah graf yang terdiri dari sebuah lintasan tunggal. graf lintasan dengan ๏ฟฝ verteks dilambangkan oleh ๏ฟฝ๏ฟฝ. perhatikan bahwa ๏ฟฝ๏ฟฝ memiliki ๏ฟฝ-tepi, dan dapat diperoleh dari graf siklus )๏ฟฝ dengan menghapus sebuah sisi. contoh 1: 2p 3p 4p1p gambar 1. graf lintasan dari gambar 1. di atas, graf p1 hanya mempunyai satu titik, maka p1 tidak mempunyai sisi. pada graf p2 mempunyai dua titik dan satu sisi. pada graf p3 mempunyai tiga titik dan dua sisi. sedangkan, pada graf p4 mempunyai empat titik dan tiga sisi. jadi, penulis dapat menentukan beberapa ciri khusus dari graf lintasan ๏ฟฝ๏ฟฝadalah setiap titik ujung dan titik pangkal selalu berderajat 1 dan titik selain titik ujung dan titik pangkal selalu berderajat 2. reni damayanti 36 volume 2 no. 1 november 2011 definisi 2. suatu graf g lengkap partisi-๏ฟฝ adalah graf partisi-๏ฟฝ dengan himpunan-himpunan partisi &๏ฟฝ,&๏ฟฝ,โ€ฆ,&๏ฟฝ yang memiliki sifat tambahan yaitu jika * ๏ฟฝ &+ dan ๏ฟฝ ๏ฟฝ &,, . / maka *๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ0 . jika |&+| ๏ฟฝ+, kemudian graf ini dinotasikan dengan ๏ฟฝ2๏ฟฝ,2๏ฟฝ,โ€ฆ,2๏ฟฝ . (order pada bilangan 2๏ฟฝ,2๏ฟฝ,โ€ฆ ,2๏ฟฝ tidak penting.) ingat bahwa graf lengkap partisi-๏ฟฝ adalah lengkap jika dan hanya jika 2+ 1 untuk semua -, dalam hal ini adalah ๏ฟฝ. jika 2+ 4 untuk semua -, kemudian graf lengkap partisi-๏ฟฝ adalah tetap dan dinotasikan dengan ๏ฟฝ๏ฟฝ๏ฟฝ . maka, ๏ฟฝ๏ฟฝ๏ฟฝ 5 ๏ฟฝ. suatu graf bipartisi lengkap dengan himpunan partisi &๏ฟฝ dan &๏ฟฝ, dimana |&๏ฟฝ| 6 dan |&๏ฟฝ| ๏ฟฝ, kemudian dinotasikan dengan ๏ฟฝ6,๏ฟฝ . graf ๏ฟฝ1,๏ฟฝ disebut graf bintang. contoh 2: gambar 2 graf bipartisi definisi 3. dua buah graf g1 dan g2 dikatakan isomorfik jika terdapat pemetaan satu-satu ฯ• antara v(g1) pada v(g2) sedemikian hingjga misal *๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ jika dan hanya jika (ฯ•(u)ฯ•(v)) ๏ฟฝ e(g2). jika g1 isomorfis terhadap g2 dapat dikatakan bahwa g1 dan g2 saling isomorfik dan dapat ditulis g1 โ‰… g2. contoh 3: gambar 3. g1 isomorfik dengan g2 tetapi tidak isomorfik dengan g3 pemetaan ฯ•: v(g1) โ†’ v(g2) didefinisikan oleh: gambar 4. pemetaan satu-satu ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ *๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ *๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ *๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ7 *7 akan dibuktikan bahwa (v1,v2), (v1,v3), (v1,v4), (v2,v3), (v2,v4), (v3,v4)๏ฟฝ e(g1) jika dan hanya jika (ฯ•(v1),ฯ•(v2)), (ฯ•(v1),ฯ•(v3)), (ฯ•(v1),ฯ•(v4)), (ฯ•(v2),ฯ•(v3)), (ฯ•(v2),ฯ•(v4)), (ฯ•(v3),ฯ•(v4)) ๏ฟฝ e(g2). ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ*๏ฟฝ,*๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ*๏ฟฝ,*๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ7 ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ7 ๏ฟฝ ๏ฟฝ*๏ฟฝ,*7 ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ*๏ฟฝ,*๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ7 ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ7 ๏ฟฝ ๏ฟฝ*๏ฟฝ,*7 ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ7 ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ7 ๏ฟฝ ๏ฟฝ*๏ฟฝ,*7 ๏ฟฝ ๏ฟฝ๏ฟฝ0๏ฟฝ berdasarkan uraian diatas terbukti bahwa g1 โ‰… g2. definisi 4 automorfisme pada suatu graf g adalah isomorfisme dari graf g ke g sendiri. dengan kata lain automorfisme graf g merupakan suatu permutasi dari himpunan titik-titik v(g). jika ฯ• adalah suatu automorfisme dari g dan v๏ฟฝv(g) maka ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ . contoh 4: misal diberikan graf g seperti di bawah ini: gambar 5. graf g diberikan pemetaan ๏ฟฝ:&๏ฟฝ0 9 &๏ฟฝ0 , maka automorfisme yang mungkin dari graf g di atas adalah: g1 v5 v1 v3 v4 v2 v6 v7 v5 v1 v3 v4 v2 v6 v7 g2 g3 v3 v4 v2 v1 g2 u3 u4 u2 u1 g1 ฯ• v(g1) v(g2) v3 v4 v2 v1 v3 v4 v2 v1 2 1 3 4 automorfisme graf bintang dan graf lintasan jurnal cauchy โ€“ issn: 2086-0382 37 ๏ฟฝ๏ฟฝ1 1 ๏ฟฝ๏ฟฝ2 2 ๏ฟฝ๏ฟฝ3 3 ๏ฟฝ๏ฟฝ1 2 ๏ฟฝ๏ฟฝ2 3 ๏ฟฝ๏ฟฝ3 1 ๏ฟฝ๏ฟฝ1 3 ๏ฟฝ๏ฟฝ2 1 ๏ฟฝ๏ฟฝ3 2 ๏ฟฝ๏ฟฝ1 1 ๏ฟฝ๏ฟฝ2 3 ๏ฟฝ๏ฟฝ3 2 ๏ฟฝ๏ฟฝ1 1 ๏ฟฝ๏ฟฝ2 3 ๏ฟฝ๏ฟฝ3 2 ๏ฟฝ๏ฟฝ1 1 ๏ฟฝ๏ฟฝ2 3 ๏ฟฝ๏ฟฝ3 2 hasil dan pembahasan berikut ini ditentukan banyaknya automorfisme dari masing-masing graf ke dirinya sendiri berdasarkan bentuk-bentuk permutasi yang mengacu pada pemetaan titiknya yang memenuhi fungsi tersebut, dengan pola sebagai berikut: graf bintang pada graf bintang banyaknya automorfisme yang mengacu pada pemetaan titiknya sebagai berikut: dari penjelasan tentang automorfisme pada graf bintang berdasarkan bentuk-bentuk permutasi yang mengacu pada pemetaan titiknya yang memenuhi fungsi tersebut, maka dapat dibuat tabel banyaknya automorfisme dari kemungkinan banyak fungsi tersebut melalui tempat kedudukan titik-titiknya dengan bentuk fungsi ๏ฟฝ1 ๏ฟฝโ€ฆโ€ฆโ€ฆ <=>=? ๏ฟฝ : tabel 2 banyaknya automorfisme melalui bentuk permutasi titiknya dari ๏ฟฝ,๏ฟฝ graf bintang ( ๏ฟฝ,๏ฟฝ) ฯƒ fungsi berbentuk ๏ฟฝโ€ฆโ€ฆโ€ฆ <=>=?๏ฟฝ ๏ฟฝ,๏ฟฝ 1 1 1! ๏ฟฝ,๏ฟฝ 2 2 ยท 1 2! ๏ฟฝ,7 6 3 ยท 2 ยท 1 3! ๏ฟฝ,a 24 4 ยท 3 ยท 2 ยท 1 4! ๏ฟฝ,c 120 5 ยท 4 ยท 3 ยท 2 ยท 1 5! โ€ฆ โ€ฆ โ€ฆ ๏ฟฝ,๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ e 1 ๏ฟฝ๏ฟฝ e2 โ€ฆ2ยท 1 ๏ฟฝ! tabel 1. banyaknya automorfisme dari g(k๏ฟฝ,g) โ†’ g(k๏ฟฝ,g) graf bintang automorfisme banyaknya automorfisme ๏ฟฝ,๏ฟฝ ฮฑ = (1)(2)(3) 1 2 ฮฑ = (1)(. .) 1 ๏ฟฝ,๏ฟฝ ฮฑ = (1)(2)(3)(4) 1 6 ฮฑ = (1)( . . . ) 2 ฮฑ = (1)( . )( . . ) 3 ๏ฟฝ,7 ฮฑ = (1)(2)(3)(4)(5) 1 24 ฮฑ = (1)( . . . . ) 6 ฮฑ = (1) (.) (. . .) 8 ฮฑ = (1)( . )( . )( . . ) 6 ฮฑ = (1)( . . )( . . ) 3 ๏ฟฝ,a ฮฑ = (1)(2)(3)(4)(5)(6) 1 120 ฮฑ = (1)( . . . . . ) 24 ฮฑ = (1)( . )( . . . . ) 30 ฮฑ = (1)( . )( . )( . . . ) 20 ฮฑ = (1)( . )( . )( . )( . . ) 10 ฮฑ = (1)( . )( . . )( . . ) 15 ฮฑ = (1)( . . )( . . . ) 20 ๏ฟฝ,c ฮฑ = (1)( . . . . . .) 120 120 atau dapat ditulis ฯ†= (1) (2) (3) atau dapat ditulis ฯ†= (1 2 3) atau dapat ditulis ฯ†= (1 3 2) atau dapat ditulis ฯ†= (1) (2 3) atau dapat ditulis ฯ†= (2) (1 3) atau dapat ditulis ฯ†= (3) (1 2) reni damayanti 38 volume 2 no. 1 november 2011 dari uraian automorfisme graf bintang di atas maka berdasarkan banyak titik dapat dibuat teorema tentang banyak automorfisme dari graf ๏ฟฝ,๏ฟฝ untuk ๏ฟฝ bilangan asli yang fungsinya berbentuk (1) ๏ฟฝโ€ฆโ€ฆโ€ฆ <=>=? ๏ฟฝ , yaitu sebagai berikut: teorema 1 graf bintang-๏ฟฝ ( ๏ฟฝ,๏ฟฝ) memiliki ๏ฟฝ+1 titik. banyaknya automorfisme dari graf tersebut adalah ๏ฟฝ!. diketahui: misalkan ๏ฟฝ adalah automorfisme dari ๏ฟฝ,๏ฟฝ ke dirinya sendiri. akan dibuktikan: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ dengan i . 1 dan 4 . 1. bukti graf ๏ฟฝ,๏ฟฝ memiliki ๏ฟฝ m 1 titik. misalkan titik-titiknya adalah &๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ,โ€ฆ ,๏ฟฝ๏ฟฝ ๏ฟฝ . misalkan ๏ฟฝ adalah automorfisme dari ๏ฟฝ,๏ฟฝ ke dirinya sendiri. karena ฮฑ(๏ฟฝ๏ฟฝ) = ๏ฟฝ๏ฟฝ, yang berarti mengawetkan derajat ๏ฟฝ๏ฟฝ itu sendiri, sehingga banyaknya titik yang dapat dipermutasikan adalah sebanyak ๏ฟฝ titik, maka permutasinya dapat dirumuskan sebanyak ๏ฟฝ!. selanjutnya, akan ditunjukkan bahwa ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ. karena derajat titik ๏ฟฝ๏ฟฝ 1 sehingga ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ juga mengawetkan derajat titiknya. andaikan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ dengan i . 1 dan ๏ฟฝ๏ฟฝ ๏ฟฝn ๏ฟฝi . 4 . 6 . gambar 6. bintang-๏ฟฝ ( ๏ฟฝ,๏ฟฝ) ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ,๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝn o ๏ฟฝ๏ฟฝ ๏ฟฝ,๏ฟฝ jadi, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ maka ๏ฟฝ bukan automorfisme. sehingga, pengandaian i . 1 salah. jadi, seharusnya pengandaian menjadi i 1 atau ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ. dari teorema 1 di atas, maka dapat diturunkan teorema sebagai berikut: teorema 2 grup automorfisme dari graf bintang ๏ฟฝ,๏ฟฝisomorfik dengan grup simetri '๏ฟฝ atau ๏ฟฝ'๏ฟฝ,p 5 ๏ฟฝq๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ,p๏ฟฝ. bukti akan ditunjukkan ada korespondensi satusatu dari anggota ๏ฟฝ'๏ฟฝ,p pada ๏ฟฝq๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ,p๏ฟฝ. buat pemetaan r dari '๏ฟฝ ke q๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ dengan aturan sebagai berikut (contoh dapat dilihat pada lampiran): jika๏ฟฝ ๏ฟฝ '๏ฟฝdengan ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ โ€ฆ ๏ฟฝs ,1 t u t ๏ฟฝ maka โ†“ โ†“ โ†“ โ†“ r๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝv$ ๏ฟฝ ๏ฟฝv๏ฟฝ ๏ฟฝ ๏ฟฝvw ๏ฟฝ โ€ฆ ๏ฟฝvx ๏ฟฝ๏ฟฝ karena ๏ฟฝ dan r๏ฟฝ๏ฟฝ korespondensinya sama, maka bentuk permutasinya sama. dapat ditunjukkan bahwa r bersifat bijektif dan homomorfisme. jika y,z ๏ฟฝ '๏ฟฝ dan r๏ฟฝy ,r๏ฟฝz ๏ฟฝ q๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ maka y 9 r๏ฟฝy z 9 r๏ฟฝz jadi, r๏ฟฝyz r๏ฟฝy r๏ฟฝz dengan demikian r adalah isomorfisme. jadi, ๏ฟฝ'๏ฟฝ,p 5 ๏ฟฝq๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ,p๏ฟฝ terbukti. graf lintasan pada graf lintasan banyaknya automorfisme yang mengacu pada pemetaan titiknya sebagai berikut: tabel 3 banyaknya automorfisme dari g(pn) โ†’ g(pn) graf lintasan automorfisme banyaknya automorfisme p2 ฮฒ = (1)(2) 1 2 ฮฒ =(1 2) 1 p3 ฮฒ =(1)(2)(3) 1 2 ฮฒ =(1 3)(2) 1 p4 ฮฒ =(1)(2)(3)(4) 1 2 ฮฒ =(1 4)(2 3) 1 p5 ฮฒ =(1)(2)(3)(4)(5) 1 2 ฮฒ =(1 5)(2 4)(3) 1 p6 ฮฒ =(1)(2)(3)(4)(5)(6) 1 2 ฮฒ = (1 6)(2 5)(34) 1 dari tabel 3 di atas, maka dapat dibuat bentuk umum dari banyaknya fungsi permutasi yang automorfisme sebagai berikut: 1 ๏ฟฝ๏ฟฝ automorfisme graf bintang dan graf lintasan jurnal cauchy โ€“ issn: 2086-0382 39 tabel 4. bentuk umum automorfisme dari g(pn) โ†’ g(pn) berdasarkan banyak titik genap dan ganjil ๏ฟฝgenap ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ sebanyak 1 ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ% ๏ฟฝganjil ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ sebanyak 1 ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ%"๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ % dari uraian automorfisme graf lintasan di atas maka berdasarkan banyak titik dapat dibuat teorema tentang banyak automorfisme dari graf pn, yaitu sebagai berikut: teorema 3 dari graf lintasan ๏ฟฝ๏ฟฝ maka banyaknya automorfisme hanya ada 2 fungsi yang berbentuk: a. untuk n genap, permutasinya berbentuk: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ! dan ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ b. untuk n ganjil, permutasinya berbentuk: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ%"๏ฟฝ๏ฟฝ#$๏ฟฝ % dan ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ bukti a. untuk n genap, permutasinya berbentuk: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ% sehingga, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ โ†’ mengawetkan derajat titik 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ†’ mengawetkan derajat titik 2 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ†’ mengawetkan derajat titik 2 โ†“ โ†“ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ! ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ! โ†’ mengawetkan derajat titik 2 โ†“ โ†“ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ 2 โ†’ mengawetkan derajat titik 2 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ 1 โ†’ mengawetkan derajat titik 1 karena graf lintasan (๏ฟฝ๏ฟฝ) ini jumlah titiknya genap, maka ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ sehingga, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ sehingga, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ [๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ!,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ!\ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ sehingga, ๏ฟฝ[๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ!\ [๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ!,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ!\ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ! ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ! ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ begitu pula untuk ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ sehingga, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ jadi,๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ! terbukti automorfisme. selanjutya, untuk fungsi identitas tidak perlu ditunjukkan karena sudah jelas automorfisme. b. untuk n ganjil, permutasinya berbentuk: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ%"๏ฟฝ๏ฟฝ#$๏ฟฝ % sehingga, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ โ†’ mengawetkan derajat titik 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ†’ mengawetkan derajat titik 2 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ†’ mengawetkan derajat titik 2 โ†“ โ†“ ๏ฟฝ"๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ% ๏ฟฝ"๏ฟฝ๏ฟฝ#$๏ฟฝ % โ†’ mengawetkan derajat titik 2 โ†“ โ†“ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ 2โ†’ mengawetkan derajat titik 2 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ 1 โ†’ mengawetkan derajat titik 1 maka, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ sehingga, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ sehingga,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ["๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ%\ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ sehingga, ๏ฟฝ["๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ%\ reni damayanti 40 volume 2 no. 1 november 2011 ]๏ฟฝ[๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ,๏ฟฝ"๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ%\^ "๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ% ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ begitu pula untuk ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ sehingga, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ jadi, ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ%"๏ฟฝ๏ฟฝ#$๏ฟฝ % adalah automorfisme. jadi, berdasarkan pada bagian a dan b maka teorema terbukti benar. setelah mengetahui banyaknya automorfisme graf lintasan (๏ฟฝ๏ฟฝ) hanya ada 2 fungsi yaitu yang berbentuk: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ dan ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ! untuk ๏ฟฝ genap ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ%"๏ฟฝ๏ฟฝ#$๏ฟฝ % untuk ๏ฟฝ ganjil, dari teorema 3 di atas, maka dapat diturunkan teorema sebagai berikut: teorema 4 grup automorfisme dari graf lintasan ๏ฟฝ๏ฟฝisomorfik dengan grup siklik orde-2 ๏ฟฝ(๏ฟฝ atau ๏ฟฝ(๏ฟฝ,p 5 ๏ฟฝ๏ฟฝ๏ฟฝ,p . bukti misalkan ๏ฟฝ(๏ฟฝ,p 5 ๏ฟฝ๏ฟฝ๏ฟฝ,p . akan ditunjukkan ada korespondensi satusatu dari anggota ๏ฟฝ(๏ฟฝ,p pada ๏ฟฝq๏ฟฝ๏ฟฝ๏ฟฝ ,p . misalkan (๏ฟฝ = {ฯ„๏ฟฝ,ฯ„๏ฟฝ} dan q๏ฟฝ๏ฟฝ๏ฟฝ `a๏ฟฝ,a๏ฟฝb. selanjutnya, anggota (๏ฟฝ dikorespondensikan satu-satu pada titik-titik dari ๏ฟฝ๏ฟฝ sebagai berikut: ฯ„๏ฟฝ~a๏ฟฝ ฯ„๏ฟฝ~a๏ฟฝ untuk ๏ฟฝ genap maupun ๏ฟฝ ganjil karena dari teorema 3 grup automorfisme graf lintasan ๏ฟฝ๏ฟฝ dan grup siklik orde-2 ๏ฟฝ(๏ฟฝ adalah 2, jadi ๏ฟฝ๏ฟฝ๏ฟฝ,p 5 ๏ฟฝ(๏ฟฝ,p . selanjutnya, untuk fungsi identitas tidak perlu ditunjukkan karena sudah jelas automorfisme. penutup dari hasil dan pembahasan, secara umum dapat disimpulkan bahwa: 1. graf bintang-๏ฟฝ( ๏ฟฝ,๏ฟฝ) memiliki ๏ฟฝ+1 titik. banyaknya automorfisme dari graf tersebut adalah ๏ฟฝ!. permutasinya ฮฑ adalah automorfisme yang harus mengawetkan derajat titik-titiknya, oleh karena itu permutasinya harus berbentuk ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ untuk setiap ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ,๏ฟฝ . 2. dari graf lintasan ๏ฟฝ๏ฟฝ maka banyaknya automorfisme hanya ada 2 fungsi yang berbentuk: a. untuk n genap, permutasinya berbentuk: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ! dan ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ b. untuk n ganjil, permutasinya berbentuk: ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ "๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ#$๏ฟฝ ๏ฟฝ%"๏ฟฝ๏ฟฝ#$๏ฟฝ % dan ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ โ€ฆ๏ฟฝ๏ฟฝ๏ฟฝ 3. grup automorfisme dari graf bintang ๏ฟฝ,๏ฟฝ isomorfik dengan grup simetri '๏ฟฝ atau ๏ฟฝ'๏ฟฝ,p 5 ๏ฟฝq๏ฟฝ ๏ฟฝ,๏ฟฝ๏ฟฝ,p๏ฟฝ. 4. grup automorfisme dari graf lintasan ๏ฟฝ๏ฟฝ isomorfik dengan grup siklik orde-2 ๏ฟฝ(๏ฟฝ atau ๏ฟฝ(๏ฟฝ,p 5 ๏ฟฝ๏ฟฝ๏ฟฝ,p . daftar pustaka [1] wilson, r.j. dan watkins, j. j. 1990, graphs an introductory approach, canada: john wiley and sons, inc. [2] chartrand, gery dan lesniak, linda, 1986, graphs and digraphs second edition, hal. 5, 10, 250, california: a division of wadsworth, inc. cauchy jurnal matematika murni dan aplikasi volume 7, issue 3, november 2022 issn : 2086-0382 e-issn : 2477-3344 publication etics cauchy: jurnal matematika murni dan aplikasi is a peer-reviewed electronic national journal. this statement clarifies ethical behaviour of all parties involved in the act of publishing an article in this journal, including the author, the chief editor, the editorial board, the peer-reviewed and the publisher (mathematics department of maulana malik ibrahim state islamic university of malang). this statement is based on copeโ€™s best practice guidelines for journal editors. ethical guideline for journal publication the publication of an article in a peer-reviewed cauchy is an essential building block in the development of a coherent and respected network of knowledge. it is a direct reflection of the quality of the work of the authors and the institutions that support them. peer-reviewed articles support and embody the scientific method. it is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer, the publisher and the society. as publisher of pure and applied mathematics journal, we take our duties to back up over all stages of publishing seriously and we recognize our ethical and other responsibilities. we are committed to ensuring that advertising, reprint or other commercial revenue has no impact or influence on editorial decisions. publication decisions the editor of cauchy is responsible for deciding which of the articles submitted to the journal should be published. the validation of the work in question and its importance to researchers and readers must always drive such decisions. the editors may be guided by the policies of the journal's editorial board and constrained by such legal requirements as shall then be in force regarding libel, copyright infringement and plagiarism. the editors may confer with other editors or reviewers in making this decision. fair play an editor at any time evaluates manuscripts for their intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the authors. confidentiality the editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher, as appropriate. any manuscripts received for review must be treated as confidential documents. they must not be shown to or discussed with others except as authorized by the editor. disclosure and conflicts of interest unpublished materials disclosed in a submitted manuscript must not be used in an editor's own research without the express written consent of the author. cauchy jurnal matematika murni dan aplikasi volume 7, issue 3, november 2022 issn : 2086-0382 e-issn : 2477-3344 publication etics contribution to editorial decisions peer review assists the editor in making editorial decisions and through the editorial communications with the author may also assist the author in improving the paper. promptness any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse himself from the review process. standards of objectivity reviews should be conducted objectively. personal criticism of the author is inappropriate. referees should express their views clearly with supporting arguments. acknowledgement of sources reviewers should identify relevant published work that has not been cited by the authors. any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. a reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge. disclosure and conflict of interest privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers. reporting standards authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance. underlying data should be represented accurately in the paper. a paper should contain sufficient detail and references to permit others to replicate the work. fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. data access and retention authors are asked to provide the raw data in connection with a paper for editorial review and should be prepared to provide public access to such data (consistent with the alpspstm statement on data and databases), if practicable, and should in any event be prepared to retain such data for a reasonable time after publication. originality and plagiarism the authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted. cauchy jurnal matematika murni dan aplikasi volume 7, issue 3, november 2022 issn : 2086-0382 e-issn : 2477-3344 publication etics multiple, redundant or concurrent publication an author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. acknowledgement of sources proper acknowledgment of the work of others must always be given. authors should cite publications that have been influential in determining the nature of the reported work. authorship of the paper authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. all those who have made significant contributions should be listed as co-authors. where there are others who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. the corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. hazards and human or animal subjects if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. disclosure and conflicts of interest all authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. all sources of financial support for the project should be disclosed. fundamental errors in published works when an author discovers a significant error or inaccuracy in his/her own published work, it is the authorโ€™s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. cauchy jurnal matematika murni dan aplikasi volume 7, issue 3, november 2022 issn : 2086-0382 e-issn : 2477-3344 acknowledgment to reviewers in this issue contributions and valuable comments of the following reviewers in this issue was very appreciated bety hayat susanti, politeknik siber dan sandi negara, indonesia dian savitri, universitas negeri surabaya, indonesia meta kallista, universitas telkom, indonesia dani suandi, universitas bina nusantara, bandung, indonesia anwar fitrianto, department of statistics, ipb university, indonesia subanar seno, gadjah mada university, indonesia arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia sri harini, universitas islam negeri maulana malik ibrahim malang, indonesia heni widayani, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia corina karim, brawijaya uiversity fachrur rozi, universitas islam negeri maulana malik ibrahim malang, indonesia javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740595') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740557') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740556') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740541') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/736347') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/5964') on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 483-492 p-issn: 2086-0382; e-issn: 2477-3344 submitted: december 20, 2021 reviewed: march 07, 2022 accepted: march 28, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.14434 on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari*, mohamad febry andrean mathematics study program, faculty of science and technology, maulana malik ibrahim state islamic university malang, indonesia email: juhari@uin-malang.ac.id* abstract elliptic curve cryptography includes symmetric key cryptography systems that base their security on mathematical problems of elliptic curves. there are several ways that can be used to define the elliptic curve equation that depends on the infinite field used, one of which is the infinite field prima (fp where p > 3). elliptic curve cryptography can be used for multiple protocol purposes, digital signatures, and encryption schemes. the purpose of this study is to determine the process of hiding encrypted messages using the noiseless steganography method as well as the generation of private keys and public keys and the process of verifying the validity of the elliptic curves cryptography digital signature algorithm (ecdsa). the result of this thesis is that a line graph is obtained that store or hides a message using the steganography method and a message authenticity from the process of key generation and verification of validity using the ecdsa method. by selecting three samples consisting of one test sample and two differentiating samples, a line graph, an md5 hash value, and a value at the point are obtained m(r, s) different. successively obtained values m(r, s) to message โ€œmatematika 2018โ€, โ€œmatematika 2018โ€, and โ€œ2018 matematikaโ€ are m(94,67), m(15,17), and m(9,16). the discussion in this thesis only covers the elliptic curves on prime finite field. so, for the next thesis, the next researcher can do a discussion about the elliptic curve on the finite field (f2m ) or the application of elliptic curve cryptography and other steganography methods. keywords: cryptography; steganography; algorithm; elliptic curve; digital signature introduction the form of communication in this era has gone through several stages of development. this can be clearly seen from the way people use various digital devices as a means of communication. thanks to digital communication devices, people can communicate remotely through voice, text, images, and video. different types of messages sent only to http://dx.doi.org/10.18860/ca.v7i3.14434 mailto:juhari@uin-malang.ac.id* on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 484 certain parties are confidential. therefore, in sending a message or information, it is necessary to pay attention to its authenticity or authenticity so that the message you want to convey is received by the right person an algorithm is needed to maintain the authenticity of the message or information, namely elliptic curves cryptography digital signature algorithm [1], [2]. a cryptographic value that depends on the message body and the sender of the message is called a digital signature or digital signature. digital signatures generate different signatures on each document. it is a digital signature taken from the document itself [3]. basically, the use of digital signature functions the same as signatures in printed documents, namely as a process for authentication [4]. the use of a digital signature combines two cryptographic algorithms at once, namely the first one-way hash function algorithm that will produce a message digest, and the second algorithm is the public key algorithm used to encrypt the message digest. a hash function is a function that accepts an arbitrary-length string input and then compresses it into a fixed-sized message digest [5]. one of the one-way hash functions used is md5 (message digest 5) which is an improvement over md4 [6]. broadly speaking, md5 manufacturing has four steps, namely the addition of bits of the blocker, the addition of the original message length value, initialization of the md buffer, and message processing [7]. the public key algorithm in its implementation uses a pair of keys that are a public key that can be deployed, and a private key known to the owner only. elliptic curve cryptography (ecc) is cryptography that operates on elliptic curve domains. in the process of working on cryptographic algorithms, elliptic curves require mathematical concepts, namely abstract algebra including group theory, rings, and fields [8]. in addition to abstract algebraic concepts, there is a theory of numbers, especially in the modular concept of arithmetic. in the application of cryptography, one of them is the elliptic curve digital signature algorithm or elliptic curve digital signature algorithm which is based on the elgamal signature algorithm. the result of this algorithm is in the form of the authenticity of a message m. the method for keeping a message confidential is not just by using cryptography [9]. another technique that can be used besides cryptography is steganography [10]. steganography can be viewed as a complement to cryptography because they complement each other. the security of a message can be improved by combining cryptography and steganography [11]. in general, the technique used is to encrypt messages first with cryptographic algorithms, then encrypted messages are hidden in other media (voice, text, video, and images) by steganography methods [12]. if the concealment of the message on conventional steganography can degrade the quality of the cover, then the concealment of the message on the noiseless steganography or nostega methods does not cause damage. some research on elliptic curve cryptography has been done by annisa hardiningsih hr, creation and verification of digital signatures using the md5 hash function and the rsa algorithm cryptography on a document. the results show that each electronic document produces a different signature, even though it is signed by the same person and electronic documents that have not changed their contents result in the decryption value of the digital signature and message digest modulo n of the same value [13]. in previous studies has been discussed related elliptic curve cryptography and is given a simple example of the use of elliptic curve cryptography in the elgamal encoding process to make it easier to understand [14]. the study only discussed the application of elliptic curve cryptography to the elgamal encoding process only and was limited to finite fields fp. on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 485 in previous studies discusses the level of security and performance of cryptographic algorithms elliptic curves cryptography digital signature algorithm (ecdsa) or algorithms rivest-shamir-adleman (rsa) [15]. so that this research will be carried out a combination of cryptography and steganography methods without the need for a cover to hide the message. the steganography method used is noiseless steganography (nostega) and the cryptographic method used is the elliptic curves cryptography digital signature algorithm (ecdsa). method the stages of this study consist of five steps. the steps are as follows: 1. represents message ๐‘€ into 8-bit ascii code. 2. perform a message concealment using the steganography method. 3. determining the equation of an elliptic curve on a primed finite field ๐น๐‘. 4. define elements of an ellipse group a. calculating the modulo squared residual value ๐‘. b. comparing it with the value of ๐‘ฆ2 = ๐‘ฅ3 + ๐‘Ž๐‘ฅ + ๐‘(๐‘š๐‘œ๐‘‘ ๐‘). c. specifying values ๐‘ƒ(๐‘ฅ, ๐‘ฆ) on an elliptic curve as a generator of the elliptic group. d. determining a base point ๐ต(๐‘ฅ, ๐‘ฆ) selected from the ellipse group. 5. determining the elliptic curve algorithm using the elliptic curves cryptography digital signature algorithm a. performs the process of generating the public key and private key of the elliptic curves cryptography digital signature algorithm. b. perform the signature generation process of elliptic curves cryptography digital signature algorithm. c. verify the validity of the elliptic curves cryptography digital signature algorithm signature. results and discussion application of steganography method to a message change a message ๐‘€ = โ€ matematika 2018โ€ to a binary representation (each character is converted into an 8-bit ascii code) to 01001101 01100001 01110100 01100101 01101101 01100001 01110100 01101001 01101011 01100001 00100000 00110010 00110000 00110001 00111000 next, it will be converted back the above bit groups to decimal values 77 97 116 101 109 97 116 105 107 97 32 50 48 49 56 then a graph will be made using the decimal value above, for example, the value states the number of covid-19 cases in pasuruan regency. on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 486 picture 1. line graph that hides messages โ€œmatematika 2018โ€ elliptic curve equation in primed finite field ๐‘ญ๐’‘ for example, given ๐บ๐น(97) and selected ๐‘Ž = 1 and ๐‘ = 3 with ๐‘Ž and ๐‘ fulfill 4(1)3 + 27(3)2 = 247 โ‰ข 0 (๐‘š๐‘œ๐‘‘ 97), so that the elliptic curve equation is obtained [16]: ๐บ๐น(97): ๐‘ฆ2 = ๐‘ฅ3 + ๐‘ฅ + 3 to determine the points in an elliptic curve ๐บ๐น(97), using the method of searching the set of modulo quadratic residues. that is by looking for all elements of the modulo 97 quadratic residual set annotated with ๐‘„๐‘…97, using all the elements of the set ๐บ๐น(97) as a ๐‘ฆpoint that is then squared, and the result of the square of the ๐‘ฆ point is in modulo with 97, then the set is obtained ๐‘„๐‘…(97). modulo prima elliptic group elements ๐‘ฎ๐‘ญ(๐Ÿ—๐Ÿ•) determined all points ๐‘ƒ(๐‘ฅ, ๐‘ฆ) on an elliptic curve ๐‘ฆ2 โ‰ก ๐‘ฅ3 + ๐‘ฅ + 3 (๐‘š๐‘œ๐‘‘ 97) by ๐‘ฅ and ๐‘ฆ equation side ๐บ๐น(97). then it is known the element inside ๐บ๐น(97) is {0, 1, 2, โ€ฆ , 96}. performed calculations for all points on the curve ๐‘ฆ2 by substituting elements ๐บ๐น(97) elliptic curve equation. a. find for modulo quadratic residues ๐Ÿ—๐Ÿ•(๐‘ธ๐‘น๐Ÿ—๐Ÿ•) table 1. modulo quadratic residue 97 ๐’š โˆˆ ๐‘ฎ๐‘ญ๐Ÿ—๐Ÿ• ๐’š ๐Ÿ(๐’Ž๐’๐’… ๐Ÿ—๐Ÿ•) ๐‘ธ๐‘น๐Ÿ—๐Ÿ• 0 y2(mod 97) 0 1 y2(mod 97) 1 2 y2(mod 97) 4 3 y2(mod 97) 9 โ‹ฎ โ‹ฎ โ‹ฎ 93 y2(mod 97) 16 94 y2(mod 97) 9 95 y2(mod 97) 4 96 y2(mod 97) 1 on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 487 b. determining the value of ๐’š๐Ÿ โ‰ก ๐’™๐Ÿ‘ + ๐’™ + ๐Ÿ‘ (๐’Ž๐’๐’… ๐Ÿ—๐Ÿ•) ๐‘ฆ2 is the value of the predetermined elliptic curve equation in table 1. by substituting each value ๐‘ฅ โˆˆ ๐บ๐น97 to equations ๐‘ฆ 2 โ‰ก ๐‘ฅ3 + ๐‘ฅ + 3 (๐‘š๐‘œ๐‘‘ 97) then the results are obtained in table 2. table 2. value y2 โ‰ก x3 + x + 3 (mod 97) ๐’™ โˆˆ ๐‘ฎ๐‘ญ๐Ÿ—๐Ÿ• ๐’š ๐Ÿ 0 3 1 5 2 13 โ‹ฎ โ‹ฎ 94 70 95 90 96 1 c. determining sequential pairs (๐’™, ๐’š) โŠ‚ ๐‘ฌ๐Ÿ—๐Ÿ• based on table 2, for ๐‘ฅ = 1 obtained value ๐‘ฆ2 = 13 + 1 + 3 (๐‘š๐‘œ๐‘‘ 97) = 5. once equalized against the modulo quadratic residual value of 97 in the table 2, apparently ๐‘ฆ2 = 5 also found in ๐‘„๐‘…97 hence for value ๐‘ฆ1 = 11 and ๐‘ฆ2 = 18. then get a pair of dots (๐‘ฅ, ๐‘ฆ) = (1,11) dan (๐‘ฅ, ๐‘ฆ) = (1,18) which are the elements of the ellipse group ๐ธ97(1,3). not all ๐‘ฅ โˆˆ ๐บ๐น97 will generate a value ๐‘ฆ 2 of elements ๐‘„๐‘…97. for example, for ๐‘ฅ = 0 obtained value ๐‘ฆ2 = 03 + 0 + 3 (๐‘š๐‘œ๐‘‘ 97) = 3, while ๐‘ฆ2 not contained on ๐‘„๐‘…97. so, for ๐‘ฅ = 0 no value ๐‘ฆ that filled. picture 2. elliptic curve point ๐บ๐น(97) so, the points contained on the elliptic curve are 96 points, if coupled with the o point in the infinity, then the points on the elliptic curve form a group with element ๐‘› = 97. on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 488 elliptical group generator ๐‘ฎ๐‘ญ(๐Ÿ—๐Ÿ•) letโ€™s ๐‘ƒ โˆˆ ๐บ๐น(97), then ๐‘ƒ called generator or generator of ๐บ๐น(97) if each element ๐บ๐น(97) can be written as a rank of ๐‘ƒ or ๐บ๐น(97) = {๐‘ƒ๐‘› |๐‘› โˆˆ ๐บ๐น(97)} where ๐บ๐น(97) is a prime number with elements in the galois field {0,1,2, . . . ,36}. in the previous discussion, 96 points have been obtained ๐‘ƒ(๐‘ฅ, ๐‘ฆ) so that the generator of the elliptic group ๐บ๐น(97) can be searched by summing and doubling the points of the ellipse curve with the following formula: a. addition elliptic curve point letโ€™s ๐‘ƒ(๐‘ฅ1, ๐‘ฆ1) โˆˆ ๐ธ(๐น๐‘), ๐‘„(๐‘ฅ2, ๐‘ฆ2) โˆˆ ๐ธ(๐น๐‘), and ๐‘ƒ โ‰  ๐‘„, then ๐‘ƒ + ๐‘„ = (๐‘ฅ3, ๐‘ฆ3) where ๐‘ฅ3 = ๐œ†2 โˆ’ ๐‘ฅ1 โˆ’ ๐‘ฅ2, ๐‘ฆ3 = ๐œ†(๐‘ฅ1 โˆ’ ๐‘ฅ3) โˆ’ ๐‘ฆ1, and ๐œ† = ๐‘ฆ2โˆ’๐‘ฆ1 ๐‘ฅ2โˆ’๐‘ฅ1 b. doubling a point letโ€™s ๐‘ƒ = (๐‘ฅ1, ๐‘ฆ1) โˆˆ ๐ธ(๐น๐‘) then ๐‘ƒ + ๐‘ƒ = 2๐‘ƒ = (๐‘ฅ3, ๐‘ฆ3) where ๐‘ฅ3 = ๐œ† 2 โˆ’ 2๐‘ฅ1, ๐‘ฆ3 = ๐œ†(๐‘ฅ1 โˆ’ ๐‘ฅ3) โˆ’ ๐‘ฆ1, and ๐œ† = 3๐‘ฅ1 2+๐‘Ž 2๐‘ฆ1 of the 96 points of the curve that exist, it turns out that all of these points are generators of the elliptic group ๐บ๐น(97). elliptic curves cryptography digital signature algorithm there are three digital signature elliptic curve algorithms used: 1. generation of public key and private key elliptic curves cryptography digital signature known equations of elliptic curves over infinity fields ๐บ๐น(๐‘) that is ๐‘ฆ2 = ๐‘ฅ3 + ๐‘ฅ + 3 (๐‘š๐‘œ๐‘‘ 97). from the equation obtained pairs of points of the elliptical curve of 96 points and one infinite point which can be seen in the appendix in the table. for the generation of public and private keys a value is required ๐‘ƒ๐ด and ๐‘ƒ๐ต for each of the two sides. sender generates its public and private keys as follows: a. select an integer ๐‘ฅ = 3 b. count ๐‘ƒ๐ด = ๐‘ฅ โˆ™ ๐ต ๐‘ƒ๐ด = 3 โˆ™ (0,10) ๐‘ƒ๐ด = 2(0,10) + (0,10) by using the formula for doubling the points of the elliptic curve described earlier. the following will be shown the calculation process for the values of 2๐‘ƒ and 3๐‘ƒ: a. letโ€™s ๐‘ƒ(๐‘ฅ1 = 0, ๐‘ฆ1 = 10) โˆˆ ๐บ๐น(97), then ๐‘ƒ + ๐‘ƒ = 2๐‘ƒ = (๐‘ฅ3, ๐‘ฆ3) where: ๐‘ฅ3 = ( 3๐‘ฅ1 2+๐‘Ž 2๐‘ฆ1 ) 2 โˆ’ 2๐‘ฅ1 = ( 3 โˆ™ 02 + 1 2 โˆ™ 10 ) 2 โˆ’ 2 โˆ™ 0 = ( 1 20 ) 2 โˆ’ 0 = (1 โˆ™ 20โˆ’1)2 โˆ’ 0 = (1 โˆ™ 34)2 โˆ’ 0 = 342(๐‘š๐‘œ๐‘‘97) = 89 ๐‘ฆ3 = ( 3๐‘ฅ1 2+๐‘Ž 2๐‘ฆ1 ) (๐‘ฅ1 โˆ’ ๐‘ฅ3) โˆ’ ๐‘ฆ1 on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 489 = ( 1 20 ) (0 โˆ’ 89) โˆ’ 10 = 34 โˆ™ (โˆ’89) โˆ’ 10 = 34 โˆ™ 8 โˆ’ 10 = 78 โˆ’ 10 = 68 (๐‘š๐‘œ๐‘‘97) = 68 so 2๐‘ƒ = (89,68) b. letโ€™s ๐‘ƒ(๐‘ฅ1 = 0, ๐‘ฆ1 = 10) โˆˆ ๐บ๐น(97), ๐‘„(๐‘ฅ2 = 89, ๐‘ฆ2 = 68) โˆˆ ๐บ๐น(97), and ๐‘ƒ โ‰  ๐‘„, then ๐‘ƒ + ๐‘„ = (๐‘ฅ3, ๐‘ฆ3) where: ๐‘ฅ3 = ( ๐‘ฆ2โˆ’๐‘ฆ1 ๐‘ฅ2โˆ’๐‘ฅ1 ) 2 โˆ’ ๐‘ฅ1 โˆ’ ๐‘ฅ2 = ( 68โˆ’10 89โˆ’0 ) 2 โˆ’ 0 โˆ’ 89 = ( 58 89 ) 2 โˆ’ 89 = (58 โˆ™ 89โˆ’1)2 โˆ’ 89 = (58 โˆ™ 12)2 โˆ’ 89 = 172 โˆ’ 89 = 6(๐‘š๐‘œ๐‘‘ 97) = 6 ๐‘ฆ3 = ( ๐‘ฆ2โˆ’๐‘ฆ1 ๐‘ฅ2โˆ’๐‘ฅ1 ) (๐‘ฅ1 โˆ’ ๐‘ฅ3) โˆ’ ๐‘ฆ1 = 17 โˆ™ (0 โˆ’ 6) โˆ’ 10 = 17 โˆ™ (โˆ’6) โˆ’ 10 = (17 โˆ™ 91) โˆ’ 10 = 82 ๐‘š๐‘œ๐‘‘ 97 = 82 so 3๐‘ƒ = (6,82) then obtained value ๐‘ƒ๐ด = (6,82). ๐‘ƒ๐ด = (6,82) is the sender public key and ๐‘ฅ = 3 the private key. recipient generates her private key and public key as follows: a. select any integer ๐‘ฆ = 2 b. count ๐‘ƒ๐ต = ๐‘ฆ โˆ™ ๐ต ๐‘ƒ๐ต = 2 โˆ™ (0,10) by using the formula of doubling the points of the ellipse curve. letโ€™s ๐‘ƒ(๐‘ฅ1 = 0, ๐‘ฆ1 = 10) โˆˆ ๐บ๐น(97), then ๐‘ƒ + ๐‘ƒ = 2๐‘ƒ = (๐‘ฅ3, ๐‘ฆ3) where: ๐‘ฅ3 = ( 3๐‘ฅ1 2+๐‘Ž 2๐‘ฆ1 ) 2 โˆ’ 2๐‘ฅ1 = ( 3 โˆ™ 02 + 1 2 โˆ™ 10 ) 2 โˆ’ 2 โˆ™ 0 = ( 1 20 ) 2 โˆ’ 0 = (1 โˆ™ 20โˆ’1)2 โˆ’ 0 = (1 โˆ™ 34)2 โˆ’ 0 = 342(๐‘š๐‘œ๐‘‘97) = 89 ๐‘ฆ3 = ( 3๐‘ฅ1 2+๐‘Ž 2๐‘ฆ1 ) (๐‘ฅ1 โˆ’ ๐‘ฅ3) โˆ’ ๐‘ฆ1 = ( 1 20 ) (0 โˆ’ 89) โˆ’ 10 = 34 โˆ™ (โˆ’89) โˆ’ 10 = 34 โˆ™ 8 โˆ’ 10 = 78 โˆ’ 10 = 68 (๐‘š๐‘œ๐‘‘97) = 68 then obtained value ๐‘ƒ๐ต = (89,68). so, ๐‘ƒ๐ต = (89,68) is recipient's public key and ๐‘ฆ = 2 the private key. 2. elliptic curves cryptography digital signature generate procedure sender generates a digital signature for a message m = โ€œmatematika 2018โ€ as follows: a. choose a random integer ๐‘˜, whose value lies in the hose [1, ๐‘ โˆ’ 1], will be selected ๐‘˜ = 10 on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 490 b. count ๐‘˜ โˆ™ ๐ต = (๐‘ฅ1, ๐‘ฆ1) and ๐‘Ÿ = ๐‘ฅ1 ๐‘š๐‘œ๐‘‘ ๐‘. if ๐‘Ÿ = 0 then back to the stage 1. ๐‘˜ โˆ™ ๐ต = 10 โˆ™ (0,10) = 5 โˆ™ (0,10) + 5 โˆ™ (0,10) = (3,18) + (3,18) = (94,19) so, ๐‘Ÿ = ๐‘ฅ1 = 94 ๐‘š๐‘œ๐‘‘ 97 = 94 c. count ๐‘˜โˆ’1๐‘š๐‘œ๐‘‘ ๐‘ ๐‘˜โˆ’1 ๐‘š๐‘œ๐‘‘ ๐‘ = 10โˆ’1 ๐‘š๐‘œ๐‘‘ 97 = 68 d. calculate the hash value of ๐‘€, that is ๐‘’ = ๐ป(๐‘€). with the message conveyed โ€œmatematika 2018โ€ then obtained ๐‘’ = ๐‘Ž6๐‘๐‘‘3๐‘‘71๐‘’๐‘๐‘“๐‘‘38391462๐‘‘๐‘๐‘’๐‘‘๐‘’๐‘’65๐‘๐‘Ž02 (hexadecimal) ๐‘’ = 22163443765967189024324661321080961280 (decimal) e. count ๐‘  = ๐‘˜โˆ’1(๐‘’ + ๐‘ฅ โˆ™ ๐‘Ÿ)๐‘š๐‘œ๐‘‘ ๐‘. if ๐‘  = 0, then repeat to the stage 1. ๐‘  = 10โˆ’1(221634437659671890243246613210809612802 + 3 โˆ™ 94) ๐‘š๐‘œ๐‘‘ 97 ๐‘  = 67 then obtained a message ๐‘€ be (94,67) from the generation of digital signatures. 3. elliptic curves cryptography digital signature verification procedure recipient will verify the digital signature (๐‘Ÿ, ๐‘ ) from sender as follows: a. verify that ๐‘Ÿ and ๐‘  located inside the hose [1, ๐‘ โˆ’ 1]. b. retrieve the sender public key, which is 3๐‘ƒ๐ด. c. recipient calculates the hash value of ๐‘€, that is ๐‘’ = ๐ป(๐‘€). ๐‘’ = ๐‘Ž6๐‘๐‘‘3๐‘‘71๐‘’๐‘๐‘“๐‘‘38391462๐‘‘๐‘๐‘’๐‘‘๐‘’๐‘’65๐‘๐‘Ž02 (hexadecimal) ๐‘’ = 221634437659671890243246613210809612802(desimal) d. count ๐‘ค = ๐‘ โˆ’1 ๐‘š๐‘œ๐‘‘ ๐‘ ๐‘ค = 67โˆ’1 ๐‘š๐‘œ๐‘‘ 97 = 42 e. count ๐‘ข1 = ๐‘’ โˆ™ ๐‘ค ๐‘š๐‘œ๐‘‘ ๐‘ and ๐‘ข2 = ๐‘Ÿ โˆ™ ๐‘ค ๐‘š๐‘œ๐‘‘ ๐‘ ๐‘ข1 = ๐‘’ โˆ™ ๐‘ค ๐‘š๐‘œ๐‘‘ ๐‘ ๐‘ข1 = (221634437659671890243246613210809612802 โˆ™ 42)๐‘š๐‘œ๐‘‘ 97 ๐‘ข1 = 0 thus, the value of the value is obtained ๐‘ข1 = 0 ๐‘ข2 = ๐‘Ÿ โˆ™ ๐‘ค ๐‘š๐‘œ๐‘‘ ๐‘ ๐‘ข2 = 94 โˆ™ 42 ๐‘š๐‘œ๐‘‘ 97 = 68 thus, the value of the value is obtained ๐‘ข2 = 68 f. count (๐‘ฅ1, ๐‘ฆ1) = ๐‘ข1 โˆ™ ๐ต + ๐‘ข2 โˆ™ ๐‘ƒ๐ด (๐‘ฅ1, ๐‘ฆ1) = ๐‘ข1 โˆ™ ๐ต + ๐‘ข2 โˆ™ ๐‘ƒ๐ด (๐‘ฅ1, ๐‘ฆ1) = 0 โˆ™ (0,10) + 68 โˆ™ (6,82) (๐‘ฅ1, ๐‘ฆ1) = 0 + (30(6,82) + 30(6,82) + 8(6,82)) (๐‘ฅ1, ๐‘ฆ1) = 0 + ((93,41) + (93,41) + (39,71)) (๐‘ฅ1, ๐‘ฆ1) = 0 + (26,57) + (39,71) (๐‘ฅ1, ๐‘ฆ1) = 0 + (94,19) (๐‘ฅ1, ๐‘ฆ1) = (94,19) g. count ๐‘ฃ = ๐‘ฅ1 ๐‘š๐‘œ๐‘‘ ๐‘ on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 491 ๐‘ฃ = ๐‘ฅ1 ๐‘š๐‘œ๐‘‘ ๐‘ ๐‘ฃ = 94 ๐‘š๐‘œ๐‘‘ 97 = 94 from the calculation of the value ๐‘ฃ in the procedure of verifying the validity of obtaining the value ๐‘ฃ = 94. in the previous procedure obtained the value ๐‘Ÿ = 94 on point ๐‘€(94,67). if, ๐‘ฃ = ๐‘Ÿ = 94 then the valid signature or authenticity of a message received is correct. conclusion the steganography method can be used to hide a secret message in another message as a cover so that the existence of the secret message cannot be detected. as well as the use of the elliptic curves digital signature algorithm method on a message to identify or authenticate the authenticity of a message sent and received correctly from the real sender and recipient. references [1] r. munir, kriptografi, bandung: informatika bandung, 2019. [2] r. a. m. m.-k. mojtaba bisheh-niasar, "cryptographic accelerators for digital signature based on ed25519," ieee transactions on very large scale integration (vlsi) systems, vol. 29, no. 7, pp. 1297-1305, 2021. [3] p. kitsos, n. sklavos and o. koufopavlou, "an efficient implementation of the digital signature algorithm," 2016. [4] j. tian, g. xiong, z. li and g. gou, "a survey of key technologies for constructing network covert channel. security and communication networks," pp. 1-20, 2020. [5] l. k. a. c. m. &. l. c. demir, "the pitfalls of hashing for privacy," ieee communications surveys & tutorials, vol. 20(1), pp. 551-565, 2017. [6] z. e. s. b. w. g. &. a. e. rasjid, " a review of collisions in cryptographic hash function used in digital forensic tools," procedia computer science, pp. 381-392, 2017. [7] n. hayati, a. budiman and m. sharif, "implementasi algoritma rc4a dan md5 untuk menjamin confidentiality dan integrity pada file teks," vol. 1, p. 7, 2017. [8] w. l. t. m. c. p. l. &. r. j. castryck, "csidh: an efficient post-quantum commutative group action," pp. (pp. 395-427), 2018. [9] p. g. a. k. t. m. c. &. y. v. k. dixit, "traditional and hybrid encryption techniques: a survey. in networking communication and data knowledge engineering," pp. (pp. 239248), 2018. [10] m. s. r. m. s. m. l. s. a. h. m. m. &. a. h. m. taha, "combination of steganography and cryptography: a short survey," vol. 518, 2019. [11] h. t. s. &. h. h. t. alrikabi, "enhanced data security of communication system using combined encryption and steganography," vol. 145, p. 15(16), 2021. [12] i. j. p. p. v. p. j. &. h. b. kadhim, "comprehensive survey of image steganography: techniques, evaluations, and trends in future research. neurocomputing," vol. 335, pp. 299-326, 2019. on the application of noiseless steganography and elliptic curves cryptography digital signature algorithm methods in securing text messages juhari 492 [13] h. a, "implementasi fungsi hash md5 dan kriptografi algoritma rsa pada pembuatan tanda tangan digital," 2021. [14] x. g. d. l. n. l. b. g. m. &. q. c. duan, "a new high capacity image steganography method combined with image elliptic curve cryptography and deep neural network," no. ieee access, 2020. [15] d. p. &. s. a. k. timothy, "a hybrid cryptography algorithm for cloud computing security," in 2017 international conference on microelectronic devices, circuits and systems (icmdcs), no. ieee, pp. (pp. 1-5), 2017. [16] w. stallings, criptography and net securitywork principles and practice, pearson education limited, 2017. genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification cauchy โ€“ jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 1-12 p-issn: 2086-0382; e-issn: 2477-3344 submitted: september 18, 2020 reviewed: may 21, 2021 accepted: november 02, 2021 doi: http://dx.doi.org/10.18860/ca.v7i1.10337 genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah1, elok faiqah2, heri kuswanto3, nlp satyaning pradnya paramita4 1,3department of statistics, faculty of mathematics, computing, and data sciences institut teknologi sepuluh nopember, 60111 surabaya, indonesia email: irhamah@statistika.its.ac.id, elokfaiqoh212@gmail.com, heri_k@statistika.its.ac.id, sat.pradnyaparamita@gmail.com abstract colon cancer is the second leading cause of cancer-related deaths globally; hence, research on that topic, such as disease diagnosis, needs to be undertaken with improvement. microarray has an essential role in biomedical research as a tool for identifying and classifying diseases, especially cancer. this study aims to develop a classification model using fuzzy support vector machines (fsvm) hybridized with genetic algorithm (ga) for classifying individuals based on gene expression into two classes, i.e., normal and cancer, and compare classification performance based on the use of selection method. fuzzy memberships were used in svm to deal with the case of imbalanced microarray data. meanwhile, the role of the genetic algorithm is, firstly, to select the relevant genes as the features and, secondly, to optimize the parameter of fsvm as ga can handle the problem of nonlinear optimization that has a high dimension, adaptable, and easily combined with other methods. the results show that classification using fcbf selection has a higher accuracy value than those without the selection. fsvm optimized using ga has the highest accuracy value compared to other classification methods used in this study. keywords: feature selection; fuzzy svm; genetic algorithm; parameter optimization; svm introduction cancer is a leading cause of death globally: an estimated 7.6 million people died of cancer in 2005, and 84 million people will die in the next ten years if action is not taken. more than 70% of all cancer deaths occur in lowand middle-income countries, where cancer prevention, diagnosis, and treatment resources are limited or non-existent [1]. the cancer diagnosis can be done based on its morphological structure but has difficulties due to very thin differences in morphological structures between different types of cancer [2]. in 1999, alon researched gene expression related to colon cancer which contained data microarray data. microarray data is a technology in molecular and medical biology that can see differences in gene expression. microarray data is a type of data with very high dimensions used in bioinformatics. the characteristics of data microarray are the small amount of data and a large number of features. microarray data consists of thousands of spots (attributes), and from each spot consists of millions of http://dx.doi.org/10.18860/ca.v7i1.10337 mailto:irhamah@statistika.its.ac.id mailto:elokfaiqoh212@gmail.com mailto:heri_k@statistika.its.ac.id mailto:sat.pradnyaparamita@gmail.com genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 2 copies of dna molecules that respond to a gene. the collection of genes will be used to classify a class of diseases [3]. therefore, the study was conducted using microarray data from colon cancer, which will be carried out by typing genes, features, or variables using the support vector machine (svm). the svm is one of the classification methods which gives the best results with accuracy values reaching 80% to 90% and can be used to deal with high dimensional data. [4] implemented svm on the microarray data and showed promising results. svm has a better performance in classification than other methods [5], but the effect of imbalanced data on svm will be a drawback in the paradigm of maximizing margins. some researchers propose fsvm, which applies fuzzy membership to each sample and formulates svm so that different sample inputs have other contributions and can handle imbalanced data. in [6], svm and nb are used to classify microarray data where the methodologies involve dimension reduction of microarray data using ica, followed by the feature selection using fbfe. still, there was no specific method used to deal with imbalanced data. therefore, this study compares the classification performance of fsvm and svm analysis on colon cancer microarray imbalanced data. the biggest problem in setting the svm model is in determining the hyperparameter values of the svm [7]. setting the parameter values will increase the classification accuracy of the svm model [8]. thus, in this study, ga is used to optimize the value of parameters on the svm model to increase the classification performance. ga can handle high-dimensional nonlinear optimization problems [9]. this study also compares the effect of fast correlation based filter (fcbf) in classification performance with variable selection. the fcbf algorithm is based on the idea that good features are a feature that is relevant to the class but not redundant to pertinent other features. the methods implemented in this research are svm without variable selection, svm with fcbf variable selection, svm ga without variable selection, svm ga with fcbf variable selection, fsvm without variable selection, fsvm with fcbf variable selection, fsvm ga without variable selection, and fsvm ga with fcbf variable selection. the best method is obtained from the highest classification performance value. methods fast correlation based filter (fcbf) fast correlation based filter or fcbf is a variable selection method developed by [10]. in general, a feature is good if it is relevant to the class concept and not redundant to any of the other relevant characteristics. suppose we adopt the correlation between two variables as a goodness of fit measure. in that case, the above definition means that a feature is good if it is highly correlated to the class but not correlated to any other components. in other words, if the correlation between an element and the class is high enough to make it relevant to (or predictive of) the class and the correlation between it and any other suitable features does not reach a level, then it can be predicted by any of the other relevant features, it will be regarded as a good feature for the classification task. in this sense, the problem of feature selection boils down to find a suitable measure of correlations between components and a sound procedure to select features based on this measure. there exist broadly two approaches to measure the correlation between two random variables. one is based on classical linear correlation, and the other is based on information theory. this study used a second approach: choosing a correlation degree based on the entropy theory information [10]. decresing of entropy in x reflects genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 3 additional information of x by y called information gain [11]. to measure information gain, symmetrical uncertainty is used. information retrieval is symmetrical from two random variables x and y. symmetrical uncertainty values are carried out in the range 0 to 1 with a value of 1 which indicates another value or x and y dependent and 0, which shows that x and y are independent. support vector machines (svm) svm was first introduced by vapnik in 1992. svm is a technique for finding a separation function in classifications that can separate two or more different data groups. svm can find the best hyperplane function between unlimited functions to separate objects. the best hyperplane is located right in the middle between two object sets of two classes. finding the best hyperplane is equivalent to maximizing the margin or distance between two sets of objects from two different classes. svm works to find a separation function with maximum margins [12]. svm is a classification technique with a training process (supervised learning) to find the legitimate line of the best hyperplane with f(x), ( ) ( ( ))f sign g๏€ฝx x (1) where ( ) t g ๏€ฝ ๏€ซx w x b ;๐’™, ๐‘ค โˆˆ ๐‘…๐‘› and ๐‘ โˆˆ ๐‘… if the value of g (x) is negative then the observation goes into the negative class, so if g (x) is positive then obstruction will enter the positive class. the concept of hyperplane on svm is as follows, figure 1. the concept of hyperplane in svm in figure 1. the margin is equal to d+ d+. the classification function is a hyperplane plus a margin zone. this separates points from the two classes with the highest distance (margin) between the two classes. 0t b๏€ซ ๏€ฝ i x w is a separator hyperplane, d+ d+ will be the shortest distance on the closest object from class +1 (-1). because separation can be solved without error, all observations i = 1, 2, ..., n is measured as, 1 for 1 1 for 1 t t b yi b yi ๏€ซ ๏‚ณ ๏€ซ ๏€ฝ ๏€ซ ๏€ซ ๏‚ณ ๏€ญ ๏€ฝ ๏€ญ x w i x w i where 1 0, 1, 2,.., n i i i i y i n๏ก ๏€ฝ ๏€ฝ ๏€ฝ ๏€ฝ๏ƒฅw x in general, in the real-world domain (real world problem) rarely are linearly separable, mostly nonlinear. the method for classifying data that cannot be separated from linear functions is by transforming data into feature space dimensions so that they (2) genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 4 can be separated linearly in feature space. input space with 2 dimensions cannot separate data into two classeslinearly. therefore, it is necessary to map the input vector by function ( )x๏ช into a new vector space with a higher dimension (3 dimensions). the way to classify data is to use the transformation function ( ) i i x x๏ฆ๏‚ฎ into the feature space so that there is a separate field that can separate data according to its category. by using the ( ) i i x x๏ฆ๏‚ฎ transformation function, the value is generated, 1 ( ) ( ) ( ) n i i i j i f x y x x b๏ก ๏ฆ ๏ฆ ๏€ฝ ๏€ฝ ๏€ซ๏ƒฅ feature space in practice usually has a higher dimension than input vectors. this causes the computation of feature space to be very large, because there is a possibility that feature space can have an unlimited number of features. in addition, it is difficult to know the right transformation function. the transformation function in svm is to use kernel tricks [13]. the kernel trick is to calculate the scalar product in the form of a kernel function. ๏€จ ๏€ฉ ๏€จ ๏€ฉ( ) ti jk x x๏ฆ ๏ฆ๏€ฝi jx , x then the transformation function in the above equation can be used without the need to know the transformation function explicitly. thus the resulting function is, ๏€จ ๏€ฉ 1 ( ) n i i i f x y k b๏ก ๏€ฝ ๏€ฝ ๏€ซ๏ƒฅ i jx , x where 0 ; 1, 2, ....,c i ni๏ก๏‚ฃ ๏‚ฃ ๏€ฝ the requirement for a function to function as a kernel is to fulfill the mercer theorem, which is a necessary and sufficient condition for symmetric functions ( )k i j x , x . the most commonly used kernel functions are as follows, a. kernel gaussian (rbf) : ๏€จ ๏€ฉ ๏€จ ๏€ฉ 2 expk ๏ง ๏ƒฆ ๏ƒถ ๏€ฝ ๏€ญ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ i j i j x , x x x b. kernel linear : ๏€จ ๏€ฉ tjk ๏€ฝi i jx , x x x c. kernel polynomial : ๏€จ ๏€ฉ ๏€จ ๏€ฉ p k r๏ค๏€ฝ ๏€ซ t i j i j x , x x x fuzzy support vector machines fuzzy support vector machine (fsvm) is a development of support vector machine for multiclass problems. by using the decision function obtained from svm for a class pair, for each class a polyhedral pyramidal membership function is defined. fsvm uses membership functions to classify variable that cannot be classified by decision functions [14]. there are several applications that only want to focus on accuracy for class classification. for this purpose fuzzy membership can be determined as a function of each class. suppose given a series of training [15]: 1 1 1 ( , , ),....., ( , , ) n n n y x s y x s fuzzy membership becomes a function in the class si = 1 if yi = 1 and si = 0.1 if yi = -1 by using lagrangian, the decision function for fsvm is stated as follows ( ) 1 n f x y b i i i ๏ก๏€ฝ ๏€ซ๏ƒฅ ๏€ฝ k(x , x ) i j when 0 ; 1, 2,...,s c i ni i๏ก๏‚ฃ ๏‚ฃ ๏€ฝ (3) (4) (5) (6) genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 5 pre-processing data pre-processing datais a process to improve the quality of raw data, so that it can improve accuracy and efficiency for the next data mining process. in this study, preprocessing of data was carried out using transformations. one method of transformation is scaling where one of the advantages of scaling is that it can avoid features with a greater range of values dominating features with a smaller range of values. each data is linearly transformed into a range [0, 1] using the following equation, ' min max min a a a v v ๏€ญ ๏€ฝ ๏€ญ wherev'is the transformed value, v is the initial value, maxa is maximum value on variable, and mina is minimum value on the variable. genetic algorithm genetic algorithm (ga) was first discovered by john holand in 1975. the ga concept is based on the theory of evolution with the principle of natural selection developed by darwin. ga is a technique for identifying solutions to optimization problems. the steps taken in the ga method are as follows: step 1 : define, which defines the operator in ga that corresponds to the problem. at this research, the selection and optimization variables were carried out using genetic algorithm step 2 : initialize, which is to form an initial population consisting of n chromosomes. set n = 100 step 3 : fitness, which evaluates the fitness of each chromosome in the population step 4 : selection, which applies the roulette wheel selection method which gives a set of m mating populations with size n step 5 : crossover, which is the recombine process. this process randomly pairs all m chromosomes to form n / 2 pairs. if a random number [0.1] is less than pc, then crossovers occur step 6 : mutation, which is using mutation probability (pm) to carry out the process of inheritance mutation step 7 : replace, which is replacing the old population with the new population. the new population is obtained by selecting the best n chromosomes obtained by evaluating the fitness value of parents and new breeds step 8: test, that is, if the criteria has been met, then the process is stopped and return to the best solution of the current population. if the criteria have not been met, then go back to step 2. furthermore, elitism is one of the techniques that is done to maintain the best individual who has the highest fitness value to survive for the next generation microarray data microarray data is one of the technologies used to measure the level of expression of thousands of genes simultaneously in one observation and appears as a device of the microarray which is usually summarized in the list of genes and expressed in two conditions or classifications based on the phenotype. microarray data is a type of high dimensional data because it has a number of genes (variables) hundreds or even thousands, while the number of observations that usually do not reach 100 or far smaller than the number of variables. two common methods for analyzing data microarray are clustering and classification [16]. based on the information they possess, (7) genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 6 microarray has an important role in biomedical research as a tool for identifying and classifying diseases, especially cancer. the colon cancer data stores information in the form of gene expressions obtained from patient of tumor colon tissues and normal colon tissues. colon data consists of 62 patients, 40 of which are patients of the tumor class and the other 22 are normal classpatients. the number of variables in colon cancer data is 2000 variables. the steps of microarray experiment to get a colon cancer microarray data are as follows [17]. 1. obtaining mrna from the observed cell (for example in the case of a tumor, the sample observed is a cell that has a tumor. 2. mrna is converted to cdna using reverse tranciptase enzyme. 3. marking cdma from tumor cells in red and cdna from normal cells in green. 4. the sample is hybridized, iecdna binds to dna. 5. the sample is scanned to measure the expression of each gene through fluorescence contained (fluorescence is related to the amount of cdna in the sample for the gene). 6. a bright red glowing point is a gene that is highly expressed in tumor cells, while a bright green glow is a gene that is highly expressed in normal cells. if the gene is expressed in both samples (tumors and normal), the color produced is bright yellow. from the process, the final data is obtained which consists of thousands of points that have different colors and need to be interpreted. color dots must be changed to a certain value to be analyzed later. here is an illustration of the image to get microarray data, figure 2. microarray data process (source: gibson & muse, 2002) results and discussion description of data the data used in this study is the microarray type colon cancer data by u. alon, n. barkai, d.a. notterman, k. gish, s. ybarra, d. mack, and a.j. levine in 1999 [18]. data were taken from human intestinal tissue. the expression of these genes is stored in 2000 variables. this data consists of 62 patients, where 40 patients are having tumor colon tissue (tumor/tissue) while 22 are normal patients (normal colon tissue). the research variable used are shown in table 1, table 1. research variables variable information measurement scale dependent (y) nominal colon cancer class: 0 = normal 1 = tumor independent (x) gene expression ratio genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 7 characteristics of colon cancer data the data used are observations made on 62 samples taken from human intestinal tissue. the data is divided into two classes, namely the tumor class and normal class. the tumor class is described as negative by coding 1 and the normal class is described as positive by coding 0. the description of the two colon cancer classes is shown in figure 3. figure 3. percentage of normal class and tumor in colon cancer data in this observation, a positive sample is stated as a normal sample with code 0 and a negative class is stated as a tumor sample with code 1. figure 3. shows that of the 62 patients taken there were 64.5% of the total samples stated as tumors and the remaining 35.5% were declared normal . based on the proportion of samples of normal and tumor class classes, it is known that colon cancer data is imbalanced data so that the appropriate method to classify colon cancer class is the fuzzy support vector machine (fsvm) method. colon cancer data has a number of genes or variables as many as 2000 variables so that if it will complicate the classification because the data distribution pattern will become very complex. following is the pattern of data distribution shown in figure 4. figure 4. distribution patterns of several variables in colon cancer data the pattern of colon cancer data distribution shown in figure 4. in red is the tumor class and the green color is normal class is spread evenly so that it is difficult in classification. the function separator or hyperplane is expected to be able to help overcome the classification problems in colon cancer data so that in this study an analysis will be conducted using fuzzy support vector machine (fsvm) classification method. 0 (normal) 1 (tumor) c ategory 64.5% 35.5% 10000 5000 0 2001000 16008000 2001000 1600 800 0 2000 1000 0 200 100 0 1000050000 200 100 0 200010000 v9 v418 v897 v1493 v1940 negativ e (tumor) positiv e (normal) kelas : matrix plot of v9; v418; v897; v1493; v1940 genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 8 pre-processing data data pre-processing is a process carried out to improve the quality of raw data by producing precise accuracy values and efficient classification results. in this study, preprocessing is done using variable transformation and selection. one method of transformation is scaling where one of the advantages of scaling is that it can avoid features with a greater range of values dominating features with a smaller range of values. table 2. results of transformation of colon cancer data scaling variable variable name before transformation after transformation mean varians mean varians x1 h55933 7016 9566467 0.3936 0.0569 x2 r39465 4967 4791241 0.4087 0.0623 x3 r39465_1 4095 3305418 0.3851 0.0614 x4 r85482 3988 4076712 0.2784 0.0403 x5 u14973 2937 1841267 0.2556 0.0384 ... ... ... ... ... ... ... ... ... ... ... ... x1999 r77780 53.25 1479.39 0.2477 0.0404 x2000 t49647 42.97 806.28 0.3070 0.0551 table 2 shows that after transformation using scaling, the average value of each variable becomes smaller and ranges between [0,1]. the variance value of the transformed variable is also small which indicates that the observation value with small data distribution or diversity between observations of one with other observations is quite small.in this study, the selection of variables used is fcbf (fast correlation baser filter) and the variables obtained after selecting variables with fcbf are 15 variables from 2000 variables. the 15 variables obtained were further analyzed using svm and fsvm classifications. colon cancer classification performance the svm classification consists of svm classifications with or without fcbf variable selection. the results of classification methods performance are shown in table 3. in svm without fcbf selection, the optimum valueof cost and gamma parameter are 128 and 0.001953125. based on the auc, the svm without selection was good because the auc value was 86.42%. the accuracy value obtained is also quite high, that is 83.57%. whereas for svm classification with fcbf variable selection, the optimal value of cost and gamma parameter are 2048 and 0.03125. the auc value obtained in the svm classification with fcbf selection is very good because it is located in a range of 90100%. it means that the svm model with fcbf selection has been very good in classifying colon cancer data. the accuracy obtained is 91.90% which means that by using a cost value 2048and gamma 0.03125, svm models can classify 91.90% of observations correctly. in addition, the model can also classify positive or normal classes correctly at 88.33% which can be seen from the sensitivity value and 95.50% of the model can classify negative classes or tumors with a specificity value. genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 9 table 3. performance of colon cancer classification method variable selection performance classification (%) optimal parameters accuracy sensitivity specificity g-means auc cost gamma svm without variable selection 83.57 83.33 89.5 85.31 86.42 128 0.001953125 with fcbf variable selection 91.9 88.33 95.5 91.92 91.4 2048 0.03125 svm ga without variable selection 83.57 83.33 89.5 85.31 86.42 1272.99 0.0011941 with fcbf variable selection 95 91.67 97.5 94.29 94.58 18652 0.0161011 fsvm without variable selection 75.71 40 95 47.13 67.5 32768 0.0000610 with fcbf variable selection 90.24 81.67 95 87.09 88.33 2048 0.125 fsvm ga without variable selection 87.38 86.25 43011.2 0.000088722 with fcbf variable selection 90.03 97.5 2968.8 0.15275 on svm-ga without selection, the optimal cost parameter is 1272.99 and gamma optimal parameters is 0.0011941 with the highest fitness value of 94.64%.the model is also classified as good in classifying based on auc value in the range of 80 to 90%. the cost and gamma optimal parameters from svm-ga-fcbf is 18652.00 and 0.0161011. the model can classify the tumor class and normal correctly by 95% which can be known from the constellation value. all classification performance values which include sensitivity, specificity, g-means, and auc values have values above 90%. before conducting fsvm classification, firstlywe have to determine the optimal value of cost and gamma parameter from training data as has been done in svm analysis from the optimal parameter range. the determination of optimal parameters is based on auc value and accuracy. this study uses 10 fold and the highest average for the auc value and the accuracy value in the training data was obtained from the cost value 32768 and gammavalue 0.000061035 with the accuracy value obtained is 98.74% and the auc value is 98.22%. these parameters will be usied in fsvm analysis using data testing. the following classification performance is obtained using the optimal parameter values in training data that is cost value 32768 and gamma value 0.000061035.according to gorunescu 2011, the auc value in the range 60-70 shows a poor classification. this is also supported by the gmeans value of 47.13% which means that the stability between the performance of the classification of minority classes and the majority class is 47.13%. meanwhile for fsvm with fcbf selection, the cost and gamma optimal values are 2048 and 0.125 with an average value of 98.39% accuracy and an average auc value of 97.89%. optimal parameters will be used to find performance testing data classification. classification performance on testing data will be calculated using the optimal parameter value in training data: cost 2048 and gamma 0.125. the auc value obtained is 88.33%, which means that the model is good in classifying. the model can also classify positive or normal classes and negative or tumor classes correctly by sensiticity value is 81.67% and specificity value is 95%. in the classification using fsvm without selection and with ga optimization, optimization will be performed on each fold with a range of costs 215-216 and the range of gamma is 2-3-2-2. the average fitness value value generated for the range cost 215-216 genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 10 and the range gamma is 2-3 2-2 in the training data is 98.22%. average fitness value is used to get the highest auc value from the k-fold cross validation (kcv) method which is a reliable method for predicting errors in a classification. this method is usually used by researchers to reduce the bias that occurs because of sampling data to be used. the average fitness value value for testing data is 86.25%. there are 7 folds that have a fitness value of up to 100% then the cost and gamma optimal parameters of ga optimization results can be taken from one of the seven cost values and gamma values which has a fitness value of 100%. the cost and gamma optimal parameters obtained from fsvm fcbf selection will be optimized using ga optimization. the range used in the fsvm ga optimization fcbf selection is 211-212 for the cost parameter and 2-3-2-2 for the gamma parameters. by using this range of parameters, the fitness value value generated in the training data reaches 98.35% so that the value range 211212 for the cost parameter and 2-3-2-2 for gamma parameters can be used to find the optimal para-meter using data testing. the average fitness value value generated using a range of cost 211-212 and the range of gamma 2-3-2-2 is 97.5%. the value of fitness-value obtained to fold 1 to fold 9 is 100% so that for cost and gamma optimal can be taken from one of the folds that have a fitness value of 100%. the results of svm grid search method and ga for svm optimization without selection have the same accuracy and auc values. this can occur because the variables have not been selected. when compared to svm grid search and svm-ga for optimization, it can be seen that with ga optimization can increase the accuracy and auc value. ga for svm optimization has an auc value of 94.58% and an accuracy value of 95%. based on auc value, the svm-ga optimization classification performance is very good.classification method using fcbf selection has a value higher accuracy than without selection, both for for svm method or fsvm according to a comparison table of classification in table 3. in addition, it is known that the best method that can be used to classify the class of colon cancer is fsvm using fcbf with ga optimization, since it yields the highest auc compared to other methods (that is 97.50%). auc is considered first than accuracy because this study deals with imbalance data. conclusions classification analysis has been carried out using svm and fsvm on colon cancer data thatconsist of 35.5% normal class and 64.5% tumor class. after selecting variables using fcbf, from about 2000 variables are then reduced to 15 variables. the results of svm classification with variable selection give higher accuracy values than the svm without variable selection. in addition, svm ga optimization with variable selection also produces better results than svm without selection with ga optimization. fsvm classification method also produces the same results, where using variable selection produces higher accuracy values than without variable selection. among the four methods used, ga-fsvm classification method produces the highest fitness value compared to other classification methods investigated by this study. the fitness value for fcbf selection is 97.50% and the one without selection is 86.25%. genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 11 acknowledgments the authors thank to the ministry of research, technology, and higher education, republic of indonesia and institut teknologi sepuluh nopember surabaya indonesia for the financial support under โ€œpenelitian dasar unggulan perguruan tinggiโ€ references [1] who, world cancer day : global action to avert 8 million cancer-realted deaths by 2015. retrieved from https://www.who.int/mediacentre/news/releases/2006/pr06/en/, 2002 [2] t. r. golub, d.k. slonim, p. tamayo, c. huard, m. gaasenbeek, & j.p. mesirov, "molecular classification of cancer: class discovery and class prediction by gene expression monitoring", science, 286, 531-537, 1999 [3] m. m. babu, introduction to micoarray data analysis, u.k : horizon press, 2013 [4] t.s. furey, n. cristianini, n. duffy, d. w. bednarski, m. schummer, & d. haussler, "support vector machine classification and validation of cancer tissue samples using microarray expression data". bioinformatics, vol. 16, no. 6 , 906-914, 2000 [5] y.-n. chen, c.-a. lu, and c.-y. huang, anti spam filter based on naive bayes, svm and knn model. sillicon valley: carnegie mellon school, 2009. [6] r. aziz, c. k. verma, & n. srivastava, "a fuzzy based feature selection from independent component subspace for machine learning classification of microarray data", genomics data, vol. 8, 4-15, 2016 [7] s. yenaeng, s. saelee, & w. samai, "automatic medical case study essay scoring by support vector machine and genetic algorithm", international journal of information and education technology, vol. 4, no. 2, 132-137, 2014 [8] c. l. huang & c. j. wang, "a ga-based feature selection and parameters optimization for support vector machines", expert systems with application, vol. 31 , 231240, 2006 [9] h. roubos & m. setnes, compact fuzzy models and classifiers through model reduction and evolutionary optimization. in l. chambers, the practical handbook of genetic algorithms, 2001 [10] l. yu, and h. liu, feature selection for high dimentional data : a fast correlation-based filter solution, proceedings of the twentieth international conference on machine learning (icml). washington dc, 2003 [11] j. quinlan, c4.5: programs for machine learning. morgan kaufmann, 1993 [12] s. abe and t. inoue, fuzzy support vector machines for multiclass problems, jepang : kobe university, 2002 [13] v. n. vapnik, the nature of statictical learning theory 2nd edition, springerverlag: new york berlin heidelberg, 1999 [14] b. scholkopf and a. smola, learning with kernel: support vector machines, regulerization, optimization, and beyond. cambridge: ma: mit press, 2002 [15] c. lin and s. wang, "fuzzy support vector machines", ieee trans. neural network , 464-471, 2002 [16] s. selvaraj and j. natarajan, "microarray data analysis and mining tools", bioinformation, 6(3), 95-99, 2011 [17] a. p. kusumaningrum, optimasi parameter supprort vector machine genetic algorithm for variable selection and parameter optimization in svm and fuzzy svm for colon cancer microarray classification irhamah 12 menggunakan genetic algorithm untuk klasifikasi microarray data. surabaya : departemenstatistika fmksd its, 2018 [18] u. alon, n. barkai, d. a. notterman, k. gish, s. ybarra, d. mack, and a. j. levine, "broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays", procnatlaadsci u s a. jun 8;96(12):6745-6750, 1999 microsoft word 1 sampul depan.doc 15ย  empat model aproksimasi binomial harga saham model black-scholes abdul aziz jurusan matematika, fakultas sains dan teknologi universitas islam negeri (uin) maulana malik ibrahim malang e-mail: abdulaziz_uinmlg@yahoo.com abstrak kami akan menyajikan empat bentuk nilai parameter-parameter u, d, dan p dalam model binomial harga saham, yang dihasilkan dengan menggunakan penyamaan ekspektasi dan variansi model diskrit dengan kontinu. metode pertama menggunakan asumsi u . d = 1, yang mana metode ini dapat menghasilkan tiga bentuk solusi untuk parameter-parameter u, d, dan p dalam model binomial harga saham. metode kedua menggunakan asumsi p = 0,5. dari kedua metode ini ternyata dapat dihasilkan empat bentuk solusi u, d, dan p yang berbeda dan akan dibandingkan hasilnya dalam pendekatan nilai option dalam model binomial dengan model black-scholes. kata kunci: aproksimasi, binomial, black-scholes, harga saham, parameter. 1. pendahuluan call option pada sebuah saham merupakan sebuah perjanjian hak, tetapi bukan obligasi, untuk membeli saham tersebut pada suatu hari tertentu, t yang akan datang, yang diistilahkan sebagai strike date atau jatuh tempo (date of expiration), dengan harga tertentu k, yang diistilahkan sebagai strike price atau exercise price. sebaliknya, put option pada sebuah saham merupakan sebuah perjanjian hak untuk menjual saham pada suatu hari tertentu yang akan datang dengan harga tertentu pula (stampfli, j., goodman, v., 2001) tentu saja, pemegang option (holder) akan menggunakan atau mengabaikan hak pilihnya pada option tersebut, yang diistilahkan sebagai exercise, tergantung pada harga saham di pasar bebas pada waktu t tersebut. pemegang call option akan menggunakan haknya dengan membeli saham itu pada waktu t dengan harga k pada penulis option (writer), jika harga saham pada pasar bebas pada waktu t, st, lebih tinggi dibandingkan dengan k, harga saham pada option, sehingga menguntungkan bagi pemegang option. dan, penulis option wajib untuk menjual sahamnya pada pemegang option dengan harga dan waktu sesuai perjanjian option. sebaliknya, jika harga saham pada pasar bebas lebih rendah dibandingkan dengan strike price maka pemegang option dapat mengabaikan haknya, dan ia lebih baik membeli saham pada pasar bebas dengan harga yang lebih menguntungkan. serupa untuk put option, pemegang option akan menjual sahamnya pada penulis option jika harga saham tersebut pada pasar bebas lebih rendah dari pada strike price. dan, penulis option wajib membeli saham tersebut dari pemegang option. sebaliknya, lebih baik menjual pada pasar bebas jika harga saham di pasar bebas lebih tinggi dari pada strike price. harga saham di pasar bebas pada waktu tertentu yang akan datang tidak dapat dipastikan oleh seseorang. harga saham dapat mengalami perubahan turun naik setiap detiknya. padahal, harga saham tersebut pada waktu tertentu sangat diperlukan oleh dua pihak, penulis option dan pemegang option, dalam pembuatan perjanjian option, sebagai perjanjian transaksi jual beli saham pada waktu yang akan datang. banyak pendekatan numerik yang dilakukan oleh para ilmuan untuk memperkirakan harga saham di pasar bebas pada waktu tertentu dengan memodelkan gerakan fluktuasi harga saham, sehingga mereka dapat menentukan harga option yang mungkin menguntungkan abdulย azizย ย  16 volumeย 1ย no.ย 1ย novemberย 2009 bagi kedua pihak tersebut. pemegang option akan memperoleh keuntungan, jika menggunakan hak optionnya, dari nilai option (option value) yang diperoleh dari selisih harga saham pada pasar bebas dengan harga saham pada option, yang diistilahkan dengan payoff, v, setelah dikurangi dengan harga option (option price), yang diistilahkan dengan profit atau keuntungan (return). sedangkan penulis option hanya memperoleh keuntungan sebesar harga atau biaya option, baik jika pemegang option menggunakan atau mengabaikannya. jadi keuntungan atau kerugian yang diperoleh oleh pemegang call option pada waktu t (hull, john c., 2003): profit = payoff โ€“ biaya option = vc โ€“ c = max(k-st, 0) โ€“ c sebaliknya, bagi pemegang put option akan mendapatkan keuntungan atau kerugian: profit = payoff โ€“ biaya option = vp โ€“ c = max(st-k, 0) โ€“ p artinya, jika profit bernilai positif maka pemegang option mendapatkan keutungan, dan sebaliknya jika negatif merupakan kerugian yang maksimal sebesar biaya option. 2. model binomial harga saham harga saham pada pasar bebas kenyataannya akan selalu berubah naik atau turun dengan perubahan waktu. kemungkinan dua arah perubahan inilah yang digunakan sebagai dasar model binomial. misalkan harga saham pada saat t = 0, saat pembuatan option, adalah s0 dan pada saat t = t akan naik dengan peluang p menjadi su atau akan turun dengan peluang 1-p menjadi sd, sehingga nilai option pada saat t = 0, saat pembuatan option, adalah v0 dan pada saat t = t akan naik menjadi u atau akan turun menjadi d. gambar 1. grafik perubahan harga saham dan harga option permodelan matematika diharapkan dapat membantu kita untuk memahami keadaan sekarang dan prediksinya pada waktu yang akan datang. oleh karena itu, agar model binomial ini dapat berhasil dengan lebih baik maka harus sesuai dengan keadaan dunia nyata. masalah yang dihadapi sekarang adalah bagaimana kita memilih p, u, dan d sedemikian hingga model binomial ini mendekati pada keadaan dunia nyata. kita mulai dengan diskritisasi, yaitu menjadikan waktu kontinu t menjadi diskrit dengan menggantikan t oleh waktu yang sama lamanya katakanlah ti. misalkan kita gunakan notasi berikut: m : banyaknya selang waktu, m t t =ฮด : ti : i . โˆ†t, i = 0, 1, โ€ฆ, m si : s(ti) selanjutnya bidang (s,t) diwakili oleh garis-garis lurus paralel dengan jarak โˆ†t. dan kita ganti nilai-nilai kontinu si sepanjang paralel t = ti dengan nilai-nilai diskrit sji, untuk semua i dan j yang sesuai. untuk lebih memahami lihat gambar 2. gambar ini s0 su = u s0 v0 d u sd = d s0 p 1-p ย empatย modelย aproksimasiย binomialย hargaย sahamย modelย blackโ€scholesย ย  volumeย 1ย no.ย 1ย novemberย 2009 17 menunjukkan sebuah hubungan grid, katakanlah perubahan dari t ke t+โˆ†t, atau dari ti ke ti+1. gambar 2. prinsip metode binomial sehingga asumsi-asumsi yang digunakan dalam permodelan ini adalah (figlewski, stephen, 1990): (a1) harga s, sebagai harga awal, selama setiap periode waktu โˆ†t hanya dapat berubah dalam dua kemungkinan yaitu naik menjadi su atau turun menjadi sd dengan 0 < d < u. di sini u dan d masing-masing merupakan faktor perubahan naik dan turun yang konstan untuk setiap โˆ†t. (a2) peluang perubahan naik adalah p, p(naik) = p. sehingga p(turun) = 1 โ€“ p. (a3) ekspektasi harga saham secara acak kontinu, dengan suku bunga bebas resiko r, dari si pada waktu ti menjadi si+1 pada waktu ti+1 adalah: tr ii esse ฮด + = .)( 1 . asumsi selanjutnya adalah tidak ada pembayaran dividen selama periode waktu tersebut. jika ada pembayaran dividen, q, maka persamaan (2.1) menjadi tqrii esse ฮดโˆ’ + = )( 1 .)( dengan model binomial kita bisa membangun skema (tree) untuk fluktuasi harga saham secara diskrit. dari gambar 3, kita misalkan harga saham pada saat t = t0 adalah s0 = s00 = s, dan harga saham pada saat t = t1 adalah s01 = sd dan s11 = su. sehingga secara umum harga saham pada saat t = ti terdapat i+1 kemungkinan dengan rumus umum jijji duss โˆ’= 0 , i = 0,1,โ€ฆ,m dan j = 0,1,โ€ฆi. (1) sehingga diperoleh nilai-nilai option, untuk european call option )0,max( ksv jmjm โˆ’= , dan untuk european put option )0,max( jmjm skv โˆ’= . pada american option, kita bisa meng-exercise sebelum jatuh tempo, t โ‰ค t, sehingga perlu juga untuk menghitung nilai-nilai option untuk ti dimana i = m-1, m-2,โ€ฆ,0, karena ada kemungkinan nilai-nilai option di waktu-waktu tersebut lebih baik dari pada pada waktu jatuh temponya. (ross, sheldon m., 1999) s su = u . s sd = d . s p 1-p si+1 si ti+1= t + โˆ†t ti = t s t abdulย azizย ย  18 volumeย 1ย no.ย 1ย novemberย 2009 persamaan (1) adalah tidak rekursif, artinya perhitungan yang memerlukan waktu relatif lama, sehingga perlu adanya bentuk rekursif yang diperoleh sebagai berikut, dengan bantuan persamaan ( ) trii esse ฮด+ =1 . (2) gambar 3. skema fluktuasi harga saham secara binomial sedangkan ( ) 1,1,11, )1()1( ++++ฮด โˆ’+=โˆ’+== ijijjijiijtrji sppsdspupssees . (3) sehingga bentuk rekursif untuk nilai option, v, ( ) ( ) ( )1,1,11, )1( +++ฮดโˆ’ฮดฮดโˆ’+ฮดโˆ’ โˆ’+=== ijijtrtrjitrijtrji vppveeveveev . (4) jadi, nilai-nilai option untuk european call option ( )0,max ksv jmjm โˆ’= , dan ( )1,1,1 )1( +++ฮดโˆ’ โˆ’+= ijijtrji vppvev dan untuk european put option ( )0,max jmjm skv โˆ’= , dan ( )1,1,1 )1( +++ฮดโˆ’ โˆ’+= ijijtrji vppvev , sedangkan untuk american call option ( )0,max ksv jmjm โˆ’= , dan ( ) ( ){ }1,1,1 )1(,0,maxmax +++ฮดโˆ’ โˆ’+โˆ’= ijijtrjiji vppveksv dan untuk american put option ( )0,max jmjm skv โˆ’= , dan ( ) ( ){ }1,1,1 )1(,0,maxmax +++ฮดโˆ’ โˆ’+โˆ’= ijijtrjiji vppveskv untuk i = 0,1,โ€ฆ,m dan j=0,1,โ€ฆ,i . 3. metode i, dengan asumsi u.d = 1 untuk menentukan tiga parameter yang belum diketahui, u, d, dan p, diperlukan tiga persamaan, yaitu (stampfli, j., goodman, v., 2001): s su sd su2 sud sd2 su3 su2d sud2 sd3 t0 t1 t2 t3 ย empatย modelย aproksimasiย binomialย hargaย sahamย modelย blackโ€scholesย ย  volumeย 1ย no.ย 1ย novemberย 2009 19 (p.1) menyamakan ekspektasi harga saham model diskrit dengan model kontinu. (p.2) menyamakan variansi model diskrit dengan model kontinu. (p.3) menyamakan u . d = 1. konsekuensi dari asumsi (a1) dan (a2) untuk model diskrit ini adalah ( )dppusdspupsse iiii )1()1()( 1 โˆ’+=โˆ’+=+ . di sini si adalah sebuah nilai sebarang untuk ti, yang berubah secara acak menjadi si+1, sehingga sesuai kedua asumsi tersebut persamaan (2) dan (3) memberikan dppue tr )1( โˆ’+=ฮด . ini merupakan persamaan pertama yang diperlukan untuk menentukan u, d, p. selanjutnya perhatikan bahwa dengan menyelesaikan persamaan (4) untuk p akan diperoleh: dduppddpudppue tr +โˆ’=โˆ’+=โˆ’+=ฮด )()1( du de p tr โˆ’ โˆ’ = ฮด . (5) karena p merupakan peluang yang harus memenuhi 0 โ‰ค p โ‰ค 1 maka haruslah erโˆ†t โ€“ d โ‰ค u โ€“ d atau erโˆ†t โ‰ค u dan u โ€“ d > 0 atau d โ‰ค u, sehingga diperoleh d โ‰ค erโˆ†t โ‰ค u. pertidaksamaan-pertidaksamaan ini berhubungan dengan gerakan naik dan turunnya harga aset terhadap suku bunga bebas resiko r. pertidaksamaan terakhir ini bukanlah merupakan asumsi baru tetapi merupakan prinsip no-arbitrage bahwa 0 < d < u. selanjutnya kita menghitung variansi. dari model kontinu kita terapkan hubungan tr ii esse ฮด+ + = )2(22 1 2 )( ฯƒ . (6) persamaan (2) dan (6) menghasilkan variansi ( ) )1()()()( 22 2222)2(2212 11 โˆ’=โˆ’=โˆ’= ฮดฮดฮดฮด++++ ttritritriiii eesesessesesvar ฯƒฯƒ . di sisi lain, dengan menggunakan persamaan (3) dan (4), varian untuk model diskrit memenuhi ( ) ( ) ( ) ( )( )222212 11 )1()1()()()( dppusdspuspsesesvar iiiiii โˆ’+โˆ’โˆ’+=โˆ’= +++ ( ) ( ) ( )tritrii edppusesdppus ฮดฮด โˆ’โˆ’+=โˆ’โˆ’+= 2222 2222 )1()1( (7) sehingga dengan menyamakan hasil kedua variansi tersebut, persamaan (6) dan (7), menghasilkan ( ) ( )trittri edppusees ฮดฮดฮด โˆ’โˆ’+=โˆ’ 222222 )1(12ฯƒ ( ) trttr edppuee ฮดฮดฮด โˆ’โˆ’+=โˆ’ 2222 )1(12ฯƒ ( ) 222 )1( 2 dppue tr โˆ’+=ฮด+ฯƒ ( ) ( ) 2222 2 ddupe tr +โˆ’=ฮด+ฯƒ ( ) 22 22 2 du de p tr โˆ’ โˆ’ = ฮด+ฯƒ (8) selanjutnya, dengan menyamakan persamaan (5) dan (8) serta misalkan kita memilih menyamakan u . d = 1 akan dihasilkan ( ) 22 22 2 du de du de trtr โˆ’ โˆ’ = โˆ’ โˆ’ ฮด+ฮด ฯƒ ( ) ( )( )dudu de du de trtr +โˆ’ โˆ’ = โˆ’ โˆ’ ฮด+ฮด 22 2ฯƒ ( )( ) ( ) 22 2 dededu trtr โˆ’=โˆ’+ ฮด+ฮด ฯƒ ( ) 222 2 deduddeue trtrtr โˆ’=โˆ’โˆ’+ ฮด+ฮดฮด ฯƒ abdulย azizย ย  20 volumeย 1ย no.ย 1ย novemberย 2009 ( ) ( ) 222 21 dededu trtr โˆ’=โˆ’โˆ’+ ฮด+ฮด ฯƒ ( ) ( ) trtr eedu ฮด+ฮด =โˆ’+ 221 ฯƒ ( ) ( ) trtrtr eeedu ฮดฮด+ฮด =โˆ’+ 21 ฯƒ ( ) ( ) trtrtrtr eeeedu ฮดฮด+ฮดฮดโˆ’ =โˆ’+ 2ฯƒ ( ) trtr eedu ฮด+ฮดโˆ’ =โˆ’+ 2ฯƒ ( ) trtr ee u u ฮด+ฮดโˆ’ =โˆ’+ 21 ฯƒ ( ) trtr ueueu ฮด+ฮดโˆ’ =โˆ’+ 2 12 ฯƒ ( ) 01 22 =โˆ’โˆ’+ ฮด+ฮดโˆ’ trtr ueueu ฯƒ ( )( ) 0122 =++โˆ’ ฮด+ฮดโˆ’ trtr eeuu ฯƒ ( )( ) 0122 =++โˆ’ ฮด+ฮดโˆ’ trtr eeuu ฯƒ (9) dengan memisalkan ( )( )trtr ee ฮด+ฮดโˆ’ += 221 ฯƒฮฒ persamaan (9) menjadi persamaan kuadrat yang lebih sederhana yaitu 0122 =+โˆ’ uu ฮฒ dengan akar-akar 12 โˆ’ยฑ= ฮฒฮฒu dimana 012 >โˆ’ฮฒ . karena d < u maka kita pilih 12 โˆ’+= ฮฒฮฒu sehingga diperoleh nilai untuk u, d dan p yaitu 12 โˆ’+= ฮฒฮฒu , d=1/u, du de p tr โˆ’ โˆ’ = ฮด dengan ( )( )trtr ee ฮด+ฮดโˆ’ += 221 ฯƒฮฒ selanjutnya, dengan aproksimasi bilangan eksponensial xe x +โ‰ˆ 1 akan diperoleh nilai untuk ฮฒ ( )( ) ( ) tttrtr ฮด+=ฮด+=ฮด+++ฮดโˆ’= 221221221 1211 ฯƒฯƒฯƒฮฒ sehingga untuk nilai u ( ) ( ) 111111 44122212221221 โˆ’ฮด+ฮด++ฮด+=โˆ’ฮด++ฮด+= tttttu ฯƒฯƒฯƒฯƒฯƒ ttttttt ฮด+ฮด+=ฮด+ฮด+โ‰ˆฮด+ฮด+ฮด+= ฯƒฯƒฯƒฯƒฯƒฯƒฯƒ 221 22 2 14 4 122 2 1 111 tet ฮดโ‰ˆฮด+โ‰ˆ ฯƒฯƒ1 sehingga kita memperoleh nilai u, d dan p sebagai ,, tt edeu ฮดโˆ’ฮด == ฯƒฯƒ dan. du de p tr โˆ’ โˆ’ = ฮด . nilai-nilai dari parameter-parameter terakhir ini telah diperkenalkan oleh cox, ross, dan rubinstein. 7 atau jika diinginkan juga untuk nilai p 1 1 2 โˆ’ โˆ’ = โˆ’ โˆ’ = โˆ’ โˆ’ = โˆ’ โˆ’ = ฮด ฮด+ฮด ฮด ฮด ฮดโˆ’ฮด ฮดโˆ’ฮด ฮดโˆ’ฮด ฮดโˆ’ฮดฮด t ttr t t tt ttr tt ttrtr e e e e ee ee ee ee du de p ฯƒ ฯƒ ฯƒ ฯƒ ฯƒฯƒ ฯƒ ฯƒฯƒ ฯƒ ( ) โŽŸ โŽ  โŽž โŽœ โŽ โŽ› +ฮด= ฮด ฮด+ฮด = ฮด ฮด+ฮด = โˆ’ฮด+ โˆ’ฮด+ฮด+ โ‰ˆ 1 2 1 2 1 2121 11 t r t tt t ttr t ttr r ฯƒฯƒ ฯƒ ฯƒ ฯƒ ฯƒ ฯƒ ฯƒ . sehingga kita memperoleh nilai u, d dan p yang lain sebagai ,, tt edeu ฮดโˆ’ฮด == ฯƒฯƒ dan ( )121 +ฮด= tp r ฯƒ . ย empatย modelย aproksimasiย binomialย hargaย sahamย modelย blackโ€scholesย ย  volumeย 1ย no.ย 1ย novemberย 2009 21 4. metode ii, dengan asumsi p = 0.5 sekarang, kita coba membandingkan metode di atas dengan memilih p = 0.5 pada (p.3) untuk menghitung ulang dalam menentukan nilai u dan d. dan tetap dengan menyamakan ekspektasi dan rata-rata pada model kontinu dan diskritnya sebagaimana metode sebelumnya. dengan mensubstitusikan nilai p dada persamaan (5) diperoleh )(5.05.05.0)1( dududppue tr +=+=โˆ’+=ฮด sehingga tredu ฮด=+ 2 dan pada persamaan (8) diperoleh ( ) 2 1 22 22 2 = โˆ’ โˆ’ = ฮด+ du de p tr ฯƒ sehingga ( ) tredu ฮด+=+ 2222 2 ฯƒ . misalkan u = b + c dan d = b โ€“ c maka diperoleh trebcbcbdu ฮด==โˆ’++=+ 22 atau treb ฮด= dan ( ) trecbcbcbcbcbdu ฮด+=+=+โˆ’+++=+ 2222222222 22222 ฯƒ atau ( ) 22222 2 cecbe trtr +=+= ฮดฮด+ฯƒ sehingga ( ) ( )122 2222 โˆ’=โˆ’= ฮดฮดฮดฮด+ ttrtrtr eeeec ฯƒฯƒ atau 1 2 โˆ’= ฮดฮด ttr eec ฯƒ . sehingga diperoleh โŽŸ โŽ  โŽžโŽœ โŽ โŽ› โˆ’+=โˆ’+= ฮดฮดฮดฮดฮด 111 22 ttrttrtr eeeeeu ฯƒฯƒ dan โŽŸ โŽ  โŽžโŽœ โŽ โŽ› โˆ’โˆ’=โˆ’โˆ’= ฮดฮดฮดฮดฮด 111 22 ttrttrtr eeeeed ฯƒฯƒ . jadi, dengan metode ini diperoleh 2 1 ,11,11 22 =โŽŸ โŽ  โŽžโŽœ โŽ โŽ› โˆ’โˆ’=โŽŸ โŽ  โŽžโŽœ โŽ โŽ› โˆ’+= ฮดฮดฮดฮด peedeeu ttrttr ฯƒฯƒ . 5. perbandingan hasil numerik dari kedua metode di atas ternyata dapat diperoleh empat bentuk solusi nilai-nilai untuk parameter-parameter u ,d, dan p dalam model binomial, yaitu 12 โˆ’+= ฮฒฮฒu , d=1/u, du de p tr โˆ’ โˆ’ = ฮด dengan ( )( )trtr ee ฮด+ฮดโˆ’ += 221 ฯƒฮฒ ,, tt edeu ฮดโˆ’ฮด == ฯƒฯƒ dan. du de p tr โˆ’ โˆ’ = ฮด . ,, tt edeu ฮดโˆ’ฮด == ฯƒฯƒ dan ( )121 +ฮด= tp r ฯƒ . 2 1 ,11,11 22 =โŽŸ โŽ  โŽžโŽœ โŽ โŽ› โˆ’โˆ’=โŽŸ โŽ  โŽžโŽœ โŽ โŽ› โˆ’+= ฮดฮดฮดฮด peedeeu ttrttr ฯƒฯƒ . abdulย azizย ย  22 volumeย 1ย no.ย 1ย novemberย 2009 berikut ini adalah tabel dan grafik hasil komputasi numerik untuk menghitung nilai european option dengan keempat model binomial solusi aproksimasi parameterparameter di atas yang juga diperbandingkan dengan nilai option dengan model blackscholes. pada contoh di sini menggunakan data-data: s = 5, k = 10, r = 0.06. ฯƒ = 0.3, t = 1. tabel 1. hasil numerik nilai european put option m 8 16 32 64 128 256 512 model 1 4.4251 4.4292 4.4299 4.4299 4.4300 4.4304 4.4304 model 2 4.4248 4.4289 4.4297 4.4298 4.4300 4.4304 4.4304 model 3 4.2010 4.2057 4.2065 4.2065 4.2067 4.2071 4.2071 model 4 4.4247 4.4293 4.4298 4.4296 4.4302 4.4303 4.4304 bs 4.4305 4.4305 4.4305 4.4305 4.4305 4.4305 4.4305 tabel 2. hasil numerik nilai european call option periode 8 16 32 64 128 256 512 model 1 0.0074 0.0116 0.0122 0.0123 0.0124 0.0127 0.0127 model 2 0.0071 0.0112 0.0120 0.0122 0.0124 0.0127 0.0127 model 3 0.107 0.0168 0.0183 0.0187 0.0190 0.0195 0.0195 model 4 0.0071 0.0117 0.0121 0.0120 0.0126 0.0126 0.0128 bs 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 gambar 4. perbandingan numerik european put option model 1, 2,3 dan 4 gambar 5. perbandingan numerik european put option model 1, 2, dan 4 4 4.2 4.4 4.6 8 16 32 64 128 256 512 perbandinganย numerik europeanย putย option modelย 1 modelย 2 modelย 3 modelย 4 blackย scholes 4.424 4.426 4.428 4.43 4.432 8 16 32 64 128 256 512 perbandinganย numerik europeanย putย option modelย 1 modelย 2 modelย 4 blackย scholes ย empatย modelย aproksimasiย binomialย hargaย sahamย modelย blackโ€scholesย ย  volumeย 1ย no.ย 1ย novemberย 2009 23 gambar 6. perbandingan numerik european call option model 1, 2,3 dan 4 gambar 7. perbandingan numerik european call option model 1, 2, dan 4 dari tabel dan garfik perbandingan di atas dapat dilihat bahwa aproksimasi binomial model 3 sangat tidak sesuai atau paling lemah dan besar galatnya dibandingkan dengan ketiga model lainnya karena dihasilkan dengan melibatkan banyak aproksimasi dalam menghasilkan perumusannnya. untuk kasus european put option, model 3 under estimate, sedangkan untuk kasus european call option, model 3 over estimate. 6. kesimpulan model binomial, kecuali model 3, dapat digunakan sebagai pendekatan diskritisasi dalam menentukan nilai option. semakin besar banyaknya grid, m, maka metode ini akan semakin mendekati pada nilai option dengan model black-scholes. aproksimasi binomial model 3 sangat tidak sesuai atau paling lemah dan besar galatnya dibandingkan dengan ketiga model lainnya karena dihasilkan dengan melibatkan banyak aproksimasi dalam menghasilkan perumusannnya. untuk kasus european put option, model 3 under estimate, sedangkan untuk kasus european call option, model 3 over estimate. 0 0.05 0.1 0.15 8 16 32 64 128 256 512 perbandinganย numerik europeanย callย option modelย 1 modelย 2 modelย 3 modelย 4 blackย scholes 0.006 0.008 0.01 0.012 0.014 8 16 32 64 128 256 512 perbandinganย numerik europeanย callย option modelย 1 modelย 2 modelย 4 blackย scholes abdulย azizย ย  24 volumeย 1ย no.ย 1ย novemberย 2009 daftar pustaka figlewski, stephen, (1990), theoretical valuation models, dalam: financial options from theory to practice, salomon brothers center for the study of financial institutions, new york university. hull, john c., (2003), options, futures, and other derivatives, fifth edition, prentice hall, new jersey. ross, sheldon m., (1999), an introduction to mathematical finance, option and other topics, cambridge university press. stampfli, j., goodman, v., (2001), the mathematics of finance, brooks/cole, usa. cauchy jurnal matematika murni dan aplikasi volume 7, issue 4, may 2023 issn : 2086-0382 e-issn : 2477-3344 publication etics cauchy: jurnal matematika murni dan aplikasi is a peer-reviewed electronic national journal. this statement clarifies ethical behaviour of all parties involved in the act of publishing an article in this journal, including the author, the chief editor, the editorial board, the peer-reviewed and the publisher (mathematics department of maulana malik ibrahim state islamic university of malang). this statement is based on copeโ€™s best practice guidelines for journal editors. ethical guideline for journal publication the publication of an article in a peer-reviewed cauchy is an essential building block in the development of a coherent and respected network of knowledge. it is a direct reflection of the quality of the work of the authors and the institutions that support them. peer-reviewed articles support and embody the scientific method. it is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer, the publisher and the society. as publisher of pure and applied mathematics journal, we take our duties to back up over all stages of publishing seriously and we recognize our ethical and other responsibilities. we are committed to ensuring that advertising, reprint or other commercial revenue has no impact or influence on editorial decisions. publication decisions the editor of cauchy is responsible for deciding which of the articles submitted to the journal should be published. the validation of the work in question and its importance to researchers and readers must always drive such decisions. the editors may be guided by the policies of the journal's editorial board and constrained by such legal requirements as shall then be in force regarding libel, copyright infringement and plagiarism. the editors may confer with other editors or reviewers in making this decision. fair play an editor at any time evaluates manuscripts for their intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the authors. confidentiality the editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher, as appropriate. any manuscripts received for review must be treated as confidential documents. they must not be shown to or discussed with others except as authorized by the editor. disclosure and conflicts of interest unpublished materials disclosed in a submitted manuscript must not be used in an editor's own research without the express written consent of the author. cauchy jurnal matematika murni dan aplikasi volume 7, issue 4, may 2023 issn : 2086-0382 e-issn : 2477-3344 publication etics contribution to editorial decisions peer review assists the editor in making editorial decisions and through the editorial communications with the author may also assist the author in improving the paper. promptness any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse himself from the review process. standards of objectivity reviews should be conducted objectively. personal criticism of the author is inappropriate. referees should express their views clearly with supporting arguments. acknowledgement of sources reviewers should identify relevant published work that has not been cited by the authors. any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. a reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge. disclosure and conflict of interest privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers. reporting standards authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance. underlying data should be represented accurately in the paper. a paper should contain sufficient detail and references to permit others to replicate the work. fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. data access and retention authors are asked to provide the raw data in connection with a paper for editorial review and should be prepared to provide public access to such data (consistent with the alpspstm statement on data and databases), if practicable, and should in any event be prepared to retain such data for a reasonable time after publication. originality and plagiarism the authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted. cauchy jurnal matematika murni dan aplikasi volume 7, issue 4, may 2023 issn : 2086-0382 e-issn : 2477-3344 publication etics multiple, redundant or concurrent publication an author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. acknowledgement of sources proper acknowledgment of the work of others must always be given. authors should cite publications that have been influential in determining the nature of the reported work. authorship of the paper authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. all those who have made significant contributions should be listed as co-authors. where there are others who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. the corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. hazards and human or animal subjects if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. disclosure and conflicts of interest all authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. all sources of financial support for the project should be disclosed. fundamental errors in published works when an author discovers a significant error or inaccuracy in his/her own published work, it is the authorโ€™s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. cauchy jurnal matematika murni dan aplikasi volume 7, issue 4, may 2023 issn : 2086-0382 e-issn : 2477-3344 acknowledgment to reviewers in this issue contributions and valuable comments of the following reviewers in this issue was very appreciated bety hayat susanti, politeknik siber dan sandi negara, indonesia dian savitri, universitas negeri surabaya, indonesia meta kallista, universitas telkom, indonesia dani suandi, universitas bina nusantara, bandung, indonesia anwar fitrianto, department of statistics, ipb university, indonesia subanar seno, gadjah mada university, indonesia arief fatchul huda, uin sunan gunung djati bandung, indonesia usman pagalay, maulana malik ibrahim state islamic university of malang, indonesia riswan efendi, uin sultan syarif kasim riau, indonesia sri harini, universitas islam negeri maulana malik ibrahim malang, indonesia heni widayani, faculty of mathematics and natural sciences, institut teknologi bandung, indonesia corina karim, brawijaya uiversity fachrur rozi, universitas islam negeri maulana malik ibrahim malang, indonesia javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740595') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740557') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740556') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/740541') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/736347') javascript:openrtwindow('http://ejournal.uin-malang.ac.id/index.php/math/about/editorialteambio/5964') an application of geographically weighted regression for assessing water polution in pontianak, indonesia cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 186-194 p-issn: 2086-0382; e-issn: 2477-3344 submitted: september 01, 2021 reviewed: november 11, 2021 accepted: january 05, 2022 doi: http://dx.doi.org/10.18860/ca.v7i1.13266 an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar1, naomi nessyana debataraja1,*, and rossie wiedya nusantara2 1department of statistics, universitas tanjungpura, indonesia 2department of soil sciences, universitas tanjungpura, indonesia *corresponding author email: dkusnand@untan.ac.id, naominessyana@untan.ac.id*, rwiedyanusantara@gmail.com abstract geographically weighted regression (gwr) is an exploratory analytical tool that creates a set of location-specific parameter estimates. the estimates can be analyzed and represented on a map to provide information on spatial relationships between the dependent and the independent variables. a problem that is faced by the gwr users is how best to map these parameter estimates. this paper introduces a simple mapping technique that plots local t-values of the parameters on one map. this study employed gwr to evaluate chemical parameters of water in pontianak city. the chemical oxygen demand (cod) was used as the dependent variable as an indicator of water pollution. factors used for assessing water pollution were ph (๐‘‹1), iron (๐‘‹2), fluoride (๐‘‹3), water hardness (๐‘‹4), nitrate (๐‘‹5), nitrite (๐‘‹6), detergents (๐‘‹7) and dissolved oxygen, do, (๐‘‹8). samples were taken from 42 locations. chemical properties were measured in the laboratory. the parameters of the gwr model from each site were estimated and transformed using geographic information systems (gis). the results of the analysis show that ๐‘‹1, ๐‘‹2, ๐‘‹3, ๐‘‹5 and ๐‘‹7 influence the amount of cod in water. the resulting map can assist the exploration and interpretation of data. keywords: chemical parameters; geographically weighted regression; modelling; t-value mapping introduction in a residential area, human activities are one of the critical aspects that affect the quality of water resources. the more activities in the area, the higher the waste discharged into the environment. as the capital city of the west kalimantan province, the level of land use in pontianak city has increased every year. this increase has resulted in a decrease in the carrying capacity of the city. one form of land use that has experienced a very rapid rise is the land for settlements. this condition is closely related to population growth. the total population of pontianak city is estimated at 646,661 people, with a population density of 5,998 people/km2 and a population growth rate of 1.95% per year [1]. the quantity and quality of water in a region significantly affects the life of living things. changes in the quality and quantity of water are strongly influenced by the patterns of land management that exist in the area. waste generated from human http://dx.doi.org/10.18860/ca.v7i1.13266 mailto:dkusnand@untan.ac.idm mailto:naominessyana@untan.ac.idi mailto:rwiedyanusantara@gmail.com an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar 187 activities in daily life can cause deterioration in water quality. discharged waste has different characteristics that determine the degree of water quality around it. waste produced from the activities of human life is diverse both in type and content. the waste can be in the form of organic compounds degraded by microorganisms as well as inorganic compounds such as soap, detergent, shampoo, and other cleaning agents that can contaminate water [2]. parameters in measuring water quality include physical, biological and chemical parameters. these parameters are essential variables for measuring the water quality [3]. however, this paper focused on chemical variables. water pollution can also be seen from the amount of oxygen content dissolved in water, namely through the measurement of chemical oxygen demand [4]. chemical oxygen demand (cod) is the total amount of oxygen needed to oxidize organic matter chemically. household waste is the primary source of organic waste and is one of the leading causes of high cod concentrations. this condition has an impact on humans and the environment, one of which is that many aquatic biotas die because the level of oxygen dissolved in water is small. the criteria for proper water use are increasingly difficult to obtain. this research aimed to investigate the relationships among many variables and the cod in the research area. the samples were collected from several locations having different characteristics and types of land and environment. this sampling procedure could create a dependence between data measurements and their locations. hence, it generates spatial data. techniques of spatial analysis can then be applied to the collected data. this research utilized the geographically weighted regression (gwr) to investigate the relationship between the dependent variable and the corresponding independent variables. as an exploratory method, gwr provides extra information for any spatial data set and should be useful across all disciplines in which spatial data are utilized. applications of gwr include studies in a wide variety of demographic fields including but not limited to the analysis of health and disease (see for example [5, 6, 7, 8]), environmental equity [9], housing markets [10, 11], population density and housing [12], poverty mapping in malawi [13], urban poverty [14], demography and religion [2], as well as environmental conditions [15]. brown et al. [16] used gwr to investigate the relationships between land cover, rainfall, and surface water habitat in predominately agriculture regions in southeast australia. it was found that gwr provided a better estimate than the ols method. in this study, gwr was applied to investigate the relationship among variables of chemical contained in the water samples. methods the research was carried out in pontianak city (lat. 0ยฐ02' n โ€“ 0ยฐ01' s, long. 109ยฐ16' โ€“ 109ยฐ23 e). pontianak is the capital city of the west kalimantan province, indonesia. it covers approximately 107.82 km2. soil conditions in the city of pontianak consist of soil types of organosol, gley, humus, and alluvial, each of which has different characteristics. the sampling method was carried out by stratified random sampling. subsequent sub-populations called strata were formed based on the criteria of the area flowed by the same tributary. it is assumed that the level of water pollution is homogeneous. the sample units studied were rivers/ditches, with a total sample of 42 water samples from different locations, representing the six districts in the city of pontianak. the sites were plotted into a map of pontianak city in figure 1 [17]. the samples were taken in the same an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar 188 conditions, namely when the water receded. in this study, the response variable is cod, while the independent variables used include ph (๐‘‹1), iron (๐‘‹2), fluoride (๐‘‹3), hardness (๐‘‹4), nitrate (๐‘‹5), nitrite (๐‘‹6), detergent (๐‘‹7), and dissolved oxygen, do, (๐‘‹8). figure 1. map of sample locations suppose we have a set of observations๏ป ๏ฝijx for i = 1, 2, โ€ฆ, n cases and j = 1, 2, โ€ฆ, k independent variables, and a set of dependent variables ๏ป ๏ฝiy for each case. this notation is standard data set for a global regression model. now suppose that in addition to this, we have a set of location coordinates ๏€จ ๏€ฉ๏ป ๏ฝ,i iu v for each case. the underlying model for gwr is as follows [18]: ๏€จ ๏€ฉ ๏€จ ๏€ฉ0 1 , , k i i i j i i ij i j y u v u v x๏ข ๏ข ๏ฅ ๏€ฝ ๏€ฝ ๏€ซ ๏€ซ๏ƒฅ (1) where ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏ป ๏ฝ0 1, , , , ,ku v u v u v๏ข ๏ข ๏ข are k + 1 continuous functions of the location (u, v) in the geographical study area, and ๐œ€๐‘– โˆผ ๐‘(0, ๐œŽ 2). the log-likelihood for any particular set of estimates of the functions may be written as follows (see, for example [18]): ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ 2 0 1 02 1 1 1 , , , , , | , , 2 n k k i i i ij j i i i j l u v u v u v d y u v x u v๏ข ๏ข ๏ข ๏ข ๏ข ๏ณ ๏€ฝ ๏€ฝ ๏ƒฆ ๏ƒถ ๏€ฝ ๏€ญ ๏€ญ ๏€ญ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒฅ ๏ƒฅ (2) where d is the union of the set ๏ป ๏ฝijx , ๏ป ๏ฝiy and ๏€จ ๏€ฉ๏ป ๏ฝ,i iu v . rather than attempting to maximize equation (2) globally, we consider the local likelihood. we consider the problem of estimating ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏ป ๏ฝ0 1, , , , ,ku v u v u v๏ข ๏ข ๏ข on a pointwise basis. that is, given a specific point in geographical space ๏€จ ๏€ฉ0 0,u v , we attempt to estimate ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ๏ป ๏ฝ0 1, , , , ,ku v u v u v๏ข ๏ข ๏ข . the point ๏€จ ๏€ฉ0 0,u v may or may not correspond to one of the observed ๏€จ ๏€ฉ,i iu v . if these functions are reasonably smooth, we can assume that a simple regression model 0 1 k i ij j i j y x๏ง ๏ง ๏ฅ ๏€ฝ ๏€ฝ ๏€ซ ๏€ซ๏ƒฅ (3) holds close to the point ๏€จ ๏€ฉ0 0,u v , where each j๏ง is a constant valued approximation of the an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar 189 corresponding ๏€จ ๏€ฉ,j u v๏ข in eq. (1). we can calibrate a model of this sort by considering observations close to the point ๏€จ ๏€ฉ0 0,u v . an obvious way to do this is to use weighted least squares; this is to choose ๏ป ๏ฝ0 1, , , k๏ง ๏ง ๏ง to minimize ๏€จ ๏€ฉ 2 0 0 1 1 n k i i ij j i j w d y x๏ง ๏ง ๏€ฝ ๏€ฝ ๏ƒฆ ๏ƒถ ๏€ญ ๏€ญ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒฅ ๏ƒฅ (4) where d0i is the distance between the points ๏€จ ๏€ฉ0 0,u v and ๏€จ ๏€ฉ,i iu v . this result gives us the standard gwr approach. we simply set ๏€จ ๏€ฉ0 0ห† ,j u v๏ข as ห† j๏ง to obtain the familiar gwr estimates. at this stage, it is worth noting that eq. (4) maybe multiplied by 2 1 ๏ณ ๏€ญ and be considered as a local log-likelihood expression: ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ0 0 0 1 | | n k i k i wl d w d l d๏ง ๏ง ๏ง ๏ง ๏€ฝ ๏€ฝ ๏ƒฅ (5) where ๏€จ ๏€ฉ0 |kwl d๏ง ๏ง is an empirical estimate of the expected log-likelihood at the point of estimation gwr employs a weighted distance decay function for model calibration. the gwr assumes that observations closer together will have more impact on each other than on observations further apart. the weighting function for including related samples can be calculated using the exponential distance decay function: 2 2 exp ij ij d b ๏ท ๏ƒฆ ๏ƒถ๏€ญ ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ (6) where ij๏ท is the weight of observation j for observation i, dij is the distance between observation i and j and b are the kernel bandwidth when the distance between observations is greater than the kernel bandwidth, the weight rapidly approaches zero. fixed bandwidth kernel calculates a bandwidth that is held constant over space, whereas the adaptive bandwidth kernel can adapt bandwidth distance in relation to variabledensity; bandwidths are smaller where data are dense and more abundant when data are sparse. in this study, all gwr models used the adaptive kernel bandwidth as sample densities varied spatially. the optimal bandwidth distance was determined automatically in gwr using the akaike information criterion (aic). results and discussion tests on spatial aspects consist of two stages, namely the analysis of spatial dependency and spatial heterogeneity test. the spatial dependency test performed using the moran's i test, whereas the spatial heterogeneity test used the breusch-pagan test. the test results are presented in table 1. table 1. test on spatial aspects tests p-value decision moranโ€™s i 9,763e-08 reject h0 breusch-pagan 0,1375 do not reject h0 moranโ€™s i test indicated the existence of dependency spatial in the model. whereas the results of breush-pagan showed there are no differences in characteristics among an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar 190 observation points. the next step is the selection of bandwidth that will be used in gwr modeling. bandwidth selection can be made by examining the cross-validation (cv) value between weighting functions. the weighting function used were fixed gaussian, fixed bisquare, and fixed tricube (table 2). table 2. cross-validation values and the bandwidth for each model. model cv bandwidth gaussian 19,587.93 0.020963 bisquare 20,381.45 0.07239735 tricube 20,260.00 0.07239735 table 2 shows that the fixed gaussian model gives a minimum value of the cv with the bandwidth of 0.020963. the fixed gaussian model was then used to obtain the weighting matrix for each location. models obtained by the gwr was compared to that of the ordinary least squares (ols) method in term of their sse. the results showed that gwr performed better than that of the ols (table 3). table 3. comparison between the gwr and the ols methods. sse df f p-value ols 17,330.621 33,000 gwr 5,195.428 16,602 3.3357 0.005773 models for all 42 locations of the cod on the eight dependent variables are presented in table 4. the coefficient of determination (r2) also showed in the table. table 4. regression model for the 42 locations no location r2 model 1 s. raya dalam 1 .78 y=190-8.9x1-13.4x2+70.3x3-+0.02x4-16.3x5-11.6x6-8682x7+0.9x8 2 s. raya dalam 2 .82 y=174-9.0x1-12.2x2+76x3+0.34x4-19.3x5-15.2x6-9011x7+0.1x8 3 jl. sepakat 2 .75 y=249-12.2x1-14.0x2-73x3-0.72x4-11.1x5-11.5x6+10665x7-3.9x8 4 jl. parit h. husin 2 .95 y=181-12.2x1-6.1x2-8.2x3+0.92x4-20.4x5+29.3x6+19033x7+3.6x8 5 jl. parit h. husin 1 .82 y=173-9.6x1-11.6x2-84x3+0.35x4-19.5x5-15.4x6+9350x7-0.2x8 6 jl. imam bonjol .83 y=174-10.1x1-10.9x2-92x3+0.31x4-19.4x5-14.8x6-9693x7-0.7x8 7 jl. media .83 y=190-11.6x1-10.2x2-97x3+0.14x4-18.2x5-12.9x6-10117x7-1.9x8 8 jl. perdana .81 y=241-14.3x1-11.5x2+88x3-0.38x4-14.2x5-12.2x6-11432x7-3.4x8 9 jl. purnama .84 y=275-17.2x1-10.1x2+81x3-0.65x4-13.2x5-10.9x6-12776x7-3.2x8 10 jl. tebu .89 y=172-13.6x1-6.3x2+69x3-0.17x4-10.1x5-11.8x6-3942x7+3.0x8 11 jl. karet .93 y=222-21.5x1-5.9x2+53x3-0.01x4-7.0x5-6.9x6-3448x7+3.2x8 12 jl. ampera .90 y=340-37.1x1-5.0x2-27x3+0.07x4-3.7x5+22.8x6-4795x7-3.9x8 13 jl. wahidin .88 y=283-27.8x1-5.6x2+56x3-0.03x4-8.2x5+4.4x6-5345x7+0.3x8 14 jl. purnama jaya .84 y=264-17.3x1-9.7x2+86x3-0.45x4-14.0x5-10.9x6-12128x7-3.7x8 15 jl. uray bawadi .86 y=260-19.5x1-7.8x2+82x3-0.25x4-13.6x5-6.3x6-10159x7-3.3x8 16 jl. hm suwignyo .86 y=259-21.5x1+6.8x2+74x3-0.17x4-12.0x5-2.6x6-8077x7-2.2x8 17 ujung suwignyo .85 y=143-6.6x1-8.8x2+91x3-0.10x4-16.3x5-11.9x6-7250x7-0.9x8 18 jl. gst hamzah .86 y=223-17.1x1-7.2x2+78x3-0.13x4-13.0x5-5.4x6-7484x7-2.0x8 19 jl. hasanuddin .85 y=122-4.1x1-9.2x2+94x3-0.11x4-17.0x5-13.8x6-6912x7-0.2x8 an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar 191 no location r2 model 20 jl. k yos sudarso .86 y=141-8.4x1-6.9x2+79x3-0.21x4-12.3x5-14.1x6-4619x7+2.3x8 21 jl. wr. supratman .85 y=171-9.5x1-8.8x2+95x3-0.03x4-17.1x5-11.3x6-8755x7-2.3x8 22 pasar flamboyan .84 y=180-10.6x1-9.3x2+98x3+0.09x4-18.2x5-12.5x6-9767x7-2.4x8 23 depan ramayana .84 y=163-10.6x1-9.4x2+100x3+0.15x4-19.1x5-13.7x6-9544x7-1.9x8 24 jl. flora siantan .95 y=178-15.8x1-6.5x2+65x3-0.17x4-8.3x5-16.3x6-2715x7+5.7x8 25 jl. teluk selamat .84 y=82+0.4x1-8.9x2+97x3-0.21x4-17.4x5-19.7x6-5497x7+2.4x8 26 jl. parit makmur .84 y=91+0.1x1-10.0x2+101x3-0.09x4-19.7x5-17.9x6-6875x7+0.8x8 27 jl. puring 1 .85 y=105-1.5x1-9.8x2+101x3-0.04x4-19.6x5-16.5x6-7557x7-0.2x8 28 jl. selat sumba 2 .84 y=97-0.4x1-9.9x2+102x3+0.01x4-20.8x5-18.4x6-7735x7+0.9x8 29 parit pangeran .84 y=85+1.2x1-9.9x2+99x3+0.01x4-22.0x5-21.1x6-7593x7+0.9x8 30 jl. keb. nasional .83 y=85+1.3x1-9.7x2+91x3+0.12x4-23.1x5-23x6-8678x7+1.7x8 31 jl. selat panjang .84 y=86+1.1x1-9.7x2+95x3+0.11x4-22.9x5-22.5x6-8431x7+1.2x8 32 jl. tritura .84 y=110-2.1x1-9.7x2+102x3+0.15x4-21.4x5-18.4x6-8714x7-0.5x8 33 tanjung hilir .84 y=116-3x1-9.6x2+102x3+0.14x4-21x5-17.4x6-8751x7-0.8x8 34 tanjung raya 1 .84 y=128-4.8x1-9.7x2+100x3+0.27x4-21.4x5-17.5x6-9334x7-0.6x8 35 tanjung raya 2 .84 y=132-5.3x1-9.9x2+99x3+0.32x4-21.4x5-17.6x6-9445x7-0.5x8 36 jl. panglima aim .84 y=120-4x1-10.1x2+95x3+0.39x4-22.4x5-19.7x6-9562x7+0.4x8 37 jl. yaโ€™ m sabran .83 y=96-0.6x1-10.2x2+86x3+0.37x4-23.6x5-22.3x6-9998x7+2.2x8 38 jl. tani .83 y=120-3.9x1-10.6x2+82x3+0.53x4-23.1x5-21.2x6-10021x7+1.7x8 39 tj. raya 2 ujung .83 y=163-7.9x1-11.8x2+59x3+0.54x4-21.6x5-16.8x6-9212x7+1.2x8 40 jl. tabrani ahmad .87 y=216-19.0x1-6.2x2+64x3-0.08x4-9.5x5-4.7x6-4688x7+1.0x8 41 jl. harapan jaya .85 y=281-17.1x1-10.0x2+65x3-0.86x4-11.3x5-3.0x6-13148x7+0.1x8 42 jl. merdeka .85 y=162-9.0x1-8.5x2+89x3-0.10x4-15.6x5-10.4x6-7406x7-1.4x8 y = cod; x1 = ph; x2 = iron; x3 = fluoride; x4 = water hardness; x5 = nitrate; x6 = nitrite; x7 = detergents; x8 = do the coefficient of determination of the model varied between 75% (location 3) to 95% (location 4 and 24). partial significance tests were carried out to examine which parameters are significant. the t-statistic was used for the tests. the values of the tstatistics for each parameter are presented in figure 2 (a) to (h). (a) t value for ๏ข1 (b) t value for ๏ข2 an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar 192 (c) t value for ๏ข3 (d) t value for ๏ข4 (e) t value for ๏ข5 (f) t value for ๏ข6 (g) t value for ๏ข7 (h) t value for ๏ข8 notes: โ—: |t| < 1.64; ๏ณ: 1.64 โ‰ค |t| < 1.96; +: 1.96 โ‰ค |t| < 2.33; ๏‚ซ: |t| > 2.33 figure 2. (a) to (h) are the plot of t values for each ๐›ฝ in every location the sample locations marked with โ— indicate that the corresponding coefficient of ๐›ฝi is not significant (the |t| value is smaller than 1.64). the symbol ๏ณ is used to indicate that the coefficient of ๐›ฝ i is almost significant (1.64 โ‰ค |t| < 1.96). whereas the symbols + and ๏‚ซ are used to indicate that the coefficient of ๐›ฝ i are significant (|t| โ‰ฅ 1.96). the values of t for ๐›ฝ1 are generally small for the samples located close to the rivers (fig. 2 (a)). the variable ph (x1) for those locations is not significant, hence it does not contribute to modeling the cod. however, variable ph appeared to be significant for the sample located at some distance from the river (there were 18 sample locations). in general, the t values for ๐›ฝ2, ๐›ฝ3, ๐›ฝ5, and ๐›ฝ7 are significant (fig. 2 (b), (c), (e), (g)). these results indicate that the contents of the variable of iron, fluoride, nitrate, and detergent have a great influence in an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar 193 modeling the cod. high nitrogen compounds in the form of oxidized nitrogen, such as nitrate, tend to reduce the level of dissolved oxygen in water through the oxidation of ammonia [13, 10]. likewise, detergent, where one of the integral ingredients is phosphate compound, has a major role in the occurrence of eutrophication in the water body [22]. the t value for ๐›ฝ4, ๐›ฝ6, and ๐›ฝ8 (fig.2 (d), (f), and (h)) are generally small, indicating that water hardness (๐‘‹4), nitrite (๐‘‹6), and do (๐‘‹8) are not significant in the whole samples. the three variables are, therefore, not important in predicting the cod of the samples. plotting the t value of the regression coefficients of the sample location in a map enables the researcher to identify the importance of the variables to the regression models in each sample location. the application of gwr allows getting a different model in each location. conclusions this study has demonstrated the superiority of gwr to model the spatially varying relationship between variables over ols regression. gwr 42 samples point can result in 42 regression models that accommodate the characteristics of the location. the variable ph (x1) generally small for the samples located close to the rivers, however it is significant for the samples located at some distances from the river. the variable of iron, fluoride, nitrate and detergent significant in regression modeling of cod. these results could provide the researcher with a more accurate prediction of chemical oxygen demand in each location. acknowledgments the authors would like to acknowledge the financial support no. 098/sp2h/lt/drpm/2018 from the ministry of research, technology, and higher education of the republic of indonesia to conduct the research. references [1] bps kota pontianak, pontianak municipality in figure, bps, pontianak, 2019. [2] l. m. jordan, religion and demography in the united states: a geographic analysis, doctoral dissertation, university of coloradi, 2006. [3] republic of indonesia, regulation of the minister of health of the republic of indonesia number 32 of 2017 concerning environmental health quality standards and water health requirements for sanitary hygiene, swimming pools, solus per aqua and public baths, 2017 [4] t. nakaya, a.s. fotheringham, c. brunsdon, and m. charlton, "geographically weighted poisson regression for disease association mapping," statistics in medicine, vol. 24, pp. 2965-2717, 2005. [5] p. goovaerts, "geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using poisson kriging," international journal of health geographics, vol.4, 2005. https://doi.org/10.1186/1476-072x-4-31. an application of geographically weighted regression for assessing water polution in pontianak, indonesia dadan kusnandar 194 [6] j.l. mennis, and l. m. jordan, "the distribution of environmental equity: exploring spatial nonstationarity in multivariate models of air toxic releases," annals of the association of american geographers, vol. 95, pp. 249-268, 2005. [7] a.w. wardhana, dampak pencemaran lingkungan (impact of environment pollution), andi ofsett, yogyakarta, 2001. [8] vy-j. chen, p-c. wu, t-c. yang, and h-j. su, examining non-stastionary effects of social determinants on cardiovascular mortality after cold surges in taiwan, science of the total environment, vol. 408, pp. 2042-2059, 2010 [pubmed: 20138646]. [9] j.l. menis, "mapping the result of geographically weighted regression," the cartographic journal, vol. 43, pp. 171-179, 2006. [10] a. s. fotheringham, m. charlton, and c. brunsdon, "two techniques for exploring non-stationarity in geographical data," geographical systems, vol. 4, pp. 59-82, 1997. [11] d. yu, y.d. wei, and c.wu, "modeling spatial dimensions of housing prices in milwaukee, wi," environment and planning b: planning and design, vol. 34, pp. 10851102, 2007. [12] a.s. matthews, and t-c. yang, "mapping the results of local statistics: using geographically weighted regression," demographic research, vol. 26, pp.151-166, 2015. [13] t. benson, j. chamberlin, and i. rhinehart, i, why the poor rural in malawi are where they are: an investigation of the spatial determinants of the local prevalence of poverty, international food policy research institute, washington dc, 2005. [14] m. lindu, "studi penyisihan cod-organik pada tahap nitrifikasi dan denitrifikasi dalam sbr menggunakan air limbah coklat (study of cod-organic removal in the nitrification and denitrification stages in sbr)," j. teknologi lingkungan, vol. 2, pp. 78-86, 2001. [15] g. m. foody, "geographical weighting as a further refinement to regression modelling: an example focused on the ndvi-rainfall relationship," remote sensing of the environment, vol. 3, no. 88, pp. 283-293, 2003. [16] s. brown, l. v. versace, l. laurenson, d. ierodiaconou, j. faweett, and s. salzman, "assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression," environmental modeling and assessment, vol. 17, pp. 241-254, 2012. [17] d. kusnandar. n.n. debataraja, s.w. rizki, and e. saputri, "water quality mapping in pontianak city using multiple discriminant analysis," the 4th indoms international conference on mathematics and its applications, aip conference proceedings, vol 2268, pp. 020006-1020006-2, 2020 [18] a. s. fotheringham, c. brunsdon, and m. charlton, geographically weighted regression: the analysis of spatially varying relationships', john wiley & sons, chichester, 2002. forecasting rice paddy production in aceh using arima and exponential smoothing models cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 281-292 p-issn: 2086-0382; e-issn: 2477-3344 submitted: october 19, 2021 reviewed: december 09, 2021 accepted: january 05, 2022 doi: http://dx.doi.org/10.18860/ca.v7i1.13701 forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana1,*, amelia1, riezkypurnama sari1, ulyanabilla1, taufan talib2 1mathematics department, universitas samudra, indonesia 2mathematics department, universitas pattimura, indonesia *corresponding author email: nurviana@unsam.ac.id*, ameliamat@unsam.ac.id, riezkypurnamasari@unsam.ac.id, ulya.nabilla@unsam.ac.id, taufan.talib@fkip.unpatti.ac.id abstract indonesia targets aceh to be one of the rice paddy production centers and be able to carry out self-sufficient production in rice paddy and become a national granary. however, in reality, aceh's rice paddy production in its province is not consistent from year to year. this province has not been able to meet the food needs of rice paddy independently, so that it supplies rice paddy from other regions due to the difficulty of detecting the presence of a surplus of rice paddy.the purpose of this research is to forecast the yield ofrice paddy production in aceh for the future. the mathematical model that can be used is a time series model namely autoregressive integrated moving average (arima) and exponential smoothing. the forecasting results of rice paddy production in the next 5 years using the arima (3,1,1) model are 2453401; 2154784; 2111594; 1615171; and 2062436. while the estimation results using the winter exponential smoothing model are 1625925; 1645196; 1687667; 1605530; and 1555213. arima model (3,1,1) produces an mse/mad value of 3,34041 ร— 1010, while the winter exponential smoothing model produces an mse/mad value of 3,08616 ร— 1010. therefore, it can be concluded that the winter exponential smoothing model.by obtaining this resultsanalysis, the aceh government can make the right policies in planning for the provision of rice paddy food in the future. keywords: arima; forecasting; exponential smoothing; rice paddy introduction aceh is one of the provinces in indonesia which has large agricultural land. the majority of the population in aceh rely their life on the agricultural sector for their livelihood. according to the central bureau of statistics, the highest economic source of aceh is in the agricultural sector, where agriculture has a good contribution to the economy and fulfills the basic needs of the society. the agriculture of aceh excels in various commodities such as rice paddy, corn, soybeans, and chilies. the rice paddy plants are stapled food crop commodities whose needs continue to increase from year to year following population growth. rice paddy cultivation is the main activity and main source of income for more than 100 million households in developing countries in asia, africa, and latin america. in asiapacific more than 90 percent of the world's rice paddy has been produced and consumed[1]. the rice paddy plant is an ancient agricultural crop that until now is considered a staple crop in most tropical countries, especially in asia and africa. rice http://dx.doi.org/10.18860/ca.v7i1.13701 mailto:nurviana@unsam.ac.id mailto:ameliamath@unsam.ac.id mailto:riezkypurnamasari@unsam.ac.id mailto:ulya.nabilla@unsam.ac.id mailto:taufan.talib@fkip.unpatti.ac.id forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 282 paddy is the most important food crop in aceh because almost all people use rice paddy as a staple food and rice paddy is also a strategic food commodity that has a considerable influence on economic stability, especially inflation, social and political stability. indonesia targets aceh as one of the centers of rice paddy production and can carry out self-sufficient production in rice paddy and become a national granary [2]. aceh has many genotypes or local rice paddy varieties. according to [3]there are 50 aceh rice paddy genotypes that have been collected through exploration activities, but only a few local rice varieties are often planted.the varieties are ramos, dewi, sigupai, tinggong, and siputeh. based on bps [4], local rice paddy production of aceh is not consistent from year to year or in other words, it increases and decreases every year. in 2020, the rice paddy plants production reached 1.75 million tons, an increase from the previous year of 1.71 million tons. if it is converted to rice paddy, in 2020 rice paddy production in aceh will reach 1 million tons. this increase was due to an increase in the harvested area of rice paddy plants from 310.01 thousand hectares to 320.75 thousand hectares [4]. therefore, the province of aceh should have been able to meet the food needs of rice paddy independently. however, aceh still supplies rice paddy from other regions due to the difficulty of detecting the presence of a surplus of rice paddy. a mathematical model is needed to make plans related to food commodities, especially rice paddy. one of the mathematical models that can be used is the time series model. this model is used to estimate production results in the future period based on previous data. the time series model that will be used in this research is autoregressive integrated moving average (arima) and exponential smoothing. previous research related to the study of rice paddy production has been carried out by [5]which discussed the forecast of rice paddy production in gorontalo province using the double moving average method.the forecasting results for the next 5 years were obtained, in 2019 of 326318.5 tons, in 2020 of 32094.5 tons, and so on until 2023 of 304826.5 tons. other research [6]using double exponential smoothing model to assess the estimated production value for the next year. the application of this model obtained predictions of rice paddy harvests in the kudus regency in 2019 of 163,435.90 tons. other rice paddy production research [7]using the fuzzy time series model for forecasting the amount of rice paddy production in southeast sulawesi, the results of forecasting rice paddy production in 2015 were 657768.25191 tons. based on the explanation above, researchers are interested in analyzing the rice paddy production results using the arima and exponential smoothing models. the purpose of this study is to predict the local rice paddy production of aceh result in the future period and to see which of the two models is the best in estimating aceh's local rice paddy production. therefore, hopes that the government can make more precise planning in the provision of rice paddy food and can make aceh a national rice paddy production center. methods arima process arima is a time series model that can predict data for a certain period of time based on past data [8]. this model has very good accuracy when used for short-term forecasting. meanwhile, for long-term forecasting, the accuracy of the forecast is not good and usually, it will tend to be flat (level or constant) for a fairly long period. the arima process developed by box and jenkins in 1976 was a model that does not assume certain patterns in the historical data that was forecasted and was a model that completely ignores the independent variables in making forecasts that were used in forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 283 model formation[9]. the arima process is a combined model between autoregressive (ar) and moving average (ma). this model can represent stationary and non-stationary time series [10] [11]. the general form of arima model (p,d,q) is defined as[12]: ๐‘Œ๐‘ก โˆ’ ๐‘Œ๐‘กโˆ’๐‘‘ = ๐›พ0 + โˆ‘ ๐›ผ๐‘– (๐‘Œ๐‘กโˆ’๐‘– โˆ’ ๐‘Œ๐‘กโˆ’๐‘–โˆ’๐‘‘) ๐‘ ๐‘–=1 + โˆ‘ ๐›ฝ๐‘– ๐œ€๐‘กโˆ’๐‘– ๐‘ž ๐‘–=1 + ๐‘’๐‘ก (1) in practice, the data is commonly non-stationary so that modifications need to be made, by using differencing, to produce stationary data. exponential smoothing model exponential smoothing is an analytical time series model that is quite good and convenient in low ease of operation. the exponential smoothing model continuously makes improvements related to forecasting by taking the smoothing average of past values from a time series data by decreasing exponentially[13]. in general, the exponential smoothing model is divided into 3 models, namely single, double, and triple exponential smoothing (holt-winter's model). this research concentrates on triple exponential smoothing. this model is used when the data pattern shows very large differences, trends, and seasonal behavior. to deal with seasonality, a third equation parameter has been developed called the โ€œholt-wintersโ€ model after the name of the inventor. the holt-winters method is based on three equations, namely stationary, trend, and seasonal elements[14]. the basic equation for the holt-winters method is as follows: [15] overall smoothing: st = ฮฑ xt itโˆ’l + (1 โˆ’ ฮฑ)(stโˆ’1 + btโˆ’1) trend smoothing: bt = ฮณ(st โˆ’ stโˆ’1) + (1 โˆ’ ฮณ)btโˆ’1 seasonal smoothing: it = ฮฒ xt st + (1 โˆ’ ฮฒ)itโˆ’l forecast: ๐น๐‘ก+๐‘š = (๐‘†๐‘ก + ๐‘๐‘ก ๐‘š)๐ผ๐‘กโˆ’๐ฟ+๐‘š results and discussion analysis of the data on the data on the amount of rice paddy production using the arima box-jenkins method and the exponential smoothing method. the data processed is data on rice paddy production in aceh from 1993 to 2020 and analyzed with usingminitab 19. data characteristics total rice paddy production result data plot rice paddy production from 1993 to 2020. figure 1. time series plot of total rice paddy production in aceh from 1993 to 2020 forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 284 descriptive statistics show the least quantity of rice paddy production in 2001 was 1,246,614 tons. meanwhile, the highest number of productions occurred in 2017, which was 2.49613 tons and the average total rice paddy production from 1993 to 2020 is around 1.61315 tons. based on figure 1, the amount of rice paddy production tends to go up and down. the fluctuation of the data on the amount of rice paddy production is not at a constant average value so that there is an indication that the data is not stationary. forecasting rice paddy production using the arima model a. model identification the initial step in identifying the data is to know whether the data is stationary in the mean and variance. identification has been done by determining: the time series plot, acf plot, pacf plot, and box-cox transformation. the identification process starts from determining whether the rice paddy production data is stationary to the variance or not. figure 2. box-cox plot of total rice paddy production based on figure 2, the rice paddy production data is not stationary to the variance because the rounded value is less than 1, where the rounded value is said to be good if the value is 1. figure 3. box-cox of total rice paddy production after transformation based on figure 3, a rounded value of 1.00 is obtained so that the data can be said to have been stationary in variance. furthermore, the differencing stage is carried out so that the data is stationary to the mean. stationary data to the mean can be seen visually through the acf plot. the following is an acf plot of total rice paddy production. forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 285 figure 4. acf plot of total rice paddy production before differencing figure 4 shows that the quantity of rice paddy production is not stationary in the mean, because the lags in the acf plot are still decreasing slowly. therefore, it is necessary to do differencing. here is the time series plot after differencing. figure 5. time series plot of rice paddy production after differencing figure 5 shows that the pattern of the amount of rice paddy production is stationary in the mean after the differencing process is carried out once. the next step is to identify the model to get the arima conjecture model. the identification of the arima model has been known based on the acf and pacf plots. the following is a plot of acf and pacf for the amount of rice paddy production after the differencing process at lag 1. forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 286 figure 6. acf plot of total rice paddy production data after differencing figure 7. pacf plot of total rice paddy production data after differencing based on figure 6 and 7, it is showing that there are no lags that come out or all lags are in a significant line in the acf plot, while the pacf plot is cut off at the 3rd lag. so it can be concluded that the suggested arima (p,d,q) models for rice paddy production were (1,1,0), arima (1,1,1), arima (3,1,0) and arima (3,1,1) b. estimation of parameters and diagnostic tests of residual the next step is the estimation of the model parameters for the tentative models that have been selected. the best model was selected based on the minimum values of means square error (mse). table 2. suggested arima (p,d,q) models for rice paddy production suspected model estimates of parameters mean square error value type coef se coef (1,1,0) ๐œ™1 -0,354 0,183 4,32646e+10 (1,1,1) ๐œ™1 -1,028 0,276 3,95604e+10 ๐œƒ1 -0,853 0,465 (3,1,0) ๐œ™1 -0,171 0,179 3,36785e+10 ๐œ™2 -0,091 0,189 ๐œ™3 -0,800 0,268 (3,1,1) ๐œ™1 -0,396 0,339 3,34041e+10 ๐œ™2 -0,187 0,231 ๐œ™3 -0,812 0,290 ๐œƒ1 -0,351 0,411 forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 287 based on table 2, the best selected arima model for rice paddy production is arima (3,1,1) with mse =3,34041e+10. so, it can be analyzed in the next step, namely by testing the assumption of residual white noise and normal distribution. testing the assumption of the residual white noise is carried out using the boxljung test statistic with the following hypothesis formulation: ๐ป0 : residual white noise ๐ป1 : residual is not white noise if the significance level is set at 5%, then the rejection area is rejected h0if q < xฮฑ,dfโˆ’kโˆ’pโˆ’q 2 or p-value> ฮฑ. table 3. results of the box-ljung statistic for residuals of arima (3,1,1) model lag q df p-value (3,1,1) 12 3,51 8 0.898 24 9.41 20 0.978 36 * * * 48 * * * based on table 3, the model of arima (3,1,1) since p-value is greater than the level of significance we do not reject the null hypothesis. indicated that the residuals for the model was white noise at the 5% level of significance. testing the assumption of normal distribution of residuals is carried out using the kolmogorov smirnov test. the following are the results of testing the normal distribution of the residual assumption. hypothesis: ๐ป0 : residual-normally distributed ๐ป1 : residual-not normally distributed figure 8. probability plot of residual of arima (3,1,1) base on figure, the results of the residual of arima (3,1,1) was 0,141 with an observed significance level of 0.05 indicating that residual for the model was normally distributed at the 5 % level of significance. hence, the diagnostic test that arima (3,1,1) model was appropriate for rice paddy production. table 6. rice paddy production forecasting results using model arima (3,1,1) year rice paddy production forecasting results 2021 2453401 2022 2154784 forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 288 year rice paddy production forecasting results 2023 2111594 2024 1615171 2025 2062436 estimation using exponential smoothing model the plot of rice paddy data shows that rice paddy production fluctuates every year. the graph also shows that start from 1993s, rice paddy production continued to experience a very significant increase until 2013. however, in 2018 rice paddy production decreased very rapidly, which is equal to 1,697,756 tons. the existence of a trend element in rice paddy production (tons) can be seen from the results of the acf (autocorrelation function) as it shown below. figure 9. acf plot of rice paddy production based on the picture above, it can conclude that the data has an element of trend because the lag movement is slowly decreasing towards 0. the trend element can also spot from the results of trend analysis in the image below: figure 10. trend analysis plot of rice paddy production trend analysis plot in the figure 10, it is obvious that the data has an element of trend. it can be shown from the fits line that has increased linearly. when the fits line increases or decreases linearly, then the data have an element of trend. the presence of seasonal elements in rice paddy production (tons) can spot from the pacf (partial autocorrelation function) plot shown in the figure 12. forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 289 figure 11. pacf plot of rice paddy production in the figure 11, the data has a seasonal element because the lag movement is repeating. in lag 2 which increases as well as in lag 4 and the lag that decreases from the previous lag is spotted in lag 3 and lag 5 and so does lag 6. based on the results of testing the trend and seasonal elements on rice paddy production data, the selection of the appropriate exponential smoothing solution method is winter exponential smoothing. a. determining the smoothing constant value ๐œถ, ๐œธ, and ๐œท the smoothing constant used in the winter exponential smoothing model is ๐›ผ, ๐›พ,and ๐›ฝ. the optimal constant value is selected based on the smallest mape value. the following is the mape value of some of the best smoothing constant values. table 7. value of constants and mape no ๐œถ ๐œธ ๐›ƒ mape(%) 1 0.8 0.9 0.1 8.25 2 0.8 0.8 0.1 8.26 3 0.7 0.7 0.1 8.31 4 0.7 0.8 0.1 8.23 5 0.7 0.7 0.1 8.27 6 0.7 0.9 0.1 8.20 7 0.7 0.6 0.1 8.31 8 0.8 0.6 0.1 8.36 9 0.7 0.5 0.1 8.34 10 0.9 0.1 0.1 8.27 in the table 7, it can be seen that the smoothing constant value which has the smallest mape value is ฮฑ = 0,7,ฮณ = 0,9 ,ฮฒ = 0,1 and the smallest mape value is 8.20%. the smoothing constant value will be used in the mathematical model of winter exponential smoothing in order to obtain forecasting results for the future period. the forecasting results for rice paddy production can be seen in the table 8. forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 290 table 8. estimation of rice paddy production yield in the next 5 years using winter exponential smoothing method year rice paddy production forecasting results 2021 1625925 2022 1645196 2023 1687667 2024 1605530 2025 1555213 the estimation results show that rice paddy production has an average increase of 1.88% from 2021 to 2023. however, rice paddy production has decreased by an average of 4% from 2023 to 2025. figure 12 shows the plot results between the actual data and forecasting data using the winter exponential smoothing method. based on the figure, it has been shown that the mape value generated for forecasting rice paddy production is 7.74% and less than 10%. this means that the average percentage error between the actual value and the forecast value using the winter exponential smoothing method is very small. therefore, it is fair to say that the winter exponential smoothing method provides better forecasting value for forecasting the rice paddy production in aceh. figure 12. plot between actual data and estimated data using winter method comparison of estimated results of rice paddy production using the arima and winter exponential smoothing models comparison of the estimation results of rice paddy production in the next 5 years using the arima and winter exponential smoothing models can be seen in the following table: table 9. comparison of estimated results of rice paddy production using arima (3,1,1) and winter exponential smoothing model year estimated results arima (3,1,1) winter exponential smoothing 2021 2453401 1625925 2022 2154784 1645196 2023 2111594 1687667 2024 1615171 1605530 2025 2062436 1555213 mse/mad 3,34041e+10 3.08616e+10 forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 291 figure 13. comparison graph of rice paddy production estimation results using arima(3,1,1) and winter exponential smoothing models based on table 9 and figure 14, the estimation results of rice paddy production using the arima model have increased from 2021 to 2022 with an increased rate of 0.84%. however, the estimated production results from 2022 to 2023 have decreased with a decline rate of 5.64%. furthermore, the results of the estimated rice paddy production have increased again by 2.14% from 2023 to 2024. in 2025, the estimated results of rice paddy have decreased by 0.75%. while the estimation results using the winter exponential smoothing model show that rice paddy production has an average rate of increase of 1.88% from 2021 to 2023 and has decreased with an average decline of 4% from 2023 to 2025. meanwhile, for testing the estimation results, the arima model (1,1,3) produces an mse/mad value of 3,34041 ร— 1010, while the winter exponential smoothing model produces an mse/mad value of 3.08616 ร— 1010. the best model is the model that has the smallest mse/mad value. therefore, it can conclude that the winter exponential smoothing model is the best model that can explain the actual data pattern and is used to estimate rice paddy production in aceh. conclusions the estimation results of rice paddy production of aceh in the next five years by using arima (3,1,1) model, respectively 2453401; 2154784; 2111594; 1615171; and 2062436 with the mse/mad 3,34041 ร— 1010. while the estimation results using the winter exponential smoothing model, respectively 1625925; 1645196; 1687667; 1605530; and 1555213 with the mse/mad 3.08616 ร— 1010.therefore, it can conclude that the winter exponential smoothing model is the best model that can explain the actual data pattern and is used to estimate rice paddy production in aceh. references [1] r. biswas, โ€œstudy on arima modelling to forecast area and production of kharif rice in west bengal,โ€ in cutting-edge research in agricultural sciences vol. 12, 2021. [2] n. fitri, โ€œanalisis faktor-faktor yang mempengarui produksi padi di provinsi aceh,โ€ j. ilmu ekon., vol. 3, no. 1, pp. 81โ€“95, 2015. [3] m. setyowati, j. irawan, and l. marlina, โ€œkarakter agronomi beberapa padi lokal aceh,โ€ j. agrotek lestari, vol. 5, no. 1, pp. 36โ€“50, 2018. 2453401 2154784 2111594 1615171 2062436 1625925 1645196 1687667 1605530 1555213 0 500000 1000000 1500000 2000000 2500000 3000000 2 0 2 1 2 0 2 2 2 0 2 3 2 0 2 4 2 0 2 5r ic e p a d d y p r o d u c t io n ( t o n s ) year arima (3,1,1) winter exponential smoothing forecasting rice paddy production in aceh using arima and exponential smoothing models nurviana 292 [4] bps, provinsi aceh dalam angka (aceh province in figures) 2021. aceh: badan pusat statistik aceh, 2021. [5] h. a. yusuf, i. djakaria, and resmawan, โ€œpenerapan metode double moving average untuk meramalkan hasil,โ€ j. mat. dan apl., vol. 9, no. 2, pp. 92โ€“96, 2020. [6] m. n. fawaiq and dkk, โ€œprediksi hasil pertanian padi di kabupaten kudus dengan metode brownโ€™s double exponential smoothing,โ€ jipi (jurnal penelit. dan pembelajaran inform., vol. 4, no. 2, pp. 78โ€“87, 2019. [7] djafar, m. s. ihsan, and y. purnamasari, โ€œperamalan jumlah produksi padi di sulawesi tenggara menggunakan metode fuzzy time series,โ€ semantik, vol. 3, no. 2, pp. 113โ€“120, 2017. [8] c. madhavi latha, k. siva nageswararao, d. venkataramanaiah, r. scholar, and a. professor, โ€œforecasting time series stock returns using arima: evidence from s&p bse sensex,โ€ int. j. pure appl. math., 2018. [9] y. wigati and dkk, โ€œpemodelan times series dengan proses arima untuk prediksi indeks harga konsumen (ihk) di palu-sulawesi tengah,โ€ j. ilm. mat. dan terap., vol. 12, no. 2, 2016. [10] n. a. bakar and s. rosbi, โ€œautoregressive integrated moving average (arima) model for forecasting cryptocurrency exchange rate in high volatility enviroment: a new insight of bitcoin transaction,โ€ int. j. adv. eng. res. sci., 2017. [11] d. p. singh, p. kumar, and k. prabakaran, โ€œapplication of arima model for forecasting paddy production in bastar division of chhattisgarh,โ€ am. int. j. res. sci. technol. eng. math., vol. 14, no. 43, pp. 82โ€“87, 2013. [12] r. h. shumway and d. s. stoffer, time series analysis and its applications. usa: spinger, 2017. [13] et. all amelia, โ€œforecasting annual coffee and rubber production in aceh using exponential smoothing,โ€ in regular proceeding 3rd isimmed, 2019, pp. 3โ€“10. [14] e. prasetyowati, n. r. imron rosyadi, and matsaini, โ€œestimated profits of rengginang lorjuk madura by used comparison of holt-winter and moving average,โ€ 2020, doi: 10.11591/eecsi.v7.2031. [15] r. j. hyndman, forecasting: principles & practice. australia: university of western australia, 2014. corina karim splitting field dan ketunggalannya _4_ splitting field dan ketunggalannya atas polinomial field corina karim1 dan ari andari2 1,2jurusan matematikam universitas brawijaya, malang abstrak suatu field e disebut extension field f, jika ๏ฟฝโŠ‚ ๏ฟฝ di mana f merupakan field. dengan kata lain e disebut extension field f, jika f subfield dari field e. sedangkan splitting field merupakan generalisasi dari extension field yang memenuhi beberapa aksioma. field yang digunakan pada splitting field adalah field finite extension, dimana field finite extension adalah extension field yang mempunyai basis berhingga n. kata kunci: extension field, finite extension dan splitting field. pendahuluan r ring, suatu barisan tak hingga ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ,๏ฟฝ ,โ€ฆ๏ฟฝ ๏ฟฝ dikatakan suatu polinomial atas ring r jika terdapat suatu bilangan bulat tak negatif n sedemikian sehingga terdapat ๏ฟฝ๏ฟฝ ๏ฟฝ 0 ๏ฟฝ ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ. polinomial tersebut dinotasikan sebagai berikut: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆž ๏ฟฝ๏ฟฝ๏ฟฝ dimana x disebut indeterminate atas ring r. jika f field dan f[x] ring polinomial x atas f maka f[x] daerah integral dengan elemen kesatuan dan memuat subring sejati f. polinomial ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ disebut irreducible jika degree ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 1, dan jika ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ."๏ฟฝ๏ฟฝ๏ฟฝ dimana ๏ฟฝ๏ฟฝ๏ฟฝ,"๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, maka ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ atau "๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ. jika polinomial ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ tidak irreducible maka disebut reducible (bhattacharya, dkk, 1986). selanjutnya fraleigh (1994) menyebutkan bahwa suatu field e disebut extension field f, jika ๏ฟฝโŠ‚ ๏ฟฝ di mana f merupakan field. dengan kata lain e disebut extension field f, jika f subfield dari field e. dan jika e extension field f yang mempunyai basis berhingga n di mana e adalah ruang vektor atas f, maka e adalah suatu finite extension berderajat n. selanjutnya dinotasikan [e : f] = n, artinya e extension field f berdimensi n. di lain pihak, menurut gallian (1990), e extension field f dan # ๏ฟฝ ๏ฟฝ, ฮฑ disebut algebraic atas f, jika ฮฑ akar dari suatu polinomial f[x]. ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ#๏ฟฝ ๏ฟฝ 0๏ฟฝ. jika ฮฑ bukan algebraic atas f, maka ฮฑ disebut transendental atas f. dan menurut fraleigh (1994) suatu e extension field dari field f disebut algebraic extension dari f jika setiap elemen di e algebraic atas f. jika e bukan algebraic extension maka e disebut transcenddental extension. termotivasi dari pengertian extension field dan finite extension, maka dalam makalah ini akan dibahas tentang splitting field atas polinomial di f(x) dan membuktikan ketunggalan dari splitting field tersebut. pembahasan definisi 1 (bhattacharya, dkk, 1986). jika ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ polinomial di f[x] dengan degree โ‰ฅ 1 maka k extension field f disebut splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ atas f jika: i) faktor ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ dapat ditulis menjadi faktor linier $๏ฟฝ๏ฟฝ๏ฟฝ % ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ &๏ฟฝ๏ฟฝ ' #๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' # ๏ฟฝโ€ฆ๏ฟฝ๏ฟฝ ' #๏ฟฝ๏ฟฝ, #๏ฟฝ ๏ฟฝ $, dengan c sebarang skalar. ii) $ ๏ฟฝ ๏ฟฝ๏ฟฝ#๏ฟฝ,# ,โ€ฆ,#๏ฟฝ๏ฟฝ % $ dibangun oleh f dengan akar-akar #๏ฟฝ,# ,โ€ฆ,#๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ dan ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ $. contoh 1: field (๏ฟฝโˆš2๏ฟฝ ๏ฟฝ +๏ฟฝ ๏ฟฝ ,โˆš2|๏ฟฝ,, ๏ฟฝ (. adalah splitting field dari ๏ฟฝ ' 2 ๏ฟฝ (๏ฟฝ๏ฟฝ๏ฟฝ atas (. bukti: jelas ( โŠ† (๏ฟฝโˆš2๏ฟฝ. akan dibuktikan: (i). (๏ฟฝโˆš2๏ฟฝ extension field (. (ii). (๏ฟฝโˆš2๏ฟฝ splitting field ( [x] atas(. bukti (i). ( โŠ‚ (๏ฟฝโˆš2๏ฟฝ. klaim / ๏ฟฝ +1,โˆš2. akan ditunjukkan: s adalah basis untuk ruang vektor ( (โˆš2) a) ambil sebarang yโˆˆ( ๏ฟฝโˆš2๏ฟฝ. maka y dapat dinyatakan sebagai 0 ๏ฟฝ ๏ฟฝ ๏ฟฝ ,โˆš2, ๏ฟฝ,, ๏ฟฝ ( ๏ฟฝ ๏ฟฝ.1 ๏ฟฝ ,.โˆš2, corina karim dan ari andari 162 volume 1 no. 4 mei 2011 jadi s merentang ( (โˆš2). โ–ฒ b) untuk suatu ๏ฟฝ,, โˆˆ(, maka 0 ๏ฟฝ ๏ฟฝ ๏ฟฝ ,โˆš2 โ‡’ 0 ๏ฟฝ ๏ฟฝ.1 ๏ฟฝ ,.โˆš2 akan terpenuhi jika ๏ฟฝ ๏ฟฝ 0 dan , ๏ฟฝ 0 jadi s bebas linier. โ–ฒ dari a) dan b) terbukti s basis untuk ( (โˆš2) dan ๏ฟฝ((โˆš2):( ๏ฟฝ ๏ฟฝ 2. jadi ((โˆš2) finite extension (. karena ((โˆš2) finite extension (, maka ((โˆš2) extension field (. โ–ฒ bukti (ii). akan ditunjukkan: a) ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ &๏ฟฝ๏ฟฝ ' #๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' # ๏ฟฝโ€ฆ๏ฟฝ๏ฟฝ ' #๏ฟฝ๏ฟฝ, #๏ฟฝ ๏ฟฝ (๏ฟฝโˆš2๏ฟฝ pilih ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ' 2 ๏ฟฝ (๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ' 2 ๏ฟฝ 1๏ฟฝ ' โˆš221๏ฟฝ ๏ฟฝ โˆš22 ๏ฟฝ 1๏ฟฝ ' โˆš223๏ฟฝ ' 1'โˆš224 di mana 5โˆš2 ๏ฟฝ (1โˆš22 โ–ฒ b) (1โˆš22 ๏ฟฝ (๏ฟฝ#๏ฟฝ,# ,โ€ฆ,#๏ฟฝ๏ฟฝ % (1โˆš22 dibangun oleh ( dengan akar-akar #๏ฟฝ,# ,โ€ฆ,#๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ atas (. karena (1โˆš22 finite extension atas ( maka (1โˆš22 algebraic extension atas (. sehingga โˆƒ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ (๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ 6 0 di mana ๏ฟฝ#๏ฟฝ ๏ฟฝ 0. ambil sebarang # ๏ฟฝ (1โˆš22 maka # ๏ฟฝ ๏ฟฝ ๏ฟฝ โˆš2, # ๏ฟฝ 1๏ฟฝ ๏ฟฝ โˆš2,2 ๏ฟฝ ๏ฟฝ ๏ฟฝ 2โˆš2๏ฟฝ, ๏ฟฝ 2, # ' ๏ฟฝ ๏ฟฝ 2โˆš2๏ฟฝ, ๏ฟฝ 2, ๏ฟฝ 0 sehingga โˆƒ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ (๏ฟฝ๏ฟฝ๏ฟฝ di mana ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ' ๏ฟฝ ๏ฟฝ 2โˆš2๏ฟฝ, ๏ฟฝ 2, jadi (1โˆš22 dibangun oleh ( dengan # ๏ฟฝ (๏ฟฝ๏ฟฝ๏ฟฝ โ–ฒ jadi (1โˆš22 splitting field ๏ฟฝ๏ฟฝ๏ฟฝatas (. โ–ฒ contoh 2 splitting field ๏ฟฝ ๏ฟฝ 1 ๏ฟฝ 7๏ฟฝ๏ฟฝ๏ฟฝ atas 7 adalah field 7. teorema 2 (bhattacharya, dkk,1986) jika k splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ atas f maka k finite extension f dan k algebraic extension atas f. bukti : karena menurut definisi 1. bagian ii) k = ๏ฟฝ๏ฟฝ#๏ฟฝ,# ,โ€ฆ,#๏ฟฝ๏ฟฝ % k dibangun oleh f dengan #๏ฟฝ,# ,โ€ฆ,#๏ฟฝ ๏ฟฝ $. maka k algebraic atas f. sehingga k finite extension f. karena k finite extension maka k juga algebraic extension f. โ–ฒ teorema 3 (dummit and foote, 1991 ) misal 8 9 ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: isomorfisma field. ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ polinomial dan ๏ฟฝ:๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ:๏ฟฝ๏ฟฝ๏ฟฝ polinomial yang didapat dari 8 terhadap koefisien ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ. jika e splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝatas f dan eโ€™ splitting field ๏ฟฝ:๏ฟฝ๏ฟฝ๏ฟฝ atas fโ€™. maka isomorfisma 8 โ€œextended toโ€ isomorfisma ; 9 ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ:. ; yang dibatasi (restricted to) f adalah isomorfisma 8 : ; : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: 8 : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: bukti: 8 : f ๏ฃงโ†’๏ฃง~ f โ€™ isomorfisma field. ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ึ ๏ฟฝ:๏ฟฝ๏ฟฝ๏ฟฝ #๏ฟฝ ๏ฟฝ #๏ฟฝ๏ฟฝ ึ #๏ฟฝ: ๏ฟฝ #๏ฟฝ:๏ฟฝ e splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ atas f ๏ฟฝ:splitting field ๏ฟฝ:๏ฟฝ๏ฟฝ๏ฟฝatas ๏ฟฝ: akan dibuktikan: a) ; : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: 8 : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: b) ฯƒ isomorfisma bukti: a) dengan menggunakan induksi matematika terhadap derajat n pada e field extension f. i) untuk n = 1. jika n = 1 maka e = f padahal ; : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: 8 : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: maka ฯƒ = ฯ• . โ–ฒ ii) andai untuk n = 2 benar maka akan dibuktikan n > 2 benar untuk sebarang field extension. bukti: definisikan : ฯ† : ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ < ๏ฟฝ๏ฟฝ#๏ฟฝ = ึ =๏ฟฝ#๏ฟฝ ambil sebarang # ๏ฟฝ ๏ฟฝ splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ > ๏ฟฝ. misal ?๏ฟฝ๏ฟฝ๏ฟฝ polinomial terkecil yang memuat #. maka ?๏ฟฝ๏ฟฝ๏ฟฝ| ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, karena # ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ. splitting field dan ketunggalannya atas polinomial field jurnal cauchy โ€“ issn: 2086-0382 163 ambil sebarang ?@๏ฟฝa๏ฟฝ ๏ฟฝ ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ % ?๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ?@๏ฟฝ๏ฟฝ๏ฟฝ. karena ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ splitting field atas ๏ฟฝ@ maka ada elemen b ๏ฟฝ ๏ฟฝ: dan b ๏ฟฝ ?@๏ฟฝ๏ฟฝ๏ฟฝ. jadi ada homomorfisma ring c extending 8 % c : ๏ฟฝ๏ฟฝ#๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ@๏ฟฝb๏ฟฝ (1) 8 : ๏ฟฝ ๏ฃงโ†’๏ฃง ~ ๏ฟฝ: karena ๏ฟฝ๏ฟฝ๏ฟฝ#๏ฟฝ:๏ฟฝ๏ฟฝ ๏ฟฝ 1 maka: ๏ฟฝ๏ฟฝ๏ฟฝ#๏ฟฝ:๏ฟฝ๏ฟฝ ๏ฟฝ 2 ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ#๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ#๏ฟฝ:๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ#๏ฟฝ๏ฟฝ.2 ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ#๏ฟฝ๏ฟฝ.2 (karena ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ ๏ฟฝ 2 benar) maka ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ#๏ฟฝ๏ฟฝ e 1 jadi ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ#๏ฟฝ๏ฟฝ f 1 dan ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ#๏ฟฝ๏ฟฝ ๏ฟฝ 1. jika ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ#๏ฟฝ๏ฟฝ f 1 maka ada ฯƒ extending c % ; : ๏ฟฝ ๏ฃงโ†’๏ฃง ~ ๏ฟฝ: (2) c : ๏ฟฝ๏ฟฝ#๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ:๏ฟฝb๏ฟฝ karena ฯƒ extends c dan c extends 8 maka ฯƒ extends 8. dari (1) dan (2) diperoleh: ; : ๏ฟฝ ๏ฃงโ†’๏ฃง ~ ๏ฟฝ: c : ๏ฟฝ๏ฟฝ#๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ:๏ฟฝb๏ฟฝ 8 : ๏ฟฝ ๏ฃงโ†’๏ฃง ~ ๏ฟฝ: jadi ; : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: 8 : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: โ–ฒ jika ๏ฟฝ๏ฟฝ:๏ฟฝ๏ฟฝ#๏ฟฝ๏ฟฝ ๏ฟฝ 1 maka ada ฯƒ extending c % ; : ๏ฟฝ ๏ฃงโ†’๏ฃง ~ ๏ฟฝ: di mana ; ๏ฟฝ c (3) c : ๏ฟฝ๏ฟฝ#๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ:๏ฟฝb๏ฟฝ dari (1) dan (3) diperoleh ; : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: 8 : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: โ–ฒ b) andai ๏ฟฝ: splitting field ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ atas ๏ฟฝ: dan 8 isomorfisma. akan dibuktikan: ฯƒ isomorfisma โ‡’ i) ฯƒ homomorfisma ii) ฯƒ onto iii) ฯƒ satu-satu bukti: i) didefinisikan: ; : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: ;๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ: % 8 : ๏ฟฝ ๏ฃงโ†’๏ฃง~ ๏ฟฝ: 8๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ: ambil sebarang #,b ๏ฟฝ ๏ฟฝ splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ atas f dan g ๏ฟฝ h, maka: โ€ข ;๏ฟฝ#b๏ฟฝ ๏ฟฝ ๏ฟฝ#b๏ฟฝ: ๏ฟฝ #:b: ๏ฟฝ ;๏ฟฝ#๏ฟฝ.;๏ฟฝb๏ฟฝ โ€ข ;๏ฟฝg#๏ฟฝ ๏ฟฝ ๏ฟฝg#๏ฟฝ: ๏ฟฝ g.#: ๏ฟฝ g.;๏ฟฝ#๏ฟฝ jadi ฯƒ homomorfisma. โ–ฒ ii) ambil sebarang ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, maka: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ #๏ฟฝ ๏ฟฝ #๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ #๏ฟฝ๏ฟฝ๏ฟฝ, #๏ฟฝ ๏ฟฝ ๏ฟฝ himpunan ๏ฟฝi๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 8๏ฟฝ#๏ฟฝ ๏ฟฝ #๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ #๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ karena 8 homomorfisma, maka: ๏ฟฝi๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 8๏ฟฝ#๏ฟฝ๏ฟฝ ๏ฟฝ 8๏ฟฝ#๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ 8๏ฟฝ#๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 8๏ฟฝ#๏ฟฝ๏ฟฝ ๏ฟฝ 8๏ฟฝ#๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ 8๏ฟฝ#๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ padahal ๏ฟฝ: splitting field ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ, maka: ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ &๏ฟฝ๏ฟฝ ' #๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' # ๏ฟฝโ€ฆ๏ฟฝ๏ฟฝ ' #๏ฟฝ๏ฟฝ di mana #๏ฟฝ > ๏ฟฝ: sehingga ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ &1๏ฟฝ ' 8๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ21๏ฟฝ ' 8๏ฟฝ๏ฟฝ ๏ฟฝ2โ€ฆ 1๏ฟฝ ' 8๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2 (4) disisi lain, jika ada b๏ฟฝ ๏ฟฝ ๏ฟฝ:, maka: ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ &๏ฟฝ๏ฟฝ ' b๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' b ๏ฟฝโ€ฆ๏ฟฝ๏ฟฝ ' b๏ฟฝ๏ฟฝ (5) dari (4) dan (5) maka himpunan +8๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,8๏ฟฝ๏ฟฝ ๏ฟฝ,โ€ฆ,8๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ. ๏ฟฝ +b๏ฟฝ,b ,โ€ฆ,b๏ฟฝ. karena ๏ฟฝ: splitting field ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ@๏ฟฝ๏ฟฝ๏ฟฝmaka ๏ฟฝ@ ๏ฟฝ ๏ฟฝ:๏ฟฝb๏ฟฝ,b ,โ€ฆ,b๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ:18๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,8๏ฟฝ๏ฟฝ ๏ฟฝ,โ€ฆ,8๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2 ๏ฟฝ ๏ฟฝ:1;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,;๏ฟฝ๏ฟฝ ๏ฟฝ,โ€ฆ,;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2 ๏ฟฝ 8๏ฟฝ๏ฟฝ๏ฟฝ1;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,;๏ฟฝ๏ฟฝ ๏ฟฝ,โ€ฆ,;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2 ๏ฟฝ ;๏ฟฝ๏ฟฝ๏ฟฝ18๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ,8๏ฟฝ๏ฟฝ ๏ฟฝ,โ€ฆ,8๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2 ๏ฟฝ ;1๏ฟฝ๏ฟฝ#๏ฟฝ,# ,โ€ฆ,#๏ฟฝ๏ฟฝ2 corina karim dan ari andari 164 volume 1 no. 4 mei 2011 ๏ฟฝ@ ๏ฟฝ ;๏ฟฝ๏ฟฝ๏ฟฝ jadi ฯƒ onto. โ–ฒ iii) ฯƒ satu-satu. ambil sebarang ๏ฟฝ๏ฟฝ,๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ@ % ;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ;๏ฟฝ๏ฟฝ ๏ฟฝ ;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ;๏ฟฝ๏ฟฝ ๏ฟฝ ;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' ;๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ 0 ;๏ฟฝ๏ฟฝ๏ฟฝ ' ๏ฟฝ ๏ฟฝ ๏ฟฝ 0 (karena ; homomorfisma) jadi ๏ฟฝ๏ฟฝ ' ๏ฟฝ ๏ฟฝ ker ; ;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ;๏ฟฝ๏ฟฝ ๏ฟฝ ;๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' ;๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ 0 8๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ' 8๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ 0 (karena 8 ๏ฟฝ ;) 8๏ฟฝ๏ฟฝ๏ฟฝ ' ๏ฟฝ ๏ฟฝ ๏ฟฝ 0 (karena 8 homomorfisma) jadi ๏ฟฝ๏ฟฝ ' ๏ฟฝ ๏ฟฝ ker 8 jadi ; satu-satu. โ–ฒ akibat 4 (ketunggalan splitting field) sebarang dua splitting field polinomial ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ atas field f adalah isomorfik. bukti: ambil sebarang splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ. misal: e splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ atas f dan ๏ฟฝ: splitting field ๏ฟฝ:๏ฟฝ๏ฟฝ๏ฟฝatas ๏ฟฝ:. e splitting field ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ isomorfik dengan ๏ฟฝ: splitting field ๏ฟฝ:๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ:๏ฟฝ๏ฟฝ๏ฟฝ jika ada isomorfisma ring ; : ๏ฟฝ < ๏ฟฝ: dan 8 : ๏ฟฝ < ๏ฟฝ: ; : ๏ฟฝ ๏ฟฝ: 8 : ๏ฟฝ ๏ฟฝ: komutatif (; ๏ฟฝ 8). jelas. dari teorema 3, di mana ๏ฟฝ ๏ฟฝ ๏ฟฝ: dan ; m 8 . โ–ฒ kesimpulan dari hasil pembahasan dapat ditarik kesimpulan bahwa jika e dan eโ€™ splitting field atas polinomial-polinomial f(x)โˆˆ f[x] maka kedua splitting field tersebut isomorfik. dan untuk selanjutnya disebut ketunggalan splitting field. daftar pustaka [1] anton,h. 1987. aljabar linier elementer. erlangga. jakarta. [2] arifin, a. 2000. aljabar. itb. bandung. [3] bhattacharya, p.b., jain, s.k., nagpaul, s.r. 1986. basic abstract algebra. second ed., cambridge university press.usa. [4] birkhoff, g., and mac lane, s. 1953. a survey of modern algebra. mac millan company. new york. [5] deieker, p.f., and voxman.1986. discrete mathematics. harcourt brace jovanovich, inc. new york. [6] dummit, david s., and foote, richard m. 1991. abstract algebra. prenticehall, inc. new jersey. [7] durbin, j.r. 1992. modern algebra and introduction. john wiley and sons, inc. new york. [8] fraleigh, john b. 1994. a first course in abstract algebra. fifth ed., addison wesley publishing company, inc. usa. [9] gallian, j.a. 1990. contemporary abstract algebra. dc heath and company. usa. [10] herstein, i.n. 1975. topics in algebra. second ed., john wiley and sons. singapore. [11] hartley, b., and hawkes, t.o. 1970. rings, modules, and linear algebra. chapman and hall. london. [12] leon, steven j. 2001. aljabar linear dan aplikasinya. edisi kelima. erlangga. jakarta. [13] raisinghania, m.d., and anggarwal, r.s. 1980. modern algebra. s.chard and company ltd. new delhi. [14] roman, s. 1991. advanced linear algebra. springer verlag. new york. [15] sims, charles c. 1984. abstract a computational approach. john wiley and sons, inc. new york. [16] spindler, karlheins. 1994. abstract algebra with application. volume ii. marcell dekker, inc. usa. [17] stewart, ian. 1989. galois theory. second ed., chapman and hall. london. [18] whitelaw, thomas a. 1995. introduction to abstract algebra. third ed., chapman and hall. new york. ๏ฃงโ†’๏ฃง~ ๏ฃงโ†’๏ฃง~ a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units cauchy โ€“jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 13-21 p-issn: 2086-0382; e-issn: 2477-3344 submitted: pebruary 14, 2021 reviewed: april 20, 2021 accepted: october 12, 2021 doi: http://dx.doi.org/10.18860/ca.v7i1.11575 a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata1,2, khairil anwar notodiputro2*, bagus sartono2 1mathematics education study program, raja ali haji maritime university, tanjungpinang 2department of statistics, ipb university, bogor email: alonadwinata@umrah.ac.id, khairil@apps.ipb.ac.id*, bagusco@apps.ipb.ac.id *corresponding author abstract generalized linear mixed models (glmm) combined with the l1 penalty (least absolute shrinkage and selection operator/lasso) is called lasso glmm. lasso glmm reduces overfitting and selects predictor variables in modeling. the aim of this study is to evaluate the performance model for predicting covid-19 patients with certain congenital disease that require icu based on the results of blood tests laboratory and patientโ€™s vital signs. this study used binary response variables, 1 if the patient was admitted to the icu and 0 if the patient was not admitted to the icu. the fixed effect predictor variables are the results of blood tests laboratory and patientโ€™s vital signs. the random effect predictor variable is patient's congenital disease. the result showed that the average of accuracy and auc from lasso glmm is more than the average of accuracy and auc from lasso glm by using 5% level of significance. respiratory rate and lactate show a significance effect to predict the icu needs of covid-19 patients. the random effects patient's congenital disease has significance effect at 5% level of significance. it means that the icu needs for covid-19 patients varies among patient's congenital disease. we can conclude that glmm lasso with the random effect of patientโ€™s congenital diseases has better modeling performance to predict the icu needs of covid-19 patients based on the results of blood tests laboratory and patientโ€™s vital signs. the results of this modeling can quickly detect covid-19 patients who need the icu and can help medical staff use icu resources optimally. keywords: covid 19; glmm; glmmlasso; lasso introduction generalized linear model (glm) is an approach that can be used to model the effect of predictor variables on response variables derived from exponential family distribution. for observations in certain groups there is usually a correlation between observations then the glm study is expanded to include random effects on linear predictors. when the glm model added a random effect, the model called generalized linear mixed models (glmm) [1]. glmm modeling has a problem with the number of predictor variables used in relation to complexity in modeling. the more predictor variables used in modeling, the estimation is very unstable [2]. the existence of predictor variables that are not related http://dx.doi.org/10.18860/ca.v7i1.11575 mailto:alonadwinata@umrah.ac.id mailto:khairil@apps.ipb.ac.id mailto:bagusco@apps.ipb.ac.id a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata 14 to the response variables in the model will cause overfitting problems. to improve the accuracy of the model prediction, a penalty is added in modeling [3]. the addition of penalty function in modeling was carried out by tibshirani (1996) using the l1 penalty, namely ๐œ† โˆ‘ |๐›ฝ๐‘—| ๐‘ ๐‘—=1 which is called least absolute shrinkage and selection operator (lasso). lambda (ฮป) in the l1 penalty function is a shrinkage parameter (ฮป) that determines the amount of shrinkage regression coefficient. lasso reduces overfitting and selects predictor variables in modeling [4]. modeling with a combination of glm and glmm with lasso techniques in this study are called lasso glm and lasso glmm. researchers have discussed various problems on lasso glm, such as arnold and tibshirani (2016) [5], hossain et al. (2015) [6], zhang and zou (2014) [7], simon et al. (2013) [8], friedman et al. (2010) [9]. the lasso glm optimizes the objective function by using coordinate descent optimization. this algorithm is available in the r programming language, namely glmnet package [9]. some researchers have discussed variable selection procedures in glmm using the l1 penalty, including thomson and hossain (2018) [10], groll and tutz (2014) [2], schelldorfer et al. (2011) [11], ibrahim et al. (2010) [12]. the lasso glmm produces stable estimations because penalty l1 can select the important predictor variables used in glmm [2]. the glmms using the l1 penalty are useful whenever there is a grouping structure among high dimensional observations [11]. previous studies also have found an algorithm for estimating the maximum likelihood in the glmm model with the addition of the l1 penalty function. the penalized loglikelihood function maximize using gradient ascent algorithm, this algorithm is called glmmlasso [13]. the glmmlasso algorithm in the r programming language is included in the glmmlasso package [14]. in this study, researchers apply lasso glm and lasso glmm to predict the icu needs for covid-19 patients. the surge in covid-19 cases is putting enormous pressure on the health care system. intensive care units (icu) is one of the health facilities needed by patients with covid-19 confirmation. the study examines the prediction of icu for covid19 patients. the icu needs for covid-19 patients were analyzed using the results of blood tests laboratory, vital signs and the patient's congenital disease. the predictor variables for blood test laboratory results and patient's vital signs were fixed effect, whereas predictor variables for patient's congenital disease were assumed to be fixed effect for lasso glm and random effect for lasso glmm. previous researchers have discussed the performance of lasso glm and lasso glmm modeling on rainfall data, the results showed that modeling with lasso glmm has better performance than lasso glm [15]. to predict the icu needs for covid-19 patients based on laboratory results of blood tests, patientโ€™s vital signs and congenital disease, researchers conducted modeling with lasso glm and lasso glmm. the aim of this study is to evaluate the model's performance in predicting covid-19 patients with certain congenital disease groups that require icu based on the results of blood tests laboratory and patientโ€™s vital signs. methods data the study used data from patients confirmed by covid-19 at the sรญrio-libanรชs hospital, sรฃo paulo, brasilia. data were collected after 12 hours of confirmed covid-19 patients undergoing treatment in the hospital. total data were 98 patients, with 52 icu patients and 46 non-icu patients. the study used binary response variables, 1 if the patient was admitted to the icu and 0 if the patient was not admitted to the icu. the fixed effect predictor variables for a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata 15 modeling totally used 32 variables, 26 variables from the results of blood tests laboratory and 6 variables patientโ€™s vital signs. the fixed effect predictor variables used in modeling can be seen in table 1. researchers assumed patientโ€™s congenital disease as fixed effect predictor variables in modeling using lasso glm and a random effect predictor variable in modeling using lasso glmm. table 1. research variables variable variable name type information y the covid-19 patient's status binary 1 = icu patient, 0 = non-icu patient x1 albumin numeric fixed effect x2 be_venous numeric fixed effect x3 bic_venous numeric fixed effect x4 billirubin numeric fixed effect x5 calcium numeric fixed effect x6 creatinin numeric fixed effect x7 ffa numeric fixed effect x8 ggt numeric fixed effect x9 glucose numeric fixed effect x10 hematocrite numeric fixed effect x11 hemoglobin numeric fixed effect x12 lactate numeric fixed effect x13 leukocytes numeric fixed effect x14 linfocitos numeric fixed effect x15 neutrophiles numeric fixed effect x16 p02_venous numeric fixed effect x17 pc02_venous numeric fixed effect x18 pcr numeric fixed effect x19 ph_venous numeric fixed effect x20 platelets numeric fixed effect x21 potassium numeric fixed effect x22 sat02_venous numeric fixed effect x23 sodium numeric fixed effect x24 ttpa numeric fixed effect x25 urea numeric fixed effect x26 dimer numeric fixed effect x27 bloodpressure_diastolic numeric fixed effect x28 bloodpressure_sistolic numeric fixed effect x29 heart_rate numeric fixed effect x30 respiratory_rate numeric fixed effect x31 temperature numeric fixed effect x32 oxygen_saturation numeric fixed effect research methods modeling was carried out to predict the icu needs for covid-19 patients based on the results of blood tests laboratory, vital signs and congenital diseases. there are many predictor variables used in modeling. we select the variables to determine the important predictor variables, then a simpler model is obtained by adding the l1 penalty function to the model. the algorithms of this research were as follows: a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata 16 1. lasso glm modeling predicted the icu needs for covid-19 patients a. determine the optimum lambda value b. lasso glm modeling used the r package glmnet c. analyze the parameters from the modeling results d. determine the model accuracy. 2. lasso glmm modeling predicted the icu needs for covid-19 patients a. determine the optimum lambda value b. lasso glmm modeling used the r package glmmlasso c. analyze the parameters from the modeling results the random effects in modeling used hypothesis ๐ป0:๐œŽ 2 = 0. this hypothesis was tested by using likelihood ratio, ๐บ2 = 2(loglik๐ฟ๐ด๐‘†๐‘†๐‘‚๐บ๐ฟ๐‘€๐‘€ โˆ’ loglik๐ฟ๐ด๐‘†๐‘†๐‘‚๐บ๐ฟ๐‘€). if ๐บ 2 > ๐œ’(๐‘‘๐‘=1,๐›ผ=0.05) 2 then ๐ป0 is rejected. d. determine the model accuracy. to evaluate the performance of lasso glm and lasso glmm, researchers have chosen the best model to predict the hospitalization needs of a patient with covid-19. the best model was selected based on accuracy and auc. the steps for selecting the best model were as follows: a. partition data with a composition of 80% modeling data and 20% validation data. data partitioning was performed 30 times b. modeling the lasso glm and lasso glmm used modeling data for each replication c. assessing model performance based on auc and accuracy values using validation data for each replication d. statistically perform a performance difference of lasso glm and lasso glmm used paired sample t-test. results and discussion 1. lasso glm modeling lasso glm selects variables based on ฮป. the ฮป optimum is obtained when the binomial deviance value is minimum. cross validation plot to optimize lasso glm shrinkage parameters is shown in figure 1. figure 1. cross validation plot to optimize glm lasso shrinkage parameters based on figure 1, the optimum ฮป was 0.024. the predictor variables included in the modeling are fixed effect predictor variables. there are 26 features laboratory blood test results and 6 patient's vital signs, and a patient's congenital disease as dummy variable. a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata 17 lasso glm modeling used the r package glmnet. the plot of the lasso glm coefficient for each log ฮป value can be seen in figure 2. the regression coefficient with non-zero values results from the lasso glm modeling is shown in table 2. figure 2. plot of lasso glm coefficients for each shrinkage parameter value table 2. lasso glm coefficient variables coefficient lactate -0.45 p02_venous -1.82 sodium -0.03 bloodpressure_sistolic 0.83 respiratory_rate 3.78 oxygen_saturation 4.26 htn 0.23 disease group 1 -0.52 2. lasso glmm modeling the same as lasso glm, lasso glmm also required optimum ฮป in modeling. figure 3 shows the binomial deviance value for each value of ฮป. the optimum ฮป is 19.6 that obtained when the smallest deviance. figure 3. cross validation plot for optimizing lasso glmm shrinkage parameters there are 26 features laboratory blood test results, 6 patient's vital signs and a patient's congenital disease as random effect in lasso glmm. the modeling use r a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata 18 package glmmlasso. the plot of the lasso glmm coefficient spread for each ฮป can be seen in figure 4. the regression coefficients go to zero along to the increasing ฮป. the regression coefficient of the lasso glmm modeling with ฮป = 19.6 result 4 non-zero predictor variables that is shown in table 3. figure 4. plot of lasso glmm coefficients for each shrinkage parameter table 3. lasso-penalized logistic mixed effects regression model (glmm-lasso) fixed effects coefficient standard error z p(>|z|) (intercept) -6.88 0.54 -12.636 0.000 lactate -0.65 0.38 -1.70 0.08 bloodpressure_systolic 1.55 1.88 0.82 0.41 respiratory_rate 5.11 1.25 4.09 0.04 oxygen_saturation 8.64 5.36 1.61 0.11 the patientโ€™s congenital disease as random effect had standard deviation 0.8262 with ๐บ2 = 4.12 dan ๐œ’(๐‘‘๐‘=1,๐›ผ=0.05) 2 =3.84. then, ๐ป0 is rejected. it means that the random effects for patient's congenital disease was significant at 5% level of significance. 3. selection of the best model data were divided randomly with a composition of 80% modeling data and 20% validation data. furthermore, there are 79 patients as modeling data and 19 patients as validation data. data partitioning was carried out in 30 replications. the optimum ฮป is obtained based on the modeling data taken for each replication. a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata 19 figure 5. auc of lasso glm and lasso glmm for 30 replications furthermore, the lasso glm and lasso glmm modeling was carried out for each replication. assessment of modeling performance use the accuracy and auc in the validation data. comparison of the accuracy and auc of 30 replications for each model is shown in figure 5 and figure 6. figure 6. accuracy of lasso glm and lasso glmm for 30 replications the performance differences of lasso glm and lasso glmm can be statistically stated by paired sample t-test of auc and accuracy. the results of the paired sample t-test for these two models can be seen in table 4. the hypothesis about accuracy or auc of the two models is as follows: ๏‚ท h0: average accuracy of lasso glm is less than or equal to average accuracy of lasso glmm ๏‚ท h0: average auc of lasso glm is less than or equal to average auc of lasso glmm table 4. the paired sample t-test of accuracy and auc criteria t-stat p-value accuracy 5.5746 0.0000 auc 2.2058 0.0178 the t-test results in table 4 showed the p-value for accuracy and auc less than 0.05. it means the average of accuracy and auc from lasso glmm is more than the average of accuracy and auc from lasso glm by using 5% level of significance. discussion the ability to identify patients who need the icu is needed. the solution to this problem can be done by identifying the most important variables that affect the icu needs for covid-19 patients. the paired sample t-test of accuracy and auc in table 4 showed that modeling with lasso glmm has better performance than lasso glm. figure 4 shows the effect of the predictor variables for each lambda value. by using lambda 19.6, this model produced four non-zero fixed effect predictor variables which are the focus of attention to predict the icu needs of covid-19 patients, namely lactate, blood pressure systolic, respiratory rate and oxygen saturation. among these four predictors, only respiratory rate had a significant effect at the 5% level of significance and lactate had a significant effect at the 10% level of significance. meanwhile, blood pressure systolic and oxygen saturation had no significant effect. the odds ratio of respiratory rate was 165.67. it meant that the odds of covid-19 a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata 20 patient required the icu was 165.67 higher given an increase of a unit respiratory rate (respirations per minute/rpm) than before the increase. covid-19 damages the respiratory system. respiratory rate is one measure used to identify respiratory tract infections immediately before and during the first days of symptoms. the normal respiratory rate for adults at rest is 12 to 20 rpm [16]. the findings of a study suggest that the stability of nightly respiratory rate measurements in healthy individuals at night rest is a useful metric for tracking changes in health [16]. the odds ratio of lactate was 0.52. it meant that the odds of a covid-19 patient required the icu was 0.52 lower given an increase of a unit lactate (mmol/l) than before the increase. arterial lactatemia higher than central vein (a reversed delta a-cv lactate) indicates a disturbance in the mitochondrial metabolism of lung cells caused by severe inflammation [17]. an increase in one unit of venous blood lactate reduces reversed delta a-cv lactate. lasso glmm produced an auc of 0.96. this means that glmm lasso has good predictive performance in predicting the icu needs of covid-19 patients. the random effects patient's congenital disease was significant at 5% level of significance. it means that the icu needs for covid-19 patients varies among patient's congenital disease. we can conclude that glmm lasso with the random effect of patientโ€™s congenital diseases has better modeling performance to predict the icu needs of covid-19 patients. conclusions in this study, modeling with lasso glmm has better performance to predict the icu needs of covid-19 patients than lasso glm. lasso glmm has good predictive performance in predicting the icu needs of covid-19 patients with an auc 0.96. respiratory rate has a significant effect at 5% level of significance and lactate has a significant effect at 10% level of significance in lasso glmm. respiratory rate shows the largest significance effect to predict the icu needs of covid-19 patients. random effects of patient congenital disease had a significant effect on covid-19 patients requiring icu at 5% level of significance. it means that the icu needs for covid-19 patients varies among patient's congenital disease. we can conclude that glmm lasso with the random effect of patientโ€™s congenital diseases has better modeling performance to predict the icu needs of covid-19 patients based on the results of blood tests laboratory and patientโ€˜s vital signs. acknowledgments the authors would like to thank to all persons who contributed to the improvement of this paper. references [1] j. jiang, linear and generalized linear mixed models and their applications. 2007. [2] a. groll and g. tutz, โ€œvariable selection for generalized linear mixed models by l1penalized estimation,โ€ stat. comput., 2014, doi: 10.1007/s11222-012-9359-z. [3] t. hastie, r. tibshirani, and j. friedman, springer series in statistics, vol. 27, no. 2. new york, ny: springer new york, 2008. [4] r. tibshirani, โ€œregression shrinkage and selection via the lasso: a retrospective,โ€ j. r. stat. soc. ser. b stat. methodol., vol. 73, no. 3, pp. 273โ€“282, 2011, doi: 10.1111/j.1467-9868.2011.00771.x. a combination of generalized linear mixed model and lasso methods for estimating number of patients covid 19 in the intensive care units alona dwinata 21 [5] t. b. arnold and r. j. tibshirani, โ€œefficient implementations of the generalized lasso dual path algorithm,โ€ j. comput. graph. stat., vol. 25, no. 1, pp. 1โ€“27, 2016, doi: 10.1080/10618600.2015.1008638. [6] s. hossain, s. e. ahmed, and k. a. doksum, โ€œshrinkage, pretest, and penalty estimators in generalized linear models,โ€ stat. methodol., vol. 24, pp. 52โ€“68, 2015, doi: 10.1016/j.stamet.2014.11.003. [7] t. zhang and h. zou, โ€œsparse precision matrix estimation via lasso penalized d-trace loss,โ€ biometrika, 2014, doi: 10.1093/biomet/ast059. [8] n. simon, j. friedman, t. hastie, and r. tibshirani, โ€œa sparse-group lasso,โ€ j. comput. graph. stat., 2013, doi: 10.1080/10618600.2012.681250. [9] j. friedman, t. hastie, and r. tibshirani, โ€œregularization paths for generalized linear models via coordinate descent,โ€ j. stat. softw., vol. 33, no. 1, pp. 1โ€“22, 2010, doi: 10.18637/jss.v033.i01. [10] t. thomson and s. hossain, โ€œefficient shrinkage for generalized linear mixed models under linear restrictions,โ€ sankhya indian j. stat., 2018. [11] j. schelldorfer, p. bรผhlmann, and s. van de geer, โ€œestimation for high-dimensional linear mixed-effects models using โ„“1-penalization,โ€ scand. j. stat., vol. 38, no. 2, pp. 197โ€“214, 2011, doi: 10.1111/j.1467-9469.2011.00740.x. [12] j. g. ibrahim, h. zhu, r. i. garcia, and r. guo, โ€œfixed and random effects selection in mixed effects models,โ€ biometrics, 2011, doi: 10.1111/j.1541-0420.2010.01463.x. [13] j. schelldorfer, l. meier, and p. bรผhlmann, โ€œglmmlasso: an algorithm for high dimensional generalized linear mixed models using โ„“1-penalization,โ€ j. comput. graph. stat., vol. 23, no. 2, pp. 460โ€“477, 2014, doi: 10.1080/10618600.2013.773239. [14] a. groll, โ€œglmmlasso: variable selection for generalized linear mixed models by l1-penalized estimation,โ€ 2017. [15] a. muslim, m. hayati, b. sartono, and k. a. notodiputro, โ€œa combined modeling of generalized linear mixed model and lasso techniques for analizing monthly rainfall data,โ€ 2018, doi: 10.1088/1755-1315/187/1/012044. [16] d. miller et al., โ€œanalyzing changes in respiratory rate to predict the risk of covid19 infection.,โ€ vol. 2, pp. 1โ€“10, 2020, doi: 10.1101/2020.06.18.20131417. [17] g. nardi et al., โ€œlactate arterial-central venous gradient among covid-19 patients in icu: a potential tool in the clinical practice,โ€ crit. care res. pract., 2020, doi: 10.1155/2020/4743904. a monte carlo simulation study to assess estimation methods in confimatory factor analysis (cfa) on ordinal data cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 332-344 p-issn: 2086-0382; e-issn: 2477-3344 submitted: december 20, 2021 reviewed: march 07, 2022 accepted: march 28, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.14434 a monte carlo simulation study to assess estimation methods in confimatory factor analysis (cfa) on ordinal data nina fitriyati*, and madona yunita wijaya universitas islam negeri syarif hidayatullah jakarta, indonesia email: nina.fitriyati@uinjkt.ac.id abstract likert-type scale data are ordinal data and are commonly used to measure latent constructs in the educational, social, and behavioral sciences. the ordinal observed variables are often treated as continuous variables in factor analysis, which may cause misleading statistical inferences. two robust estimators, i.e., unweighted least squares (uls) and diagonally weighted least squares (dwls) have been developed to deal with ordinal data in confirmatory factor analysis (cfa). in this research, we conduct an extensive simulation study to examine the impact of uls and dwls estimations in the accuracy of parameter estimates as well as the model fit measures by varying the number of likert scale points. we use synthetic data generated in a monte carlo experiment to explore the behavior of these methods (dwls and uls) and compare their performance with normal theory-based ml and gls (generalized least squares) under different levels of experimental conditions. the simulation results indicate that both dwls and uls yield consistently accurate parameter estimates across all conditions considered. the likert data can be treated as a continuous variable under ml or gls when using at least five likert scale points to produce trivial bias. however, these methods generally fail to provide a satisfactory fit. furthermore, we provide empirical studies in the field of psychological measurement data to present how theoretical and statistical instances have to be taken into consideration when ordinal data are used in the cfa model. keywords: confirmatory factor analysis; diagonally weighted least squares; generalized least squares; likert data; maximum likelihood introduction factor analysis such as cfa is often used in various fields, including social science, economics, and psychology to validate survey instruments. cfa is developed from the concept of exploratory factor analysis (efa) where researchers have the hypothesized model based on theory or previous analytical research. the model should be specified before analysis regarding the number of factors in the model, the number of indicators reflecting each factor, and whether a relationship exists between these factors. factor analysis plays an important role to provide evidence of construct validity and information about the internal structure of the measurement instrument [1] [2]. thompson [3] stated that cfa is also known as a measurement model which is an important component of the structural equation model (sem) class, describing how the measured indicators can reflect a latent variable/construct. the measurement model describes how the latent variable depends on the indication of the observed variable which also explains the measurement properties such as the validity and reliability of the observed variable [4]. http://dx.doi.org/10.18860/ca.v7i3.14434 mailto:nina.fitriyati@uinjkt.ac.id a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 333 a questionnaire is one of the tools in quantitative research that is generally used to study latent constructs through their observed indicators. the indicators are collected through a series of questions in the form of a questionnaire measured on a likert-type scale. this scale offers a series of fixed-choice options where there is a rank order between the choices given [5]. the results of measuring data using a likert scale are also known as ordinal data. when collecting data with a likert scale for analysis, researchers tend to ignore the actual data structure and treat it like a continuous variable since the methods designed for continuous variables tend to be easy to apply and easy to use. in this case, the maximum likelihood (ml) method is used to estimate the model parameters [6]. the ml method is the most popular since it gives asymptotic unbiased results and consistent parameter estimates [7] [8] [9] [10]. however, this method uses pearson correlation which requires the assumption of continuous measurement for both latent and observed variables. pearson correlation also tends to underestimate the true correlation between ordinal variables. however, in principle, this method cannot be directly applied to ordinal data because the characteristics of the data itself tend to be different. several theories and estimation methods are available which are designed to handle ordinal data, such as dwls (diagonally weighted least squares) and uls (unweighted least squares). several studies have addressed the comparison between uls and dwls performance in finite samples [11] [12] [13] [14]. all these studies have certain limitations in that they did not compare with standard estimation procedures such as ml or gls. as of today, many researchers are still in their comfort zone using the standard estimation, knowing that the observed variables violated the normal assumption. in maydeu-olivers [11] study only considered a non-standard model, whereas tate [12] considered one replication per condition. the other two studies only considered a certain condition in terms of the number of categories used per indicator. to conduct further research in this area, an extensive simulation study was conducted to examine the impact of uls and dwls estimations in the accuracy of parameter estimates as well as the model fit measures by varying the number of likert scale points. in addition, ml and gls were also compared to give the readers insight into the risk of treating ordinal data as a continuous variable in the factor analysis. methods this research was implemented as a monte carlo simulation study, where it involves creating data by pseudo-random sampling to study the behavior of statistical methods under various conditions [15]. in this study, we evaluate the performance of cfa estimation methods under different experimental conditions. in addition, numerical examples using secondary data are also considered to support the findings. estimation methods the most common method used for parameter estimation in the cfa model is the maximum likelihood (ml). it is used more frequently in many research as it has many desirable statistical properties, including asymptotic unbiasedness, asymptotic consistency, asymptotic normality, and asymptotic efficiency. the ml estimation method assumes that the observed indicators are multivariate normally distributed and measured on continuous scales [16]. to estimate the model parameters (๐œƒ), ml maximizes the likelihood function of the observed data, or equivalently minimizes the following function [7]: a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 334 ๐น๐‘€๐ฟ = log|โˆ‘(๐œƒ)| โˆ’ log|๐’| + tr(๐’โˆ‘(๐œƒ) โˆ’1) โˆ’ ๐‘˜, (1) where ๐‘† is the sample variance-covariance matrix, โˆ‘(๐œƒ) is the model implied covariance matrix, and ๐‘˜ is the number of observed indicators. generalized least squares (gls) is another estimation method that assumes the multivariate normality of the data similar to ml. the model parameters are estimated by minimizing the following function: ๐น๐บ๐ฟ๐‘† = 1 2 ๐‘ก๐‘Ÿ(๐’ โˆ’ โˆ‘(๐œƒ)๐’โˆ’1)2. (2) the main difference between the two estimators is that the sample covariance matrix is used in the weight matrix instead of the model-implied covariance matrix. however, this estimator provides a better empirical fit than ml when the models are misspecified [17] [18] [19]. the assumptions of normality and continuous scales are often violated since many research, such as psychology, social sciences, and educational research, use likert scales to measure observable variables. likert-type scales are categorical (ordinal) data where the response categories have a rank order, i.e., one score can be said to be higher than another but not the distance between the two scores. if the assumption is not satisfied, then the resulting cfa model may not be reliable and the conclusion obtained can be misleading. alternative estimators available are dwls and uls, which have been suggested to deal with ordinal data [20] [6]. when the data are treated as categorical (ordinal), correlation structure is involved instead of covariance structure and the model is fitted to polychoric correlations. both methods share a similar fit function, i.e., least-square function to estimate the model parameters involving minimizing the following objective function: ๐น = (๐’ โˆ’ ๐ˆ(๐œƒ)) โ€ฒ ๐–(๐’ โˆ’ ๐ˆ(๐œƒ)), (3) where ๐– is the weight matrix and (๐’ โˆ’ ๐ˆ(๐œƒ)) denotes the difference between the population threshold and polychoric correlations and those implied by the model. the weight matrix ๐– determines the minimization procedure. when the choice of ๐– is the identity matrix, the method is known as uls (muthen, 1993). a second choice is ๐– = (๐‘‘๐‘–๐‘Ž๐‘”(๐šช)) โˆ’1/2 known as dwls. it uses the elements in the diagonal matrix of the estimated polychoric correlations (the estimated variances) as the weights [21]. simulation design monte carlo simulation studies were carried out to compare the impact of various estimation methods (ml, gls, uls, and dwls) on the cfa model by manipulating four experimental factors, i.e., the number of latent variables or factors, number of items, the number of response categories, and sample sizes. more specifically, we are interested in evaluating four popular model fit indices (i.e., chi-square test, rmsea, cfi, and tli) and also bias in factor loadings across different experimental conditions. different cfa models were generated under different settings of dimensionality, i.e., a one-factor model and a correlated two-factor model. each factor was measured by four and eight ordinal observed indicators. at least four indicators are necessary for a one-factor model to be (over-)identified. additionally, it was found to have optimal a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 335 accuracy of parameter estimates and marginally improved by adding more indicators [22]. the coefficients of factor loadings on the same factor were varied from low to high loadings, i.e., 0.5 to 0.9, to mimic real-world data as it is very rarely happened to have constant factor loadings on the same factor. it was also suggested from many empirical research and simulation studies were reported standardized factor loadings range from 0.4 to 0.9 [23] [24] [25]. for a two-factor model, the inter-factor correlation was set to have a moderate correlation of 0.4. the factor variances were all set equal to 1 in the population. four different sample sizes are considered from low to large samples: n = 100, 200, 500, and 1000 [26]. all generated models assumed symmetric observed distributions generated from normal latent response distribution. to investigate the influence of categorization or the number of likert scale points (c), each indicator was generated by considering ๐‘ = 2,3, โ€ฆ ,10 categories. a total of 144 experimental conditions (2 ร— 2 ร— 9 ร— 4) was created in this study by considering the combination of the four experimental factors, i.e., number of factors (๐‘“ = 1,2), number of items (๐‘– = 4,8) number of categories (๐‘ = 2, โ€ฆ ,10), and sample sizes (๐‘ = 100, 200, 500, 1000) [26]. each experimental condition was evaluated by generating 500 datasets. all data were generated using mplus while cfa model evaluations were carried out using the 'lavaanโ€™ package in r [27] [28]. outcome variables in this study, a model assessment was done on parameter estimates and model fit. for each experimental condition, parameter estimates including factor loadings and interfactor correlation were examined. the bias, i.e., the difference between the estimated (๐œƒ ) and true parameter (๐œƒ), were computed to evaluate the performance of the four estimation methods. the average absolute relative bias (arb) was considered to take into account the magnitude of the true parameter value. let ๐œƒ๐‘–๐‘— be the parameter estimates of the ๐‘—th parameter (1,2, โ€ฆ , ๐‘) in the ๐‘–th replicate ( ๐‘– = 1,2, . . , ๐‘…). the arb can be expressed as follows [29]: ๐ด๐‘…๐ต = 1 ๐‘… โˆ‘ ( 1 ๐‘ โˆ‘ (๏ฟฝฬ‚๏ฟฝ๐‘–๐‘—โˆ’๐œƒ๐‘—) ๐œƒ๐‘— ๐‘ ๐‘—=1 ) ๐‘… ๐‘–=1 . (4) a trivial bias is indicated with an arb value less than 5%, a moderate bias is indicated with an arb value between 5% and 10%, and a substantial bias is indicated with an arb value above 10% [30] [31]. to assess model fit, the chi-square test and rmsea were evaluated in terms of the rate of rejection (type i error) of the proposed model. a rate of rejection greater than 5% indicates inflated type i error rates, showing that the test statistics may have been underestimated. other fit indices such as tli and cfi were evaluated by averaging across r replications. they were also computed as the proportion of satisfactory fit across r replications (tli / cli > 0.9). results and discussion parameter estimation the results of average relative bias (arb%) values for factor loadings for each estimation method depending on the number of likert scale points are presented in figure 1 and 2. when ordinal indicators were treated as continuous, the number of likert a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 336 scale points had an impact on the accuracy of the estimated factor loadings, whether ml or gls estimations were used. the estimated factor loadings suffered from a downward bias with a fewer number of likert scale points (๐‘ < 5) and the bias increased dramatically when only considering two categories in the observed indicator variable. increasing sample size did not seem to reduce the bias. using at least five response categories produced moderate bias since the arb values were less than 10%. the accuracy of parameter estimates improved with the increased number of response categories. the factor loadings were essentially unbiased with nine or ten response categories under ml and gls. the dwls and uls estimation methods were superior to the other two methods. both methods consistently provided more accurate factor loadings, evidenced by their smaller arb values. the resulting bias was trivial even in the condition of a small sample size (๐‘ = 100). unlike ml and gls, the number of likert scale points did not influence the accuracy. the bias remained stable below 5% across a different number of response categories. in general, both methods appeared to perform well under various conditions. the impact of the number of indicators to measure a latent construct on the accuracy of factor loading estimates can be notably seen in the one-factor model. the bias decreased as more indicators were used based on dwls and uls methods. in contrast, the arb values were generally larger when using more indicators under ml and gls. in a two-factor model, the bias was relatively similar whether 4or 8indicators per factor were used. figure 1. plot of arb(%) for factor loadings by varying the number of likert scale points, the number of indicators per factor, and sample size, for a one-factor model. a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 337 figure 2. plot of arb(%) for factor loadings by varying the number of likert scale points, the number of indicators per factor, and sample size, for a two-factor model. the arb values for inter-factor correlations in two-factor models are presented in figure 3 by varying the number of indicators, the number of likert scale points, and sample size. the plots also show a comparison of the performance between the four different estimation methods. similar to factor loadings, the number of likert scale points appeared to have an impact on the estimated inter-factor correlations. ml and gls methods performed equally worst in estimating the correlation between the two factors in the condition when two-response categories were used since they substantially underestimated the true correlation parameter (arb < โˆ’10%). the arb values can be improved by increasing sample size; however, the resulting estimates were still biased. in the case of five or more response categories, both methods were able to achieve accuracy in the inter-factor correlation estimates with trivial bias. higher accuracy was obtained as the sample size increased. it is interesting to see that the ml estimator generally produced negative bias while in contrast, gls produced positive bias. meanwhile, the inter-factor correlation bias was consistently lower under dwls and uls and essentially unbiased across different scenarios. a larger sample size reduced relative bias, particularly in a two-factor model with four indicators per factor. a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 338 figure 3. plot of arb(%) for inter-factor correlations by varying the number of likert scale points and sample sizes for a two-factor model with four and eight indicators per factor. model fit figure 4 and 5 present rejection rates associated with rmsea and chi-square test (note that not all experimental condition's results are shown here for brevity). the empirical type i error for the chi-square test under ml and gls estimation methods were well within the range of 0.03 and 0.10, which is very near to the nominal value of type i error (๐›ผ = 0.05) when considering four indicators per factor. the rate was the highest for a larger sample size, particularly for two response categories. increasing the number of likert scale points, the type i error was able to be controlled at a 5% level. in contrast, the type i error inflated along with the increase in the use of several indicators per factor, particularly for small sample sizes and under the ml method. gls performed generally better than ml within this similar condition. overall, dwls worked well in maintaining chi-square type i error rates across most experimental conditions. in contrast, the rmsea fit indices were found to be insensitive to most conditions of the study. the rejection rates were consistently below 0.05, regardless of the estimation methods used. except for the uls method, which was found with poor performance in the condition of small sample size (๐‘ = 100) and two response categories. the proportions of tli and cli values greater than 0.9 across 500 data generations obtained from fitting a one-factor model is displayed in figure 6. other models are not shown here since the resulting tli and cli was pretty much similar. the estimation methods did not influence both cfi and tli values in larger sample sizes (๐‘ โ‰ฅ 500), since they performed consistently well with a proportion above 0.9. in smaller sample sizes, gls was the most conservative one compared to other methods concerning the tli index. this suggests that the model fit worse based on gls when the models were correctly specified. as the level of response categories increased, gls was able to improve its tli performance, but still below a satisfactory level. again, both dwls and uls were able to maintain their consistency concerning tli and cfi indices above 0.9 across different experimental conditions. a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 339 figure 4. plot of rejection rate from chi-square test and rmsea for a one-factor model with 4 indicators per factor. figure 5. plot of rejection rate from chi-square test and rmsea for a two-factor model with 8 indicators per factor. figure 6. plot of a proportion of tli/cli values above 0.9 for a one-factor model with 4 indicators per factor. a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 340 empirical studies to support the findings from the simulation studies, empirical studies were carried out using available data from open-source psychometrics projects (https://openpsychometrics.org/rawdata/) [32]. three datasets were considered. the first dataset was collected from the taylor manifest anxiety scale (tmas). it consisted of 50 true-false statements to identify the eligibility criteria for individuals for enrolling in the stress studies and other related psychological phenomena [33]. the second dataset was obtained from the nature relatedness scale (nr-6) to measure how an individualโ€™s trait level of feeling emotionally connected to nature [34]. the test consisted of six statements of opinions rated on a five-point scale of how many people agree with each of the statements. the third dataset was collected from the right-wing authoritarianism scale (rwas) to understand the psychologies of fascist regimes and their followers [35] [36]. a total of 22 statements of opinions was used in the test rated on a nine-point scale from very strongly disagree (1) to very strongly agree (9). not all observations in the datasets are used in building the cfa models, but instead, the samples were randomly selected from the main datasets, thus each study using 750-1500 observations. table 1 summarizes model fit indices from fitting a one-factor model to the three studies. the chi-square tests were not able to detect a good fit model across all studies. this can be expected since the test is highly sensitive to sample size. alternatively, rmsea statistics can be used to assess model fit. in the tmas study, the estimated rmsea value based on uls was above 0.05 or associated with a p-value < 0.001, indicating a poor fit. this is in line with the findings in figure 5, that uls performed the worst when two response categories are used. concerning cfi and tli indices, both ml and gls were not able to reach satisfactory fit since both values were below 0.9, particularly the tli index obtained from the gls method showed a strong underestimation. this is in agreement with the results shown in figure 6. dwls outperformed the other methods in the study with two likert scale points. meanwhile, in the nr-6 and rwas studies, both dwls and uls performed almost equally well. in the case of the rwas study, only uls indicated a good fit based on rmsea criteria. the associated factor loading estimates are reported in table 2. all loadings were statistically significant at a 5% level, irrespective of the estimation methods used. however, all coefficients based on ml and gls were consistently lower than dwls and uls. table 1. summary of model fit indices for tmas, nr-6, and rwas studies (cases in boldface indicated a good model fit) study estimation method chi-square test rmsea cfi tli statistic df p-value statistic p-value tmas (50 indicators, 2-point scale) ml 14494.4 1175 <0.001 0.050 0.203 0.718 0.706 gls 8369.3 1175 <0.001 0.037 1.000 0.210 0.176 dwls 13559.6 1175 <0.001 0.049 0.999 0.945 0.943 uls 0.070 <0.001 0.952 0.950 nr-6 (6 indicators, 5-point scale) ml 133.5 9 <0.001 0.095 <0.001 0.964 0.939 gls 117.9 9 <0.001 0.089 <0.001 0.842 0.737 dwls 62.2 9 <0.001 0.062 0.074 0.996 0.993 uls 0.043 0.183 0.993 0.989 rwas (22 indicators, 9-point scale) ml 1923.6 209 <0.001 0.105 <0.001 0.855 0.840 gls 1017.0 209 <0.001 0.072 <0.001 0.289 0.214 dwls 1361.8 209 <0.001 0.087 <0.001 0.992 0.991 uls 0.050 0.507 0.994 0.993 https://openpsychometrics.org/rawdata/ a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 341 table 2. estimated standardized factor loadings for tmas, nr-6, and rwas studies (only the first five-factor loadings are presented) study indicator ml gls dwls uls tmas tmas1 0.320 0.334 0.417 0.419 tmas2 0.324 0.353 0.451 0.444 tmas3 0.258 0.266 0.337 0.344 tmas4 0.339 0.353 0.450 0.449 tmas5 0.277 0.285 0.358 0.361 nr-6 nr-61 0.503 0.527 0.557 0.560 nr-62 0.540 0.546 0.586 0.588 nr-63 0.779 0.793 0.837 0.805 nr-64 0.598 0.622 0.726 0.733 nr-65 0.848 0.846 0.891 0.899 rwas rwas1 0.559 0.660 0.638 0.612 rwas2 0.715 0.792 0.798 0.791 rwas3 0.806 0.857 0.859 0.834 rwas4 0.757 0.811 0.831 0.820 rwas5 0.672 0.771 0.737 0.715 discussion the comparison of cfa model performance using different estimation methods (ml, gls, dwls, and uls) was discussed in this study under various experimental conditions such as factor dimensionality, number of indicators, number of likert scale points, and sample size. it is worth highlighting that each method has its strengths and shortcomings. this study gives clear evidence that dwls and uls outperform the ml method in all conditions. meanwhile, gls presents the worst performance, particularly related tli index to measure model fit. uls and dwls consistently provide accurate factor loading estimates even in smaller sample sizes. this study also reveals that using at least a 5-point likert scale, the data can be treated as continuous and use the ml method to estimate the model parameters since the resulting parameter values are found to have trivial bias. however, the drawback is that it is very unlikely to achieve a satisfactory fit based on the chi-square test, and it is more profound when using more indicators in a two-factor model. this, of course, has implications in empirical studies. the estimated parameters can only be interpreted and be trusted once the model shows no lack of fit. the choice of estimators (ml, dwls, and uls) when evaluating model fit based on rmsea do not seem to have an impact on the rate of rejection, since all methods are able to control the type i error at a 5% level. with an exception of uls, which performs poorly under small sample size and two-response categories. the result from the empirical study also supports these findings. the model fit based on tli and cfi performs almost equally well, except ml that only works best when the number of response categories increases. the tli index is rather conservative under gls and it is very unlikely to achieve a satisfactory fit as compared to cfi, particularly with 3 or fewer response categories in the condition of a small sample size. a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 342 it is important to note that any working recommendations provided in this study are based on the current model configurations. this research did not take into account the possible violation such as non-normality in latent distribution and asymmetric threshold. these types of violations would be interesting to investigate and see how the impact of different estimation methods on model performance. a future study should also address the estimators' behavior when the cfa model is not correctly specified, such as omitting important factor loadings and ignoring significant inter-correlation between two or more factors. conclusions the present findings suggest the importance to select appropriate estimation methods based on how the data are measured. the study focuses on a type of data collected using a survey instrument measured in a likert-type scale, which is ordinal in nature. maximum likelihood as the most common estimation method used, which has several nice properties, failed to give accurate parameter estimation when the data are ordinal, particularly with fewer numbers of likert scale points. in addition, the goodness of fit test, particularly the chi-square test, under ml generally gives evidence that the model fits badly given the fact that the model is correctly specified. gls is clearly not recommended to be used in cfa with ordinal data. the simulation results enable us to deliver clear suggestions to applied researchers when dealing with ordinal data by using the robust categorical methodology, such as dwls and uls. both methods yield consistently accurate parameter estimation regardless of the number of likert scale points and sample size. however, it should be noted that dwls is preferable when dealing with two response categories. acknowledgments this research is financially supported by uin syarif hidayatullah jakarta with blu research grant scheme no. un.01/kpa/760/2021. references [1] b. d. zumbo, validity: foundational issues and statistical methodology. in c. r. rao & s. sinharay (eds.), handbook of statistics, vol. 26: psychometrics(pp. 45-79), amsterdam: elsevier science, 2007. [2] f. p. holgado-tello , m. a. morata-ramรญrez and barbero-garcรญ, "confirmatory factor analysis of ordinal variables: a simulation study comparing the main estimation methods," avances en psicologรญa latinoamericana, vol. 36, no. 3, pp. 601-617, 2018. [3] b. thompson, explanatory and confirmatory factor analysis., washington dc: american psychological association, 2004. [4] k. g. joreskog and d. sorbom , lisrel 8, userโ€™s reference guide., chicago: ssi inc. (scientific software international), 1996. [5] y. li , confirmatory factor analysis with continuous and ordinal data: an empirical study of stress level, uppsala university, 2014. [6] t. a. brown, confirmatory factor analysis for applied research, guilford press, 2012. [7] k. a. bollen, structural equations with latent variables, new york: wiley, 1989. a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 343 [8] j. f. finch , s. g. west and d. p. mackinnon , "effects of sample size and nonormality on the estimation of mediated effects in latent variable models," structural equation modeling, vol. 4, pp. 87-107, 1997. [9] b. o. muthรฉn and d. kaplan , "a comparison of some methodologies for the factor analysis of non-normal likert variables: a note on the size of the model," british journal of mathematical and statistical psychology, vol. 45, pp. 19-30, 1992. [10] s. g. west, j. f. finch and p. j. curran, structural equation models with nonnormal variables: problems and remedies. in r. h. hoyle (ed.), structural equation modeling: concepts, issues and applications (pp. 56-75)., thousand oaks (ca): sage, 1995. [11] a. maydeu-olivares , "limited information estimation and testing of thurstonian models for paired comparison data under multiple judgment sampling," psychometrika, vol. 66, pp. 209-227, 2001. [12] r. tate, "a comparison of selected empirical methods for assessing the structure of responses to test items," applied psychological measurement, vol. 27, no. 3, p. 159โ€“ 203, 2003. [13] c. g. forero, a. maydeu-olivares and d. gallardo-pujol , "factor analysis with ordinal indicators: a monte carlo study comparing dwls and uls simulation," structural equation modeling, vol. 16, pp. 625-641, 2009. [14] d. shi and a. maydeu-olivares , "the effect of estimation methods on sem fit indicies," educational and psychological measurement, vol. 80, no. 3, pp. 421-445, 2020. [15] t. p. morris , "white ir, crowther mj. using simulation studies to evaluate statistical methods," statistics in medicine, vol. 38, pp. 2074-2102, 2019. [16] a. satorra, "robustness issues in structural equation modeling: a review of recent developments," quality and quantity, vol. 24, no. 4, p. 367โ€“386, 1990. [17] m. w. browne, "generalized least-squares estimators in the analysis of covariance structures.," south african statistical journal, vol. 8, pp. 1-24, 1974. [18] l. ding, w. velicer and l. harlow , "effect of estimation methods, number of indicators per factor and improper solutions on structural equation modeling fit indices," structural equation modeling, vol. 2, pp. 119-143, 1995. [19] u. h. olsson , t. foss , s. v. troye and r. d. howell , "the performance of ml, gls, and wls estimation in structural equation modeling under conditions of misspecification and nonnormality," structural equation modeling, vol. 7, no. 4, pp. 557-595, 2000. [20] w. f. yang , k. g. jรถreskog and h. luo, "confirmatory factor analysis of ordinal variables with misspecified models," structural equation modeling, vol. 17, no. 3, p. 392โ€“423, 2010. [21] b. muthรฉn, s. h. c. du toit and d. spisic , robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes, unpublished manuscript, 1997. [22] h. w. marsh, k. hau , j. r. balla and d. grayson, "is more ever too much? the number of indicators per factor in confirmatory factor analysis," multivariate behavioral research, vol. 33, p. 181โ€“220, 1998. a monte carlo simulation studi to assess estimation methods in cfa on ordinal data nina fitriyati 344 [23] p. paxton , p. j. curran, k. a. bollen , j. kirby and f. chen, "monte carlo experiments: design and implementation," structural equation modeling a multidisciplinary journal, vol. 8, no. 2, pp. 287-312, 2001. [24] c. distefano, "the impact of categorization with confirmatory factor analysis," structural equation modeling, vol. 9, p. 327โ€“346, 2020. [25] c. -h. li , "confirmatory factor analysis with ordinal data: comparing robust maximum likelihood and diagonally weighted least squares," behav res, vol. 48, pp. 936-949, 2016. [26] l. k. muthรฉn and b. o. muthรฉn, "how to use a monte carlo study to decide on sample size and determine power," structural equation modeling a multidisciplinary journal , vol. 9, no. 4. , 2009. doi: 10.1207/s15328007sem0904_8.. [27] y. rosseel, "lavaan: an r package for structural equation modeling," journal of statistical software, vol. 48, no. 2, pp. 1-36, 2011. [28] the r development core team, r: a language and environment for statistical computing., vienna, austria: : r foundation for statistical computing, 2019. [29] m. wallentin, a. h. nielsen and m. friis-olivarius, "the musical ear test, a new reliable test for measuring musical competence," learning and individual differences, vol. 20, pp. 188-196, 2010. [30] d. kaplan, "a study of the sampling variability and z-values of parameter estimates from misspecified structural equation models," multivariate behavioral research, vol. 24, p. 41โ€“57, 1989. [31] p. j. curran , s. g. west and g. f. finch , "the robustness of test statistics to nonnormality and specification error in confirmatory factor analysis," psychological methods, vol. 1, p. 16โ€“29, 1996. [32] open-source psychometrics project, "raw data from online personality tests," https://openpsychometrics.org/_rawdata/, 2019. [33] j. a. taylor, "a personality scale of manifest anxiety," the journal of abnormal and social psychology, vol. 48, no. 2, pp. 285-290, 1953. [34] e. nisbet and j. m. zelenskix, "the nr-6: a new brief measure of nature relatedness," frontiers in psychology, vol. 4, 2013. doi: 10.3389/fpsyg.2013.00813. [35] b. altemeyer, right-wing authoritarianism, university of manitoba press, 1981. [36] b. altemeyer, the authoritarians, university of manitoba, 2007. learning interest modelling of poliwangi students to learn mathematics engineering through moocs using dummy regression cauchy โ€“jurnal matematika murni dan aplikasi volume 6(4) (2021), pages 181-187 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 29, 2020 reviewed: march 17, 2021 accepted: april 11, 2021 doi: http://dx.doi.org/10.18860/ca.v6i4.10212 learning interest modelling of poliwangi students to learn mathematics engineering through moocs using dummy regression ika yuniwati1, aprilia divi yustita2, siska aprilia hardiyanti3, i wayan suardinata4 1,2,3,4politeknik negeri banyuwangi email: ika@poliwangi.ac.id abstract moocs is a learning system in the form of online courses that is massive and open to allow participants to enjoy unlimited content and can be accessed via the web. mathematical techniques taught using moocs which will be developed in the following year are expected to be liked by students. the purpose of this study was to determine student interest in studying moocs. this study uses a dummy regression model on learning hours in each category. dummy regression is considered a suitable model because dummy regression can quantify qualitative data. qualitative data were obtained from a questionnaire distributed to 240 students. the questionnaire contains indicators of student moocs interest, including cognitive, affective, and psychomotor interests. the result of this study is the amount of time studying mathematics influenced by students' interest in learning mathematics through moocs by 60.7%, and the rest 39.3% is influenced by other factors. the model is yi = 1,562 + 4,729 d1 + 1,461 d2 + ๐œ€๐‘– . so it can be concluded that the interest of students who want to study mathematics through moocs is the highest with an average student learning hours of 4,729 minus 1,562 equal to 3,647 hours. keywords: dummy regression model; learning interest; moocs introduction massive open online courses (moocs) can be qualified as revolution education has begun to grow and become popular today. individuals can get training in the areas needed and developed with educational training that is open to all students throughout the world [1]. moocs caters to a large number of students and provides a combination of open online courses, short video lectures, automated conversations, quizzes, peer and self-talk, and student collaboration through discussion forums. there are various kinds of moocs designed according to the level of thinking since 2016 [2]. massive open online courses (moocs) contribute significantly to individual empowerment because they can help people learn about various topics [3]. the goal of moocs is the best learning resource and new ways of learning in the classroom. learning can help students learn fully, work together, and is also supported by expert guidance [4]. the use of moocs in learning already exists in various countries. singapore moocs can reduce university and university level tuition fees improve community access to such courses. they also provide skills and job training for community members [5]. this contradicts the results of research which state that moocs can provide new forms of learning through technology and save significant costs for education [6]. in portugal, there is a study that states there is a relationship between interest in educational success [7]. other studies add learning competencies that can influence participation, perseverance, and sustainability [8]. a good formal education system supports the students involved. factors that affect this performance according to http://dx.doi.org/10.18860/ca.v6i4.10212 mailto:ika@poliwangi.ac.id learning interest modelling of poliwangi students to learn mathematics engineering through moocs using dummy regression ika yuniwati 182 a survey conducted at the nigerian private university (redeemer university) namely hours of study [9]. while the learning domain that must be learned in learning can be categorized as the cognitive domain (knowledge), the psychomotor domain (skills), and the affective domain (attitude) according to bloom [10]. because this research analyzed interests published in the domain which is an indicator that shows interest in moocs. the analysis used dummy analysis. dummy analysis can be used to predict interest. the research that has been done is the students' interest in soap [11]. the dummy regression model is also used for the performance of students majoring in mathematics fmipa [12]. dummy variables have often been used in strategy research to study the effects of categorical variables [13,14]. the advantage of using these puppet variables, variables 1 and 0 is that they can be questioned and interpreted as the resulting regression estimates [15]. methods multiple linear regression analysis the dummy regression analysis is a double linear regression analysis whose variable is qualitative. so before the use of dummy regression analysis, it must first be understood the analysis of a double linear regression [12] following on each observation, represented the ith bservation, applies the equation ๐‘Œ๐‘– = ๐›ฝ0 + ๐›ฝ1๐‘‹1๐‘– + ๐›ฝ2๐‘‹2๐‘– + โ‹ฏ + ๐›ฝ๐‘๐‘‹๐‘๐‘– + ๐œ€๐‘– (1) system equations (1) can be written in the form of a matrix, by defining each matrix into the following matrix: ๐‘Œ = [ ๐‘Œ1 ๐‘Œ2 โ‹ฎ ๐‘Œ๐‘› ] ; ๐‘‹ = [ 1 ๐‘‹11 ๐‘‹12 โ‹ฏ ๐‘‹1๐‘˜ 1 ๐‘‹21 ๐‘‹22 โ‹ฏ ๐‘‹2๐‘˜ โ‹ฎ 1 โ‹ฎ ๐‘‹๐‘›1 โ‹ฎ โ‹ฏ โ‹ฎ ๐‘‹๐‘›2 โ‹ฏ ๐‘‹๐‘›๐‘˜ ] ; ๐›ฝ = [ ๐›ฝ0 ๐›ฝ1 โ‹ฎ ๐›ฝ๐‘› ] ; ๐œ€ = [ ๐œ€1 ๐œ€2 โ‹ฎ ๐œ€๐‘› ] (2) or equations (2) can be written in the form of another matrix as follows : ๐˜ = ๐—๐›ƒ + ฯต (3) based on the assumptions above๐œ€๐‘– ~๐‘(0, ๐œŽ 2), then the equation (1) can be written in the form of expectation value: ๐ธ(๐‘Œ๐‘– ) = ๐›ฝ0 + ๐›ฝ1๐‘‹1๐‘– + ๐›ฝ2๐‘‹2๐‘– + โ‹ฏ + ๐›ฝ๐‘˜ ๐‘‹๐‘–๐‘˜ (4) estimation parameters the estimation of the parameters can be obtained using the smallest quadratic method so that the equation (4) can be written in a matrix form : ๏ฟฝฬ‚๏ฟฝ = (xโ€ฒx)โˆ’1xโ€ฒy (5) hypothesis testing was conducted to test the overall regression parameter. overall test of the regression parameters as follows: h0: ฮฒ0 = ฮฒ1 โ€ฆ = ฮฒk = 0 h1: at least one ฮฒj โ‰  0 learning interest modelling of poliwangi students to learn mathematics engineering through moocs using dummy regression ika yuniwati 183 the sum of squares total (sst) is the total of sum squared regression (ssr) and the sum of squared error (sse), or it can be written: sst=ssr+sse (6) test statistics which used are f test statistics: f = ssr/dfr sse/dfe = msr mse explanation dfr = degree of freedom in regression dfe = degree of freedom in error msr = mean sum of squares regression mse = mean sum of squares error h0 rejected if ๐น0 > ๐น(๐›ผ.๐‘˜,๐‘›โˆ’๐‘˜โˆ’1) by minimizing the number of squared errors, it is obtained: sse = โˆ‘ (yi โˆ’ yฬ‚i) 2n i=1 (7) sst = โˆ‘ (yi โˆ’ yฬ…i) 2n i=1 (8) from equation (6), (7), and (8) obtained ๐‘†๐‘†๐‘… = ๏ฟฝฬ‚๏ฟฝโ€ฒ๐‘‹โ€ฒ๐‘Œโ€ฒ โˆ’ (โˆ‘ ๐‘Œ๐‘– ๐‘› ๐‘–=1 ) 2 ๐‘› (9) when variable a free variable is inserted one by one gradually into a regression equation, it is performed a sequential f test [16] hypothesis testing for partial regression coefficient parameters the f test is used to determine the effect of the independent variable on the dependent variable simultaneously. after the f test is carried out, the t-test or partial regression test is carried out. this test is used to determine the effect of each independent variable on the dependent variable. partial regression hypothesized will be testing h0 : ฮฒj = 0 h1 : ฮฒj โ‰  0 test statistics: thit = ฮฒฬ‚j se(ฮฒj) (10) h0 rejected if |thit| > ๐‘ก(๐›ผ 2 ;๐‘›โˆ’๐‘˜โˆ’1) coefficient of determination after knowing the effect simultaneously and the effect of each independent variable. the next step of analysis is to find the percentage of the independent variables as a whole to the dependent variable. multiple coefficients of determination r2 measures the proportion of total diversity in the y-free variables that can be explained by the regression equation model together. size of regression coefficient determined by the formula: r2 = ssr sst (11) then from the independent variable and the dependent variable, the model is determined. there are many ways to build a regression model whose free variables contain. variable a qualitative variable, one of which is using a variable doll or commonly called a dummy variable. dummy variables are used as an attempt to see how learning interest modelling of poliwangi students to learn mathematics engineering through moocs using dummy regression ika yuniwati 184 the classifications in the sample affect the estimation parameters. variables dummy also tries to make the quantification of qualitative variables. for example, if you want to estimate variable. the value of a variable y is influenced by one variable quantitative variable (x) and one variable qualitative free variable that has two categories, such as category 1 and category 2. the dummy model of the example is a. y = a + bx + cd1 (dummy intercept model) b. y = a + bx + c(d1x) (dummy slope model) c. y = a + bx + c(d1x) + dd1 (dummy intercept and slope model) this research used dummy intercept model or sympel dummy regression model by modupe by the formula [9] yi =bo+b1zi+ei bo = intercept b1 = regression coefficient zi = 1 if the unit to i is a group that is = 0 if the unit to i as the reference group results and discussion data presentation respondents, in this case, were 240 students. these students have been given knowledge about the moocs that was developed. students are given a questionnaire totaling 20 questions. the questionnaire was designed to contain indicators of interest in the cognitive, affective, and psychomotor domains. after completing the questionnaire then make groups of them. it is namely students into students who are interested in learning mathematics through moocs (a), students who do not like to learn mathematics through moocs (b), and students who do not want to learn mathematics through moocs (c). the grouping scores can be seen in table 1. table 1. student interest grouping score category score interval a 60-80 b 40-59 c 20-39 the data in the research has been categorized as in table 1 then it was changed to dummy variables. the reference category is chosen. it is c category. so that category c becomes d0, category a becomes d1, and category c becomes d2. test of significance and coefficient of determination the significance test is divided into 2 tests, namely the f-test to find out the significance simultaneously and the t-test to find out the partial significance. f-test is used to test a regression that is by testing hypotheses that involve more than one coefficient. the f-test can also be used to test the linearity of a regression equation. it can also be used to see the effect between independent and dependent variables. f-test on the results of this study can be seen in table 2. learning interest modelling of poliwangi students to learn mathematics engineering through moocs using dummy regression ika yuniwati 185 tabel 2. result of f test f-statistic f p-value 183,313 2 0.000 table 2 indicate that the value of the f-test is 183.313 with a p-value of 0,000, it can be stated that the model or independent variable factors, in this case, the variable of interest in studying engineering mathematics through moocs affects the dependent variable, the amount of time studied the t-test can be used to test hypotheses about individual coefficients, the ttest is also often called a partial test. the results of the t-test can be seen in table 3. tabel 3. result of t test coefficient t-value sig d0 6.282 0.000 d1 16.040 0.000 d2 5.257 0.000 based on table 3 above, it is known that all predictor variables significantly influence the model. it can be seen sig value which has a value less than 0,05. so, the regression coefficient in each category produced on the variable significantly influences the number of learning hours. the coefficient of determination is used to find out how much influence is dependent on the independent variable. it can be seen in table 4. tabel 4. table of effect from the amount of time studying in mathematics towards students interest to moocs model r r2 1 0.779a 0.607 a. predictors: (constant), d2, d1 b. dependent variable: the amount of time studying mathematics table 4 reflected the correlation between the amount of time studying mathematics and studentsโ€™s interest in learning mathematics through moocs. r-value is 0,779. this value shows that their correlation is strong. besides, r2 shows a value of 60.7%, this gives the meaning of the amount of time studying mathematics influenced by students' interest in learning mathematics through moocs by 60.7%, and the rest 39.3% is influenced by other factors. interpretation of dummy regression model the data in this model uses the results of the data which are categorized into 3 dependent variables. it can be seen in table 5. tabel 5. the estimated learning interest through the amount of time studying mathematics in 3 categories model unstandardized coefficient sig. b std. error 1 (constat) 1,562 0,249 0,000 d1 4,729 0,295 0,000 d2 1,461 0,278 0,000 learning interest modelling of poliwangi students to learn mathematics engineering through moocs using dummy regression ika yuniwati 186 table 5 shows that they are students who do not want to learn mathematics through moocs (d0), students who are interested in learning through moocs (d1), students who do not like to learn through moocs (d2) and 1 independent variable the average hours of study (y) are dummy and a linear regression model is obtained yi = 1,562 + 4,729 d1 + 1,461 d2 + ๐œ€๐‘– the interpretation of the regression model above is the average study time for students who do not want to learn engineering mathematics by 1,562 hours. the average difference in hours of study for students interested in learning engineering mathematics through moocs with students who do not want to learn engineering mathematics through moocs is 4,729 hours or in other words the interest of students who do not want to study engineering mathematics through moocs is lower than the interest of students interested in learning engineering mathematics through moocs. the average study time for students who interested in learning engineering mathematics by 3,467 hours. the average difference in hours of study for students who do not like to study engineering mathematics through moocs with students who do not want to study engineering mathematics through moocs is 1,461 hours or in other words the interest of students who do not likes to study engineering mathematics through moocs is lower than that of students who do not want to study engineering mathematics through moocs. the average study time for students who do not like study engineering mathematics by 0,101 hours or equals to 6 minutes. conclusions the results of this study are interest of students who do not want to study engineering mathematics through moocs is lower than the interest of students who are interested in learning engineering mathematics through moocs. moreover, the interest of students who do not want to study engineering mathematics through moocs is lower than the interest of students who do not like to study engineering mathematics through moocs. references [1] h. bicen, โ€œdetermining the effect of using social media as a moocs tool,โ€ procedia comput. sci., vol. 120, pp. 172โ€“176, 2017, doi: 10.1016/j.procs.2017.11.225. [2] c. wrigley, g. mosely, and m. tomitsch, โ€œdesign thinking education: a comparison of massive open online courses,โ€ she ji, vol. 4, no. 3, pp. 275โ€“292, 2018, doi: 10.1016/j.sheji.2018.06.002. [3] m. aparicio, t. oliveira, f. bacao, and m. painho, โ€œgamification: a key determinant of massive open online course (moocs) success,โ€ inf. manag., vol. 56, no. 1, pp. 39โ€“54, 2019, doi: 10.1016/j.im.2018.06.003. [4] j. ma, j. zheng, and g. zhao, โ€œthe applicable strategy for the courses alliance in regional universities based on moocs platform,โ€ procedia soc. behav. sci., vol. 176, pp. 162โ€“166, 2015, doi: 10.1016/j.sbspro.2015.01.457. [5] v. lim, l. wee, s. ng, and j. teo, โ€œmassive open and online courses (moocs) and open education resources (oer) in singapore,โ€ j. southeast asian educ., vol. 1, pp. 1โ€“13, 2017. [6] r. pollack ichou, โ€œcan moocss reduce global inequality in education?,โ€ australas. mark. j., vol. 26, no. 2, pp. 116โ€“120, 2018, doi: 10.1016/j.ausmj.2018.05.007. [7] p. goulart and a. s. bedi, โ€œthe impact of interest in school on the impact of interest in school on educational success in portugal,โ€ bonn, germany, 2011. [8] w. abeer and b. miri, โ€œstudentsโ€™ preferences and views about learning in a learning interest modelling of poliwangi students to learn mathematics engineering through moocs using dummy regression ika yuniwati 187 moocs,โ€ procedia soc. behav. sci., vol. 152, pp. 318โ€“323, 2014, doi: 10.1016/j.sbspro.2014.09.203. [9] o. d. modupe, โ€œa dummy variable regression on students โ€™ academic performance,โ€ transnatl. j. sci. technol., vol. 2, no. 6, pp. 47โ€“54, 2012. [10] m. e. hoque, โ€œthree domains of learning cognitive, affective, and psychomotor,โ€ j. efl educ. res., vol. 2, no. 2, pp. 45โ€“52, 2016, [online]. available: https://www.mendeley.com/catalogue/three-domains-learning-cognitiveaffective-psychomotor-second-principle/. [11] d. sipahutar, p. bangun, and u. sinulingga, โ€œanalisa faktor ketertarikan mahasiswa terhadap produk sabun mandi,โ€ saintia mat., vol. 1, no. 2, pp. 175โ€“ 185, 2013. [12] n. amalita and y. kurniawati, โ€œmodel regresi dummy dalam memprediksi performansi akademik mahasiswa jurusan matematika fmipa unp,โ€ in prosiding semirata fmipa universitas lampung, 2013, pp. 387โ€“391. [13] p. s. l. yip and e. w. k. tsang, โ€œinterpreting dummy variables and their interaction effects in strategy research,โ€ strateg. organ. j., vol. 5, no. 1, pp. 13โ€“30, 2007, doi: 10.1177/1476127006073512. [14] m.venkataramana, m. subbarayudu, m. rajanis and k. n. sreenivasulu, โ€œregression analysis with categorical variables,โ€ international journal of statistics and systems, vol. 11, no. 2, pp. 135-143, 2016 [15] i. c. a. oyeka and c. h. nwankwo, โ€œuse of ordinal dummy variables in regression models,โ€ iosjrm, vol. 2, no. 5, pp. 1โ€“7, 2012. [16] n. . draper and s. h., applied regression analysis, no. 48. 1981. aplikasi dua segitiga sebangun pada studi venus transit di matahari tanggal 8 juni 2004 dari bpd lapan watukosek nanang widodo balai pengamatan dirgantara lapan watukosek email: nang_widodo@yahoo.com abstrak transit planet venus di cakram matahari (jari-jari = 696000 km) merupakan peristiwa alam yang dapat dilihat secara berkala. planet venus merupakan planet kedua dalam sistem tata surya yang mempunyai orbit lebih dekat ke matahari (= 0,723 astronomical unit) dibanding jarak bumi-matahari (= 149.600.000 km = 1 au). sehingga pada suatu waktu tertentu ada peluang berada tepat di depan bumi, saat menghadap matahari atau dikenal dengan transit venus. proses pengamatan fenomena transit venus di cakram matahari tersebut dapat diimplimentasikan sebagai aplikasi dua segitiga sebangun, dimana jari-jari planet venus (jari-jari = 6051,8 km) dinyatakan sebagai tinggi benda dan jari-jari tinggi bayangan venus sebesar 20880 km (= 3,65 mm pada cakram matahari). dimana diameter matahari 1.392.000 km (= 240 mm pada lembar sket). dengan pengukuran jarak tempuh venus transit 72,4 mm (419 920 km di cakram matahari) terhadap waktu kontak pertama bayangan venus pada jam 05.28 ut (12.28 wib) di tepi timur hingga akhir transit pada 17.50 ut (14.50 wib) diperoleh kecepatan bayangan venus sebesar 49,286 km/detik. kata kunci: orbit, segitiga sebangun,venus transit. abstract transit of the planet venus in the sun disk (radius = 696.000 km) is a natural event that can be seen on a regularly. venus is the second planet in the solar system have orbits closer to the sun (=0.723 astronomical units) compared to the earth-sun distance (= 149,600,000 km = 1 au). so that at any given time there are opportunities right in front of the earth, while facing the sun or known by the venus transit. the observation of the venus transit on the sun disc is implemented of application two congruent triangles, where the radius of venus (6051.8 km) is expressed as object height and radius the shadow height of venus is 20,880 km (= 3.65 mm in the sun disk). where the diameter of the sun 1392 million km (= 240 mm on the sketch). during a transit, venus cover distance 72.4 mm or 419,920 km on the sun disk. the first contact venus shadow on the sun disk at 05:28 ut (12:28 pm) on the east limb until the end the transit at 17:50 ut (14:50 pm) obtained orbital speed of venus shadow is 49.286 km/s. keywords: orbit, triangle congruent, venus transit pendahuluan henry chamberlain russel adalah pengamat pertama fenomena venus transit tahun 1874. dimana cahaya matahari dipantulkan oleh aerosol dan dibiaskan oleh atmosfer planet venus, glenn s (2004). planet venus disebut juga bintang pagi dan bintang sore oleh william, (1978). hal terjadi karena planet venus memantulkan cahaya dari matahari, selain itu posisi orbitnya berdekatan dengan bumi. venus mengitari matahari dalam 224,701 hari bumi (+ 0,615 tahun bumi). karena dari perbedaan laju orbit bumi dan venus, maka venus mengorbit 2,6 kali sedangkan bumi mengorbit 1,6 kali, sebelum kedua planet segaris. periode ini (583,92 hari bumi) disebut earthvenus synodic cycle. peristiwa transit venus ini serupa dengan fenomena bulan melintas di depan matahari atau peristiwa gerhana matahari. tabel 1. ukuran fisik bumi dan venus ukuran fisika bumi venus diameter 12.760 km 12.100 km jarak rata-rata orbit 149,6 juta km 108,2 juta km periode orbit 365,25 hari 224,7 hari sudut inklinasi orbit 0o 3,4o peristiwa venus akan transit kembali di tempat yang sama dalam waktu 243 tahun atau 121,5 + 8 tahun di tempat berbeda, nick a.f. (2004) mailto:nang_widodo@yahoo.com aplikasi dua segitiga sebangun pada studi venus transit di matahari tanggal 8 juni 2004โ€ฆ jurnal cauchy โ€“ issn: 2086-0382 39 contoh foto planet venus yang diambil dari proyek magelan nasa, nick . (2012) gambar 1. sebagian permukaan venus, (sumber: venus unveiled*image credit: nasa magelan project). gambar 2. siklus-siklus sinodik berdasarkan perhitungan dari metoda eso vt-2004 pada saat kontak pertaman transit venus masuk cakram matahari, jarak bumi matahari 149.596.765 km (taraf kesalahan + 3534 km = 0,0237 %) dengan solar parallax (ii): 8,79440โ€. perbedaan waktu kontak transit venus tergantung pada posisi bujur dari stasiun pengamat (http://www.isthe.com/chongo/tech/ astro/venus2004.html). fenomena transit venus ini dapat digunakan untuk menjelaskan aplikasi teori dua segitiga sebangun. konsep kesebangunan segitiga telah banyak dibahas dalam materi matematika geometri, dalam menguji kesebangunan dua segitiga โˆ† abc dan โˆ† def terdapat syarat-syarat antara lain: 1. perbandingan panjang sisi-sisi yang bersesuaian pada kedua segitiga adalah sama besar 2. dua pasang sudut yang bersesuaian adalah sama besar, atau dinyatakan dalam persamaan berikut: ๐ด๐ต ๐ด๐ท = ๐ด๐ถ ๐ด๐ธ = ๐ต๐ถ ๐ท๐ธ (1) penjelasan persamaan (1) dapat digambarkan pada gambar 3 gambar 3. dua segitiga sebangun abc dan ade dengan asumsi indeks bias atmosfer bumi dan atmosfer venus diabaikan, maka dalam penelitian ini akan dilakukan perbandingan bayangan venus dari persamaan (1) dan bayangan venus (hasil sket) di cakram matahari. gambar 4. jalur venus transit matahari (dari kiri ke kanan) (sumber: http://en.wikipedia.org/w/index.php? title=file2004 venus_transit.svg&p) metode penelitian dalam penelitian ini akan digunakan data hasil pengamatan transit venus tanggal 8 juni 2004 antara pukul 05.28 ut sampai 07.50 ut (12.28 โ€“ 14.50 wib) dari balai pengamatan dirgantara lapan watukosek dengan teleskop sunspot. teleskop sunspot secara rutin digunakan untuk pengamatan aktivitas daerah aktif (sunspot = bintik matahari). sehingga pada lembar sket tersebut tampak tiga grup sunspot di samping venus transit. terdapat perbedaan arah timur-barat matahari pada gambar 4, disebabkan gambar 5. adalah hasil proyeksi cahaya matahari pada bidang proyeksi dalam hal ini lembar sket adalah bayangan fotosfer matahari. http://www.isthe.com/chongo/tech/%20astro/venus2004.html http://www.isthe.com/chongo/tech/%20astro/venus2004.html http://en.wikipedia.org/w/index.php?%20title=file2004%20venus_transit.svg&p http://en.wikipedia.org/w/index.php?%20title=file2004%20venus_transit.svg&p http://en.wikipedia.org/w/index.php?title=file:2004_venus_transit.svg&page=1 nanang widodo 40 volume 3 no. 1 november 2013 gambar 5. lintasan venus di matahari (dari kanan ke kiri), (sumber: pengamatan fotosfer matahari lapan bpd watukosek). perbandingan diameter sket cakram matahari (24 cm) : diameter matahari (1.392.000 km) = 1 : 5.800.000.000. jika terjadi kesalahan 1mm dalam sket = 5800 km dalam ukuran sebenarnya di matahari. dalam penelitian ini akan dilakukan perbandingan beberapa besaran dari hasil pengamatan dan perhitungan, antara lain: 1. perbandingan tinggi bayangan hasil perhitungan dengan hasil pengamatan (sket lintasan bayangan venus). 2. perbandingan kecepatan orbit (dalam teori) sesungguhnya dengan kecepatan bayangan venus hasil pengamatan. 3. mengetahui tingkat kesalahan pengukuran yang dipengaruhi oleh beberapa faktor fisis. segitiga abc segitiga abc terdiri dari titik a adalah titik pengamatan di stasiun bumi, b titik pusat venus dan c adalah titik singgung permukaan planet venus. karena perbandingan jari-jari venus terhadap jarak bumi-venus sangat kecil sebesar 1 : 6843, maka titik f dapat didekati dengan titik c, seperti dalam perhitungan berikut. di mana jari-jari venus = 6050 km dan jarak bumi-venus = 41.400.000 km, sehingga perbandingan jari-jari venus terhadap jarak bumi-venus = 1 : 6843 gambar 6. titik singgung f pada cakram venus. ๐ด๐ถ = โˆš๐ด๐ต2 + ๐ต๐ถ 2 (2) ๐ด๐น = โˆš๐ด๐ต2 โˆ’ ๐ต๐น2 (3) di mana bf = bc = jari-jari venus. sehingga jarak b โ€“ f = 41400000,442 โ€“ 41399999,558 = 1 km, dapat diabaikan karena ketebalan atmosfer venus. asumsi ini digunakan untuk mencari besar bayangan venus di cakram matahari. hasil dan pembahasan segitiga ade terdiri dari titik d adalah titik pusat bayangan planet venus di cakram matahari dan e adalah titik terluar dari jari-jari bayangan. diameter bayangan venus dari perhitungan persamaan (1), diperoleh ๐ท๐ธโ„Ž๐‘–๐‘ก = ๐ต๐ถ ( ๐ด๐ท ๐ด๐ต ) = 6050 โˆ— ( 149600000 41439200 ) = 43695 ๐‘˜๐‘š diameter bayangan venus dalam sket, de(sket) = 7,3 mm ๐ท๐ธ๐‘ ๐‘˜๐‘’๐‘ก = ( ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘๐‘Ž๐‘ฆ๐‘Ž๐‘›๐‘”๐‘Ž๐‘› ๐‘‰๐‘’๐‘›๐‘ข๐‘  (๐‘š๐‘š) ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘€๐‘Ž๐‘ก๐‘Žโ„Ž๐‘Ž๐‘Ÿ๐‘– (๐‘š๐‘š) ) โˆ— ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘€๐‘Ž๐‘ก๐‘Žโ„Ž๐‘Ž๐‘Ÿ๐‘– ๐ท๐ธ๐‘ ๐‘˜๐‘’๐‘ก = ( 7.3 240 ) โˆ— 1392000 = 42340 ๐‘˜๐‘š selisih diameter = 43695 โ€“ 42340 = 1355 km atau dalam ukuran sket = + 0,2337 mm. gambar 7. aplikasi โˆ† abc dan โˆ† ade pada transit venus di cakram matahari. tabel 2.posisi dan waktu pengamatan venus transit 8 juni 2004, lapan watukosek no waktu obserasi (ut) titik tepi timur venus, mm 1 05.28 0 2 05.44 8,6 3 06.02 18,0 4 06.16 26,8 5 06.48 41,7 6 07.08 51,5 7 07.30 62,9 8 07.50 72,4 lintasan bayangan venus transit di cakram matahari menempuh jarak 72,4 mm (419.920 km), dimana diameter matahari (sket) = 240 mm (1392000 km). lintasan bayangan venus sejauh 72.4 mm ditempuh dalam waktu 2 aplikasi dua segitiga sebangun pada studi venus transit di matahari tanggal 8 juni 2004โ€ฆ jurnal cauchy โ€“ issn: 2086-0382 41 jam 22 menit. maka, kecepatan bayangan venus = 49,286 km/dtk. sedangkan kecepatan orbit venus sebenarnya, ๐‘ฃ = ( 22 7 ) (๐‘…๐‘๐‘’๐‘›๐‘‘๐‘’๐‘˜ + ๐‘…๐‘๐‘Ž๐‘›๐‘—๐‘Ž๐‘›๐‘” ) 224.7 ๐‘‘๐‘Ž๐‘ฆ๐‘  = (0,5)(3.14286)(108.942.109 + 107.476.259) (224.7)(24)(3600) ๐‘˜๐‘š ๐‘‘๐‘’๐‘ก๐‘–๐‘˜ = 35,03 ๐‘˜๐‘š ๐‘‘๐‘’๐‘ก๐‘–๐‘˜ selisih kecepatan orbit venus dengan kecepatan bayangan saat transit sebesar 14,25 km/dtk ~ 0,0024mm/detik (dalam sket). perbedaan kecepatan venus transit disebabkan beberapa faktor antara lain; 1. perekaman bayangan venus dengan menggambar pada kertas sket (cakram matahari), sehingga tingkat kesalahan masih besar. 2. mengeliminasi pengaruh indek bias atmosfer bumi dan venus. 3. faktor koreksi ukuran dalam lembar sket cakram matahari yaitu 1 mm (sket) = 5800 km ukuran sebenarnya di cakram matahari. 4. mengeliminasi kondisi pergerakan aerosol dan awan di atmosfer bumi yang mengakibatkan bayangan semu batas tepi venus. setelah kejadian venus transit pada 8 juni 2004 ini disusul dengan siklus pendek 8 tahunan, venus kembali transit di cakram matahari pada tanggal 6 juni 2012. terdapat 3 jangka waktu siklus venus transit yaitu siklus pendek 8 tahun, siklus sedang 113,5 tahun dan 129,5 tahun. pada masa yang akan datang, peristiwa venus transit kembali terjadi pada 11 desember 2117 (atau siklus 113,5 tahun) setelah peristiwa venus transit tanggal 8 juni 2004. penutup peristiwa transit venus di cakram matahari ini dapat membantu pemahaman aplikasi dua segitiga sebangun yang diterapkan pada kejadian alam, dimana cakram matahari sebagai bidang proyeksi yang digunakan untuk merekam lintasan bayangan venus selama transit. jari-jari venus sebesar 6050 km setelah diproyeksikan di cakram matahari diperoleh tinggi bayangan 21460 km. berdasarkan hitungan dua segitiga sebangun diperoleh tinggi bayangan venus 21841 km, sehingga terdapat koreksi 381 km (+ 1,75 %). kecepatan bayangan venus transit 49,286 km/detik relatif lebih cepat dibandingkan kecepatan orbit venus sebenarnya yaitu 35,05 km/detik. selisih kecepatan bayangan venus transit sebesar 14,25 km/dtk atau 0,0024 mm/dtk (dalam sket) disebabkan beberapa faktor fisis di alam dan ketepatan perekaman bayangan venus di cakram matahari. daftar pustaka [1] kesebangunan segitiga, www.crayonpedia.org/mw, diunduh tanggal 11 pebruari 2012, [2] william j.k, (1978),โ€exploration of the solar systemโ€, macmillan publising co.inc, printed in the united states of america, newyork [3] glenn schneider (2004), โ€œtransit of venus 08 june 2004 trace white light ingress/egress imagingโ€ steward observatory. university of arizona.gschneider@as.arizona.edu, http://nicmosis.as.arizona.edu:8000. how far is the sun ? transit of venus 8 june 2004 observations, diunduh tanggal 20 nopember 2012. http://www.isthe.com/chongo/tech/astro/ venus2004.html [4] nick anthony fiorenza (2012), โ€œthe venus transits the pentagonal cycle of venusโ€, cycles of the heart june 8, 2004 and june 56, 2012. [5] transit of venus, 2004, diunduh tanggal 24 oktober 2012 http://en.wikipedia.org/w/index.php?title= file2004_venus_transit.svg&p [6] synodic cycles and planetary retrogrades to learn more about synodic cycles and synodic astrology, www.lunarplanner.com/hcpages/venus.h tml , diunduh 2 pebruari 2013 [7] jack a stone and jay h. zimmerman โ€œindex of refraction airโ€, diunduh 2 desember 2012, http://emtodbox.nist.gov/wavelength/doc umentation.nsp#indexof http://www.crayonpedia.org/mw mailto:arizona.gschneider@as.arizona.edu http://nicmosis.as.arizona.edu:8000/ http://www.isthe.com/chongo/tech/astro/venus2004.html http://www.isthe.com/chongo/tech/astro/venus2004.html http://en.wikipedia.org/w/index.php?title=file2004_venus_transit.svg&p http://en.wikipedia.org/w/index.php?title=file2004_venus_transit.svg&p http://www.lunarplanner.com/hcpages/venus.html http://www.lunarplanner.com/hcpages/venus.html http://emtodbox.nist.gov/wavelength/documentation.nsp#indexof http://emtodbox.nist.gov/wavelength/documentation.nsp#indexof on the dominant local resolving set of vertex amalgamation graphs cauchy โ€“jurnal matematika murni dan aplikasi volume 7(4) (2023), pages 597-607 p-issn: 2086-0382; e-issn: 2477-3344 submitted: december 19, 2022 reviewed: december 20, 2022 accepted: march 16, 2023 doi: http://dx.doi.org/10.18860/ca.v7i4.18891 on the dominant local resolving set of vertex amalgamation graphs reni umilasari1,2, liliek susilowati1,*, slamin3, savari prabhu4 1,2 department of mathematics, airlangga university, surabaya 60115, indonesia 2department of informatics engineering, university of muhammadiyah jember, jember 69121 indonesia 3study program of informatics, university of jember, jember 68121 indonesia 4mathematics department, rajalakshmi engineering college, chennai 602105, tamil nadu, india email: liliek-s@fst.unair.ac.id abstract in graph theory, there is a new topic of the dominant local metric dimension which be symbolized by ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐ป) and it was a combination of local metric dimension and dominating set. there are some terms in this topic that is dominant local resolving set and dominant local basis. an ordered subset ๐‘Š๐‘™ is said a dominant local resolving set of ๐บ if ๐‘Š๐‘™ is dominating set and also local resolving set of ๐บ. while dominant local basis is a dominant local resolving set with minimum cardinality. this study uses literature study method by observing the local metric dimension and dominating number before detecting the dominant local metric dimension of the graphs. after obtaining some new results, the purpose of this research is how the dominant local metric dimension of vertex amalgamation product graphs. some special graphs that be used are star, friendship, complete graph and complete bipartite graph. based on all observation results, it can be said that the dominant local metric dimension for any vertex amalgamation product graph depends on the dominant local metric dimension of the copied graphs and how the terminal vertex is constructed. copyright ยฉ 2023 by authors, published by cauchy group. this is an open access article under the cc bysa license (https://creativecommons.org/licenses/by-sa/4.0/) keywords: dominant local metric dimension; vertex amalgamation; star; friendship; complete bipartite introduction metric dimension and dominating set are graph topics with numerous variations. for metric dimensions, there are more than five development concepts, such as partition dimension, local metric dimension, complement metric dimension, central metric dimension, fractional metric dimension, and star metric dimension. more results about metric dimension and its expansion can be seen at [1] about the simultaneous local metric dimension, the local metric dimension of amalgamation [2] and corona product of star and path graph [3] , complement metric dimension [4], fractional metric dimension [5], and the new one is star metrc dimension [6]. let ๐บ be a connected graph with vertex set ๐‘‰(๐บ) and edge set ๐ธ(๐บ). the distance between any two ๐‘Ž and ๐‘ of ๐‘‰(๐บ) is denoted by ๐‘‘(๐‘Ž, ๐‘). it be defined as shortest path from ๐‘Ž to ๐‘. the resolving set of ๐บ is an ordered set which can be written as ๐‘Š, where ๐‘Š = {๐‘ค1, ๐‘ค2, โ€ฆ , ๐‘ค๐‘˜ } โŠ† ๐‘‰(๐บ) and ๐‘Ÿ(๐‘ฃ|๐‘Š) = (๐‘‘(๐‘ฃ, ๐‘ค1), ๐‘‘(๐‘ฃ, ๐‘ค2), โ€ฆ . , ๐‘‘(๐‘ฃ, ๐‘ค๐‘˜ )) is defined as http://dx.doi.org/10.18860/ca.v7i4.18891 mailto:liliek-s@fst.unair.ac.id https://creativecommons.org/licenses/by-sa/4.0/ on the dominant local resolving set of vertex amalgamation graphs reni umilasari 598 representation of ๐‘ฃ โŠ† ๐‘‰(๐บ) to ๐‘Š by using the concept of distance. the rule to select resolving set of ๐บ is every vertex of ๐‘‰(๐บ) should have different representation to ๐‘Š. the minimum cardinality of ๐‘Š is called the basis of ๐บ [7]. the number of basis is referred to the metric dimension because the concept of this topic is based on distance. next, we introduce the differences between metric dimension and local metric dimension. in the metric dimension, all vertices must have different representations to the resolving set, whereas in the local metric dimension, only any two adjacent vertices must be different. it also can be said that a vertex's representation can be the same as another vertices even though they are not adjacent. [8]. some examples of the local metric dimension have been published at [9], [10] and [11]. more clearly, there is a paper which describe the similarity between metric dimension and the local metric dimension [12]. in 2021, umilasari et al introduced the new concept, which is a combination of dominating set and local metric dimension. they defined that an ordered subset ๐‘Š๐‘™ is said a dominant local resolving set of ๐บ if ๐‘Š๐‘™ is dominating set and also local resolving set of ๐บ. for a clearer understanding of this term, you can see the illustration in figure 1. all the vertices in the graph of figure 1 (a) can be dominated by ๐‘ฅ4. but the vertices which adjacent {๐‘‰(๐บ)\๐‘ฅ4} have same representation to ๐‘ฅ4. while {๐‘ฅ2, ๐‘ฅ3} in figure 1 (b) is a local resolving set. as can be seen, each pair of adjacent vertices has a different representation to {๐‘ฅ2, ๐‘ฅ3}. the problem is ๐‘ฅ5 and ๐‘ฅ6 cannot be dominated by ๐‘ฅ2 or ๐‘ฅ3. if we take two vertices like in figure 1(c), {๐‘ฅ2, ๐‘ฅ4} can dominate all vertices of the graph, the representation of any two vertices to {๐‘ฅ2, ๐‘ฅ4} is different. therefore, {๐‘ฅ2, ๐‘ฅ4} are elements of a dominant local metric dimension of the graph. figure 1. the illustration of dominant local metric dimension of graphs after obtaining some new results, in this paper we continue to expand on how the dominant local metric dimension of a vertex amalgamation product graphs. the vertex amalgamation product of a graph ๐ป, denoted by ๐‘Ž๐‘š๐‘Ž๐‘™(๐ป, ๐‘ฃ, ๐‘˜), is defined as creating a new graph by gluing ๐‘˜-copies of ๐ป in a terminal vertex ๐‘ฃ [13]. in this paper, we determine the dominant local metric dimension of the vertex amalgamation for some special graphs, which are star, complete graph, complete bipartite graph, and friendship graph. to make it easier to present each of the theorems produced, several theorems are given below, which can be seen in [14]. lemma 1. let ๐บ be a connected graph. if there is no local dominant resolving set with cardinality ๐‘, then for every ๐‘† โŠ† ๐‘‰(๐บ) with |๐‘†| < ๐‘ is not a local dominant resolving set. lemma 2. let ๐บ be a connected graph and ๐‘Š๐‘™ โŠ† ๐‘‰(๐บ). for every ๐‘ฃ๐‘– , ๐‘ฃ๐‘— โˆˆ ๐‘Š๐‘™ then ๐‘Ÿ(๐‘ฃ๐‘– |๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘ฃ๐‘— |๐‘Š๐‘™ ). some new results about the dominant local metric dimension of star, complete on the dominant local resolving set of vertex amalgamation graphs reni umilasari 599 graph, complete bipartite graph, and friendship graph are given in table 1. on the dominant local resolving set of vertex amalgamation graphs reni umilasari 600 table 1. dominant local metric dimension of special graphs [14][15][16] graphs dominating number (๐œธ(๐‘ฎ)) local metric dimension (๐๐ข๐ฆ๐’(๐‘ฎ)) dominan local metric dimension (๐๐ข๐ฆ๐’(๐‘ฎ)) star (๐‘†๐‘›) ๐›พ (๐‘†๐‘›) = 1 dim๐‘™ (๐‘†๐‘›) = 1 ddim๐‘™ (๐‘†๐‘›) = 1 complete (๐พ๐‘›) ๐›พ (๐พ๐‘›) = 1 dim๐‘™ (๐พ๐‘›) = ๐‘› โˆ’ 1 ddim๐‘™ (๐พ๐‘›) = ๐‘› โˆ’ 1 complete bipartite (๐พ๐‘š,๐‘›) ๐›พ(๐พ๐‘š,๐‘›) = 2 dim๐‘™ (๐พ๐‘š,๐‘›) = 2 ddim๐‘™ (๐พ๐‘š,๐‘›) = 2 friendship (๐น๐‘› ) ๐›พ(๐น๐‘› ) = 1 dim๐‘™ (๐น๐‘›) = ๐‘› ddim๐‘™ (๐น๐‘›) = ๐‘› methods in this research, there are several procedures. we start by determining the special graphs to be operated by the vertex amalgamation product and observing the local metric dimensions and dominating number of the graphs. then, we construct the vertex amalgamation product graphs from the special graphs that we have chosen. we continue by labeling the vertex and attempting to find the least dominant local basis. this is accomplished by observing and recording the representation of each vertex which can be dominated and has different representation from the local resolving set (two nonneighbouring vertex can have the same representation). the minimum local dominant basis is then determined. in summary, the procedures of the research can be seen in the following flowchart in figure 2. we also give some examples of each step below. a) let ๐บ = ๐‘ƒ4 b) ๐‘‘๐‘–๐‘š๐‘™ (๐‘ƒ4) = 1 and ๐›พ(๐‘ƒ4) = 2 , it can be seen at [16] c) let |๐‘Š๐‘™ | = 1, ๐‘Š๐‘™ = {๐‘ฃ1} illustration: based on the illustration above, ๐‘ฃ1 canโ€™t dominate ๐‘ฃ3 and ๐‘ฃ4. when we choose ๐‘Š๐‘™ = {๐‘ฃ2}, ๐‘Š๐‘™ = {๐‘ฃ3}, ๐‘Š๐‘™ = {๐‘ฃ4} the condition remains the same. minimally, there exist one vertex that canโ€™t be dominated. d) let |๐‘Š๐‘™ | = 2, ๐‘Š๐‘™ = {๐‘ฃ1, ๐‘ฃ2} illustration: we can see that ๐‘ฃ4 canโ€™t be dominated by ๐‘ฃ1 or ๐‘ฃ2 . e) let |๐‘Š๐‘™ | = 2, ๐‘Š๐‘™ = {๐‘ฃ2, ๐‘ฃ3} illustration: since โˆ€๐‘ฃ๐‘– ๐‘ฃ๐‘— โˆˆ ๐ธ(๐‘ƒ4), ๐‘Ÿ(๐‘ฃ๐‘– |๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘ฃ๐‘— |๐‘Š๐‘™ ) then ๐‘Š๐‘™ is basis local of ๐‘ƒ4. all vertices of ๐‘‰(๐‘ƒ4) can be dominated by ๐‘ฃ2 and ๐‘ฃ3. therefore, ๐‘Š๐‘™ is dominant local basis of ๐‘ƒ4 or ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘ƒ4) = 2. to more clearly understand this research method, we can see the flowchart in figure 2. on the dominant local resolving set of vertex amalgamation graphs reni umilasari 601 figure 2. flowchart for determining the minimum dominant local resolving set of graphs results and discussion in this section, we determine the dominant local metric dimension of the vertex amalgamation product for some special graphs, which are star, complete graph, complete bipartite graph, and friendship graph. theorem 1. let ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜) is a vertex amalgamation of star with the order of star is ๐‘› โ‰ฅ 3, then ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) = { 1, ๐‘ฃ ๐‘–๐‘  ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ ๐‘ฃ๐‘’๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘œ๐‘“ ๐‘†๐‘› ๐‘˜, ๐‘ฃ ๐‘–๐‘  ๐‘๐‘’๐‘›๐‘‘๐‘Ž๐‘›๐‘ก ๐‘œ๐‘“ ๐‘†๐‘› on the dominant local resolving set of vertex amalgamation graphs reni umilasari 602 proof. case 1. ๐‘ฃ is center vertex of star it is very clearly to see that ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜) โ‰… ๐‘†๐‘›, then by the table 1 we can conclude that ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) = 1. โˆŽ case 2. ๐‘ฃ is pendant vertex of star let the vertex set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜) is ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) = {๐‘ฃ, ๐‘ฃ๐‘— , ๐‘ข1๐‘— , ๐‘ข2๐‘— , โ€ฆ , ๐‘ข๐‘–๐‘— |๐‘ฃ, ๐‘ข๐‘– โˆˆ ๐‘‰(๐‘†๐‘›), ๐‘– = 1,2, โ€ฆ , ๐‘› โˆ’ 2, ๐‘— = 1,2, โ€ฆ , ๐‘˜} and the edge set is ๐ธ(๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) = {๐‘ฃ๐‘ฃ๐‘— , ๐‘ฃ๐‘— ๐‘ข๐‘–๐‘— |๐‘– = 1,2,3, โ€ฆ , ๐‘› โˆ’ 2, ๐‘— = 1,2,3, โ€ฆ , ๐‘˜}. choose ๐‘Š๐‘™ = {๐‘ฃ๐‘— } is the local basis of ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜) for every ๐‘— = 1,2,3, โ€ฆ , ๐‘˜, |๐‘Š๐‘™ | = ๐‘˜. we can show below that the representation of every two adjacent vertices of ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) is different. i. for ๐‘ข๐‘–๐‘— ๐‘ฃ๐‘— โˆˆ ๐ธ(๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) since ๐‘ฃ๐‘— is element of ๐‘Š๐‘™ , then there exist 0 on ๐‘– th element in ๐‘Ÿ(๐‘ฃ๐‘— |๐‘Š๐‘™ ), while for ๐‘Ÿ(๐‘ข๐‘–๐‘— |๐‘Š๐‘™ ) there are no zero elements, hence ๐‘Ÿ(๐‘ฃ๐‘— |๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘ข๐‘–๐‘— |๐‘Š๐‘™ ). ii. for ๐‘ฃ๐‘ฃ๐‘— โˆˆ ๐ธ(๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) since ๐‘ฃ๐‘— is element of ๐‘Š๐‘™ , then there exist 0 on ๐‘– th element in ๐‘Ÿ(๐‘ฃ๐‘— |๐‘Š๐‘™ ), while for ๐‘Ÿ(๐‘ฃ|๐‘Š๐‘™ ) there are no zero elements, hence ๐‘Ÿ(๐‘ฃ๐‘— |๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘ฃ|๐‘Š๐‘™ ). by i and ii therefore ๐‘Š๐‘™ is a local resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜). further, because ๐‘ฃ๐‘— is adjacent to ๐‘ฃ and ๐‘ข๐‘–๐‘— , so we can said that ๐‘Š๐‘™ is a dominant local resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜). next, take any ๐‘† โŠ† ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) with |๐‘†| < |๐‘Š๐‘™ |. without loss of generality, let |๐‘†| = |๐‘Š๐‘™ | โˆ’ 1 with ๐‘Š๐‘™ = {๐‘ฃ๐‘— |๐‘— = 1,2,3, โ€ฆ , ๐‘˜ โˆ’ 1}, so ๐‘ข๐‘–๐‘˜ are not adjacent to ๐‘†. so ๐‘† is not a dominant local resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜). based on lemma 1, any set ๐‘‡ with |๐‘‡| < |๐‘†| is not a dominant local resolving set of ๐บ. therefore, ๐‘Š๐‘™ = {๐‘ฃ๐‘— } is a dominant local basis of ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜). then its is proven that ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜)) = ๐‘˜ for ๐‘ฃ is pendant vertex of star of ๐‘†๐‘›. โˆŽ figure 3. ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†4, ๐‘ฃ, 3)) = 1. figure 4. ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†6, ๐‘ฃ, 5)) = 5 on the dominant local resolving set of vertex amalgamation graphs reni umilasari 603 figure 3 gives the illustration of dominant local metric dimension of ๐‘Ž๐‘š๐‘Ž๐‘™(๐‘†๐‘›, ๐‘ฃ, ๐‘˜) for ๐‘ฃ is the center vertex of ๐‘†๐‘›. while in figure 4, ๐‘ฃ is the pendant of star. the next theorem, we will show the dominan local metric dimension of complete graph. because the graphs are regular, then we can select any vertex of complete graph as the linkage vertex. theorem 2. let ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘) is a vertex amalgamation of complete graph with the order of complete graph is ๐‘› โ‰ฅ 3, then ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘)) = ๐‘ ร— (๐ท๐‘‘๐‘–๐‘š๐‘™ (๐พ๐‘›) โˆ’ 1). proof. let ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘)) = {๐‘ฃ, ๐‘ฃ๐‘–๐‘— |๐‘– = 1,2,3, โ€ฆ , ๐‘› โˆ’ 1, ๐‘— = 1,2,3, โ€ฆ , ๐‘} and the edge set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘) is ๐ธ(๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘)) = {๐‘ฃ๐‘ฃ๐‘–๐‘— , ๐‘ฃ๐‘ฅ๐‘— ๐‘ฃ๐‘ฆ๐‘— |๐‘– = 1,2,3, โ€ฆ , ๐‘› โˆ’ 1, ๐‘— = 1,2,3, โ€ฆ , ๐‘, ๐‘ฃ๐‘ฅ ๐‘ฃ๐‘ฆ โˆˆ ๐ธ(๐พ๐‘›), ๐‘ฅ โ‰  ๐‘ฆ }. the ๐‘—-th copy of ๐พ๐‘› with ๐‘— = 1,2,3, โ€ฆ , ๐‘ is called (๐พ๐‘›)๐‘— . let ๐ต be a local dominant basis of ๐พ๐‘›, ๐ต๐‘— is a local dominant basis of (๐พ๐‘›)๐‘— , so that for every ๐‘— = 1,2,3, โ€ฆ , ๐‘, |๐ต๐‘– | = |๐ต|. select ๐‘Š๐‘™ = โ‹ƒ ๐ต๐‘— ๐‘š ๐‘—=1 , with ๐ต๐‘— = {๐‘ฃ๐‘–๐‘— |๐‘— = 1,2,3, โ€ฆ , ๐‘› โˆ’ 2} for every ๐‘— = 1,2,3, โ€ฆ , ๐‘, then |๐‘Š๐‘™ | = ๐‘(๐‘› โˆ’ 2). by lemma 2 for every ๐‘ฃ๐‘–๐‘— , ๐‘ฃ๐‘˜๐‘™ โˆˆ ๐ต๐‘– then ๐‘Ÿ(๐‘ฃ๐‘–๐‘— |๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘ฃ๐‘˜๐‘™ |๐‘Š๐‘™ ). next, we take any two adjacent vertices in ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘))\๐‘Š๐‘™ . let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘))\๐‘Š๐‘™ , then for ๐‘ฅ๐‘ฆ = ๐‘ฃ, ๐‘ฃ๐‘›๐‘— โˆˆ ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘))\๐‘Š๐‘™ with ๐‘— = 1,2,3, โ€ฆ , ๐‘. since ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘) is a connected graph, ๐‘‘(๐‘ฃ๐‘›๐‘— , ๐‘ง) = ๐‘‘(๐‘ฃ๐‘›๐‘— , ๐‘ฃ) + ๐‘‘(๐‘ฃ, ๐‘ง)for every ๐‘ง โˆˆ ๐ต๐‘– so that ๐‘‘(๐‘ง, ๐‘ฃ๐‘›๐‘— ) โ‰  ๐‘‘(๐‘ง, ๐‘ฃ) caused ๐‘Ÿ(๐‘ฃ๐‘›๐‘— |๐ต๐‘–) โ‰  ๐‘Ÿ(๐‘ฃ|๐ต๐‘–). because of ๐ต๐‘– โŠ† ๐‘Š๐‘™ then ๐‘Ÿ(๐‘ฃ๐‘›๐‘— |๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘ง|๐‘Š๐‘™ ). based on the explanation above, ๐‘Š๐‘™ = โ‹ƒ ๐ต๐‘– ๐‘š ๐‘–=1 is a local resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘). since, every ๐‘ฃ๐‘–๐‘— โˆˆ ๐‘Š๐‘™ with ๐‘– = 1,2,3, โ€ฆ , ๐‘› โˆ’ 2 and ๐‘— = 1,2,3, โ€ฆ , ๐‘ is adjacent to ๐‘ฃ and ๐‘ฃ๐‘›๐‘— , then ๐‘Š๐‘™ is a dominating set. so that, ๐‘Š๐‘™ = โ‹ƒ ๐ต๐‘— ๐‘ ๐‘—=1 is a local dominant resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘). take any ๐‘† โŠ† ๐‘‰(๐บ) with |๐‘†| < |๐‘Š๐‘™ |. let |๐‘†| = |๐‘Š๐‘™ | โˆ’ 1, then there exists ๐‘— such as ๐‘† contains maximal |๐ต๐‘— | โˆ’ 1 elements of (๐พ๐‘›)๐‘— . since ๐ต๐‘— is a local dominant basis of (๐พ๐‘›)๐‘— then there exist two vertices in (๐พ๐‘›)๐‘— that have the same representation toward ๐‘†, so that ๐‘† is not a local dominant resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘). based on lemma 1 then ๐‘Š๐‘™ = โ‹ƒ ๐ต๐‘— ๐‘ ๐‘—=1 is a local dominant basis of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘). by table 1 we know that |๐ต๐‘– | = ๐ท๐‘‘๐‘–๐‘š๐‘™ ((๐พ๐‘›)๐‘– ) โˆ’ 1, then it has been proven that ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘›, ๐‘ฃ, ๐‘)) = ๐‘ ร— (๐ท๐‘‘๐‘–๐‘š๐‘™ (๐พ๐‘›) โˆ’ 1). โˆŽ the example of dominant local metric dimension of vertex amalgamation complete graph be given in figure 5. the graph show that ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ4, ๐‘ฃ, 3) has the dominant local metric dimension equals six. figure 5. ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ4, ๐‘ฃ, 3)) = 6. theorem 3. let ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘) is a vertex amalgamation of complete bipartite graph with the order is ๐‘š, ๐‘› โ‰ฅ 2, then ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘)) = ๐‘ + 1. on the dominant local resolving set of vertex amalgamation graphs reni umilasari 604 proof. let the vertex set of ๐พ๐‘š,๐‘› is ๐‘‰(๐พ๐‘š,๐‘›) = {๐‘Ž๐‘– |๐‘– = 1,2, โ€ฆ , ๐‘š} โˆช {๐‘๐‘— |๐‘— = 1,2, โ€ฆ , ๐‘›}, and the edge set is ๐ธ(๐พ๐‘š,๐‘›) = {๐‘Ž๐‘– ๐‘๐‘— |๐‘– = 1,2, โ€ฆ , ๐‘š; ๐‘— = 1,2, โ€ฆ , ๐‘›}. ๐‘‰ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘)) = {๐‘ฃ, ๐‘Ž๐‘–๐‘˜ , ๐‘๐‘—๐‘˜ |๐‘– = 2,3, โ€ฆ , ๐‘š, ๐‘— = 1,2, โ€ฆ , ๐‘›, ๐‘˜ = 1,2, โ€ฆ , ๐‘} and the edge set is ๐ธ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘)) = {๐‘ฃ๐‘๐‘—๐‘˜ , ๐‘Ž๐‘–๐‘˜ ๐‘๐‘—๐‘˜ |๐‘– = 2,3, โ€ฆ , ๐‘š, ๐‘— = 1,2, โ€ฆ , ๐‘›, ๐‘˜ = 1,2, โ€ฆ , ๐‘}. choose, ๐‘Š๐‘™ = {๐‘ฃ, ๐‘1๐‘˜ } for every ๐‘˜ = 1,2,3, โ€ฆ , ๐‘, then |๐‘Š๐‘™ | = ๐‘ + 1. we can show below that the representation of every two adjacent vertices of๐‘‰ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘)) is different. i. for ๐‘ฃ๐‘๐‘—๐‘˜ โˆˆ ๐ธ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘)) since ๐‘ฃ is element of ๐‘Š๐‘™ , then there exist 0 on 1 ๐‘ ๐‘ก element in ๐‘Ÿ(๐‘ฃ|๐‘Š๐‘™ ), while for ๐‘Ÿ(๐‘๐‘—๐‘˜ |๐‘Š๐‘™ ) there are no zero elements except ๐‘1๐‘˜ the representation to ๐‘Š๐‘™ is ๐‘Ÿ(๐‘1๐‘˜ |๐‘Š๐‘™ ) = (1,0), hence ๐‘Ÿ(๐‘ฃ|๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘๐‘—๐‘˜ |๐‘Š๐‘™ ). ii. for ๐‘Ž๐‘–๐‘˜ ๐‘๐‘—๐‘˜ โˆˆ ๐ธ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘)) since for ๐‘– = 2,3, โ€ฆ , ๐‘š, ๐‘— = 1,2, โ€ฆ , ๐‘›, ๐‘‘(๐‘Ž๐‘–๐‘˜ , ๐‘ฃ) = ๐‘‘(๐‘Ž๐‘–๐‘˜ , ๐‘๐‘—๐‘˜ ) + ๐‘‘(๐‘๐‘—๐‘˜ , ๐‘ฃ) hence ๐‘Ÿ(๐‘Ž๐‘–๐‘˜|๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘๐‘—๐‘˜ |๐‘Š๐‘™ ). from the two explanations above we know that ๐‘Š๐‘™ is the local resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘). since ๐‘ฃ is adjacent to ๐‘๐‘—๐‘˜ for ๐‘— = 1,2, โ€ฆ , ๐‘› and ๐‘˜ = 1,2, โ€ฆ , ๐‘. the vertex ๐‘1๐‘˜ is adjacent to ๐‘Ž๐‘–๐‘˜ for ๐‘– = 2,3, โ€ฆ , ๐‘š and ๐‘˜ = 1,2, โ€ฆ , ๐‘, thus ๐‘Š๐‘™ is dominant local resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘). take any ๐‘† โŠ† ๐‘‰(๐บ) with |๐‘†| < |๐‘Š๐‘™ |. let |๐‘†| = |๐‘Š๐‘™ | โˆ’ 1 the two possibilities below: a. if ๐‘ฃ โˆ‰ ๐‘Š๐‘™ ๐‘ฃ โˆ‰ ๐‘Š๐‘™ , then all vertices ๐‘๐‘—๐‘˜ with ๐‘— = 2,3, โ€ฆ , ๐‘› and ๐‘˜ = 1,2, โ€ฆ , ๐‘ cannot be dominated by ๐‘Š๐‘™ . b. if ๐‘ฃ โˆˆ ๐‘Š๐‘™ ๐‘ฃ โˆˆ ๐‘Š๐‘™ , then there exist ๐‘1๐‘˜ โˆ‰ ๐‘Š๐‘™ for ๐‘˜ = 1,2, โ€ฆ , ๐‘. without loss of generality suppose that ๐‘11 โˆ‰ ๐‘Š๐‘™ . it means that ๐‘Ž๐‘–1 cannot be dominated by ๐‘Š๐‘™ for ๐‘– = 2,3, โ€ฆ , ๐‘š. therefore, from two possibilities above ๐‘† is not a local dominant resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘) or we can conclude that ๐‘Š๐‘™ = ๐‘ + 1 is dominant local basis of ๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘). hence, we get ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ๐‘š,๐‘›, ๐‘ฃ, ๐‘)) = ๐‘ + 1. โˆŽ the example of a dominant local basis for vertex amalgamation of a complete bipartite graph is depicted as red vertices in figure 5, where ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ3,3, ๐‘ฃ, 3)) = 4. figure 6. ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐พ3,3, ๐‘ฃ, 3)) = 4. on the dominant local resolving set of vertex amalgamation graphs reni umilasari 605 theorem 4. let ๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘) is a vertex amalgamation of friendship graph with the order is ๐‘› โ‰ฅ 3 then ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘)) = { ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐น๐‘›), ๐‘ฃ ๐‘–๐‘  ๐‘Ž ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ ๐‘ฃ๐‘’๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘œ๐‘“ ๐น๐‘› 1 + ๐‘(๐ท๐‘‘๐‘–๐‘š๐‘™ (๐น๐‘›) โˆ’ 1), ๐‘ฃ ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘Ž ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ ๐‘ฃ๐‘’๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘œ๐‘“ ๐น๐‘› proof. case 1. ๐‘ฃ is a center vertex of ๐น๐‘› it is very clearly to see that ๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘) โ‰… ๐น๐‘› , then by the table 1 we can conclude that ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘› , ๐‘ฃ, ๐‘)) = ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐น๐‘›). โˆŽ case 2. ๐‘ฃ is not a center vertex of ๐น๐‘› let ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘)) = {๐‘ฃ, ๐‘ฃ๐‘– , ๐‘ฅ๐‘–๐‘˜ , ๐‘ฆ๐‘–๐‘— |๐‘– = 1,2,3, โ€ฆ , ๐‘; ๐‘— = 1,2,3, โ€ฆ , ๐‘›; ๐‘˜ = 2,3,4, โ€ฆ , ๐‘›} and ๐ธ(๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘› , ๐‘ฃ, ๐‘)) = {๐‘ฃ๐‘– ๐‘ฅ๐‘–๐‘˜ , ๐‘ฃ๐‘– ๐‘ฆ๐‘–๐‘— , ๐‘ฅ๐‘–๐‘˜ ๐‘ฆ๐‘–๐‘— , ๐‘ฃ๐‘ฆ๐‘–1|๐‘– = 1,2, โ€ฆ , ๐‘; ๐‘— = 1,2, โ€ฆ , ๐‘›; ๐‘˜ = 2,3,4, โ€ฆ , ๐‘› }. the ๐‘–-th copy of ๐น๐‘› with ๐‘– = 1,2,3, โ€ฆ , ๐‘ is called (๐น๐‘›)๐‘– . let ๐ต be a local dominant basis of ๐น๐‘› , ๐ต๐‘– is a local dominant basis of (๐น๐‘› )๐‘–, so that for every ๐‘– = 1,2,3, โ€ฆ , ๐‘, |๐ต๐‘– | = |๐ต| = ๐‘›. select ๐‘Š๐‘™ = {๐‘ฃ} โ‹ƒ (๐ต๐‘– โˆ’ 1) ๐‘ ๐‘–=1 , suppose ๐ต๐‘– โˆ’ 1 = {๐‘ฅ๐‘–๐‘˜ |๐‘˜ = 2,3, โ€ฆ , ๐‘›} for every ๐‘– = 1,2,3, โ€ฆ , ๐‘, then |๐‘Š๐‘™ | = 1 + ๐‘(๐‘› โˆ’ 1). by lemma 2 for every ๐‘ฅ๐‘Ž๐‘ , ๐‘ฅ๐‘๐‘‘ โˆˆ ๐ต๐‘– then ๐‘Ÿ(๐‘ฅ๐‘Ž๐‘ |๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘ฅ๐‘๐‘‘ |๐‘Š๐‘™ ). next, we take any two adjacent vertices in ๐‘‰(๐บ)\๐‘Š๐‘™. let ๐‘ฃ๐‘– , ๐‘ฆ๐‘–๐‘— โˆˆ ๐‘‰(๐บ)\๐‘Š๐‘™ with ๐‘– = 1,2,3, โ€ฆ , ๐‘ and ๐‘— = 2,3, โ€ฆ , ๐‘›. since ๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘) is a connected graph, for ๐‘‘(๐‘ฆ๐‘–๐‘— , ๐‘ฃ) = ๐‘‘(๐‘ฆ๐‘–๐‘— , ๐‘ฃ๐‘– ) + ๐‘‘(๐‘ฃ๐‘– , ๐‘ฃ) for ๐‘— โ‰  1, ๐‘ฃ โˆˆ ๐‘Š๐‘™ so that ๐‘‘(๐‘ฃ, ๐‘ฆ๐‘–๐‘— ) โ‰  ๐‘‘(๐‘ฃ, ๐‘ฃ๐‘– ) caused ๐‘Ÿ(๐‘ฆ๐‘–๐‘— |๐‘Š๐‘™ ) โ‰  ๐‘Ÿ(๐‘ฃ๐‘– |๐‘Š๐‘™ ). then, ๐‘Š๐‘™ is local resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘). moreover, since ๐‘ฃ adjacent to ๐‘ฃ๐‘– and ๐‘ฅ๐‘–๐‘˜ adjacent to ๐‘ฆ๐‘–๐‘— , hence ๐‘Š๐‘™ is dominant local resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘› , ๐‘ฃ, ๐‘). take any ๐‘† โŠ† ๐‘‰(๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘)) with |๐‘†| < |๐‘Š๐‘™ |. let |๐‘†| = |๐‘Š๐‘™ | โˆ’ 1 the two possibilities below. a) if ๐‘ฃ โˆ‰ ๐‘Š๐‘™ ๐‘ฃ โˆ‰ ๐‘Š๐‘™ , then all vertices ๐‘ฆ๐‘–1 with ๐‘– = 1,2, โ€ฆ , ๐‘ cannot be dominated by ๐‘Š๐‘™ . b) if ๐‘ฃ โˆˆ ๐‘Š๐‘™ ๐‘ฃ โˆˆ ๐‘Š๐‘™ , then there exist ๐‘ฅ๐‘–๐‘˜ โˆ‰ ๐‘Š๐‘™ for ๐‘˜ = 2,3 โ€ฆ , ๐‘›. without loss of generality suppose that ๐‘ฅ1๐‘› โˆ‰ ๐‘Š๐‘™ . it means that ๐‘ฆ1๐‘› cannot be dominated by ๐‘Š๐‘™ . therefore, from two possibilities above ๐‘† is not a local dominant resolving set of ๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘) or we can conclude that |๐‘Š๐‘™ | = 1 + ๐‘(๐‘› โˆ’ 1) is dominant local basis of ๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘›, ๐‘ฃ, ๐‘). hence, we get ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐‘Ž๐‘š๐‘Ž๐‘™(๐น๐‘› , ๐‘ฃ, ๐‘)) = 1 + ๐‘(๐ท๐‘‘๐‘–๐‘š๐‘™ (๐น๐‘›) โˆ’ 1) . โˆŽ figure 6 gives an axample of ๐‘Ž๐‘š๐‘Ž๐‘™(๐น3, ๐‘ฃ, 3), where ๐‘ฃ is not the center vertex of friendship. those graph has dominant local resolving set equals seven. figure 7. ๐ท๐‘‘๐‘–๐‘š๐‘™ (๐น3, ๐‘ฃ, 3) = 7 on the dominant local resolving set of vertex amalgamation graphs reni umilasari 606 conclusion based on the findings of this study, it is possible to conclude that the dominant local metric dimension for any vertex amalgamation product graph is determined by the dominant local metric dimension of the copied graphs and how the terminal vertex is chosen. this topic can be expanded by observing the dominant local metric dimension for the vertex amalgamation product with the special graphs that will be glued are different graphs. next, we can determined the dominant local metric dimension for another product of graphs. moreover, the program application of this concept can be generated for any connected graph. acknowledgments this work was supported by drpm, kemenristek of indonesia, dcree 672/un3/2022, contract no. 75/un3.15/pt/2022 and 010/e5/pg.02.00.pt/2022, year 2022. references [1] g. a. barragรกn-ramรญrez, a. estrada-moreno, y. ramรญrez-cruz, and j. a. rodrรญguezvelรกzquez, โ€œthe simultaneous local metric dimension of graph families,โ€ symmetry (basel)., vol. 9, no. 8, pp. 1โ€“22, 2017, doi: 10.3390/sym9080132. [2] g. barragan-ramirez and r. simanjuntak, โ€œthe local metric dimension of subgraph-amalgamation of graphs,โ€ ctw, no. march 2016, pp. 285โ€“288, 2015. [3] s. khoiriah and t. atmojo kusmayadi, โ€œthe local metric dimension of generalized broken fan graph and edge corona product of star graph and path graph,โ€ j. phys. conf. ser., vol. 1306, no. 1, 2019, doi: 10.1088/1742-6596/1306/1/012015. [4] s. indexed, l. susilowati, u. airlangga, u. jember, a. rosfiana, and u. airlangga, โ€œthe complement metric dimension of graphs and its operations,โ€ vol. 10, no. 03, pp. 2386โ€“2396, 2019. [5] s. arumugam and v. mathew, โ€œthe fractional metric dimension of graphs,โ€ discrete math., vol. 312, no. 9, pp. 1584โ€“1590, 2012, doi: 10.1016/j.disc.2011.05.039. [6] r. umilasari, i. saifudin, and i. l. lestari, โ€œstar metric dimension of complete , bipartite , complete bipartite and fan graphs,โ€ vol. 5, no. 2, pp. 199โ€“205, 2022. [7] g. chartrand, l. eroh, m. a. johnson, and o. r. oellermann, โ€œresolvability in graphs and the metric dimension of a graph,โ€ discret. appl. math., vol. 105, no. 1โ€“3, pp. 99โ€“ 113, 2000, doi: 10.1016/s0166-218x(00)00198-0. [8] f. okamoto, l. crosse, b. phinezy, and p. zhang, โ€œthe local metric dimension of a graph,โ€ vol. 135, no. 3, pp. 239โ€“255, 2010. [9] s. klavลพar and m. tavakoli, โ€œlocal metric dimension of graphs: generalized hierarchical products and some applications,โ€ appl. math. comput., vol. 364, jan. 2020, doi: 10.1016/j.amc.2019.124676. [10] k. graph, โ€œon the local metric dimension of dipyramidal graph and king graph on t he local metric dimension of dipyramidal graph and,โ€ vol. 020018, no. february, 2021. [11] rinurwati, h. suprajitno, and slamin, โ€œon local adjacency metric dimension of some wheel related graphs with pendant points,โ€ aip conf. proc., vol. 1867, no. august, 2017, doi: 10.1063/1.4994468. [12] l. susilowati, slamin, m. i. utoyo, and n. estuningsih, โ€œthe similarity of metric on the dominant local resolving set of vertex amalgamation graphs reni umilasari 607 dimension and local metric dimension of rooted product graph,โ€ far east j. math. sci., vol. 97, no. 7, pp. 841โ€“856, 2015, doi: 10.17654/fjmsaug2015_841_856. [13] a. i. kristiana, a. aji, e. wihardjo, and d. setyawan, โ€œon graceful chromatic number of vertex amalgamation of tree graph family,โ€ vol. 7, no. 3, pp. 432โ€“444, 2022. [14] r. umilasari, l. susilowati, and m. k. siddiqui, โ€œon the dominant local metric dimension of graphs on the dominant local metric dimension of graphs.โ€ [15] reni umilasari, l. susilowati, and s slamin, โ€œon the dominant local metric dimension of graphs,โ€ ssrn electron. j., no. 1976, 2021, doi: 10.2139/ssrn.3917477. [16] r. umilasari, l. susilowati, and slamin, โ€œdominant local metric dimension of wheel related graphs,โ€ iop conf. ser. mater. sci. eng., vol. 1115, no. 1, p. 012029, 2021, doi: 10.1088/1757-899x/1115/1/012029. mathematical model of iteroparous and semelparous species interaction cauchy โ€“jurnal matematika murni dan aplikasi volume 7(3) (2022), pages 445-463 p-issn: 2086-0382; e-issn: 2477-3344 submitted: june 16, 2022 reviewed: june 22, 2022 accepted: june 27, 2022 doi: http://dx.doi.org/10.18860/ca.v7i3.16447 mathematical model of iteroparous and semelparous species interaction arjun hasibuan*, asep kuswandi supriatna, and ema carnia department of mathematics, faculty of mathematics and natural sciences, universitas padjadjaran, jl. raya bandung-sumedang km 21, jatinangor, sumedang, west java province, 45363, indonesia email: arjun17001@mail.unpad.ac.id abstract to study the survival of a species in an ecosystem it is very important to consider the dynamics of the species. a species can be categorized based on its reproductive strategy either semelparous or iteroparous. in this paper, we examine the dynamics involving both categories of species in an ecosystem. we focus on one semelparous and one iteroparous species influenced by densitydependent and also by harvesting factors in which there are two age classes for each species. we study two different models, i.e competitive and non-competitive models. we also consider two type of competition, i.e intraspecific and interspecific competition. the approach that we use in this research is the multispecies leslie matrix model. in addition, we use m-matrix theory to obtain the locally stable asymptotically of the model. our results show that the level of competition both intraspecific and interspecific competition affect the co-existence equilibrium point and the stability of the equilibrium point. we also present explicitly the conditions for all equilibrium points to exist and to be locally stable asymptotically. this theory can be applied to study the dynamics of natural resource models including the effects of different management to the growth of the resources, such as in fisheries. keywords: density-dependent; harvesting; multispecies; leslie matrix; age-structured model introduction in an ecosystem, the survival of a species is an important thing to study. species in the same ecosystem have reciprocal relationships between one species and other. the survival of each species can be affected by density-dependent, harvesting, competition, predator-prey, and so on. of course, the important thing to do is to ensure the survival of these species to survive. the survival of a species can be studied with a system dynamics approach. in some studies, species in an ecosystem can be categorized based on their reproductive strategy, including species with semelparous and iteroparous strategy. research on semelparous species can be seen in [1]โ€“[3]. then, research on iteroparous species can be seen in [4]โ€“[6]. semelparous species are species that reproduce only once in their lifetime shortly before dying. then, iteroparous species are species that reproduce more than once in the lifetime of the species. both species allow to live together and interact in the same ecosystem. in this research, we focus on studying the growth of multispecies cases consisting of one semelparous species and one iteroparous species http://dx.doi.org/10.18860/ca.v7i3.16447 mailto:arjun17001@mail.unpad.ac.id mathematical model of iteroparous and semelparous species interaction arjun hasibuan 446 using a dynamic system approach, especially using the leslie matrix model. this model is a population growth model based on age class which was introduced in 1945 by leslie in [7]. research on studying the dynamics of population growth using the leslie matrix model has been carried out by several researchers. these studies can be in the form of single species and multispecies cases. several studies on single species cases include in [3], [8], [9], and many more. then, several multispecies studies examine the effect of density-dependent on the leslie matrix model which is one of the nonlinear models of the leslie matrix model. in 1968, pennycuick et al. [10] focused on simulating the case of single species and multispecies interacting in the form of competition and predator-prey using the leslie matrix. in 1980, travis et al. [11] reviewed two competing species and provided a case study on semelparous. in 2011, kon [12] studied two semelparous species with one species containing two age classes while the other species amounting to one age class. in 2012, kon [13] conducted a study on two semelparous species that have a predator-prey relationship and observed the effect of coprime traits from the number of age classes in both species. coprime is a condition where two numbers have the greatest common factor of one, in which case the number is the number of age classes of each species. then in 2017, kon [1] examined the leslie multispecies semelparous matrix model which has an arbitrary number of age classes. then, there are also studies on multispecies but with other methods using the rosenzweig-macarthur model (see [14], [15]), the leslie-gower model (see [16], [17]), and the lotka-volterra model (see [18]โ€“ [20]). our aim in this paper is to study the growth dynamics of an ecosystem consisting of one semelparous species and an iteroparous species with two age classes in each species. in addition, we combined the density-dependent effect of the first age class for the two species. then, we consider the effect of harvesting that occurs in the second age class in each species on the growth of each species. next, we divide the case into two models consisting of without competition and with competition. both models were analyzed and seen the influence of the level of intraspecific and interspecific competition on the equilibrium point and locally stable asymptotically for each equilibrium point. methods leslie's matrix model with one iteroparous species and one semelparous species without competition in this section, we present one of the models that we studied, namely the multispecies leslie matrix model with the case of one iteroparous species (๐‘ฅ) and one semelparous species (๐‘ฆ) in this case each species has two age classes. in this first model, we assume that the growth of both species is influenced by density-dependent occurrence in the first age class and harvesting is carried out in the second age class. in this case, the densitydependent problem used in the model uses the classical beverton-holt function which is also used in wikan's research [21]. this problem is presented in the following model and we refer to as model 1: ๐‘ฅ1(๐‘ก + 1) = ๐‘“๐‘ฅ1 1 + ๐‘ฅ1(๐‘ก) + ๐‘ฆ1(๐‘ก) ๐‘ฅ1(๐‘ก) + ๐‘“๐‘ฅ2๐‘ฅ2(๐‘ก) ๐‘ฅ2(๐‘ก + 1) = ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) 1 + ๐‘ฅ1(๐‘ก) + ๐‘ฆ1(๐‘ก) ๐‘ฅ1(๐‘ก) (1) mathematical model of iteroparous and semelparous species interaction arjun hasibuan 447 ๐‘ฆ1(๐‘ก + 1) = ๐‘“๐‘ฆ2๐‘ฆ2(๐‘ก) ๐‘ฆ2(๐‘ก + 1) = ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) 1 + ๐‘ฅ1(๐‘ก) + ๐‘ฆ1(๐‘ก) ๐‘ฆ1(๐‘ก) there are several parameters in the model 1. first, ๐‘“๐‘ฅ1 > 0 and ๐‘“๐‘ฅ2 > 0 are the birth rates of the 1st and 2nd age classes of species ๐‘ฅ, respectively. second, ๐‘“๐‘ฆ2 > 0 is the birth rate of the 2nd age classes of species ๐‘ฆ. third, 0 < ๐‘ ๐‘ฅ1, ๐‘ ๐‘ฆ1 < 1 are the survival rates of the 1st age classes of species ๐‘ฅ and ๐‘ฆ, respectively. fourth, 0 < โ„Ž๐‘ฅ2, โ„Ž๐‘ฆ2 < 1 are the harvesting rates of the 2nd age classes of species ๐‘ฅ and ๐‘ฆ, respectively. in addition, the variables ๐‘ฅ๐‘–(๐‘ก), and ๐‘ฆ๐‘–(๐‘ก) represent the total population of each species ๐‘ฅ and ๐‘ฆ for the age class ๐‘– = {1,2}. simply put, equation 1 in (1) means that the population of the first age class of species ๐‘ฅ at time ๐‘ก + 1 is obtained by adding the number of newborn from the first age class and the second class at time ๐‘ก. the newborn of first age class is affected by density-dependent while the newborn of the second age class is not affected by density-dependent. then, equation 2 in (1) means that the number of population of the second age class of species ๐‘ฅ at time ๐‘ก + 1 is obtained from the number of surviving populations which is influenced by density-dependent of the first age class at time ๐‘ก. equations 3 and 4 in (1) have the same meaning as equations 1 and 2 in (1) but in species ๐‘ฆ there is no birth in the first age class. model 1 is constructed based on research conducted by leslie [7], travis et al. [11], and wikan [21]. in addition, model 1 is adjusted based on the assumptions and simplifications in this research. leslie matrix model with one iteroparous species and one semelparous species with competition effect in this section, we present a model which is an extension of the previous model. the problems raised in this section involve the effect of competition between the same species, also known as intraspecific competition, and competition between different species, also known as interspecific competition. the following is an extension of the model 1 and we refer to it as model 2. ๐‘ฅ1(๐‘ก + 1) = ๐‘“๐‘ฅ1 1 + ๐‘Ž๐‘ฅ1(๐‘ก) + ๐‘๐‘ฆ1(๐‘ก) ๐‘ฅ1(๐‘ก) + ๐‘“๐‘ฅ2๐‘ฅ2(๐‘ก) ๐‘ฅ2(๐‘ก + 1) = ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) 1 + ๐‘Ž๐‘ฅ1(๐‘ก) + ๐‘๐‘ฆ1(๐‘ก) ๐‘ฅ1(๐‘ก) (2) ๐‘ฆ1(๐‘ก + 1) = ๐‘“๐‘ฆ2๐‘ฆ2(๐‘ก) ๐‘ฆ2(๐‘ก + 1) = ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) 1 + ๐‘๐‘ฅ1(๐‘ก) + ๐‘Ž๐‘ฆ1(๐‘ก) ๐‘ฆ1(๐‘ก) the description of the parameters and variables in the model 2 is the same as in model 1 where the difference is only in parameters ๐‘Ž > 0 and ๐‘ > 0. in model 2, to simplify the problem, we assume that the level of competition between the first age class in species ๐‘ฅ and species ๐‘ฆ has the same value, namely ๐‘Ž. then, the level of competition between the first age class in species ๐‘ฆ against species ๐‘ฅ and vice versa has the same value, namely ๐‘. the level of competition within the same species is referred to as intraspecific competition (๐‘Ž) and the level of competition between different species is referred to as interspecific competition (๐‘). details of model 2 are the same as model 1 but there are differences in the first age class birth rate, first age class survival rate and second age class mathematical model of iteroparous and semelparous species interaction arjun hasibuan 448 harvesting rate in species ๐‘ฅ which are influenced by density-dependent and competition. then, species ๐‘ฆ is only affected by density-dependent and competition on the survival rate of the first age class and the level of harvesting of the second age class. model 2 is constructed based on research conducted by leslie [7], travis et al. [11], wikan [21], and cushing [22]. in addition, model 2 is adjusted based on the assumptions and simplifications in this research. local stability criteria using m-matrix in this section, we present the definition of m-matrix and the theorem that ensures a matrix has absolute eigenvalues less than one to determine the locally stable asymptotically of the model. definition 1. (see [11] or [23]) (m-matrix) a square matrix of size ๐‘›, for example, ๐‘€ = (๐‘š๐‘–๐‘—) (1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘›) is called an m-matrix if it is satisfied that ๐‘š๐‘–๐‘— โ‰ค 0 โˆ€๐‘– โ‰  ๐‘— and if any of the following things are true: 1. all minor principals of the ๐‘€ matrix are positive 2. all eigenvalues of the ๐‘€ matrix have a positive real part 3. the matrix ๐‘€ is a non-singular matrix and ๐‘€โˆ’1 is positive 4. there is a vector ๐‘ฃ > 0 so that it meets ๐‘€๐‘ฃ > 0 or 5. there is a vector ๐‘ข > 0 s so that it satisfies ๐‘€๐‘‡๐‘ข > 0 theorem 1. (see [11]) suppose a matrix ๐ฝ has the following form ๐ฝ = [ ๐ด๐‘šร—๐‘š ๐ต๐‘šร—๐‘› ๐ถ๐‘›ร—๐‘š ๐ท๐‘›ร—๐‘› ] and the matrix ๐บ = ๐ผ โˆ’ ๐‘†๐ฝ๐‘†โˆ’1 is an m-matrix with ๐‘† = ๐ผ if ๐ต and ๐ถ โ‰ฅ 0 or ๐‘† = [ ๐ผ๐‘š 0 0 โˆ’๐ผ๐‘› ] if ๐ต and ๐ถ โ‰ค 0, where ๐ผ, ๐ผ๐‘š, and ๐ผ๐‘› are identity matrices with sizes ๐‘š + ๐‘›, ๐‘š, and ๐‘›, respectively, then matrix ๐ฝ has a spectral radius of less than one. the spectral radius is the largest modulus of all the eigenvalues. theorem 1 and definition 1 are used to determine the locally stable asymptotically of model 1 and model 2 in the results and discussion section. results and discussion in the previous section, we have presented model 1, model 2, definition 1 and theorem 1. in this section, the two models, definition, and theorem will then be used to analyze the equilibrium point and the locally stable asymptotically of each equilibrium point. equilibrium point of model 1 the equilibrium point of model 1 can be obtained by expressing the variables ๐‘ฅ and ๐‘ฆ to the left of the model 1 depending on time ๐‘ก. the equilibrium model 1 is obtained as follows: mathematical model of iteroparous and semelparous species interaction arjun hasibuan 449 ๐‘ฅ1(๐‘ก) = ๐‘“๐‘ฅ1 1 + ๐‘ฅ1(๐‘ก) + ๐‘ฆ1(๐‘ก) ๐‘ฅ1(๐‘ก) + ๐‘“๐‘ฅ2๐‘ฅ2(๐‘ก) ๐‘ฅ2(๐‘ก) = ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) 1 + ๐‘ฅ1(๐‘ก) + ๐‘ฆ1(๐‘ก) ๐‘ฅ1(๐‘ก) (3) ๐‘ฆ1(๐‘ก) = ๐‘“๐‘ฆ2๐‘ฆ2(๐‘ก) ๐‘ฆ2(๐‘ก) = ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) 1 + ๐‘ฅ1(๐‘ก) + ๐‘ฆ1(๐‘ก) ๐‘ฆ1(๐‘ก) then by determining the solution of equation (3), the equilibrium point of the model 1 is obtained as follows: 1. the equilibrium point with both species going extinct is ๐ธ0 = [ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ] = [ 0 0 0 0 ] . 2. the equilibrium point with species ๐‘ฅ exists while species ๐‘ฆ is extinct, i.e ๐ธ๐‘ฅ = [ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ] = [ ๐‘…๐‘ฅ โˆ’ 1 (๐‘…๐‘ฅ โˆ’ 1)๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘…๐‘ฅ 0 0 ] . the condition ๐ธ๐‘ฅ exists if it is fulfilled ๐‘…๐‘ฅ = ๐‘“๐‘ฅ2๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) + ๐‘“๐‘ฅ1 > 1. ๐‘…๐‘ฅ is referred to as the expected number of offspring per individual per lifetime when densitydependent effects are neglected on harvest-influenced growth of species ๐‘ฅ. 3. the equilibrium point with species ๐‘ฆ exists while species ๐‘ฅ is extinct, i.e ๐ธ๐‘ฆ = [ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ] = [ 0 0 ๐‘…๐‘ฆ โˆ’ 1 ๐‘…๐‘ฆ โˆ’ 1 ๐‘“๐‘ฆ2 ] . the condition ๐ธ๐‘ฆ exists if it is fulfilled ๐‘…๐‘ฆ = ๐‘“๐‘ฆ2๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) > 1. ๐‘…๐‘ฆ is referred to as the expected number of offspring per individual per lifetime when densitydependent effects are neglected on harvest-influenced growth of species ๐‘ฆ. it can be seen that in the model (1) there is no equilibrium point where the two species survive or co-existence equilibrium point. locally stable asymptotically at the equilibrium point of model 1 in this section, we perform a locally stable asymptotically analysis of the model 1. the equilibrium point is said to be asymptotically stable if it is satisfied that the spectral radius of the jacobian matrix at the equilibrium point is less than one. the locally stable asymptotically of each equilibrium point of the model 1 is stated in the following theorem. mathematical model of iteroparous and semelparous species interaction arjun hasibuan 450 theorem 2. (locally stable asymptotically at the equilibrium point model 1) for the leslie multispecies matrix model with the case of one iteroparous species and one semelparous species in which there are two classes each whose growth is influenced by density-dependent, harvesting and without the influence of competition described in the model 1, among others: 1. the equilibrium point ๐ธ0 is locally stable asymptotically if ๐‘…๐‘ฅ < 1 and ๐‘…๐‘ฆ < 1. 2. the equilibrium point ๐ธ๐‘ฅ is locally stable asymptotically if ๐‘…๐‘ฅ > ๐‘…๐‘ฆ and ๐‘…๐‘ฅ > 1. 3. the equilibrium point ๐ธ๐‘ฆ is locally stable asymptotically if ๐‘…๐‘ฆ > ๐‘…๐‘ฅ and ๐‘…๐‘ฆ > 1. proof : in determining the stability of all equilibrium points of the model 1, it can be obtained by determining the linearization of the model 1, namely ๐ฝ(๐ธ) = ๐ฝ ([ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ]) = [ ๐‘“๐‘ฅ1(1 + ๐‘ฆ1) (1 + ๐‘ฅ1 + ๐‘ฆ1) 2 ๐‘“๐‘ฅ2 โˆ’ ๐‘“๐‘ฅ1๐‘ฅ1 (1 + ๐‘ฅ1 + ๐‘ฆ1) 2 0 ๐‘ƒ๐‘ฅ(1 + ๐‘ฆ1) 0 โˆ’๐‘ƒ๐‘ฅ๐‘ฅ1 0 0 0 0 ๐‘“๐‘ฆ2 โˆ’๐‘ƒ๐‘ฆ๐‘ฆ1 0 ๐‘ƒ๐‘ฆ(1 + ๐‘ฅ1) 0 ] (4) where ๐‘ƒ๐‘ฅ = ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) (1 + ๐‘ฅ1 + ๐‘ฆ1) 2 and ๐‘ƒ๐‘ฆ = ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) (1 + ๐‘ฅ1 + ๐‘ฆ1) 2 . the reason for using the m-matrix theory in this study is due to the complexity of determining the spectral radius matrix ๐ฝ(๐ธ) at the corresponding equilibrium point ๐ธ. the use of definition 1 and theorem 1 guarantee that the spectral radius value of the ๐ฝ(๐ธ) matrix at the corresponding equilibrium is less than one. based on the ๐ฝ(๐ธ) matrix in (4) the elements of rows 1-2 columns 3-4 and rows 3-4 columns 1-2 are non-positive because the elements of the equilibrium point are guaranteed to be zero or positive. theorem 1 says matrix ๐‘† for matrix ๐ฝ(๐ธ) is ๐‘† = [ 1 0 0 0 0 1 0 0 0 0 โˆ’1 0 0 0 0 โˆ’1 ] . the next step is to substitute all the equilibrium points in (4) and analyze their stability one by one. 1. the jacobian matrix for the equilibrium point ๐ธ0 is ๐ฝ(๐ธ0) = [ ๐‘“๐‘ฅ1 ๐‘“๐‘ฅ2 0 0 ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) 0 0 0 0 0 0 ๐‘“๐‘ฆ2 0 0 ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) 0 ] . next, determine the matrix ๐บ = ๐ผ โˆ’ ๐‘†(๐ฝ(๐ธ0))๐‘† โˆ’1 and examine the element ๐‘”๐‘–๐‘— for ๐‘– โ‰  ๐‘— that is non-positive and that all minor principals of ๐บ are positive. if these conditions are met, then the ๐บ matrix is an m-matrix so that the spectral radius ๐ฝ(๐ธ0) is less than one. as a result, the equilibrium point ๐ธ0 is locally stable asymptotically. here we present the obtained matrix ๐บ = [ 1 โˆ’ ๐‘“๐‘ฅ1 โˆ’๐‘“๐‘ฅ2 0 0 โˆ’๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) 1 0 0 0 0 1 โˆ’๐‘“๐‘ฆ2 0 0 โˆ’๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) 1 ] and all minor principals of ๐บ obtained are mathematical model of iteroparous and semelparous species interaction arjun hasibuan 451 ๐‘ƒ๐‘€1 = |๐‘”11| = 1 โˆ’ ๐‘“๐‘ฅ1, ๐‘ƒ๐‘€2 = | ๐‘”11 ๐‘”12 ๐‘”21 ๐‘”22 | = 1 โˆ’ ๐‘…๐‘ฅ, ๐‘ƒ๐‘€3 = | ๐‘”11 ๐‘”12 ๐‘”13 ๐‘”21 ๐‘”22 ๐‘”23 ๐‘”31 ๐‘”32 ๐‘”33 | = 1 โˆ’ ๐‘…๐‘ฅ, and ๐‘ƒ๐‘€4 = |๐บ| = (1 โˆ’ ๐‘…๐‘ฅ)(1 โˆ’ ๐‘…๐‘ฆ). in this paper, we define ๐‘ƒ๐‘€๐‘– (๐‘– = 1,2,3,4) as the ๐‘–-th minor principal of the matrix ๐บ for each equilibrium point under consideration. it is clear that the element ๐‘”๐‘–๐‘— < 0 for ๐‘– โ‰  ๐‘— in the ๐บ matrix is nonpositive by recalling the previously defined parameters. then, ๐‘ƒ๐‘€2 and ๐‘ƒ๐‘€4 will be positive if met ๐‘…๐‘ฅ < 1. in addition, ๐‘…๐‘ฅ < 1 implicitly results in ๐‘“๐‘ฅ1 < 1 so that ๐‘ƒ๐‘€1 > 0. furthermore, ๐‘ƒ๐‘€4 is positive if ๐‘…๐‘ฆ < 1 because it must be fulfilled that ๐‘…๐‘ฅ < 1. therefore, ๐บ is an m-matrix, that is if it is filled with ๐‘…๐‘ฅ < 1 and ๐‘…๐‘ฆ < 1. hence, according to theorem 1, the equilibrium point ๐ธ0 is locally stable asymptotically if ๐‘…๐‘ฅ < 1 and ๐‘…๐‘ฆ < 1. 2. the jacobian matrix for the equilibrium point ๐ธ๐‘ฅ is ๐ฝ(๐ธ๐‘ฅ) = [ ๐‘“๐‘ฅ1 ๐‘…๐‘ฅ 2 ๐‘“๐‘ฅ2 ๐‘“1(1 โˆ’ ๐‘…๐‘ฅ) ๐‘…๐‘ฅ 2 0 ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘…๐‘ฅ 2 0 ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2)(1 โˆ’ ๐‘…๐‘ฅ) ๐‘…๐‘ฅ 2 0 0 0 0 ๐‘“๐‘ฆ2 0 0 ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) ๐‘…๐‘ฅ 0 ] next, determine the matrix ๐บ = ๐ผ โˆ’ ๐‘†(๐ฝ(๐ธ๐‘ฅ))๐‘† โˆ’1 and make sure the matrix ๐บ is an m-matrix. here we present the obtained matrix ๐บ = [ ๐‘…๐‘ฅ 2โˆ’๐‘“๐‘ฅ1 ๐‘…๐‘ฅ 2 โˆ’๐‘“๐‘ฅ2 ๐‘“1(1โˆ’๐‘…๐‘ฅ) ๐‘…๐‘ฅ 2 0 โˆ’๐‘ ๐‘ฅ1(1โˆ’โ„Ž๐‘ฅ2) ๐‘…๐‘ฅ 2 1 ๐‘ ๐‘ฅ1(1โˆ’โ„Ž๐‘ฅ2)(1โˆ’๐‘…๐‘ฅ) ๐‘…๐‘ฅ 2 0 0 0 1 โˆ’๐‘“๐‘ฆ2 0 0 โˆ’ ๐‘ ๐‘ฆ1(1โˆ’โ„Ž๐‘ฆ2) ๐‘…๐‘ฅ 1 ] and all minor principals of ๐บ obtained are ๐‘ƒ๐‘€1 = |๐‘”11| = ๐‘…๐‘ฅ 2 โˆ’ ๐‘“๐‘ฅ1 ๐‘…๐‘ฅ 2 , ๐‘ƒ๐‘€2 = | ๐‘”11 ๐‘”12 ๐‘”21 ๐‘”22 | = โˆ’ 1 โˆ’ ๐‘…๐‘ฅ ๐‘…๐‘ฅ , ๐‘ƒ๐‘€3 = | ๐‘”11 ๐‘”12 ๐‘”13 ๐‘”21 ๐‘”22 ๐‘”23 ๐‘”31 ๐‘”32 ๐‘”33 | = โˆ’ 1 โˆ’ ๐‘…๐‘ฅ ๐‘…๐‘ฅ , and ๐‘ƒ๐‘€4 = |๐บ| = โˆ’ (1 โˆ’ ๐‘…๐‘ฅ)(๐‘…๐‘ฅ โˆ’ ๐‘…๐‘ฆ) ๐‘…๐‘ฅ . based on the previously defined parameters, the element ๐‘”๐‘–๐‘— for ๐‘– โ‰  ๐‘— will be nonpositive if ๐‘…๐‘ฅ > 1 is satisfied. because of ๐‘…๐‘ฅ > 1, consequently ๐‘ƒ๐‘€2 and ๐‘ƒ๐‘€3 are positive. besides that, ๐‘ƒ๐‘€4 is also positive but with the additional condition that is ๐‘…๐‘ฅ > ๐‘…๐‘ฆ. then, it is clear that ๐‘“๐‘ฅ1 < ๐‘…๐‘ฅ 2 = (๐‘“๐‘ฅ2๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) + ๐‘“๐‘ฅ1) 2 so that ๐‘ƒ๐‘€1 > 0. therefore, ๐บ is an m-matrix, if it is fulfilled ๐‘…๐‘ฅ > ๐‘…๐‘ฆ and ๐‘…๐‘ฅ > 1. hence, according to theorem 1, the equilibrium point ๐ธ๐‘ฅ is locally stable asymptotically if ๐‘…๐‘ฅ > ๐‘…๐‘ฆ and ๐‘…๐‘ฅ > 1. mathematical model of iteroparous and semelparous species interaction arjun hasibuan 452 3. the jacobian matrix for the equilibrium point ๐ธ๐‘ฆ is ๐ฝ(๐ธ๐‘ฆ) = [ ๐‘“๐‘ฅ1 ๐‘…๐‘ฆ ๐‘“๐‘ฅ2 0 0 ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘…๐‘ฆ 0 0 0 0 0 0 ๐‘“๐‘ฆ2 โˆ’ ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2)(๐‘…๐‘ฆ โˆ’ 1) ๐‘…๐‘ฆ 2 0 1 ๐‘“4๐‘…๐‘ฆ 0 ] next, determine the matrix ๐บ = ๐ผ โˆ’ ๐‘† (๐ฝ(๐ธ๐‘ฆ)) ๐‘† โˆ’1 and make sure the matrix ๐บ is an m-matrix. here we present the obtained matrix ๐บ = [ ๐‘…๐‘ฆ โˆ’ ๐‘“๐‘ฅ1 ๐‘…๐‘ฆ โˆ’๐‘“๐‘ฅ2 0 0 โˆ’๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘…๐‘ฆ 1 0 0 0 0 1 โˆ’๐‘“๐‘ฆ2 ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2)(1 โˆ’ ๐‘…๐‘ฆ) ๐‘…๐‘ฆ 2 0 โˆ’ 1 ๐‘“4๐‘…๐‘ฆ 1 ] and all minor principals of ๐บ obtained are ๐‘ƒ๐‘€1 = |๐‘”11| = ๐‘…๐‘ฆ โˆ’ ๐‘“๐‘ฅ1 ๐‘…๐‘ฆ , ๐‘ƒ๐‘€2 = | ๐‘”11 ๐‘”12 ๐‘”21 ๐‘”22 | = ๐‘…๐‘ฆ โˆ’ ๐‘…๐‘ฅ ๐‘…๐‘ฆ , ๐‘ƒ๐‘€3 = | ๐‘”11 ๐‘”12 ๐‘”13 ๐‘”21 ๐‘”22 ๐‘”23 ๐‘”31 ๐‘”32 ๐‘”33 | = ๐‘…๐‘ฆ โˆ’ ๐‘…๐‘ฅ ๐‘…๐‘ฆ , and ๐‘ƒ๐‘€4 = |๐บ| = (1 โˆ’ ๐‘…๐‘ฆ)(๐‘…๐‘ฅ โˆ’ ๐‘…๐‘ฆ) ๐‘…๐‘ฆ . note that all elements ๐‘”๐‘–๐‘— for ๐‘– โ‰  ๐‘— are nonpositive except for ๐‘”41. then, ๐‘”41 will be negative if ๐‘…๐‘ฆ > 1. next, focus on the minor principal terms of the ๐บ matrix. ๐‘ƒ๐‘€2 and ๐‘ƒ๐‘€3 are positive if ๐‘…๐‘ฆ > ๐‘…๐‘ฅ. because of ๐‘…๐‘ฆ > 1 and ๐‘…๐‘ฆ > ๐‘…๐‘ฅ, consequently ๐‘ƒ๐‘€4 are positive. then, since ๐‘…๐‘ฆ > ๐‘…๐‘ฅ where ๐‘…๐‘ฆ = ๐‘“๐‘ฆ2๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) and ๐‘…๐‘ฅ = ๐‘“๐‘ฅ2๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) + ๐‘“๐‘ฅ1 it follows that ๐‘ƒ๐‘€1 is positive because ๐‘…๐‘ฆ > ๐‘“๐‘ฅ1. hence, ๐บ is an ๐‘€-matrix and the equilibrium point ๐ธ๐‘ฆ is locally stable asymptotically if ๐‘…๐‘ฆ > ๐‘…๐‘ฅ and ๐‘…๐‘ฆ > 1. โˆŽ figure 1. population growth graph for each age class of each species ๐‘ฅ and ๐‘ฆ in case i model 1 mathematical model of iteroparous and semelparous species interaction arjun hasibuan 453 equilibrium point of model 2 with the same treatment as determining the equilibrium point in the model 1, the equilibrium model 2 is obtained as follows: ๐‘ฅ1(๐‘ก) = ๐‘“๐‘ฅ1 1 + ๐‘Ž๐‘ฅ1(๐‘ก) + ๐‘๐‘ฆ1(๐‘ก) ๐‘ฅ1(๐‘ก) + ๐‘“๐‘ฅ2๐‘ฅ2(๐‘ก) ๐‘ฅ2(๐‘ก) = ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) 1 + ๐‘Ž๐‘ฅ1(๐‘ก) + ๐‘๐‘ฆ1(๐‘ก) ๐‘ฅ1(๐‘ก) (5) ๐‘ฆ1(๐‘ก) = ๐‘“๐‘ฆ2๐‘ฆ2(๐‘ก) ๐‘ฆ2(๐‘ก) = ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) 1 + ๐‘๐‘ฅ1(๐‘ก) + ๐‘Ž๐‘ฆ1(๐‘ก) ๐‘ฆ1(๐‘ก) then, there are four equilibrium points from the model 2, namely 1. the equilibrium point with both species going extinct is ๐ธ0 = [ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ] = [ 0 0 0 0 ] . 2. the equilibrium point with species ๐‘ฅ exists while species ๐‘ฆ is extinct, i.e ๐ธ๐‘ฅ = [ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ] = [ ๐‘…๐‘ฅ โˆ’ 1 ๐‘Ž (๐‘…๐‘ฅ โˆ’ 1)๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘Ž๐‘…๐‘ฅ 0 0 ] . the condition ๐ธ๐‘ฅ exists if it is fulfilled ๐‘…๐‘ฅ = ๐‘“๐‘ฅ2๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) + ๐‘“๐‘ฅ1 > 1. 3. the equilibrium point with species ๐‘ฆ exists while species ๐‘ฅ is extinct, i.e ๐ธ๐‘ฆ = [ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ] = [ 0 0 ๐‘…๐‘ฆ โˆ’ 1 ๐‘Ž ๐‘…๐‘ฆ โˆ’ 1 ๐‘Ž๐‘“๐‘ฆ2 ] . the condition ๐ธ๐‘ฆ exists if it is fulfilled ๐‘…๐‘ฆ = ๐‘“๐‘ฆ2๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) > 1. 4. the equilibrium point with species ๐‘ฅ and ๐‘ฆ exists if one of them is satisfied, namely ๐‘Ž2 > ๐‘2 or ๐‘Ž > ๐‘, ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) > ๐‘(๐‘…๐‘ฅ โˆ’ 1), and ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) > ๐‘(๐‘…๐‘ฆ โˆ’ 1), or ๐‘Ž 2 < ๐‘2 or ๐‘Ž < ๐‘, ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) < ๐‘(๐‘…๐‘ฅ โˆ’ 1), and ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) < ๐‘(๐‘…๐‘ฆ โˆ’ 1) with mathematical model of iteroparous and semelparous species interaction arjun hasibuan 454 ๐ธ๐‘ฅ๐‘ฆ = [ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ] = [ ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1) (๐‘Ž2 โˆ’ ๐‘2) ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) (๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1)) (๐‘Ž2 โˆ’ ๐‘2)๐‘…๐‘ฅ ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฅ โˆ’ 1) (๐‘Ž2 โˆ’ ๐‘2) ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฅ โˆ’ 1) (๐‘Ž2 โˆ’ ๐‘2)๐‘“๐‘ฆ2 ] . in this second model, we obtain four equilibrium points where an equilibrium point appears with all species existing or a co-existence equilibrium point. the level of competition in both species affects the existence of a co-existence equilibrium point. figure 2. population growth graph for each age class of each species ๐‘ฅ and ๐‘ฆ in case ii model 1 locally stable asymptotically at the equilibrium point of model 2 this section discusses the locally stable asymptotically of model 2 which is presented in theorem 3 below. theorem 3. (locally stable asymptotically at the equilibrium point of model 2) for the system in the case of one iteroparous species and one semelparous species, each of which consists of two classes whose growth is affected by density-dependent, harvesting and competition which is specifically described in the model 2, among others: 1. the equilibrium point ๐ธ0 is locally stable asymptotically if ๐‘…๐‘ฅ < 1, and ๐‘…๐‘ฆ < 1. 2. the equilibrium point ๐ธ๐‘ฅ is locally stable asymptotically if ๐‘…๐‘ฅ > 1 and ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) < ๐‘(๐‘…๐‘ฅ โˆ’ 1). 3. the equilibrium point ๐ธ๐‘ฆ is locally stable asymptotically if ๐‘…๐‘ฆ > 1 and ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) < ๐‘(๐‘…๐‘ฆ โˆ’ 1). 4. the equilibrium point ๐ธ๐‘ฅ๐‘ฆ is locally stable asymptotically if ๐‘Ž > ๐‘, ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) > mathematical model of iteroparous and semelparous species interaction arjun hasibuan 455 ๐‘(๐‘…๐‘ฅ โˆ’ 1), ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) > ๐‘(๐‘…๐‘ฆ โˆ’ 1), and ๐‘“๐‘ฅ1(๐‘Ž(๐‘Ž โˆ’ ๐‘) โˆ’ ๐‘(๐‘๐‘…๐‘ฅ โˆ’ ๐‘Ž๐‘…๐‘ฆ)) < (๐‘Ž 2 โˆ’ ๐‘2)๐‘…๐‘ฅ 2. proof: the steps to determine the stability of all equilibrium points of the model 2 can be carried out as in model 1. linearization of the model 2, namely ๐ฝ(๐ธ) = ๐ฝ ([ ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 ]) = [ ๐‘“๐‘ฅ1(1 + ๐‘๐‘ฆ1) (1 + ๐‘Ž๐‘ฅ1 + ๐‘๐‘ฆ1) 2 ๐‘“๐‘ฅ2 โˆ’ ๐‘“๐‘ฅ1๐‘ฅ1๐‘ (1 + ๐‘Ž๐‘ฅ1 + ๐‘๐‘ฆ1) 2 0 ๐‘ƒ๐‘ฅ(1 + ๐‘๐‘ฆ1) 0 โˆ’๐‘ƒ๐‘ฅ๐‘๐‘ฅ1 0 0 0 0 ๐‘“๐‘ฆ2 โˆ’๐‘ƒ๐‘ฆ๐‘๐‘ฆ1 0 ๐‘ƒ๐‘ฆ(1 + ๐‘๐‘ฅ1) 0 ] (6) with ๐‘ƒ๐‘ฅ = ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) (1 + ๐‘Ž๐‘ฅ1 + ๐‘๐‘ฆ1) 2 and ๐‘ƒ๐‘ฆ = ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) (1 + ๐‘๐‘ฅ1 + ๐‘Ž๐‘ฆ1) 2 . the elements of rows 1-2 columns 3-4 and rows 3-4 columns 1-2 in (6) are non-positive because the elements of the equilibrium point are guaranteed to be zero or positive, so theorem 1 says matrix ๐‘† for matrix ๐ฝ(๐ธ) is ๐‘† = [ 1 0 0 0 0 1 0 0 0 0 โˆ’1 0 0 0 0 โˆ’1 ] . the next step is to substitute all the equilibrium points in (6) and analyze its stability one by one. 1. the jacobian matrix for the equilibrium point ๐ธ0 is ๐ฝ(๐ธ0) = [ ๐‘“๐‘ฅ1 ๐‘“๐‘ฅ2 0 0 ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) 0 0 0 0 0 0 ๐‘“๐‘ฆ2 0 0 ๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) 0 ] . next, determine the matrix ๐บ = ๐ผ โˆ’ ๐‘†(๐ฝ(๐ธ0))๐‘† โˆ’1 and make sure the matrix ๐บ is an m-matrix. here we present the obtained matrix ๐บ = [ 1 โˆ’ ๐‘“๐‘ฅ1 โˆ’๐‘“๐‘ฅ2 0 0 โˆ’๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) 1 0 0 0 0 1 โˆ’๐‘“๐‘ฆ2 0 0 โˆ’๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) 1 ] and all minor principals of ๐บ obtained are ๐‘ƒ๐‘€1 = |๐‘”11| = 1 โˆ’ ๐‘“๐‘ฅ1, ๐‘ƒ๐‘€2 = | ๐‘”11 ๐‘”12 ๐‘”21 ๐‘”22 | = 1 โˆ’ ๐‘…๐‘ฅ, ๐‘ƒ๐‘€3 = | ๐‘”11 ๐‘”12 ๐‘”13 ๐‘”21 ๐‘”22 ๐‘”23 ๐‘”31 ๐‘”32 ๐‘”33 | = 1 โˆ’ ๐‘…๐‘ฅ, and ๐‘ƒ๐‘€4 = |๐บ| = (1 โˆ’ ๐‘…๐‘ฅ)(1 โˆ’ ๐‘…๐‘ฆ). by considering the matrix ๐บ, it is clear that the values of all ๐‘”๐‘–๐‘— for ๐‘– โ‰  ๐‘— are nonpositive. next is focus on determining the conditions for ๐‘ƒ๐‘€๐‘– > 0 (๐‘– = 1,2,3,4). ๐‘ƒ๐‘€2 and ๐‘ƒ๐‘€3 are positive if ๐‘…๐‘ฅ < 1 is satisfied. because of ๐‘…๐‘ฅ < 1 so that ๐‘ƒ๐‘€1 is positive and an additional condition for ๐‘ƒ๐‘€4 to be positive is ๐‘…๐‘ฆ < 1. therefore, ๐บ is an m-matrix, and the equilibrium point ๐ธ0 is locally stable asymptotically if ๐‘…๐‘ฅ < 1 and ๐‘…๐‘ฆ < 1. mathematical model of iteroparous and semelparous species interaction arjun hasibuan 456 2. the jacobian matrix for the equilibrium point ๐ธ๐‘ฅ is ๐ฝ(๐ธ๐‘ฅ) = [ ๐‘“๐‘ฅ1 ๐‘…๐‘ฅ 2 ๐‘“๐‘ฅ2 ๐‘๐‘“1(1 โˆ’ ๐‘…๐‘ฅ) ๐‘Ž๐‘…๐‘ฅ 2 0 ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘…๐‘ฅ 2 0 ๐‘๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2)(1 โˆ’ ๐‘…๐‘ฅ) ๐‘Ž๐‘…๐‘ฅ 2 0 0 0 0 ๐‘“๐‘ฆ2 0 0 ๐‘Ž๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) ๐‘Ž + ๐‘(๐‘…๐‘ฅ โˆ’ 1) 0 ] . next, determine the matrix ๐บ = ๐ผ โˆ’ ๐‘†(๐ฝ(๐ธ๐‘ฅ))๐‘† โˆ’1 and make sure the matrix ๐บ is an m-matrix. here we present the obtained matrix ๐บ = [ ๐‘…๐‘ฅ 2 โˆ’ ๐‘“๐‘ฅ1 ๐‘…๐‘ฅ 2 โˆ’๐‘“๐‘ฅ2 ๐‘๐‘“1(1 โˆ’ ๐‘…๐‘ฅ) ๐‘Ž๐‘…๐‘ฅ 2 0 โˆ’๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘…๐‘ฅ 2 1 ๐‘๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2)(1 โˆ’ ๐‘…๐‘ฅ) ๐‘Ž๐‘…๐‘ฅ 2 0 0 0 1 โˆ’๐‘“๐‘ฆ2 0 0 โˆ’ ๐‘Ž๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2) ๐‘Ž + ๐‘(๐‘…๐‘ฅ โˆ’ 1) 1 ] and all minor principals of ๐บ obtained are ๐‘ƒ๐‘€1 = |๐‘”11| = ๐‘…๐‘ฅ 2 โˆ’ ๐‘“๐‘ฅ1 ๐‘…๐‘ฅ 2 , ๐‘ƒ๐‘€2 = | ๐‘”11 ๐‘”12 ๐‘”21 ๐‘”22 | = โˆ’ 1 โˆ’ ๐‘…๐‘ฅ ๐‘…๐‘ฅ , ๐‘ƒ๐‘€3 = | ๐‘”11 ๐‘”12 ๐‘”13 ๐‘”21 ๐‘”22 ๐‘”23 ๐‘”31 ๐‘”32 ๐‘”33 | = โˆ’ 1 โˆ’ ๐‘…๐‘ฅ ๐‘…๐‘ฅ , and ๐‘ƒ๐‘€4 = |๐บ| = (1 โˆ’ ๐‘…๐‘ฅ) (๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฅ โˆ’ 1)) ๐‘Ž + ๐‘(๐‘…๐‘ฅ โˆ’ 1) . in the matrix ๐บ, it can be seen that all ๐‘”๐‘–๐‘— for ๐‘– โ‰  ๐‘— are non-positive because ๐‘…๐‘ฅ > 1 which is a condition for ๐ธ๐‘ฅ to exist. therefore, the next step is to focus on determining the positive terms of the minor principal of the ๐บ matrix. it is clear that ๐‘ƒ๐‘€2 and ๐‘ƒ๐‘€3 are positive because ๐‘…๐‘ฅ > 1. then, it is clear that ๐‘ƒ๐‘€1 is positive because in fact ๐‘“๐‘ฅ1 < ๐‘…๐‘ฅ 2 = (๐‘“๐‘ฅ2๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) + ๐‘“๐‘ฅ1) 2. since ๐‘…๐‘ฅ > 1, ๐‘ƒ๐‘€4 is positive if ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฅ โˆ’ 1) < 0 or ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) < ๐‘(๐‘…๐‘ฅ โˆ’ 1). therefore, ๐บ is an mmatrix, and the equilibrium point ๐ธ๐‘ฅ is locally stable asymptotically if ๐‘…๐‘ฅ > 1 and ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) < ๐‘(๐‘…๐‘ฅ โˆ’ 1). 3. the jacobian matrix for the equilibrium point ๐ธ๐‘ฆ is ๐ฝ(๐ธ๐‘ฆ) = [ ๐‘Ž๐‘“๐‘ฅ1 ๐‘Ž + ๐‘(๐‘…๐‘ฆ โˆ’ 1) ๐‘“๐‘ฅ2 0 0 ๐‘Ž๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘Ž + ๐‘(๐‘…๐‘ฆ โˆ’ 1) 0 0 0 0 0 0 ๐‘“๐‘ฆ2 ๐‘๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2)(1 โˆ’ ๐‘…๐‘ฆ) ๐‘Ž๐‘…๐‘ฆ 2 0 1 ๐‘“4๐‘…๐‘ฆ 0 ] . next, determine the matrix ๐บ = ๐ผ โˆ’ ๐‘† (๐ฝ(๐ธ๐‘ฆ)) ๐‘† โˆ’1 and make sure the matrix ๐บ is an m-matrix. here we present the obtained matrix mathematical model of iteroparous and semelparous species interaction arjun hasibuan 457 ๐บ = [ โˆ’ ๐‘Ž(๐‘“๐‘ฅ1 โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1) ๐‘Ž + ๐‘(๐‘…๐‘ฆ โˆ’ 1) โˆ’๐‘“๐‘ฅ2 0 0 โˆ’๐‘Ž๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2) ๐‘Ž + ๐‘(๐‘…๐‘ฆ โˆ’ 1) 1 0 0 0 0 1 โˆ’๐‘“๐‘ฆ2 ๐‘๐‘ ๐‘ฆ1(1 โˆ’ โ„Ž๐‘ฆ2)(1 โˆ’ ๐‘…๐‘ฆ) ๐‘Ž๐‘…๐‘ฆ 2 0 โˆ’ 1 ๐‘“4๐‘…๐‘ฆ 1 ] . and all minor principals of ๐บ obtained are ๐‘ƒ๐‘€1 = |๐‘”11| = โˆ’ ๐‘Ž(๐‘“๐‘ฅ1 โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1) ๐‘Ž + ๐‘(๐‘…๐‘ฆ โˆ’ 1) , ๐‘ƒ๐‘€2 = | ๐‘”11 ๐‘”12 ๐‘”21 ๐‘”22 | = โˆ’ ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1) ๐‘Ž + ๐‘(๐‘…๐‘ฆ โˆ’ 1) , ๐‘ƒ๐‘€3 = | ๐‘”11 ๐‘”12 ๐‘”13 ๐‘”21 ๐‘”22 ๐‘”23 ๐‘”31 ๐‘”32 ๐‘”33 | = โˆ’ ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1) ๐‘Ž + ๐‘(๐‘…๐‘ฆ โˆ’ 1) , and ๐‘ƒ๐‘€4 = |๐บ| = (๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1)) (1 โˆ’ ๐‘…๐‘ฆ) ๐‘Ž + ๐‘(๐‘…๐‘ฆ โˆ’ 1) . the equilibrium point of ๐ธ๐‘ฆ is exist if ๐‘…๐‘ฆ > 1 consequently all elements of ๐‘”๐‘–๐‘— for ๐‘– โ‰  ๐‘— are non-positive. next is the focus on determining the conditions so that all the principal minor matrices ๐บ are positive. since ๐‘…๐‘ฆ > 1, so we have ๐‘ƒ๐‘€2, ๐‘ƒ๐‘€3, and ๐‘ƒ๐‘€4 are positive if ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1) < 0 or ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) < ๐‘(๐‘…๐‘ฆ โˆ’ 1). in addition, ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) < ๐‘(๐‘…๐‘ฆ โˆ’ 1) the result is satisfied ๐‘Ž(๐‘“๐‘ฅ1 โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1) < 0 or ๐‘Ž(๐‘“๐‘ฅ1 โˆ’ 1) < ๐‘(๐‘…๐‘ฆ โˆ’ 1). then, because of ๐‘…๐‘ฆ > 1 and ๐‘Ž(๐‘“๐‘ฅ1 โˆ’ 1) < ๐‘(๐‘…๐‘ฆ โˆ’ 1) so that ๐‘ƒ๐‘€1 is fulfilled with a positive value. therefore, ๐บ is an m-matrix and the equilibrium point ๐ธ๐‘ฆ is locally stable asymptotically if ๐‘…๐‘ฆ > 1 and ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) < ๐‘(๐‘…๐‘ฆ โˆ’ 1). 4. the jacobian matrix for the equilibrium point ๐ธ๐‘ฅ๐‘ฆ is ๐ฝ(๐ธ๐‘ฅ๐‘ฆ) = [ ๐ด๐‘ฅ๐‘“๐‘ฅ1 ๐ถ๐‘…๐‘ฅ 2 ๐‘“๐‘ฅ2 โˆ’ ๐ต๐‘ฅ๐‘๐‘“๐‘ฅ1 ๐ถ๐‘…๐‘ฅ 2 0 ๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2)๐ด๐‘ฅ ๐ถ๐‘…๐‘ฅ 2 0 โˆ’ ๐‘๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2)๐ต๐‘ฅ ๐ถ๐‘…๐‘ฅ 2 0 0 0 0 ๐‘“๐‘ฆ2 โˆ’ ๐‘๐ต๐‘ฆ ๐ถ๐‘…๐‘ฆ๐‘“๐‘ฆ2 0 ๐ด๐‘ฆ ๐ถ๐‘“๐‘ฆ2๐‘…๐‘ฆ 0 ] . next is the ๐บ matrix for the equilibrium point ๐ธ๐‘ฅ๐‘ฆ is ๐บ = [ 1 โˆ’ ๐ด๐‘ฅ๐‘“๐‘ฅ1 ๐ถ๐‘…๐‘ฅ 2 โˆ’๐‘“๐‘ฅ2 โˆ’ ๐ต๐‘ฅ๐‘๐‘“๐‘ฅ1 ๐ถ๐‘…๐‘ฅ 2 0 ๐ด๐‘ฅ๐‘ ๐‘ฅ1(โ„Ž๐‘ฅ2 โˆ’ 1) ๐ถ๐‘…๐‘ฅ 2 1 โˆ’ ๐‘๐‘ ๐‘ฅ1(1 โˆ’ โ„Ž๐‘ฅ2)๐ต๐‘ฅ ๐ถ๐‘…๐‘ฅ 2 0 0 0 1 โˆ’๐‘“๐‘ฆ2 โˆ’ ๐‘๐ต๐‘ฆ ๐ถ๐‘…๐‘ฆ๐‘“๐‘ฆ2 0 โˆ’ ๐ด๐‘ฆ ๐ถ๐‘…๐‘ฆ๐‘“๐‘ฆ2 1 ] and the principal minor of the matrix ๐บ are mathematical model of iteroparous and semelparous species interaction arjun hasibuan 458 ๐‘ƒ๐‘€1 = |๐‘”11| = 1 โˆ’ ๐ด๐‘ฅ๐‘“๐‘ฅ1 ๐ถ๐‘…๐‘ฅ 2 , ๐‘ƒ๐‘€2 = | ๐‘”11 ๐‘”12 ๐‘”21 ๐‘”22 | = ๐‘Ž๐ต๐‘ฅ ๐ถ๐‘…๐‘ฅ ๐‘ƒ๐‘€3 = | ๐‘”11 ๐‘”12 ๐‘”13 ๐‘”21 ๐‘”22 ๐‘”23 ๐‘”31 ๐‘”32 ๐‘”33 | = ๐‘Ž๐ต๐‘ฅ ๐ถ๐‘…๐‘ฅ , and ๐‘ƒ๐‘€4 = |๐บ| = ๐ต๐‘ฅ๐ต๐‘ฆ ๐ถ๐‘…๐‘ฅ๐‘…๐‘ฆ where ๐ด๐‘ฅ = (๐‘Ž(๐‘Ž โˆ’ ๐‘) โˆ’ ๐‘(๐‘๐‘…๐‘ฅ โˆ’ ๐‘Ž๐‘…๐‘ฆ)), ๐ด๐‘ฆ = (๐‘Ž(๐‘Ž โˆ’ ๐‘) โˆ’ ๐‘(๐‘๐‘…๐‘ฆ โˆ’ ๐‘Ž๐‘…๐‘ฅ)) ๐ต๐‘ฅ = (๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฆ โˆ’ 1)) , ๐ต๐‘ฆ = (๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) โˆ’ ๐‘(๐‘…๐‘ฅ โˆ’ 1)) , and ๐ถ = (๐‘Ž 2 โˆ’ ๐‘ 2). in this case, the conditions that meet the requirements will be determined so that ๐บ is called the m-matrix. first focus on ๐‘ƒ๐‘€4 is positive. because of ๐ธ๐‘ฅ๐‘ฆ exists if ๐ต๐‘ฅ, ๐ต๐‘ฆ, ๐ถ > 0 or ๐ต๐‘ฅ, ๐ต๐‘ฆ, ๐ถ < 0. however, ๐‘ƒ๐‘€4 is positive if it is fulfilled ๐ต๐‘ฅ, ๐ต๐‘ฆ, ๐ถ > 0. because ๐ต๐‘ฅ, ๐ต๐‘ฆ, ๐ถ > 0 consequently fulfilled ๐‘”13, ๐‘”23, ๐‘”31 < 0, and ๐‘ƒ๐‘€2, ๐‘ƒ๐‘€3 > 0. then, ๐‘ƒ๐‘€1 is positive if ๐‘“๐‘ฅ1๐ด๐‘ฅ < ๐ถ๐‘…๐‘ฅ 2. finally, all the conditions for ๐บ to be called an m-matrix have been fulfilled. therefore, ๐บ is an m-matrix, and the equilibrium point ๐ธ๐‘ฅ๐‘ฆ is locally stable asymptotically if ๐‘“๐‘ฅ1 (๐‘Ž(๐‘Ž โˆ’ ๐‘) โˆ’ ๐‘(๐‘๐‘…๐‘ฆ โˆ’ ๐‘Ž๐‘…๐‘ฅ)) < (๐‘Ž2 โˆ’ ๐‘2)๐‘…๐‘ฅ 2, ๐‘Ž(๐‘…๐‘ฆ โˆ’ 1) > ๐‘(๐‘…๐‘ฅ โˆ’ 1), ๐‘Ž(๐‘…๐‘ฅ โˆ’ 1) > ๐‘(๐‘…๐‘ฆ โˆ’ 1), and ๐‘Ž 2 > ๐‘2 or ๐‘Ž > ๐‘. โˆŽ numerical simulations of model 1 and model 2 in the previous subsection, an analysis of the existing condition and local stability asymptotically from each equilibrium point has been carried out on model 1 and model 2. in this section, we perform a numerical simulation of the results from the analysis of model 1 and model 2. in this case, we divide the two models into two cases and each case is divided into as many subcases as the asymptotically local stability conditions of theorem 2 and theorem 3. in the simulation of model 1, we assume for all subcases of the model 1 case, including: 1. ๐‘ ๐‘ฅ1 = 0.6 and ๐‘ ๐‘ฆ1 = 0.4 respectively that if there are 10 individuals in the first age class of species ๐‘ฅ and ๐‘ฆ then only 6 individuals and 4 individuals are able to survive from species ๐‘ฅ and ๐‘ฆ. 2. โ„Ž๐‘ฅ2 = 0.5 and โ„Ž๐‘ฆ2 = 0.3 respectively that if there are 10 individuals in the first age class of species ๐‘ฅ and ๐‘ฆ then there are only 5 individuals and 3 individuals harvested from species ๐‘ฅ and ๐‘ฆ. figure 3. population growth graph for each age class of each species ๐‘ฅ and ๐‘ฆ in case iii model 1 mathematical model of iteroparous and semelparous species interaction arjun hasibuan 459 then, the birth rate for the simulation in the model 1 case is divided into 3 subcases based on theorem 1, including: i. ๐‘“๐‘ฅ1 = 0.7, ๐‘“๐‘ฅ2 = 0.9, and ๐‘“๐‘ฆ2 = 3 consequently ๐‘…๐‘ฅ = 0.97 < 1 and ๐‘…๐‘ฆ = 0.84 < 1. ii. ๐‘“๐‘ฅ1 = 1, ๐‘“๐‘ฅ2 = 5, and ๐‘“๐‘ฆ2 = 3 consequently ๐‘…๐‘ฅ = 2.5 > 1 and ๐‘…๐‘ฆ = 0.84 < ๐‘…๐‘ฅ. iii. ๐‘“๐‘ฅ1 = 0.7, ๐‘“๐‘ฅ2 = 0.9, and ๐‘“๐‘ฆ2 = 10 consequently ๐‘…๐‘ฅ = 0.97 < 1 and ๐‘…๐‘ฆ = 2.8 > ๐‘…๐‘ฅ. the results of the model 1 simulation for each subcase i-iii are presented in figure 13. figures 1-3 respectively for the parameters given in each subcase i-iii of the model 1 simulation show that the locally stable asymptotically towards the equilibrium point ๐ธ0 = [0,0,0,0]๐‘‡, ๐ธ๐‘ฅ = [1.5,0.18,0,0] ๐‘‡, and ๐ธ๐‘ฆ = [0,0,1.8,0.18] ๐‘‡. in the simulation of model 2, we assume for all subcases of model 2 for survival and harvesting rates are equal to model 1. then, the levels of intraspecific and interspecific competition are ๐‘Ž = 0.2 and ๐‘ = 0.1, respectively. then, the birth rate for the simulation in the model 1 case is divided into 4 subcases based on theorem 2, including: i. ๐‘“๐‘ฅ1 = 0.5, ๐‘“๐‘ฅ2 = 1, and ๐‘“๐‘ฆ2 = 3 consequently ๐‘…๐‘ฅ = 0.8 and ๐‘…๐‘ฆ = 0.84. ii. ๐‘“๐‘ฅ1 = 30, ๐‘“๐‘ฅ2 = 20, and ๐‘“๐‘ฆ2 = 60 consequently ๐‘…๐‘ฅ = 36 and ๐‘…๐‘ฆ = 16.8. iii. ๐‘“๐‘ฅ1 = 5, ๐‘“๐‘ฅ2 = 20, and ๐‘“๐‘ฆ2 = 100 consequently ๐‘…๐‘ฅ = 11 and ๐‘…๐‘ฆ = 28. iv. ๐‘“๐‘ฅ1 = 20, ๐‘“๐‘ฅ2 = 20, and ๐‘“๐‘ฆ2 = 60 consequently ๐‘…๐‘ฅ = 26 and ๐‘…๐‘ฆ = 16.8. figure 4. population growth graph for each age class of each species ๐‘ฅ and ๐‘ฆ in case i model 2 mathematical model of iteroparous and semelparous species interaction arjun hasibuan 460 figure 5. population growth graph for each age class of each species ๐‘ฅ and ๐‘ฆ in case ii model 2 figure 4-7 is the simulation result of model 2 for each subcase i-iv. figure 4-7 for each parameter that satisfies theorem 2 conditions in subcases i-iv of the model 2 simulation that sequentially locally stable asymptotically towards the equilibrium point ๐ธ0 = [0,0,0,0]๐‘‡, ๐ธ๐‘ฅ = [175,1.46,0,0] ๐‘‡, ๐ธ๐‘ฆ = [0,0,135,1.35] ๐‘‡ dan ๐ธ๐‘ฅ๐‘ฆ = [114,1.32,22,0.36] ๐‘‡. figure 6. population growth graph for each age class of each species ๐‘ฅ and ๐‘ฆ in case iii model 2 mathematical model of iteroparous and semelparous species interaction arjun hasibuan 461 figure 7. population growth graph for each age class of each species ๐‘ฅ and ๐‘ฆ in case iv model 2 conclusions in this paper, we compare two different models: model 1 and model 2. our focus is to compare the presence and absence of the influence of intraspesific and interspecific competition in the equilibrium point and its local stability of model 1 and model 2. mathematically the conditions under which the positive/non-trivial equilibrium point exists and the local stability of this equilibrium of the model is easy to interpret. however, biologically only some conditions can be interpreted because of the complexity of conditions. simply put, the results of our study show that the level of competition has a role in the equilibrium point and its local stability of the model 1 and model 2. model 1 shows that there is no coexistence equilibrium point so model 1 is never locally stable at the point where both species exist. in model 2, one of the conditions that is easily interpreted is that the coexistence equilibrium point occurs when ๐‘Ž > ๐‘ which means the intensity of the intraspecific competition level is greater than the intensity of the interspecific level competition. the inequality of ๐‘Ž > ๐‘ is one of the locally stable asymptotically conditions of the co-existence equilibrium point in model 2. the results of this study can be applied to problems that have similarities mathematical structure to this case. there still some limitation in this model to fit in a realistic real case, and hence we think that this research should be further developed, for example by increasing. the number of species, the number of classes, and so on, which is mathematically interesting and realistically important. this theory can be applied to study the dynamics of natural resource models including the effects of different management to the growth of the resources, such as in fisheries. mathematical model of iteroparous and semelparous species interaction arjun hasibuan 462 acknowledgments the work is part of the research done by first author in the master of mathematics study program at padjadjaran university. the first author would like to thank for the tuition fee during the candidature covered by alg-unpad research grant with contract number 1959/un6.3.1/pt.00/2021. the preparation and the apc (article processing charge) for manuscript publication is funded by โ€œpenelitian tesis magister (ptm)โ€ from the indonesian ministry of education, culture, research and technology in 2022 with contract number 1318/un6.3.1/pt.00/2022. references [1] r. kon, โ€œstable bifurcations in multi-species semelparous population models,โ€ 2017, doi: 10.1007/978-981-10-6409-8_1. [2] r. kon, โ€œbifurcations of cycles in nonlinear semelparous leslie matrix models,โ€ j. math. biol., vol. 80, no. 4, 2020. [3] y. chow and r. kon, โ€œglobal dynamics of a special class of nonlinear semelparous leslie matrix models,โ€ j. differ. equations appl., vol. 26, no. 5, 2020, doi: 10.1080/10236198.2020.1777288. [4] a. wikan and รธ. kristensen, โ€œnonstationary and chaotic dynamics in agestructured population models,โ€ discret. dyn. nat. soc., vol. 2017, 2017. [5] b. j. hanley, e. m. bunting, and k. l. schuler, โ€œhow can we augment the few that remain? using stable population dynamics to aid reintroduction planning of an iteroparous species,โ€ peerj, vol. 2019, no. 5, 2019. [6] m. d. hatch, f. abadi, w. j. boeing, s. lois, m. d. porter, and d. e. cowley, โ€œsustainability management of short-lived freshwater fish in human-altered ecosystems should focus on adult survival,โ€ plos one, vol. 15, no. 5, 2020. [7] p. h. leslie, โ€œon the use of matrices in certain population mathematics.,โ€ biometrika, vol. 33, 1945, doi: 10.1093/biomet/33.3.183. [8] j. m. cushing and s. m. henson, โ€œstable bifurcations in semelparous leslie models,โ€ j. biol. dyn., 2012, [online]. available: https://www.tandfonline.com/doi/abs/10.1080/17513758.2012.716085. [9] o. diekmann and r. planquรฉ, โ€œthe winner takes it all: how semelparous insects can become periodical,โ€ j. math. biol., vol. 80, no. 1โ€“2, 2020, doi: 10.1007/s00285-01901362-3. [10] c. j. pennycuick, r. m. compton, and l. beckingham, โ€œa computer model for simulating the growth of a population, or of two interacting populations,โ€ j. theor. biol., vol. 18, no. 3, 1968, doi: 10.1016/0022-5193(68)90081-7. [11] c. c. travis, w. m. post, d. l. deangelis, and j. perkowski, โ€œanalysis of compensatory leslie matrix models for competing species,โ€ theor. popul. biol., vol. 18, no. 1, pp. 16โ€“30, 1980, doi: 10.1016/0040-5809(80)90037-4. [12] r. kon, โ€œage-structured lotka-volterra equations for multiple semelparous populations,โ€ siam j. appl. math., vol. 71, no. 3, pp. 694โ€“713, 2011, doi: 10.1137/100794262. [13] r. kon, โ€œpermanence induced by life-cycle resonances: the periodical cicada problem,โ€ j. biol. dyn., vol. 6, no. 2, 2012, doi: 10.1080/17513758.2011.594098. [14] l. k. beay, a. suryanto, i. darti, and trisilowati, โ€œstability of a stage-structure rosenzweig-macarthur model incorporating holling type-ii functional response,โ€ 2019, doi: 10.1088/1757-899x/546/5/052017. [15] j. li, x. liu, and c. wei, โ€œthe impact of role reversal on the dynamics of predatormathematical model of iteroparous and semelparous species interaction arjun hasibuan 463 prey model with stage structure,โ€ appl. math. model., vol. 104, 2022. [16] j. wang, y. cai, s. fu, and w. wang, โ€œthe effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge,โ€ chaos, vol. 29, no. 8, 2019. [17] e. rahmi, i. darti, a. suryanto, and trisilowati, โ€œa modified leslieโ€“gower model incorporating beddingtonโ€“deangelis functional response, double allee effect and memory effect,โ€ fractal fract., vol. 5, no. 3, 2021. [18] t. hidayati and w. kurniawan, โ€œstability analysis of lotka-volterra model in the case of interaction of local religion and official religion,โ€ int. j. educ. res. soc. sci., vol. 2, no. 3, 2021. [19] w. w. mohammed, e. s. aly, a. e. matouk, s. albosaily, and e. m. elabbasy, โ€œan analytical study of the dynamic behavior of lotka-volterra based models of covid19,โ€ results phys., vol. 26, 2021. [20] y. lin, q. din, m. rafaqat, a. a. elsadany, and y. zeng, โ€œdynamics and chaos control for a discrete-time lotka-volterra model,โ€ ieee access, vol. 8, 2020. [21] a. wikan, โ€œdynamical consequences of harvest in discrete age-structured population models,โ€ j. math. biol., vol. 49, no. 1, 2004, doi: 10.1007/s00285-0030251-5. [22] j. m. cushing, โ€œthree stage semelparous leslie models,โ€ j. math. biol., vol. 59, no. 1, 2009, doi: 10.1007/s00285-008-0208-9. [23] c. c. travis and w. m. post, โ€œdynamics and comparative statics of mutualistic communities,โ€ j. theor. biol., vol. 78, no. 4, 1979, doi: 10.1016/00225193(79)90190-5. 1a sampul depan linieritas integral henstock-pettis pada ruang euclide rn hairur rahman jurusan matematika fakultas sains dan teknologi universitas islam negeri maulana malik ibrahim malang abstract in this paper we study henstock-pettis integral on the euclidean space โ„œn. we discuss some properties linear integrable. keywords: henstock integral, euclidean space โ„œn, properties linear integrable, henstock-pettis integral. pendahuluan pada tahun 1914, perron mengembangkan perluasan lain integral lebesgue dan menunjukkan bahwa integralnya mempunyai sifat bahwa setiap derivatifnya terintegral pada garis lurus. selanjutnya henstock dan kurzweil secara terpisah mengitlakkan integral riemann dengan mengubah konstanta positif ฮด menjadi fungsi positif ฮด dan ternyata integral yang disusun keduanya ekuivalen. oleh karena itu, integral yang mereka susun terkenal dengan nama henstock-kurzweil (lee dan vborn, 2000). dari kajian tentang integral henstock banyak sifat-sifat yang telah diungkapkan baik dalam โ„œ maupun ruang โ„œn. menurut penelitian, masalah mengenai sifat-sifat pada integral henstock kemungkinan dapat dikembangkan menjadi masalah yang lebih luas dalam integral henstock-pettis, khususnya sejauh mana sifatsifat integral henstock dari fungsi bernilai real dapat dikembangkan ke dalam integral henstockpettis pada ruang euclide โ„œn. dari kajian tentang integral henstock-kurzweil banyak sifat-sifat yang telah diungkapkan baik dalam โ„œ maupun ruang โ„œn. menurut penelitian sebelumnya, masalah mengenai sifat-sifat pada integral henstock-kurzweil yang telah dilakukan oleh guoju dan tianqing, 2001, guoju dan swabik, 2001, indrati, 2002, serta dharmawidjaya, 2003, kemungkinan dapat dikembangkan menjadi masalah yang lebih luas dalam integral henstockkurzweil-pettis, khususnya sejauh mana sifatsifat integral henstock dari fungsi bernilai real dapat dikembangkan ke dalam integral henstockkurzweil-pettis pada ruang euclide โ„œn. definisi 1.1. diberikan fungsi volume ฮฑ pada โ„œn, sel ๏ฟฝ ๏ฟฝ โ„œ๏ฟฝdan e ruang banach. fungsi f : e โ†’ x dikatakan terintegral-ฮฑ henstock pada e terhadap ฮฑ, ditulis singkat f โˆˆ โ„‹(e, ฮฑ, x) jika terdapat vektor a โˆˆ x sehingga untuk setiap bilangan ๏ฟฝ > 0 terdapat fungsi positif pada e dan untuk setiap partisi perron -fine = ๏ฟฝ๏ฟฝ ๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ ๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ , ๏ฟฝ ๏ฟฝ , ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ pada e berlaku ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ. pembahasan akan dibahas sifat-sifat lanjut dari integral henstock-pettis pada ruang euclide โ„œ๏ฟฝ, yakni memuat pembahasan yang berkaitan dengan sifat-sifat linearitas fungsi terintegral henstockpettis pada ruang euclide โ„œ๏ฟฝ . definisi 2.1. diberikan x ruang banach dan !" ruang dualnya, volume ฮฑ pada โ„œn, dan se ๏ฟฝ ๏ฟฝ โ„œ๏ฟฝ. fungsi f : e โ†’ x dikatakan terintegral-ฮฑ henstockpettis pada e, ditulis singkat dengan f โˆˆ โ„‹#(e, ฮฑ), jika untuk setiap ๏ฟฝ " โˆˆ !" dan sel ๏ฟฝ ๏ฟฝ $, fungsi ๏ฟฝ "๏ฟฝ terintegral-๏ฟฝ henstock pada a dan terdapat vektor ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& . selanjutnya vektor ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ di atas disebut nilai integral henstock-pettis fungsi f pada a dan ditulis ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ ๏ฟฝ ๏ฟฝโ„‹#๏ฟฝ * ๏ฟฝ +๏ฟฝ,& khususnya ๏ฟฝ๏ฟฝ%,,,'๏ฟฝ ๏ฟฝ ๏ฟฝโ„‹#๏ฟฝ * ๏ฟฝ +๏ฟฝ,, jadi ๏ฟฝ " -๏ฟฝโ„‹#๏ฟฝ * ๏ฟฝ +๏ฟฝ,& . ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ.& teorema 2.2. jika f โˆˆ hp(e, ฮฑ), maka vektor ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โˆˆ ! yang dimaksud di dalam definisi 2.1 adalah tunggal bukti: jika terdapat vektor ๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ dan ๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ seperti pada definisi 2.1 maka ๏ฟฝ " /๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ0 ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& hairur rahman 66 volume 1 no. 2 mei 2010 dan ๏ฟฝ " /๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ0 ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& oleh karena itu, ๏ฟฝ " /๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ0 ๏ฟฝ ๏ฟฝ " /๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ0 ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& atau ๏ฟฝ " /๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ0 ๏ฟฝ ๏ฟฝ " /๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ0 untuk setiap x โˆ—โˆˆxโˆ— jadi ๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ%,&,'๏ฟฝ โ—™ contoh 2.3 jika ๏ฟฝ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ 1 untuk setiap ๏ฟฝ๏ฟฝ di dalam sel e โŠ‚ โ„œn, maka f โˆˆ hp(e,ฮฑ) dan ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1. bukti : diberikan sebarang bilangan ฮต > 0 dan ๏ฟฝ " โˆˆ !" maka dapat ditemukan fungsi positif ฮด pada e sehingga jika a โŠ‚ e sebarang sel dan d ๏ฟฝ ๏ฟฝ๏ฟฝ , ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ sebarang partisi perron ฮด-fine pada sel a, maka |๏ฟฝ d ๏ฟฝ โˆ‘ ๏ฟฝ"๏ฟฝ๏ฟฝ๏ฟฝ4๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ"(๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ)| ๏ฟฝ |๏ฟฝ d ๏ฟฝ โˆ‘ 1๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1| ๏ฟฝ | ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1 ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1| ๏ฟฝ 0 ๏ฟฝ ๏ฟฝ jadi ๏ฟฝ "๏ฟฝ terintegral henstock pada e dan untuk sel a โŠ‚ e di atas, maka terdapat vektor ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * 1 +๏ฟฝ& ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1 jadi f terintegral henstock-pettis pada e. teorema 2.4 diberikan x ruang banach dan !" dualnya, volume ฮฑ pada โ„œn dan sel e โŠ‚ โ„œn. (i) jika f,g โˆˆ โ„‹#(e,ฮฑ) maka f + g โˆˆ โ„‹#(e,ฮฑ) dan ๏ฟฝ๏ฟฝ%67,&,'๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ 8 ๏ฟฝ๏ฟฝ7,&,'๏ฟฝ (ii) jika f โˆˆ โ„‹#(e,ฮฑ) dan cโˆˆ โ„œ maka cf โˆˆ โ„‹#(e,ฮฑ) dan ๏ฟฝ๏ฟฝ9%,&,'๏ฟฝ ๏ฟฝ 1. ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ bukti : (i). fungsi f โˆˆ โ„‹#(e,ฮฑ), maka untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "๏ฟฝ terintegral henstock pada e dan untuk setiap sel a โŠ‚ e terdapat vektor ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& dan fungsi g โˆˆ โ„‹#(e,ฮฑ), maka untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "g terintegral henstock pada e dan untuk setiap sel a โŠ‚ e terdapat vektor ๏ฟฝ๏ฟฝ7,&,'๏ฟฝ โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ7,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ ": +๏ฟฝ& karena a โŠ‚ e sebarang sel, maka berlaku untuk fungsi f dan fungsi g. jadi untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "(f+g) terintegral henstock pada e. oleh karena itu terdapat vektor ๏ฟฝ๏ฟฝ%67,&,'๏ฟฝ โˆˆ ! sehingga untuk sel a โŠ‚ e di atas berlaku ๏ฟฝ "(๏ฟฝ๏ฟฝ%67,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ๏ฟฝ 8 :๏ฟฝ +๏ฟฝ& ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& 8 ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ ": +๏ฟฝ& ๏ฟฝ ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) 8 ๏ฟฝ "(๏ฟฝ๏ฟฝ7,&,'๏ฟฝ) jadi f + g โˆˆ โ„‹#(e,ฮฑ) dan ๏ฟฝ๏ฟฝ%67,&,'๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ 8 ๏ฟฝ๏ฟฝ7,&,'๏ฟฝ (ii). fungsi f โˆˆ โ„‹#(e,ฮฑ), maka untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "f terintegral henstock pada e dan untuk setiap sel a โŠ‚ e terdapat vektor ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& oleh karena itu, untuk setiap ๏ฟฝ " โˆˆ !" dan c โˆˆ โ„œ maka ๏ฟฝ "cf terintegral henstock pada e dan untuk setiap sel a โŠ‚ e terdapat vektor ๏ฟฝ๏ฟฝ9%,&,'๏ฟฝ โˆˆ !. sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ9%,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "1๏ฟฝ +๏ฟฝ& ๏ฟฝ 1๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& ๏ฟฝ 1๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) jadi cf โˆˆ โ„‹#(e,ฮฑ) dan ๏ฟฝ๏ฟฝ9%,&,'๏ฟฝ ๏ฟฝ 1. ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โ—™ teorema 2.5 diberikan x ruang banach dan !" dualnya, volume ฮฑ dan ฮฒ di dalamnya โ„œn dan sel eโŠ‚ โ„œn. (i). jika f โˆˆ โ„‹#(e,ฮฑ) dan f โˆˆ โ„‹#(e, ฮฒ), maka f โˆˆ โ„‹#(e, ฮฑ +ฮฒ) dan ๏ฟฝ๏ฟฝ%,&,'6;๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ 8 ๏ฟฝ๏ฟฝ%,&,;๏ฟฝ (ii). jika f โˆˆ hp (e,ฮฑ) dan eโˆˆ โ„œ dengan e> 0 maka f โˆˆ hp (e,eฮฑ) dan ๏ฟฝ๏ฟฝ%,&,<'๏ฟฝ ๏ฟฝ =. ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ bukti : (i). fungsi f โˆˆ โ„‹#(e,ฮฑ), maka untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "f terintegral henstock pada e dan untuk setiap sel a โŠ‚ e terdapat vektor ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โˆˆ ! sehingga linieritas integral henstock-pettis pada ruang euclide rn volume 1 no. 2 mei 2010 67 ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& dan fungsi f โˆˆ โ„‹#(e,ฮฒ), maka untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "f terintegral henstock pada e dan untuk setiap sel a โŠ‚ e terdapat vektor ๏ฟฝ๏ฟฝ%,&,;๏ฟฝ โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,;๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +>& karena a โŠ‚ e sebarang sel, maka berlaku untuk fungsi f yang terintegral henstockpettis pada e terhadap ฮฑ dan ฮฒ. jadi untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "f terintegral henstock pada e. oleh karena itu terdapat vektor ๏ฟฝ๏ฟฝ%,&,'6;๏ฟฝ โˆˆ ! sehingga sel a โŠ‚ e di atas berlaku ๏ฟฝ๏ฟฝ%,&,'6;๏ฟฝ ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ๏ฟฝ 8 >๏ฟฝ& ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& 8 ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +>& ๏ฟฝ ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ 8 ๏ฟฝ๏ฟฝ%,&,;๏ฟฝ jadi f โˆˆ โ„‹#(e,ฮฑ+ฮฒ), dan ๏ฟฝ๏ฟฝ%,&,'6;๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ 8 ๏ฟฝ๏ฟฝ%,&,;๏ฟฝ (ii). fungsi f โˆˆ โ„‹#(e,ฮฑ), maka untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "f terintegral henstock pada e dan untuk setiap sel a โŠ‚ e terdapat vektor ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& oleh karena itu, jika e โˆˆ โ„œ dengan e > 0 maka untuk sel a โŠ‚ e di atas terdapat vektor ๏ฟฝ๏ฟฝ%,&,<'๏ฟฝ โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,<'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +=๏ฟฝ& ๏ฟฝ =๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& ๏ฟฝ =๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) jadi f โˆˆ โ„‹#(e,eฮฑ) dan ๏ฟฝ๏ฟฝ%,&,<'๏ฟฝ ๏ฟฝ =. ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ โ—™ teorema 2.6 jika e1, e2 โŠ‚ โ„œn sel-sel tak saling tumpang tindih, f โˆˆ โ„‹#(e1,ฮฑ) dan, f โˆˆ โ„‹#(e2,ฮฑ) maka, f โˆˆ โ„‹#(e1 โˆช e2,ฮฑ) dan jika aโŠ‚ e1 sel dan bโŠ‚ e2 sel maka ๏ฟฝ๏ฟฝ%,&?@,'๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ 8 ๏ฟฝ๏ฟฝ%,@,'๏ฟฝ bukti : diberikan sebarang bilangan ฮต > 0 dan ๏ฟฝ " โˆˆ !", maka terdapat fungsi positif ฮด1 pada e1 dan ฮด2 pada e2 sehingga untuk a โŠ‚ e1 sebarang sel dan b โŠ‚ e2 sebarang sel dan d1 ๏ฟฝ ๏ฟฝ๏ฟฝ , ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ dan d2 ๏ฟฝ ๏ฟฝ๏ฟฝ , ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ berturut-turut partisi perron ฮด-fine pada a dan b berlaku |๏ฟฝ d1 ๏ฟฝ โˆ‘ ๏ฟฝ"๏ฟฝ๏ฟฝ๏ฟฝ4๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ"(๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ)| ๏ฟฝ ๏ฟฝ2 dan |๏ฟฝ d2 ๏ฟฝ โˆ‘ ๏ฟฝ"๏ฟฝ๏ฟฝ๏ฟฝ4๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ"(๏ฟฝ๏ฟฝ๏ฟฝ,๏ฟฝ,๏ฟฝ๏ฟฝ)| ๏ฟฝ ๏ฟฝ2 ๏ฟฝ |๏ฟฝ d ๏ฟฝ โˆ‘ 1๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1| ๏ฟฝ | ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1 ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1| ๏ฟฝ 0 ๏ฟฝ ๏ฟฝ diambil fungsi ฮด : ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ b ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ , cdef ๏ฟฝ๏ฟฝ โˆˆ ๏ฟฝ +fg ๏ฟฝ๏ฟฝ h i ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ , cdef ๏ฟฝ๏ฟฝ โˆˆ i +fg ๏ฟฝ๏ฟฝ h ๏ฟฝmin( ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ , ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ), cdef ๏ฟฝ๏ฟฝ โˆˆ ๏ฟฝ m i n diperoleh ฮด fungsi positif pada e1 โˆช e2 dan untuk sel-sel a โŠ‚ e1, dan b โŠ‚ e2 di atas dan d 1 โˆช d2 partisi perron ฮด-fine pada aโˆชb. oleh karena itu diperoleh |๏ฟฝd1 ? d2 ๏ฟฝ โˆ‘ ๏ฟฝ"๏ฟฝ๏ฟฝ๏ฟฝ4๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ /๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) 8 ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,;๏ฟฝ)0 | ๏ฟฝ |๏ฟฝ๏ฟฝd1 ๏ฟฝโˆ‘ ๏ฟฝ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 8 ๏ฟฝd2๏ฟฝโˆ‘ ๏ฟฝ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ /๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) 8 ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,;๏ฟฝ)0 | ๏ฟฝ |๏ฟฝ๏ฟฝd1 ๏ฟฝโˆ‘ ๏ฟฝ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 8 ๏ฟฝd2๏ฟฝโˆ‘ ๏ฟฝ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ ๏ฟฝ /๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) 8 ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,;๏ฟฝ)0 | o |๏ฟฝ๏ฟฝd1 ๏ฟฝโˆ‘ ๏ฟฝ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 8 ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ)| 8 |๏ฟฝ๏ฟฝd2๏ฟฝโˆ‘ ๏ฟฝ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ 8 ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,;๏ฟฝ)| ๏ฟฝ ๏ฟฝ2 8 ๏ฟฝ2 ๏ฟฝ ๏ฟฝ jadi ๏ฟฝ "f terintegral henstock pada e1 โˆช e2 dan untuk sel-sel a โŠ‚ e1, bโŠ‚ e2 di atas terdapat vektor (๏ฟฝ๏ฟฝ%,&?@,'๏ฟฝ) โˆˆ ! sehingga ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&?@,'๏ฟฝ) ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ&?@ ๏ฟฝ ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ& 8 ๏ฟฝโ„‹๏ฟฝ * ๏ฟฝ "๏ฟฝ +๏ฟฝ@ ๏ฟฝ ๏ฟฝ "(๏ฟฝ๏ฟฝ%,&,'๏ฟฝ) 8 ๏ฟฝ "(๏ฟฝ๏ฟฝ%,@,'๏ฟฝ) jadi f โˆˆ โ„‹#(e1โˆชe2, ฮฑ) dan ๏ฟฝ๏ฟฝ%,&?@,'๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ 8 ๏ฟฝ๏ฟฝ%,@,'๏ฟฝ โ—™ selanjutnya teorema di bawah ini merupakan akibat teorema 2.6. teorema 2.7 diberikan sel e โŠ‚ โ„œn. jika aโŠ‚ e sel dan d = {(d1, d2, โ€ฆ, dm)} divisi pada a serta f โˆˆ โ„‹#(di,ฮฑ) untuk setiap i, maka fโˆˆ โ„‹#(e,ฮฑ) dan ๏ฟฝ๏ฟฝ%,&,'๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ%,pq,'๏ฟฝ r ๏ฟฝ๏ฟฝ๏ฟฝ bukti : diberikan sebarang bilangan ฮต > 0 dan ๏ฟฝ " โˆˆ !", maka terdapat fungsi positif ฮด dan di, sehingga jika ๏ฟฝ๏ฟฝis , ๏ฟฝ๏ฟฝs ๏ฟฝ: e ๏ฟฝ 1,2, โ€ฆ , w๏ฟฝ partisi perron ฮดi-fine pada di berlaku hairur rahman 68 volume 1 no. 2 mei 2010 x๏ฟฝ "(๏ฟฝ๏ฟฝ%,pq,'๏ฟฝ) ๏ฟฝ ๏ฟฝ ๏ฟฝ "๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝs ๏ฟฝ๏ฟฝ๏ฟฝis ๏ฟฝ y s๏ฟฝ๏ฟฝ x ๏ฟฝ ๏ฟฝz untuk setiap i = 1,2,..,m. dibentuk fungsi positif ฮด : ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ [ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ , ๏ฟฝ๏ฟฝ โˆˆ dg\๏ฟฝ ๏ฟฝ ๏ฟฝ, d ๏ฟฝ 1,2, โ€ฆ , z min๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ , ๏ฟฝ๏ฟฝ โˆˆ ]๏ฟฝ ๏ฟฝ ๏ฟฝ ^\e __`w ๏ฟฝ๏ฟฝ โˆˆ ๏ฟฝ n diperoleh ฮด fungsi positif pada e dan ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ o ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ untuk setiap ๏ฟฝ๏ฟฝโˆˆdi, i = 1,2,โ€ฆ,m. diambil sebarang partisi perron ฮด-fine pi pada di untuk setiap i = 1,2,โ€ฆ,m. menurut teorema 2.6.2., a ๏ฟฝ b a๏ฟฝr๏ฟฝ๏ฟฝ๏ฟฝ merupakan partisi perron ฮด-fine pada e. akibatnya, untuk a โŠ‚ e sebarang sel p merupakan partisi perron ฮด-fine pada a. oleh karena itu pi merupakan partisi perron ฮด-fine di untuk setiap i =1,2,โ€ฆ,m, maka diperoleh x๏ฟฝ ๏ฟฝ "(๏ฟฝ๏ฟฝ%,pq,'๏ฟฝ) r ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ # ๏ฟฝ ๏ฟฝ "๏ฟฝ๏ฟฝc4๏ฟฝ๏ฟฝ๏ฟฝa๏ฟฝr ๏ฟฝ๏ฟฝ๏ฟฝ x o x๏ฟฝ ๏ฟฝ "(๏ฟฝ๏ฟฝ%,pq,'๏ฟฝ) r ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ ๏ฟฝ #๏ฟฝ ๏ฟฝ "๏ฟฝ๏ฟฝc4๏ฟฝ๏ฟฝ๏ฟฝa๏ฟฝ r ๏ฟฝ๏ฟฝ๏ฟฝ x ( )( )( ) ( ) ( )โˆ‘ โˆ‘โˆ‘ = = โˆ— โˆ’โ‰ค m i m i idf pyfxxx 1 * 1 ,, 1 ฮฑฮฑ p ( )( )( ) ( ) ( )โˆ‘ โˆ‘ = โˆ— โˆ’โ‰ค m i idf pyfxxx 1 * ,, 1 ฮฑฮฑ p ฮต ฮต =< โˆ‘ = m i m1 jadi untuk setiap ๏ฟฝ " โˆˆ !" fungsi ๏ฟฝ "๏ฟฝ terintegral henstock pada e dan untuk setiap sel a โŠ‚ e di atas terdapat vektor ( ) xx af โˆˆฮฑ,, sehingga jadi f โˆˆhp (e,ฮฑ) dan ( )( ) ( )โˆ‘ = โˆ— = m i dfaf i xxx 1 ,,,, ฮฑฮฑ โ—™ teorema 2.8. jika f=0 (fungsi nol) h,d pada e maka fโˆˆhp(e,ฮฑ) dan jika aโŠ‚e sel maka ( ) ฮธฮฑ =,, afx bukti : karena f = 0 h.d pada e, maka terdapat himpunan aโŠ‚ e dengan ยตฮฑ(a) = 0 sehingga jika โˆ—โˆ— โˆˆ xx berakibat ( ) ๏ฃด ๏ฃณ ๏ฃด ๏ฃฒ ๏ฃฑ โˆˆโ‰  โˆ’โˆˆ= โˆ— ax aex xfx jika,0 jika,0 dibentuk a = โˆช โˆž =1i ia dimana ai = ( ){ } aiixfiax โŠ‚=โ‰คโ‰คโˆ’โˆˆ ,....2,1,1: dengan ยตฮฑ (ai) = 0 diberikan bilangan ฮต > 0. untuk setiap i terdapat himpunan terbuka gi dengan ukuran kurang dari ii2 ฮต sehingga gi โŠƒai. didefinisikan fungsi positif ฮด pada e sedemikian sehingga n( x ,ฮด( x )) โŠ‚gi, untuk x โˆˆ ai, i=1,2,โ€ฆ, dan sebarang fungsi positif untuk x yang lain . oleh karena itu untuk sebarang a โŠ‚ e sel dan sebarang partisi perron ฮด-fine p={(b, x )} pada a berlaku ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ฮต ฮต ฮฑ ฮฑฮฑ ฮฑ = < = += โˆ’ โˆ‘ โˆ‘ โˆ‘โˆ‘ โˆ‘ โˆž = โˆ— โˆˆ โˆ— โˆ‰ โˆ— โˆˆ โˆ— โˆ— i ix axfx axfxaxfx axfx i i ax axax i ii .2 0 1 p untuk setiap โˆ—โˆ— โˆˆ xx dan 1โ‰คโˆ—x . hal ini menunjukkan bahwa untuk setiap โˆ—โˆ— โˆˆ xx fungsi fx โˆ— terintegral henstock pada e. dan untuk sel a โŠ‚ e di atas terdapat vektor ( ) xx af โˆˆฮฑ,, sehingga ( )( ) ( ) ( ) ( )โˆซ โˆซ === =โˆ— 000 * ,, ad fdxxx a af ฮฑฮฑ ฮฑฮฑ h h jadi f โˆˆhp (e,ฮฑ) dan ( ) ฮธฮฑ =,, afx berikut ini akibat teorema 3.1.8 di atas. teorema 3.1.9. jika f โˆˆ hp(e,ฮฑ) dan g = f h.d pada e maka g โˆˆhp(e,ฮฑ) dan jika aโŠ‚ e sel maka ( ) ( )ฮฑฮฑ ,,,, afag xx = ( )( ) ( ) ( )( )โˆ‘ โˆ‘ โˆซ = โˆ— = โˆ— = = m i df m i d af i i xx fdxxx 1 ,, 1 * ,, ฮฑ ฮฑ ฮฑh linieritas integral henstock-pettis pada ruang euclide rn volume 1 no. 2 mei 2010 69 bukti : ambil fungsi h = g f. diperoleh h = 0 (fungsi nol) h.d pada e. menurut teorema 3.1.8, h โˆˆhp (e,ฮฑ) dan ( ) ฮธฮฑ =,, ahx untuk setiap sel aโŠ‚ e. karena h โˆˆhp(e,ฮฑ), f โˆˆhp(e,ฮฑ) dan g = h + f, maka berdasarkan teorema 3.1.4 (i) diperoleh, g โˆˆhp (e,ฮฑ) dan untuk setiap โˆ—โˆ— โˆˆ xx ( )( ) ( ) ( )โˆซ += โˆ—โˆ— a ag dfhxxx ฮฑฮฑ h,, ( ) ( )โˆซโˆซ โˆ—โˆ— += aa fdxhdx ฮฑฮฑ hh ( )โˆซ โˆ—+= a fdx ฮฑh0 ( )โˆซ โˆ—= a fdx ฮฑh ( )( )ฮฑโˆ—= ,a,fxx jadi ( ) ( )ฮฑฮฑ ,,,, afag xx = โ—™ teorema 3.1.10. jika f โˆˆ hp (e,ฮฑ) dan โˆ—x f โ‰ฅ 0 h.d pada e dan jika aโŠ‚ e sel maka ( )( ) 0,, โ‰ฅโˆ— ฮฑafxx bukti : karena โˆ—x f โ‰ฅ 0 h.d pada e maka tidak mengurangi arti jika dianggap โˆ—x f ( x ) โ‰ฅ 0 untuk setiap x โˆˆ e dan โˆ—โˆ— โˆˆ xx . oleh karena itu, karena f โˆˆ hp(e,ฮฑ), jadi untuk setiap โˆ—โˆ— โˆˆ xx fungsi โˆ—x f terintegral henstock pada e dan untuk setiap sel aโŠ‚ e terdapat vektor ( ) xx af โˆˆฮฑ,, sehingga berakibat ( )( ) ( ) 0,, โ‰ฅ= โˆซ โˆ—โˆ— a af fdxxx ฮฑฮฑ h โ—™ di bawah ini merupakan akibat teorema 3.1.10 teorema 2.11. jika f โˆˆ hp (e,ฮฑ) dan g โˆˆ hp (e,ฮฑ) dan fx โˆ— โ‰ค gx โˆ— h.d pada e dan jika a โŠ‚ e sel maka ( )( ) ( )( )ฮฑฮฑ ,,,, agaf xxxx โˆ—โˆ— โ‰ค bukti : karena fx โˆ— โ‰ค gx โˆ— h.d pada e maka โˆ—x g โ€“ โˆ—x f โ‰ฅ 0 h.d. pada e. oleh karena itu, berdasarkan teorema 3.1.10 untuk setiap โˆ—โˆ— โˆˆ xx fungsi โˆ—x (f-g) terintegral henstock pada e dan untuk setiap a โŠ‚ e sel terdapat vektor ( ) xx afg โˆˆโˆ’ ฮฑ,, sehingga ( )( ) ( ) ( ) 0,, โ‰ฅโˆ’= โˆซ โˆ—โˆ’โˆ— ฮฑฮฑ dfgxxx a afg h ( ) ( ) 0โ‰ฅโˆ’= โˆซโˆซ โˆ—โˆ— ฮฑฮฑ dfxdgx aa hh ( )( ) ( )( ) 0,,,, โ‰ฅโˆ’= โˆ—โˆ— ฮฑฮฑ afag xxxx jadi ( )( ) ( )( )ฮฑฮฑ ,,,, agaf xxxx โˆ—โˆ— โ‰ค โ—™ daftar pustaka [1]. dharmawidjaya, s., 2003, on the bounded interval functions, proceedings of the international conference 2003 on mathematics and its application, seamsgadjah mada university, universitas gadjah mada, indonesia. [2]. indrati, ch. r., 2002, integral henstockkurzweil pada ruang euclide โ„œn berdimensi-n, disertasi, universitas gadjah mada, indonesia. [3]. gordon, r.a., 1994, the integral of lebesgue, denjoy, perron and henstock, american mathematical society, usa. [4]. guoju, ye and tianqing, 2001.on henstockdunford and henstock-pettis integral, ijmms, 25:7, hindawi publishing corp. pp 467-478. [5]. guoju, ye, and ,swabik. s, 2001. the macshane and the weak. macshane intergal of banach space value function defined on โ„œn. mathematical notes, miscole, vol, 2., no, 2., pp127-136. [6]. guoju, ye, and swabik. s, 2004, topics in banach space integration, manuscript in preparation. [7]. guoju, ye, lee, p.y.,wu, congxin, 1999, convergence theorem of the denjoybochner, denjoy-pettis and denjoy-dunford integral, southeast asian bulletin of mathematics, springer-verlag, vol 23; 135143. [8]. rahman, hairur, 2005, integral henstockpettis pada ruang euclide โ„œn , tesis, universitas gadjah mada, indonesia. hairur rahman 70 volume 1 no. 2 mei 2010 [9]. rahman, hairur, 2005, kekonvergenan integral henstock-pettis pada ruang euclide โ„œn, universitas gadjah mada, indonesia. [10]. lee, p.y., 1989, lanzhou lectures on henstock integration, word scientific, singapore. [11]. lee, p.y. dan vborn, r., 2000, integral: an easy approach after kurzweil and henstock, cambridge university press. [12]. pfeffer,w.f.,1993, the riemann approach to integration, cambridge university press, new york, usa. [13]. royden, h.l., 1989, real analysis, third edition, macmillan publishing company, new york, usa. [14]. swabik. s. and ye, guoju.,1991.the macshne and the pettis intergal of banach space value function defined on โ„œn, chzech, math journal. a note on generalized strongly p-convex functions of higher order cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 152-157 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 16, 2021 reviewed: october 12, 2021 accepted: october 18, 2021 doi: http://dx.doi.org/10.18860/ca.v7i1.12938 a note on generalized strongly p-convex functions of higher order corina karim*, ekadion maulana mathematics department, faculty of mathematics and natural sciences, brawijaya university, malang, indonesia *corresponding author email: co_mathub@ub.ac.id* rm.ekadion.m@gmail.com abstract generalized strongly ๐‘-convex functions of higher order is a new concept of convex functions which introduced by saleem et al. in 2020. the schur type inequality for generalized strongly ๐‘convex functions of higher order also studied by them. this paper aims to revise schur type inequality for generalized strongly ๐‘-convex functions of higher order in their paper. in order to revise it, we show that the contradiction was true. this paper showed that schur type inequality for generalized strongly ๐‘-convex functions of higher order previously is not valid and we give the correct schur type inequality for generalized strongly ๐‘-convex functions of higher order. keywords: schur type inequality; ๐‘-convex functions; strongly convex of higher order introduction convexity is a basic notion in many branches of applied mathematics. convexity is an important thing on functional analysis, geometry, mathematical programming, probability, and statistics. on functional analysis, convexity has intended to ensure existence and uniqueness of solutions of problems of calculus of variations and optimal control. on mathematical programming, convexity has intended to ensure convergence of optimization algorithms [1]. convexity appears in ancient greek geometry. archimedes (ca. 250 bc) used convexity on study of the area and arch length. archimedes has been the first person who gave a definition of convexity, similar to the geometric definition which used till today, a set is said to be convex if it contains all line segments between each of its points [1]. some geometric properties of convex sets and functions have studied before 1960 by great mathematicians hermann minkowski and werner fenchel. in 1891, minkowski proved that, in euclidean space โ„๐‘› , every compact convex set with center at the origin and volume greater than 2๐‘› contains at least one point with integer coordinates different from the origin [2]. afterwards, in 1951, werner fenchelโ€™s monograph stimulated the development of convexity theory. several researchers have been considered for classical convexity such that some of these new concepts are based on an extension of the domain of convex functions or http://dx.doi.org/10.18860/ca.v7i1.12938 mailto:co_mathub@ub.ac.id mailto:rm.ekadion.m@gmail.com a note on generalized strongly p-convex functions of higher order corina karim 153 sets to a generalized form[3-9]. some examples of these new concepts are quasiconvexity [10], exponential convexity [11, 12], logarithmical convexity [13], โ„Ž-convexity [14, 15], and ๐‘-convexity [3, 4, 16, 17]. ๐‘-convex funtions and their properties was introduced by zhang and wan [16] in 2007. in 2018 maden et al. [17] discussed strongly ๐‘-convex funtions and hermite-hadamard inequality for it. in 2020, saleem et al. [3, 4] discussed about generalized ๐‘-convex funtions and generalized strongly ๐‘-convex funtions of higher order. in [3] discussed definition and properties of generalized strongly ๐‘-convex functions of higher order also some of type inequalities which are hermite-hadamard, fejรฉr, and schur. in schur type inequality for generalized strongly ๐‘-convex funtions of higher order in [3] indirectly mentioned that ๐œ™(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ) โ‰ค (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ )๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ2 ๐‘ ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ1 ๐‘) for any ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ , ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โˆˆ (0,1) and ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ with ๐‘ž > 0 and ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž . so, this paper revises the correction of schur type inequality in [3]. methods in this section, we discussed about some definitions which are implemented with generalized strongly ๐‘-convex functions of higher order. we also give examples of strongly ๐‘-convex funtions of higher order and its generalized. definition 1. (see [1]) (convex set) let ๐‘‹ โŠ‚ โ„๐‘›. ๐‘‹ is called to be convex if ๐‘ก๐‘ฅ + (1 โˆ’ ๐‘ก)๐‘ฆ โˆˆ ๐‘‹, (1) for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘ก โˆˆ [0,1]. definition 2. (see [3]) ( ๐’‘-convex set) let ๐‘‹ โŠ‚ โ„๐‘›. ๐‘‹ is called to be ๐‘-convex if [๐‘ก๐‘ฅ๐‘ + (1 โˆ’ ๐‘ก)๐‘ฆ๐‘] 1 ๐‘ โˆˆ ๐‘‹, (2) for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘ก โˆˆ [0,1]. definition 3. (see [18]) (q-convex uniform) let ๐‘‹ be a banach space and real number ๐‘ž โ‰ฅ 2. defined ๐›ฟ๐‘‹ (๐œ–) = inf {1 โˆ’ โ€– ๐‘“+๐‘” 2 โ€– ; ๐‘“, ๐‘” โˆˆ ๐‘‹, โ€–๐‘“โ€– โ‰ค 1, โ€–๐‘”โ€– โ‰ค 1, โ€–๐‘“ โˆ’ ๐‘”โ€– โ‰ฅ ๐œ–}. ๐‘‹ is called to be ๐‘-convex uniform if there exists a constant ๐‘ > 0 such that ๐›ฟ๐‘‹ (๐œ–) โ‰ฅ ๐‘๐œ– ๐‘ž , for 0 < ๐œ– โ‰ค 2. lemma 1. (see [19]) let ๐‘‹ be a ๐‘ž-convex uniform with ๐‘ž โ‰ฅ 2, then there exists a constant ๐œ‡ > 0 such that โ€–๐‘ก๐‘ฅ + (1 โˆ’ ๐‘ก)๐‘ฆโ€–๐‘ž โ‰ค ๐‘กโ€–๐‘ฅโ€–๐‘ž + (1 โˆ’ ๐‘ก)โ€–๐‘ฆโ€–๐‘ž โˆ’ ๐œ‡๐œ™(๐‘ก)โ€–๐‘ฅ โˆ’ ๐‘ฆโ€–๐‘ž for every ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘ก โˆˆ (0,1), where ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž . lemma 1 used to prove an example of strongly ๐‘-convex funtions of higher order and generalized strongly ๐‘-convex funtions of higer order. it has been proved in [19]. a note on generalized strongly p-convex functions of higher order corina karim 154 definition 4. (see [3]) (strongly ๐’‘-convex functions of higher order) let ๐‘‹ be a ๐‘-convex set. a function ๐‘“: ๐‘‹ โ†’ โ„ is called to be strongly ๐‘-convex functions of higher order if for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘ก โˆˆ [0,1], then ๐‘“ ([๐‘ก๐‘ฅ๐‘ + (1 โˆ’ ๐‘ก)๐‘ฆ๐‘] 1 ๐‘) โ‰ค ๐‘ก๐‘“(๐‘ฅ) + (1 โˆ’ ๐‘ก)๐‘“(๐‘ฆ) โˆ’ ๐œ‡๐œ™(๐‘ก)โ€–๐‘ฅ๐‘ โˆ’ ๐‘ฆ๐‘โ€–๐‘ž , (3) with ๐œ‡ โ‰ฅ 0, ๐‘ž > 0, and ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž. example: let ๐‘ž โ‰ฅ 2 and ๐‘ > 1. defined ๐‘‹ = {๐‘ฅ โˆˆ โ„; |๐‘ฅ|๐‘ โˆˆ ๐‘™๐‘ž } and ๐œ“: ๐‘‹ โ†’ โ„, where ๐œ“(๐‘ฅ) = โ€–|๐‘ฅ|๐‘โ€–๐‘ž ๐‘ž , then ๐œ“ is strongly ๐‘โ€“convex functions of higher order. definition 5. (see [3]) (generalized strongly ๐’‘-convex funtions of higher order) let ๐‘‹ be a ๐‘-convex set. a function ๐‘“: ๐‘‹ โ†’ โ„ is called to be strongly ๐‘-convex functions of higher order with respect to ๐œ‚: ๐ด ร— ๐ด โ†’ ๐ต, with ๐ด, ๐ต โŠ† โ„ if for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ and ๐‘ก โˆˆ [0,1], then ๐‘“ ([๐‘ก๐‘ฅ๐‘ + (1 โˆ’ ๐‘ก)๐‘ฆ๐‘] 1 ๐‘) โ‰ค ๐‘“(๐‘ฆ) + ๐œ‚(๐‘“(๐‘ฅ), ๐‘“(๐‘ฆ)) โˆ’ ๐œ‡๐œ™(๐‘ก)โ€–๐‘ฅ๐‘ โˆ’ ๐‘ฆ๐‘โ€–๐‘ž , (4) with ๐œ‡ โ‰ฅ 0, ๐‘ž > 0, and ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž. example: function ๐œ“ in example of strongly ๐‘-convex functions of higher order with respect to ๐œ‚(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ โˆ’ ๐‘ฆ is generalized strongly ๐‘-convex functions of higher order with rescpect to ๐œ‚. results and discussion in this section, we discussed about revised schur type inequality for generalized strongly ๐‘-convex functions of higher order. we showed that ๐œ™(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ) โ‰ค (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ )๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ2 ๐‘ ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ1 ๐‘) is not valid for any ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ , ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โˆˆ (0,1) and ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ with ๐‘ž > 0 and ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž . theorem 1. (schur type inequality) let ๐‘‹ is ๐‘-convex set and ๐ด, ๐ต โŠ‚ โ„. defined a generalized strongly ๐‘-convex function of higher order with respect to ๐œ‚(โˆ™,โˆ™): ๐ด ร— ๐ด โ†’ ๐ต with ๐œ‡ โ‰ฅ 0 and ๐‘ > 0, then for every ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 โˆˆ ๐‘‹ such that ๐‘ฅ1 < ๐‘ฅ2 < ๐‘ฅ3 and ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ , ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ , ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โˆˆ (0,1), then the following inequality hold ๐‘“(๐‘ฅ3)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) โˆ’ ๐‘“(๐‘ฅ2)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) + (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ )๐œ‚(๐‘“(๐‘ฅ1), ๐‘“(๐‘ฅ3)) โˆ’ (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ )๐œ‡๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘) โ€–๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โ€– ๐‘ž โ‰ฅ 0. (5) proof: let ๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3 โˆˆ ๐‘‹ with some criterion which are ๐‘ฅ1 < ๐‘ฅ2 < ๐‘ฅ3 and ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ , ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ , ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โˆˆ (0,1). based on those criteria, then we have 0 < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ and 0 < ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ . (6) based on (6), then we have a note on generalized strongly p-convex functions of higher order corina karim 155 ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ , ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ โˆˆ (0,1). (7) itโ€™s clear that ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ = 1 โŸบ ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ + ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ = 1 โ‡” (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ) + (๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ = 1 โ‡” ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ + ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ = 1. (8) choose ๐‘ก = ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ2 ๐‘ ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ1 ๐‘, so from (8) can get ๐‘ก + ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ = 1 โ‡” ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ = 1 โˆ’ ๐‘ก โ‡” ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ = (1 โˆ’ ๐‘ก)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) โ‡” ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ = (1 โˆ’ ๐‘ก)๐‘ฅ3 ๐‘ โˆ’ (1 โˆ’ ๐‘ก)๐‘ฅ1 ๐‘ โ‡” ๐‘ฅ2 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ = (1 โˆ’ ๐‘ก)๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ + ๐‘ก๐‘ฅ1 ๐‘ โ‡” ๐‘ฅ2 ๐‘ = ๐‘ก๐‘ฅ1 ๐‘ + (1 โˆ’ ๐‘ก)๐‘ฅ3 ๐‘ โ‡” ๐‘ฅ2 = (๐‘ก๐‘ฅ1 ๐‘ + (1 โˆ’ ๐‘ก)๐‘ฅ3 ๐‘ ) 1 ๐‘. (9) from (9), we can write ๐‘“(๐‘ฅ2) = ๐‘“ ([๐‘ก๐‘ฅ1 ๐‘ + (1 โˆ’ ๐‘ก)๐‘ฅ3 ๐‘ ] 1 ๐‘). (10) after that, because ๐‘“ is generalized strongly ๐‘-convex functions of higher order, then from (10) and ๐‘ก = ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ2 ๐‘ ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ1 ๐‘ we can get ๐‘“(๐‘ฅ2) โ‰ค ๐‘“(๐‘ฅ3) + ( ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘) ๐œ‚(๐‘“(๐‘ฅ1), ๐‘“(๐‘ฅ3)) โˆ’ ๐œ‡๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘) โ€–๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โ€– ๐‘ž (11) if all segments on (11) times by ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ , then we have ๐‘“(๐‘ฅ2)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) โ‰ค ๐‘“(๐‘ฅ3)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) + ( ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘) ๐œ‚(๐‘“(๐‘ฅ1), ๐‘“(๐‘ฅ3))(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) โˆ’ ๐œ‡๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘) โ€–๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โ€– ๐‘ž (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) โŸบ ๐‘“(๐‘ฅ3)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) โˆ’ ๐‘“(๐‘ฅ2)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) + (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ )๐œ‚(๐‘“(๐‘ฅ1), ๐‘“(๐‘ฅ3)) โˆ’ (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ )๐œ‡๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘ ) โ€–๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โ€– ๐‘ž โ‰ฅ 0, this completes the proof of theorem 1. to show that ๐œ™(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ) โ‰ค (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ )๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ2 ๐‘ ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ1 ๐‘) is not valid for any ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ , ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โˆˆ (0,1) and ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ with ๐‘ž > 0 and ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž , first we take ๐‘ž = 2, then we have ๐œ™(๐‘ก) = ๐‘ก2(1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)2 = ๐‘ก2 โˆ’ ๐‘ก3 + ๐‘ก(1 โˆ’ 2๐‘ก + ๐‘ก2) = ๐‘ก2 โˆ’ ๐‘ก3 + ๐‘ก โˆ’ 2๐‘ก2 + ๐‘ก3 = ๐‘ก โˆ’ ๐‘ก2 = ๐‘ก(1 โˆ’ ๐‘ก). (12) after that, we have to take ๐‘ฅ = ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ = 1 2 and ๐‘ฆ = ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ = 1 4 , then its clear that ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ = 1 4 < 1 2 = ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ . so, we can get ๐œ™ ( 1 4 ) = 1 4 (1 โˆ’ 1 4 ) = 3 16 , a note on generalized strongly p-convex functions of higher order corina karim 156 1 2 ๐œ™ ( 1 4โ„ 1 2โ„ ) = 1 2 ๐œ™ ( 1 2 ) = 1 2 [ 1 2 (1 โˆ’ 1 2 )] = 1 8 = 2 16 . and ๐œ™ ( 1 4 ) = 3 16 > 2 16 = 1 2 ๐œ™ ( 1 4โ„ 1 2โ„ ). so, there exists ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ = 1 4 , ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ = 1 2 and ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ = 1 4 < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ = 1 2 with ๐‘ž = 2 and ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž but (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ) > (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ )๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ2 ๐‘ ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ1 ๐‘) . in other words, ๐œ™(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ) > (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ )๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ2 ๐‘ ๐‘ฅ3 ๐‘ โˆ’๐‘ฅ1 ๐‘) is not valid for ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ , ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โˆˆ (0,1) and ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ with ๐‘ž > 0 and ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž . remarks: if ๐œ™ satisfies ๐‘ฅ๐œ™(๐‘ฆ) โ‰ฅ ๐œ™(๐‘ฅ๐‘ฆ) for any ๐‘ฅ, ๐‘ฆ โˆˆ (0,1) and ๐‘ž > 0, then (5) can be written as ๐‘“(๐‘ฅ3)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) โˆ’ ๐‘“(๐‘ฅ2)(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ) + (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ )๐œ‚(๐‘“(๐‘ฅ1), ๐‘“(๐‘ฅ3)) โˆ’ ๐œ‡๐œ™(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ )โ€–๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โ€– ๐‘ž โ‰ฅ 0. conclusion schur type inequality for generalized strongly ๐‘-convex functions of higher order on [3] has a correction. (๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ )๐œ‡๐œ™ ( ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ ๐‘ฅ 3 ๐‘ โˆ’ ๐‘ฅ 1 ๐‘) โ‰ฅ ๐œ™(๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ ), is not valid for any ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ , ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ โˆˆ (0,1) and ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ2 ๐‘ < ๐‘ฅ3 ๐‘ โˆ’ ๐‘ฅ1 ๐‘ with ๐‘, ๐‘ž > 0, ๐‘ก โˆˆ [0,1], and ๐œ™(๐‘ก) = ๐‘ก๐‘ž (1 โˆ’ ๐‘ก) + ๐‘ก(1 โˆ’ ๐‘ก)๐‘ž . so, (5) is the correct schur type inequality for generalized strongly ๐‘-convex funtions of higher order. acknowledgments this paper supported by the dpp/spp grant no. 1519/un10.f09/pn/2021 at mathematics and natural sciences faculty, universitas brawijaya. references [1] d. henrion, "convexity", the princeton companion to applied mathematics, part ii, vol. 8, pp. 89-90, 2015. [2] g. g. magaril-il'yaev and v. m. tikhomirov, convex analysis: theory and applications, 2003. [3] m. s. saleem, y. m. chu, n. jahangir, h. akhtar, and c. y. jung, "on generalized strongly p-convex functions of higher order", journal of mathematics, vol. 2020, hindawi, 2020. [4] c. zhang, m. s. saleem, w. nazeer, n. shoukat, and y. rao, "operator (p, ฮท)-convexity and some classical inequalities". journal of mathematics, vol. 2020, hindawi. [5] m. r. delavar and s. s. dragomir, "on ฮท-convexity", math. innequal. appl, vol. 20, pp. 203-216, 2017. [6] m. a. noor and k. i. noor, "higher order strongly general convex functions and variational inequalities", aims mathematics, vol. 55, pp. 3646-3663, 2020. [7] m. a. noor and k. i. noor, "higher order general convex functions and variational a note on generalized strongly p-convex functions of higher order corina karim 157 inequalities", canad. j. appl. math, vol. 3, pp. 1-17, 2021. [8] m. u. awan, m. a. noor, k. i. noor, and f. safdar, "on strongly generalized convex funtions", filomat, vol. 31, pp. 5783-5790, 2017. [9] s. z. ullah, m. a. khan, and y. m. chu, "a note on generalized convex funtions", journal of inequalities and applications, vol. 291, 2019. [10] b. de finneti, "sulle stratificazioni covesse", ann. mat. pura appl, vol. 30, pp. 173183, 1949. [11] m. a. noor and k. i. noor, "on expopentially convex funtions", journal of orissa mathematical society, vol. 38, pp. 33-51, 2019. [12] m. a. noor and k. i. noor, "strongly exponentially convex funtions", u.p.b. sci. bull, vol. 81, 2019. [13] j. e. peฤariฤ‡, f. proschan, y. l. tong, convex funtions, partial orderings, and statistical applications, academic press, boston, 1992. [14] s. varoลกanec, "on h-convexity", math. anal. appl, vol. 326, pp. 303-311, 2007. [15] h. angulo, j. gimรฉnez, a. m. moros, and k. nikodem, "on strongly h-convex funtions", ann. funct. anal, vol. 2, pp. 85-91, 2011. [16] k. zhang and j. wan, "p-convex funtions and their properties", pure and applied mathematics, vol. 23, 2007. [17] s. maden, s. turhan, and iฬ‡. iฬ‡scan, hermite-hadamard inequality for strongly p-convex funtions, springer, berlin, 2018. [18] h. k. xu, "fixed point theorem for uniformly lipschitzian semigroups in uniformly convex spaces", journal of mathematical analysis and applications, vol. 152, pp. 391398, 1990. [19] b. prus and r. smarzewski, "strongly unique best approximations and centersin uniformly convex spaces", journal of mathematical analysis and applications, vol. 121, pp. 10-21, 1987. pemodelan pertumbuhan tanaman zea mays l.menggunakan stochastic l-system juhari jurusan matematika uin maulana malik ibrahim malang e-mail : jo_alkanderi57@yahoo.co.id abstrak l-systems memiliki fleksibilitas dalam mensimulasikan struktur dan proses pengembangan pertumbuhan tanaman secara visual dan realistik. penelitian ini bertujuan untuk memodelkan pertumbuhan tanaman jagung menggunakan l-systems dan memvisualisasikan model pertumbuhan tanaman jagung tersebut dari kecil hingga dewasa dalam ruang dimensi tiga. penelitian dilakukan dalam tiga tahap yang diawali dari identifikasi kebutuhan data tehadap pertumbuhan tanaman jagung (zea mays l.). tahap kedua, membangun model secara manual yang meliputi identifikasi dan penentuan komponen lsystems (huruf, aksioma, dan aturan produksi). tahap ketiga, melakukan simulasi dan visualisasi model pertumbuhan tanaman jagung yang telah didapat menggunakan processing dengan bahasa java dalam ruang dimensi tiga. ketiga tahapan tersebut menghasilkan model stochastic l-systems dari pertumbuhan tanaman jagung dalam ruang dimensi tiga. visualisasi model tanaman jagung yang telah dihasilkan pada penelitian ini lebih menekankan pada penyempurnaan model yang dilakukan pada penelitian sebelumnya terutama pada pewarnaan, pembentukan batang, dan adanya tulang daun pada tanaman jagung setiap iterasinya. model tanaman jagung divisualisasikan mulai dari kecil hingga dewasa (fase vegetatif) yang memiliki tulang daun dan kelengkungan daun berbeda dari daun bawah sampai pada daun atas. tanaman jagung yang divisualisasikan hanya terbatas sampai 8 iterasi saja yang sudah mampu mewakili pertumbuhan tanaman jagung pada fase vegetatif. kata kunci: tanaman jagung (zea mays l.), pemodelan, stochastic l-systems abstract l-systems have the flexibility in structure and development process of simulating plant growth and visually realistic. this research aims to model the growth of corn plants using l-systems and visualize the corn crop growth model from small to mature in three dimensional space. the research was conducted in three stages starting from the identification of data needs by taking action against plant growth of corn (zea mays l.). the second stage, building on the model manually which include the identification and determination of components of l-systems (letters, axioms, and rules of production). the third stage, perform simulations and visualizations of the corn plant growth model has been obtained using processing with java in a three dimensional space. the third stage of the stochastic model generate l-systems of plant growth of corn in three dimensional space. visualization model a corn plant has produced on this research is emphasized on consummation model performed on previous study especially in staining, the formation of stem, and the bone leaves on the corn plant any iterasinya. model a corn plant divisualisasikan ranging from childhood to manhood ( vegetative phase ) that have a curvature leaves and leaves different from lower leaves until the leaves upon. a corn plant divisualisasikan confined to 8 iterating which are able to represent plant growth corn on vegetative phase. keywords: zea mays l., modeling, stochastic l-systems pendahuluan program simulasi berbasis pendekatan metoda l-systems memiliki fleksibiltas dalam mensimulasikan struktur dan proses pengembangan pertumbuhan tanaman secara visual dan realistik beserta faktor-faktor lingkungan yang mempengaruhinya. tahun 1998 fournier and andrieu mengembangkan model pertumbuhan tanaman jagung dalam 3d mulai dari proses tanaman kecil hingga tumbuh menjadi dewasa. batang dan daun tanaman jagung pada gambar 1 menggunakan aproksimasi segitiga (gambar 1.a), dimana batang menggunakan delapan segitiga dan setiap pembentukan bidang pada daun menggunakan dua segitiga, sehingga total seluruh bidang segitiga yang digunakan untuk memodelkan tanaman jagung adalah 29 segitiga. mailto:jo_alkanderi57@yahoo.co.id juhari 50 volume 3 no. 1 november 2013 gambar 1 (a) representasi batang dan daun tanaman jagung; (b) hasil simulasi dan visualisasi tanaman jagung. representasi pemodelan tanaman jagung dengan menggunakan segitiga belum cukup untuk menggambarkan keadaan tanaman yang sesungguhnya karena jika diperhatikan bentuk batang pada hasil model tanaman jagung pada gambar 1 tidak menyerupai batang tanaman jagung sebenarnya yang pada keyataannya lebih cenderung berbentuk silinder/tabung. pewarnaan pada tanaman jagung hasil simulasi pada gambar 1 (b) masih monoton pada satu warna. penelitian lainnya yang sudah dilaksanakan menggunakan l-systems adalah memodelkan bentuk daun menggunakan lsystems dan algoritma genetik [6], memodelkan bentukโ€“bentuk batang dimensi tiga menggunakan l-systems [3], dan memodelkan morfologi batang tanaman pada dimensi dua dengan l-systems [2]. penelitian tersebut masih memerlukan pengembangan pada tanaman yang lebih kompleks pada dimensi tiga. pengembangan yang akan dilakukan memodelkan tanaman jagung (zea mays l.) tiga dimensi menggunakan sthochastic l-systems. penelitian diawali dari identifikasi kebutuhan data terhadap pemodelan pertumbuhan tanaman jagung. data yang dibutuhkan berupa perkiraan sudut, panjang daun dan jumlah daun dalam satu tanaman jagung. data yang diperoleh digunakan untuk mendesain model tanaman jagung dalam bidang tiga dimensi. desain pemodelan pertumbuhan tanaman jagung, selanjutnya dilakukan pengujian dan validasi simulasi hasil program yang telah didapat. penelitian bertujuan untuk menyusun model dan memvisualisasi tanaman jagung dalam ruang dimensi tiga menggunakan sthochastic l-systems. kajian pustaka a. l-systems beberapa istilah yang menjadi komponen utama pada l-systems adalah: a) huruf huruf adalah himpunan hingga dan simbol-simbol formal, misalnya dalam bentuk dan seterusnya, atau mungkin beberapa huruf lainnya. b) aksioma aksioma (inisiator) adalah suatu string dari simbol-simbol pada . himpunan string dari dinotasikan . jika diberikan , maka beberapa contoh string yang dapat dibentuk yaitu: dan seterusnya. panjang dari suatu string adalah jumlah simbol dalam string. c) produksi produksi (aturan penulisan kembali) adalah suatu pemetaan simbol ke string . ini diberi label dan ditulis dengan notasi: . jika suatu simbol tidak memiliki aturan produksi, maka dapat diasumsikan bahwa simbol tersebut dipetakan pada dirinya sendiri sehingga menjadi konstanta l-systems. [4] tabel 1. generasi l-systems contextsensitive b. penafsiran grafis pada l-systems pada l-systems terdapat simbol-simbol yang dapat ditafsirkan secara grafis. jika diasumsikan suatu satuan panjang dan perputaran sudut , maka perintah-perintah dari simbol-simbol pada l-systems adalah sebagai berikut: : menggambar ke depan satu satuan sepanjang ; : bergerak ke depan satu satuan sepanjang tanpa harus menggambar; : berputar berlawanan arah jarum jam dengan sudut ; : berputar searah jarum jam dengan sudut ; dan | : berputar 180o atau berbalik arah v ,,, cba w v v *v },,{ cbav ๏€ฝ ,,,,,, bbccaabaabcacbba w w va ๏ƒŽ * vw๏ƒŽ wap ๏‚ฎ: va ๏ƒŽ a 0 g baaaaaaaa 1 g abaaaaaaa 2 g aabaaaaaa 3 g aaabaaaaa h ๏ค f h g h ๏€ซ ๏ค ๏ค )a( )b( pemodelan pertumbuhan zea mays l. menggunakan sthochastic l-system jurnal cauchy โ€“ issn: 2086-0382 51 penafsirkan l-systems secara grafis dapat diartikan menggambar secara grafis barisan generasi yang dihasilkan dari aksioma dan aturan produksi yang diberikan. contohnya, jika diberikan aksioma dan aturan produksi dengan , dan , maka dimulai dengan aksioma akan diperoleh produksi generasi pertama dengan string: jika diasumsikan bahwa satu satuan sudut adalah ๐œ‹ 3 radian, maka penafsiran grafis dari generasi pertama dapat dilihat pada gambar berikut ini: gambar 2. penafsiran grafis dari l-systems c. percabangan l-systems pada dimensi tiga pada dimensi dua, simbol l-systems yang digunakan hanya berkisar pada f, +, dan -. namun, simbol l-systems pada dimensi dua tidak cukup untuk memvisulaisasikan grafis l-systems pada dimensi tiga. sehingga memerlukan simbol tambahan. bentuk gerakan grafika turtle pada dimensi tiga bergerak dengan arah dan . arah sudut tersusun atas 3 arah bagian yang bertumpuh pada sumbu dan , sedangkan konstanta dari dan dengan cara penambahan dan pengurangan untuk inisialisasi gerakan. penggambaran gerakan dinyatakan dalam sistem koordinat dinotasikan menggunakan 6 notasi yaitu ),,,,,( zyxzyx ๏ก๏ก๏ก . koordinat baru dan dari gerakan dihitung dari perkalian koordinat dari gerakan saat itu dengan rotasi matrik dan . penafsiran grafis l-systems dimensi tiga dapat dilihat pada gambar berikut: gambar 3. penafsiran grafis l-systems 3d matrik rotasi dari gambar 3 memenuhi persamaan sebagai berikut: rzyxzyx ],,[]',','[ ๏‚ฎ๏‚ฎ๏‚ฎ๏‚ฎ๏‚ฎ๏‚ฎ ๏€ฝ dimana r adalah matriks rotasi 33๏‚ด . secara khusus, rotasi dengan sudut ๏ก tentang vektor ๏‚ฎ๏‚ฎ yx , dan ๏‚ฎ z mengikuti aturan: ๏ƒบ ๏ƒบ ๏ƒบ ๏ƒป ๏ƒน ๏ƒช ๏ƒช ๏ƒช ๏ƒซ ๏ƒฉ ๏€ญ๏€ฝ 100 0cossin 0sincos )( ๏ก๏ก ๏ก๏ก ๏ก z r ๏ƒบ ๏ƒบ ๏ƒบ ๏ƒป ๏ƒน ๏ƒช ๏ƒช ๏ƒช ๏ƒซ ๏ƒฉ ๏€ญ ๏€ฝ ๏ก๏ก ๏ก๏ก ๏ก cos0sin 010 sin0cos )( y r ๏ƒบ ๏ƒบ ๏ƒบ ๏ƒป ๏ƒน ๏ƒช ๏ƒช ๏ƒช ๏ƒซ ๏ƒฉ ๏€ญ๏€ฝ ๏ก๏ก ๏ก๏ก๏ก cossin0 sincos0 001 )( x r contoh string percabangan, jika diberikan aksioma dan aturan produksi dengan ]}[,/,\,,^,,,{ ๏€ญ๏€ซ๏€ฝ fv , dan ffffffffffp ][_][^][]\[: ๏€ซ๏€ญ๏‚ฎ , maka dimulai dengan aksioma akan diperoleh produksi generasi pertama dengan string: fffffffff ][_][^][]\[ ๏€ซ๏€ญ asumsikan bahwa satu satuan sudut rotasi ๏ฑ dan sudut kemiringan cabang ๏ค adalah ๐œ‹ 4 radian, maka penafsiran grafis generasi pertama dapat dilihat pada gambar berikut ini : gambar 3. percabangan l-systems pada dimensi tiga objek yang dijadikan penelitian adalah foto tanaman jagung jenis hibrida. lokasi penelitian adalah areal pertanian politeknik negeri jember. pemodelan tanaman jagung dilakukan dalam tiga },,{ ๏€ญ๏€ซ๏€ฝ fv fw ๏€ฝ fffffp ๏€ซ๏€ญ๏€ญ๏€ซ๏‚ฎ: f 1 g ffff ๏€ซ๏€ญ๏€ญ๏€ซ ๏ค yx, z yx, z yx ๏‚ถ๏‚ถ , z๏‚ถ yx, z ryrx, rz fw ๏€ฝ f 1 g 1 g ๏‚ฎ x ๏‚ฎ z ๏‚ฎ y ^ ๏€ซ ๏€ญ \ /_ 1 2 3 1 2 3 4 1 6 5 3 4 2 0 x 4 \ ๏€ญ ๏€ซ ^ y z _ juhari 52 volume 3 no. 1 november 2013 tahapan. tahap pertama, pengambilan data penelitian yang berupa pengukuran sudut, panjang daun, dan jumlah daun dalam satu tanaman. tahap kedua, pembuatan model secara manual untuk menentukan dan menafsirkan komponen-komponen l-systems penyusun tanaman jagung. penentuan komponen l-systems meliputi pemilihan huruf yang dipilih mulai dari huruf a sampai z beserta huruf kecil a sampai z serta pembuatan aturan produksi berdasar pada huruf yang telah ditentukan. tahap ketiga, simulasi dan visualisasi tanaman jagung. penentuan simulasi tanaman jagung dilakukan dengan mengubah jumlah iterasi. perubahan jumlah iterasi berfungsi untuk mengatur pertumbuhan batang tanaman sekaligus besar dan banyaknya daun jagung dalam model tersebut. hasil penelitian a. hasil model penelitian pemodelan tanaman jagung dimensi tiga dibangun dengan menggunakan jenis l-systems context free dan stochastic. adapun definisi dari simbol-simbol l-systems dimensi tiga pada tanaman jagung dilihat pada tabel 2 sebagai berikut: tabel 2. simbol โ€“ simbol l-systems dimensi tiga pada tanaman jagung huruf arti f maju membuat batang dengan panjang 5 satuan dan tebal 5 satuan dalam sistem koordinat + berputar ke kiri dengan sudut 10o pada bidang xy terhadap sumbu z menggunakan matriks rotasi )(๏ก z r berputar ke kanan dengan sudut 10o pada bidang xy terhadap sumbu z menggunakan matriks rotasi )( ๏ก๏€ญ z r _ berputar ke kiri dengan sudut 10o pada bidang xz terhadap sumbu y menggunakan matriks rotasi )(๏ก y r ^ berputar ke kanan dengan sudut 10o pada bidang xz terhadap sumbu y menggunakan matriks rotasi )( ๏ก๏€ญ y r \ berputar ke kiri dengan sudut 10o pada bidang yz terhadap sumbu x menggunakan matriks rotasi )(๏ก x r / berputar ke kanan dengan sudut 10o pada bidang yz terhadap sumbu x menggunakan matriks rotasi )( ๏ก๏€ญ x r [ menyimpan posisi saat ini dan bergerak sesuai perintah selanjutnya ] kembali ke posisi semula yang disimpan oleh simbol โ€[โ€ t bergeser tanpa menggambar (berpindah) berikut semua aturan produksi yang telah dibuat untuk memodelkan tanaman jagung. y k:p xj:p wi:p u g:p rf:p qe:p oc:p nb:p ma:p ks:p j r:p ip:p gn:p fm:p el:p cj:p bi:pac:p1 ๏‚ฎ๏‚ฎ๏‚ฎ ๏‚ฎ๏‚ฎ๏‚ฎ ๏‚ฎ๏‚ฎ๏‚ฎ ๏‚ฎ๏‚ฎ๏‚ฎ ๏‚ฎ๏‚ฎ๏‚ฎ ๏‚ฎ๏‚ฎ๏‚ฎ 232221 191817 151413 11109 765 32 zl:p vh:p pd:p lt:p ho:p dk:p ๏‚ฎ ๏‚ฎ ๏‚ฎ ๏‚ฎ ๏‚ฎ ๏‚ฎ 24 20 16 12 8 4 k__l_m],_j__j__j__c_i_j_j_j_^^^[/////////x:p ๏‚ฎ25 _m]j__j__k__lc_i_j_j_j_^^\^\\\\\\\[\y:p ๏‚ฎ26 p_r_s_t],n_o_p_p_p_^^^[/////////u:p ๏‚ฎ27 p_r_s_t]n_o_p_p_p_^^\^\\\\\\\[\q:p ๏‚ฎ28 _m]j__j__k__lc_i_j_j_j_^^\^\\\\\\\[\w:p ๏‚ฎ29 p_r_s_t]n_o_p_p_p_^^\^\\\\\\\[\z:p ๏‚ฎ30 ded:p ๏‚ฎ31 z]dgw][d[v:p ๏€ซ๏€ซ๏€ซ๏€ซ๏€ญ๏€ญ๏€ญ๏€ญ๏‚ฎ32 +x]dv+++\\q][\----\d[\b:p ๏‚ฎ33 y]db---u][-d[a:p ๏€ซ๏€ซ๏€ซ๏€ซ๏‚ฎ34 +x]da+++-y][//---d[//h:p ๏‚ฎ35 q]dh---u][-+++d[+g:p ๏‚ฎ36 [g]---------ttttt [g]---------ttttt-[g]-------ttttt____ttttt_____^^^^^^ ^^^ttttt---------[g] ttttt---------[g]-ttttt-------____[g]ttttt_____^^^^^^^^[g]^--------ttttt[g]---------ttttt [g]---------ttttt ____ttttt_____^^^^^^^^^ttttt ---------[g]ttttt--------[g]ttttt---------[g]f :p37 ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏€ซ๏‚ฎ pemodelan pertumbuhan zea mays l. menggunakan sthochastic l-system jurnal cauchy โ€“ issn: 2086-0382 53 b. hasil pemrograman desain visualisasi pertumbuhan tanaman menggunakan l-systems didasarkan pada kerangka prototype hasil pertumbuhan tanaman jagung selama pengukuran. berdasarkan visual grafis pertumbuhan tanaman jagung yang dihasilkan, selanjutnya format grafis digunakan sebagai data visual pertumbuhan tanaman dalam desain antar muka permodelan pertumbuhan tanamaan yang dikembangkan. berikut output hasil program visualisasi tanaman jagung tiga dimensi. gambar 4. hasil output program l-systems tanaman jagung program dijalankan sehingga menghasilkan visualisasi tanaman jagung tiga dimensi baik tanaman individu maupun landscape. berikut hasil visualisasi tanaman jagung individu mulai umur kurang dari 5 hst, 7 hst, 14 hst, 24 hst, 34 hst, 44 hst, dan 54 hst. (hst = hari setelah tanam) gambar 5. hasil visualisasi pertumbuhan tanaman jagung dari kecil hingga dewasa untuk memvisualisasikan tanaman jagung secara landscape, maka tidak perlu mengubah script program, cukup dengan memasukkan semua aturan produksi yang telah dibuat dan jumlah iterasi sesuai dengan yang diinginkan. gambar 6. hasil visualisasi landscape tanaman jagung kesimpulan pertumbuhan tanaman jagung disusun oleh model pertumbuhan tanaman menggunakan lsystems context free dan stochastic. model pertumbuhan tanaman jagung terbentuk dari gabungan aturan produksi, aksioma, serta sudut percabangan daun. komponen tersebut diperoleh dengan melakukan serangkaian proses identifikasi secara manual yang meliputi pengukuran sudut, tinggi tanaman dan jumlah daun pada 5 sampel tanaman jagung yang kemudian dirata-rata; model tanaman jagung divisualisasi dalam ruang dimensi tiga dengan memperhatikan sudut kelengkungan daun setiap iterasinya. hasil visualisasi tanaman jagung ditampilkan secara individu dan landscape. tanaman jagung landscape hasil visualisasi model dibuat 12 tanaman yang mewakili areal tanaman jagung sebenarnya. referensi [1] chuai-aree, s., siripant, s., and lursinsap, c. 2000. animating plant growth in l-system by parametric functional symbols. thailand : department of mathematics. [2] ashlock d., k. m. bryden, and s. p. gent. 2004. simultaneous evolution of bracketed lsystem rules and interpretation. canada : mathematics and statistics university of guelph. [3] luis, d., ding, y., and jingyi, y. 2010. modeling complex unfoliaged trees from a sparse set of images. usa : university of delaware. [4] mishra, j., dan mishra, s. 2007. l-system fractal. netherland : elsevier [5] prusinkiewicz, p. and lindenmayer, a. 1990. the algorithmic beauty of plants. new york : springer-verlag juhari 54 volume 3 no. 1 november 2013 [6] yodthong, r., siripant, s., lursinsap, c. 2005. modeling leaf shapes using l-systems and genetic algorithms. thailand : faculty of engineering, chulalongkorn university. [7] viruchpintu, r and khiripet, n. 2006. realtime 3d plant structure modeling by l-system with actual measurement parameters. thailand : national electronics and computer technology center, pathumthani inclusion properties of the homogeneous herz-morrey y aces cauchy โ€“ jurnal matematika murni dan aplikasi volume 6(3) (2020), pages 117-121 p-issn: 2086-0382; e-issn: 2477-3344 submitted: august 18, 2020 reviewed: october 05, 2020 accepted: november 05, 2020 doi: http://dx.doi.org/10.18860/ca.v6i3.10114 hairur rahman department of mathematics, islamic state university of maulana malik ibrahim malang email: hairur@mat.uin-malang.ac.id abstract in this paper, we have discussed the inclusion properties of the homogeneous herz-morrey spaces and the homogeneous weak homogeneous spaces. we also studied the inclusion relation between those spaces. keywords: homogeneous herz-morrey spaces; homogeneous weak herz-morrey spaces; inclusion properties. introduction the subject discussion about inclusion properties of any spaces or inclusion relation between spaces has interested to study. some authors have studied about inclusion relation in some spaces (see [1], [2], [3], [4] and [5]). it guided us to discuss the inclusion properties of other spaces. regarding c.b. morrey in [6] who introduced morrey spaces, many authors have defined the generalization of morrey spaces and combined with other spaces. lu and xu [7] introduce one of the homogeneous herz-morrey spaces. these spaces are the generalization of morrey spaces and herz spaces. let ๐›ผ โˆˆ โ„, 0 < ๐‘ โ‰ค โˆž, 0 < ๐‘ž < โˆž, and 0 โ‰ค ๐œ† < โˆž, the homogeneous herz-morrey spaces โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) are defined by โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) โˆถ= {๐‘“ โˆˆ ๐ฟ๐‘™๐‘œ๐‘ ๐‘ž (โ„๐‘›/{0}) โˆถ โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) < โˆž}, where โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) = sup ๐ฟโˆˆโ„ค 2โˆ’๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ๐‘โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘ ๐ฟ ๐‘˜=โˆ’โˆž ) 1 ๐‘ with ๐ต๐‘˜ = ๐ต(0,2 ๐‘˜ ) = {๐‘ฅ โˆˆ โ„๐‘›: |๐‘ฅ| โ‰ค 2๐‘˜ }, ๐ด๐‘˜ = ๐ต๐‘˜ /๐ต๐‘˜โˆ’1 for ๐‘˜ โˆˆ โ„ค and ๐œ’๐‘˜ = ๐œ’๐ด๐‘˜ for ๐‘˜ โˆˆ โ„ค be the characteristic function of the set ๐ด๐‘˜ . lu and xu also defined the homogeneous weak herz-morrey spaces. for ๐›ผ โˆˆ โ„, let 0 < ๐‘ โ‰ค โˆž, ๐œ† โ‰ฅ 0 and 0 < ๐‘ž < โˆž, the homogeneous weak herz-morrey spaces (๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›)) is a set of measurable ๐‘“ โˆˆ ๐ฟ๐‘™๐‘œ๐‘ ๐‘ž (โ„๐‘›/{0}) which completed by norm such that โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) = sup ๐›พ>0 ๐›พ sup ๐ฟโˆˆโ„ค 2โˆ’๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ๐‘๐‘š๐‘˜ (๐›พ, ๐‘“) ๐‘ ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž ) 1 ๐‘ < โˆž, where ๐‘š๐‘˜ (๐›พ, ๐‘“) = |{๐‘ฅ โˆˆ ๐ด๐‘˜ : |๐‘“(๐‘ฅ)| > ๐›พ}|. some authors have studied those spaces in different term of discussion (see [7], [8], [9], [10]). meanwhile, in this article, the authors would like to discuss the inclusion properties and inclusion relation of the homogeneous herz-morrey spaces and the homogeneous weak herz-morrey spaces. inclusion properties of the homogeneous herz-morrey y aces http://dx.doi.org/10.18860/ca.v6i3.10114 mailto:hairur@mat.uin-malang.ac.id inclusion properties of the homogeneous herz-morrey hairur rahman 118 results and discussion now, we formulate our main results of this paper as follows: theorem 1.1. let 1 โ‰ค ๐‘1 โ‰ค ๐‘2 < ๐‘ž < โˆž, then the following inclusion holds: โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›). generally, by theorem 1.1, we have the following inclusions of the homogeneous herz-morrey spaces. theorem 1.2. let 1 โ‰ค ๐‘1 โ‰ค ๐‘2 < ๐‘ž < โˆž, then the following inclusion holds: ๐ฟ๐‘ž (๐‘…๐‘›) = โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›). besides, we have the inclusion property of the homogeneous weak herz-morrey spaces, also the inclusion relation of the homogeneous herz-morrey spaces. theorem 1.3. let 1 โ‰ค ๐‘1 โ‰ค ๐‘2 โ‰ค ๐‘ž < โˆž, the following inclusion holds: ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (โ„๐‘›) โŠ† ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (โ„๐‘›). theorem 1.4. let 1 โ‰ค ๐‘ โ‰ค ๐‘ž. then the inclusion โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ† (โ„๐‘›) โŠ† ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) is proper. the proof of each theorem will be described in the following section. the proof of theorem 1.1. for proofing theorem 1.1., we shall show that โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โ‰ค โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) by applying hรถlder inequality. proof of theorem 1.1. let we first take for any ๐‘“ โˆˆ โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›), then by using hรถlder inequality and ๐‘1 โ‰ค ๐‘2 we obtain that โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) = sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ๐‘1 ๐ฟ ๐‘˜=โˆ’โˆž โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘1 ) 1 ๐‘1 โ‰ค sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† (( โˆ‘ (2๐‘˜๐›ผ๐‘1 ) ๐‘2 ๐‘1 ๐ฟ ๐‘˜=โˆ’โˆž ) ๐‘1 ๐‘2 ( โˆ‘ (โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘1 ) ๐‘2 ๐‘2โˆ’๐‘1 ๐ฟ ๐‘˜=โˆ’โˆž ) 1โˆ’ ๐‘1 ๐‘2 ) 1 ๐‘1 โ‰ค sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† (( โˆ‘ 2๐‘˜๐›ผ๐‘2 ๐ฟ ๐‘˜=โˆ’โˆž ) ๐‘1 ๐‘2 ( โˆ‘ โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘1๐‘2 ๐‘2โˆ’๐‘1 ๐ฟ ๐‘˜=โˆ’โˆž ) 1โˆ’ ๐‘1 ๐‘2 ) 1 ๐‘1 โ‰ค sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ๐‘2 ๐ฟ ๐‘˜=โˆ’โˆž ( โˆ‘ โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘1๐‘2 ๐‘2โˆ’๐‘1 ๐ฟ ๐‘˜=โˆ’โˆž ) ๐‘2โˆ’๐‘1 ๐‘1 ) 1 ๐‘2 โ‰ค sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ๐‘2 ๐ฟ ๐‘˜=โˆ’โˆž โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘2 ) 1 ๐‘2 โ‰ค โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) . by this observation, we know that ๐‘“ โˆˆ โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›). hence it concludes that โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›). inclusion properties of the homogeneous herz-morrey hairur rahman 119 the proof of theorem 1.2. since it has been stated in theorem 1.1 that โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›), therefore in proving theorem 1.2, we need to prove that ๐ฟ๐‘ž (๐‘…๐‘›) = โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›). proof of theorem 1.2. to prove that ๐ฟ๐‘ž (๐‘…๐‘›) = โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›), we need to show that โ€–๐‘“โ€–๐‘ณ๐’’(๐‘น๐’) = โ€–๐‘“โ€–๐‘€๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) . let take for any ๐‘“ โˆˆ ๐‘€๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›), by applying hรถlder inequality for the norm. we obtain that โ€–๐‘“โ€– ๐‘€๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) โ‰ค sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž ((โˆซ |๐‘“(๐‘ฅ)|๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž (โˆซ |๐œ’ ๐‘˜ | ๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž ) ๐‘ž ) 1 ๐‘ž โ‰ค sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† โˆ‘ 2๐‘˜๐›ผ ๐ฟ ๐‘˜=โˆ’โˆž (โˆซ |๐‘“(๐‘ฅ)|๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž (2๐‘˜๐‘‘ ) 1 ๐‘ž โ‰ค sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† โˆ‘ 2 ๐‘˜๐›ผ+ ๐‘˜๐‘‘ ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž (โˆซ |๐‘“(๐‘ฅ)|๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž โ‰ค ๐ถ (โˆซ |๐‘“(๐‘ฅ)|๐‘ž ๐‘‘๐‘ฆ ๐ต(0,2๐‘˜) ) 1 ๐‘ž โ‰ค โ€–๐’‡โ€–๐‘ณ๐’’(๐‘น๐’), it means that ๐‘“ โˆˆ ๐ฟ๐‘ž (๐‘…๐‘›). then ๐ฟ๐‘ž (๐‘…๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›). meanwhile, for any ๐‘“ โˆˆ ๐ฟ๐‘ž (๐‘…๐‘›), we can find any constant ๐ถ such that ๐ถ = sup ๐ฟโˆˆ๐‘ 2โˆ’๐ฟ๐œ† โˆ‘ 2 ๐‘˜๐›ผ+ ๐‘˜๐‘‘ ๐‘ž๐ฟ ๐‘˜=โˆ’โˆž , then it shows that ๐‘“ โˆˆ โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) which means โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) โŠ† ๐ฟ๐‘ž (๐‘…๐‘›). hence, it concludes that ๐ฟ๐‘ž (๐‘…๐‘›) = โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›). next, we have to prove that โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โŠ† โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) by showing โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โ‰ค โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) . by using a similar way for proving theorem 1.1., and since ๐‘ž > ๐‘2, it is clear that โ€–๐‘“โ€–โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โ‰ค โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›) . therefore, the proof is complete. the proof of theorem 1.3. one way for proving theorem 1.3. is showed that โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) โ‰ค โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) . proof of theorem 1.3. let take for any ๐‘“ โˆˆ โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) , then by observing the norm of ๐‘“ we obtain that โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (โ„๐‘›) = sup ๐›พ>0 ๐›พ sup ๐ฟโˆˆโ„ค 2โˆ’๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ๐‘1 ๐‘š๐‘˜ (๐›พ, ๐‘“) ๐‘1 ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž ) 1 ๐‘1 โ‰ค sup ๐›พ>0 ๐›พ sup ๐ฟโˆˆโ„ค 2โˆ’๐ฟ๐œ† ( โˆ‘ 2๐‘˜๐›ผ๐‘2 ๐‘š๐‘˜ (๐›พ, ๐‘“) ๐‘2 ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž ) 1 ๐‘2 โ‰ค โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (๐‘…๐‘›) . by the observation, it concludes that ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘2,๐‘ž ๐›ผ,๐œ† (โ„๐‘›) โŠ† ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘1,๐‘ž ๐›ผ,๐œ† (โ„๐‘›). inclusion properties of the homogeneous herz-morrey hairur rahman 120 the proof of theorem 1.4. proving theorem 1.4 is used a similar idea as previous theorems which shall show that โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) โ‰ค โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) . proof of theorem 1.4. let ๐‘“ โˆˆ โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘› ), ๐‘Ž โˆˆ โ„๐‘›, and ๐›พ > 0. we observe that |{๐‘ฅ โˆˆ ๐ด๐‘˜ : |๐‘“(๐‘ฅ)| > ๐›พ}| ๐‘ ๐‘ž โ‰ค (โˆซ |๐‘“(๐‘ฅ)๐œ’๐‘˜ | ๐‘ž ๐‘‘๐‘ฅ ๐ต(0,2๐‘˜) ) ๐‘ ๐‘ž = โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘ multiplying both side by โˆ‘ 2๐‘˜๐›ผ๐‘๐ฟ๐‘˜=โˆ’โˆž , then we obtain that โˆ‘ 2๐‘˜๐›ผ๐‘|{๐‘ฅ โˆˆ ๐ด๐‘˜ : |๐‘“(๐‘ฅ)| > ๐›พ}| ๐‘ ๐‘ž ๐ฟ ๐‘˜=โˆ’โˆž โ‰ค โˆ‘ 2๐‘˜๐›ผ๐‘โ€–๐‘“๐œ’๐‘˜ โ€–๐ฟ๐‘ž(โ„๐‘›) ๐‘ ๐ฟ ๐‘˜=โˆ’โˆž . it says merely that โ€–๐‘“โ€– ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) โ‰ค โ€–๐‘“โ€– โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) , therefore ๐‘“ โˆˆ ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›). hence, it is proved that โ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(โ„๐‘›) โŠ† ๐‘Šโ„ณ๏ฟฝฬ‡๏ฟฝ๐‘,๐‘ž ๐›ผ,๐œ†(๐‘…๐‘›). conclusions by this result, the author can conclude that the homogeneous herz-morrey spaces have inclusion properties as stated above. this result will be useful to be used in proving fractional integral on the homogeneous herz-morrey spaces. acknowledgemet this article research is partially supported by uin maliki malang research and innovation program 2020. references [1] h. gunawan, d. i. hakim, k. m. limanta and a. a. masta, "inclusion property of generalized morrey spaces," math. nachr., pp. 1-9, 2016. [2] h. gunawan, d. i. hakim and m. idris, "proper inclusions of morrey spaces," glasnik mathematics, vol. 53, no. 1, 2017. [3] h. gunawan, d. i. hakim, e. nakai and y. sawano, "on inclusion relation between weak morrey spaces and morrey spaces," nonlinear analysis, vol. 168, pp. 27-31, 2018. [4] h. gunawan, e. kikianty and c. schwanke, "discrete morrey spaces and their inclusion properties," math. nachr., pp. 1-14, 2017. [5] a. a. masta, h. gunawan and w. setya-budhi, "an inclusion property of orliczmorrey spaces," j. phys.: conf. ser, vol. 893, pp. 1-7, 2017. [6] c. b. morrey, "on the solution of quasi-linear elliptic partial differential equation," transaction of the american mathematical society, vol. 43, no. 1, pp. 126-166, 1938. [7] s. lu and l. xu, "boundedness of rough singular integral operators on the homogeneous morrey-herz spaces," hokkaido math. journal, vol. 34, pp. 299-314, 2005. [8] m. izuki, "fractional integral on herz-morrey spaces with variable exponent," hiroshima math. j., vol. 40, pp. 343-355, 2010. inclusion properties of the homogeneous herz-morrey hairur rahman 121 [9] y. shi, x. tao and t. zheng, "multilinear riesz potential on morrey-herz spaces with non-doubling measure," journal of inequality and applications, vol. 10, 2010. [10] y. mizuta and t. ohno, "herz-morrey spaces of variable exponent, riesz potential operator and duality," complex variable and elliptic equations, vol. 60, no. 2, pp. 211240, 2015. the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process cauchy โ€“jurnal matematika murni dan aplikasi volume 7(1) (2021), pages 73-83 p-issn: 2086-0382; e-issn: 2477-3344 submitted: july 05, 2021 reviewed: october 15, 2021 accepted: ocotober 30, 2021 doi: https://doi.org/10.18860/ca.v7i1.12848 the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi1, bonno andri wibowo2, nina valentika3, muhammad syazali4, vina apriliani5 1department of mathematics, syiah kuala university, banda aceh, indonesia 2department of mathematics, ipb university, bogor, indonesia 3department of mathematics, pamulang university, tangerang selatan, indonesia 4department of mathematics, universitas pertahanan, bogor, indonesia 5department of mathematics education, uin ar-raniry, banda aceh, indonesia email: ikhsanmaulidi@unsyiah.ac.id bonno1818@gmail.com , dosen02339@unpam.ac.id, muhamad.syazali@idu.ac.id, vina.apriliani@ar-raniry.ac.id abstract the nonhomogeneous poisson process is one of the most widely applied stochastic processes. in this article, we provide a confidence interval of the intensity estimator in the presence of a periodic multiplied by trend power function. this estimator's confidence interval is an application of the formulation of the estimator asymptotic distribution that has been given in previous studies. by using the asymptotic theorem, the distribution was derived in the form of a confidence interval for the intensity function. in addition, constructive proof of the convergent in probability has been provided for all power functions. the results of this study contribute to the study of statistical analysis of the estimators that have been formulated previously. keywords: asymptotic distribution; interval confidence; intensity function; poisson process. introduction there are many events in nature can be modeled by stochastic modeling processes. the stochastic process is a set of random variables that map the sample space to a state space. one of the stochastic processes is a counting process which states the number of events at a time interval. the counting process assuming the number of events has a poisson distribution is called the poisson process. some basic theories related poisson process can be seen in [1]โ€“[3]. due to the intensity function, the poisson process is divided into two categories, namely the homogeneous poisson process and the nonhomogeneous poisson process. a homogeneous poisson process has a constant intensity function (independent of time), while a nonhomogeneous poisson process has a time-dependent intensity function. this nonhomogeneous poisson process is widely applied to real phenomena, such as the phenomenon of earthquakes [4], traffic accidents [5], and radio burst rates [6]. on the other hand, the study of the nonhomogeneous poisson process in the form a periodic intensity function also has been conducted in recent years. [7] studied the https://doi.org/10.18860/ca.v7i1.12848 mailto:ikhsanmaulidi@unsyiah.ac.id mailto:bonno1818@gmail.com mailto:dosen02339@unpam.ac.id mailto:muhamad.syazali@idu.ac.id mailto:vina.apriliani@ar-raniry.ac.id the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 74 estimation of the intensity function in a nonhomogeneous poisson process by including a trend component in the periodic intensity function. the trend component began with a trend in the form of an additive linear function. then the study was continued with a trend in the form of a multiplicative linear function [8]. the estimation of the intensity function was carried out using the general kernel function approach, and [9] examined this poisson process with a uniform kernel approach. other related studies can be seen in [10]โ€“[13]. [14] studied the estimation of the periodic poisson process intensity function with the power function trend using a general kernel. furthermore, the statistical properties of these estimators have also been proven. [15] has given strong consistency of these estimators. in addition, the asymptotic normality of the estimator has also been formulated and given a numerical simulation of the consistency of the estimator [16]. the results obtained in that study are the estimator of the periodic component which converges to the normal distribution by providing certain conditions. as an application of the asymptotic normality, it can be determined the confidence interval of the estimator for the periodic component. this study provides the theorems for the confidence interval for the intensity function parameters and their proofs. the contribution of this study is to provide the characteristics of the estimator, especially in terms of accuracy. with a certain number of samples (interval length), it can be determined how accurately the estimator predicts the value of the parameter in the form of a confidence interval. methods the estimator for periodic component of the intensity function suppose that {๐‘(๐‘ก), ๐‘ก โ‰ฅ 0} is a nonhomogeneous poisson process with intensity function ๐œ† which locally integrable and unknown. suppose also that ๐œ† is a periodic function with the trend of the power function, then ฮป which depends on the time variable ๐‘  can be expressed as ๐œ†(๐‘ ) = ๐œ†๐‘ โˆ— (๐‘ ). ๐‘Ž๐‘ ๐‘ . (1) the values of the ๐‘Ž and ๐‘ constants are assumed to be known, so that what is not known is the function of the periodic component of the intensity function, namely ๐œ†๐‘ โˆ— . equation (1) can also be stated as follows ๐œ†(๐‘ ) = ๐œ†๐‘ (๐‘ ). ๐‘  ๐‘ , (2) with ๐œ†๐‘ (๐‘ ) = ๐‘Ž๐œ†๐‘ โˆ— (๐‘ ). [14] has been given the kernel type estimator for ๐œ†๐‘ (๐‘ ) by using general kernel functions. the estimator for periodic component of the intensity is ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) = ๐œ ๐‘› โˆ‘ 1 โ„Ž๐‘› (๐‘  + ๐‘˜๐œ) ๐‘ โˆž ๐‘˜=0 โˆซ ๐พ ( ๐‘ฅ โˆ’ (๐‘  + ๐‘˜๐œ) โ„Ž๐‘› ) ๐‘(๐‘‘๐‘ฅ). (3) ๐‘› 0 on equation (3), the constant ๐œ is a period of the intensity function which satisfies ๐œ†๐‘ (๐‘  + ๐‘˜๐œ) = ๐œ†๐‘ (๐‘ ), for ๐‘˜ โˆˆ ๐‘. with ๐‘› is the length of the time interval used. in this case, since the poisson process is a discrete stochastic process, it is clear that ๐‘› is a natural number. the function ๐พ called a kernel function if it satisfies the following properties: (k1) ๐พ is a probability density function, (k2) ๐พ is bounded, and (k3) ๐พ is defined in [-1,1] [17]. the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 75 the asymptotic normality of the estimator theorem 1 (the asymptotic normal distribution for ๏ฟฝฬ‚๏ฟฝ๐’„,๐’,๐’Œ(๐’”), ๐ŸŽ < ๐’ƒ < ๐Ÿ) suppose that the intensity ๐œ† satisfies (1) and locally integrable. the kernel function ๐พ satisfies (k1), (k2), (k3), ๐œ†๐‘ has a bounded second derivative around of ๐‘ , 0 < ๐‘ < 1, ๐‘›1โˆ’๐‘ โ„Ž๐‘› โ†’ 0, ๐‘› ๐‘+1โ„Ž๐‘› โ†’ โˆž, โ„Ž๐‘› โ†“ 0 as ๐‘› โ†’ โˆž, a) if (๐‘›1+๐‘ โ„Ž๐‘› 5 ) 1 2 โ†’ 0, then (๐‘›1+๐‘ โ„Ž๐‘› ) 1 2(๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐พ (๐‘ ) โˆ’ ๐œ†๐‘ (๐‘ )) ๐‘‘ โ†’ normal(0, ๐œŽ2) (4) as ๐‘› โ†’ โˆž, with ๐œŽ2 = ๐œ๐œ†๐‘(๐‘ ) (1โˆ’๐‘) โˆซ ๐พ2(๐‘ง)๐‘‘๐‘ง. 1 โˆ’1 b) if (๐‘›1+๐‘ โ„Ž๐‘› 5 ) 1 2 โ†’ 1, then (๐‘›1+๐‘ โ„Ž๐‘› ) 1 2(๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐พ (๐‘ ) โˆ’ ๐œ†๐‘ (๐‘ )) ๐‘‘ โ†’ normal(๐œ‡, ๐œŽ2) (5) as ๐‘› โ†’ โˆž, with ๐œ‡ = ๐œ†๐‘ โ€ฒโ€ฒ(๐‘ ) 2 โˆซ ๐‘ง2๐พ(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 and ๐œŽ2 = ๐œ๐œ†๐‘(๐‘ ) (1โˆ’๐‘) โˆซ ๐พ2(๐‘ง)๐‘‘๐‘ง. 1 โˆ’1 theorem 2 (the asymptotic normal distribution for ๏ฟฝฬ‚๏ฟฝ๐’„,๐’,๐’Œ(๐’”), ๐’ƒ = ๐Ÿ) suppose that the intensity ๐œ† satisfies (1) and locally integrable. the kernel function ๐พ satisfies (k1), (k2), (k3), ๐œ†๐‘ has a bounded second derivative around of ๐‘ , ๐‘ = 1, ln (๐‘›)โ„Ž๐‘› โ†’ 0, ๐‘›2โ„Ž๐‘› ๐‘™๐‘›(๐‘›) โ†’ โˆž, โ„Ž๐‘› โ†“ 0 as ๐‘› โ†’ โˆž, a) if ( ๐‘›2โ„Ž๐‘› 5 ln (๐‘›) ) 1 2 โ†’ 0, then ( ๐‘›2โ„Ž๐‘› ln (๐‘›) ) 1 2 (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐พ (๐‘ ) โˆ’ ๐œ†๐‘ (๐‘ )) ๐‘‘ โ†’ normal(0, ๐œŽ2) (6) as ๐‘› โ†’ โˆž, with ๐œŽ2 = ๐œ๐œ†๐‘ (๐‘ ) โˆซ ๐พ 2(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 . b) if ( ๐‘›2โ„Ž๐‘› 5 ln (๐‘›) ) 1 2 โ†’ 1, then ( ๐‘›2โ„Ž๐‘› ln (๐‘›) ) 1 2 (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐พ (๐‘ ) โˆ’ ๐œ†๐‘ (๐‘ )) ๐‘‘ โ†’ normal(๐œ‡, ๐œŽ2) (7) as ๐‘› โ†’ โˆž, with ๐œ‡ = ๐œ†๐‘ โ€ฒโ€ฒ(๐‘ ) 2 โˆซ ๐‘ง2๐พ(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 and ๐œŽ2 = ๐œ๐œ†๐‘ (๐‘ ) โˆซ ๐พ 2(๐‘ง)๐‘‘๐‘ง. 1 โˆ’1 theorem 3 (the asymptotic normal distribution for ๏ฟฝฬ‚๏ฟฝ๐’„,๐’,๐’Œ(๐’”), ๐’ƒ > ๐Ÿ) suppose that the intensity ๐œ† satisfies (1) and locally integrable. the kernel function ๐พ satisfies (k1), (k2), (k3), and ๐œ†๐‘ has a bounded second derivative around of ๐‘ , ๐‘ > 1, ๐‘›2โ„Ž๐‘› โ†’ โˆž, โ„Ž๐‘› โ†“ 0 as ๐‘› โ†’ โˆž, a) if (๐‘›2โ„Ž๐‘› 5 ) 1 2 โ†’ 0, then (๐‘›2โ„Ž๐‘›) 1 2 (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐พ (๐‘ ) โˆ’ ๐œ†๐‘ (๐‘ )) ๐‘‘ โ†’ normal(0, ๐œŽ2) (8) as ๐‘› โ†’ โˆž, with ๐œŽ2 = ๐œ2โˆ’๐‘ ๐œ†๐‘ (๐‘ )๐œ(๐‘) โˆซ ๐พ 2(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 , and ๐œ(๐‘) = lim ๐‘›โ†’โˆž (โˆ‘ 1 ๐‘˜๐‘ โˆž ๐‘˜=1 ๐ผ(๐‘ฆ + ๐‘  + ๐‘˜๐œ โˆˆ [0, ๐‘›])) . the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 76 b) if (๐‘›2โ„Ž๐‘› 5 ) 1 2 โ†’ 1, then (๐‘›2โ„Ž๐‘› ) 1 2(๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐พ (๐‘ ) โˆ’ ๐œ†๐‘ (๐‘ )) ๐‘‘ โ†’ normal(๐œ‡, ๐œŽ2) (9) as ๐‘› โ†’ โˆž, with ๐œ‡ = ๐œ†๐‘ โ€ฒโ€ฒ(๐‘ ) 2 โˆซ ๐‘ง2๐พ(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 , ๐œŽ2 = ๐œ2โˆ’๐‘ ๐œ†๐‘(๐‘ )๐œ(๐‘) โˆซ ๐พ 2(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 , and ๐œ(๐‘) = lim ๐‘›โ†’โˆž (โˆ‘ 1 ๐‘˜๐‘ โˆž ๐‘˜=1 ๐ผ(๐‘ฆ + ๐‘  + ๐‘˜๐œ โˆˆ [0, ๐‘›])) . the proofs of theorem 1, theorem 2, and theorem 3 above can be proved through a rough analysis, [18]. it is recommended to study the basic theory to proof these theorems in [19]โ€“[21]. results and discussion suppose that ั„ denotes the standard normal distribution with ั„โˆ’1 is the inverse. based on theorem 1, theorem 2, and theorem 3 above, it can be given some confidence interval for ๐œ†๐‘ with significant level 1 โˆ’ ๐›ผ as follows: corollary 1 (the confidence interval for ๐€๐’„ for ๐ŸŽ < ๐’ƒ < ๐Ÿ) suppose that all conditions on theorem 1 are satisfied, the for a significant level ฮฑ where 0 < ๐›ผ < 1, the confidence interval for ๐œ†๐‘ for 0 < ๐‘ < 1 has been given in the following conditions: a) if (๐‘›1+๐‘ โ„Ž๐‘› 5 ) 1 2 โ†’ 0 then ๐ผ๐œ†๐‘ = (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›1+๐‘โ„Ž๐‘› , ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) + ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›1+๐‘โ„Ž๐‘› ), where ๐œŽ2 = ๐œ๐œ†๐‘(๐‘ ) (1โˆ’๐‘) โˆซ ๐พ2(๐‘ง)๐‘‘๐‘ง. 1 โˆ’1 b) if (๐‘›1+๐‘ โ„Ž๐‘› 5 ) 1 2 โ†’ 1 then ๐ผ๐œ†๐‘ = (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡ โˆš๐‘›1+๐‘ โ„Ž๐‘› , ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) + ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡ โˆš๐‘›1+๐‘ โ„Ž๐‘› ), where ๐œ‡ = ๐œ†๐‘ โ€ฒโ€ฒ(๐‘ ) 2 โˆซ ๐‘ง2๐พ(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 and ๐œŽ2 = ๐œ๐œ†๐‘(๐‘ ) (1โˆ’๐‘) โˆซ ๐พ2(๐‘ง)๐‘‘๐‘ง. 1 โˆ’1 corollary 2 (the confidence interval for ๐€๐’„ for ๐’ƒ = ๐Ÿ) suppose that all conditions on theorem 2 are satisfied, the for a significant level ฮฑ where 0 < ๐›ผ < 1, the confidence interval for ๐œ†๐‘ for ๐‘ = 1 has been given in the following conditions: a) if ( ๐‘›2โ„Ž๐‘› 5 ln (๐‘›) ) 1 2 โ†’ 0 then ๐ผ๐œ†๐‘ = (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) โˆ’ ๐œŽโˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) , ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) + ๐œŽโˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) ), where ๐œŽ2 = ๐œ๐œ†๐‘ (๐‘ ) โˆซ ๐พ 2(๐‘ง)๐‘‘๐‘ง. 1 โˆ’1 the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 77 b) if ( ๐‘›2โ„Ž๐‘› 5 ln (๐‘›) ) 1 2 โ†’ 1 then ๐ผ๐œ†๐‘ = (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) โˆ’ (๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡)โˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› , ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) + (๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡)โˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ), where ๐œ‡ = ๐œ†๐‘ โ€ฒโ€ฒ(๐‘ ) 2 โˆซ ๐‘ง2๐พ(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 and ๐œŽ2 = ๐œ๐œ†๐‘ (๐‘ ) โˆซ ๐พ 2(๐‘ง)๐‘‘๐‘ง. 1 โˆ’1 corollary 3 (the confidence interval for ๐€๐’„ for ๐’ƒ > ๐Ÿ) suppose that all conditions on theorem 3 are satisfied, the for a significant level ฮฑ where 0 < ๐›ผ < 1, the confidence interval for ๐œ†๐‘ for ๐‘ > 1 has been given in the following conditions: a) if (๐‘›2โ„Ž๐‘› 5 ) 1 2 โ†’ 0 then ๐ผ๐œ†๐‘ = (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›2โ„Ž๐‘› , ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) + ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›2โ„Ž๐‘› ), where ๐œŽ2 = ๐œ2โˆ’๐‘ ๐œ†๐‘ (๐‘ )๐œ(๐‘) โˆซ ๐พ 2(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 b) if (๐‘›1+๐‘ โ„Ž๐‘› 5 ) 1 2 โ†’ 1 then ๐ผ๐œ†๐‘ = (๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡ โˆš๐‘›2โ„Ž๐‘› , ๏ฟฝฬ‚๏ฟฝ๐‘,๐‘›,๐‘˜ (๐‘ ) + ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡ โˆš๐‘›2โ„Ž๐‘› ), where ๐œ‡ = ๐œ†๐‘ โ€ฒโ€ฒ(๐‘ ) 2 โˆซ ๐‘ง2๐พ(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 , ๐œŽ2 = ๐œ2โˆ’๐‘ ๐œ†๐‘ (๐‘ )๐œ(๐‘) โˆซ ๐พ 2(๐‘ง)๐‘‘๐‘ง 1 โˆ’1 , and ๐œ(๐‘) = lim ๐‘›โ†’โˆž (โˆ‘ 1 ๐‘˜๐‘ โˆž ๐‘˜=1 ๐ผ(๐‘ฆ + ๐‘  + ๐‘˜๐œ โˆˆ [0, ๐‘›])) . to strengthen the reasons for the above confidence intervals, it is given the probability convergence theorems for these confidence interval. theorem 4. convergence in probability of the confidence interval for ๐€๐’„ and ๐ŸŽ < ๐’ƒ < ๐Ÿ if ฮปฬ‚c,n,k is the estimator for periodic component of the intensity function that is given in equation (3). also, iฮปc,n is a confidence interval that is given in corollary 1, then for the value 0 < b < 1 satisfies p(ฮปc,n(s)ฯตiฮปc,n ) โ†’ 1 โˆ’ ฮฑ + o(1), provided n โ†’ โˆž. the proof of theorem 4: case (a) assumption (๐’๐Ÿ+๐’ƒ๐’‰๐’ ๐Ÿ“ ) ๐Ÿ ๐Ÿ โ†’ ๐ŸŽ p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (ฮปฬ‚c,n,k โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›1+๐‘ โ„Ž๐‘› โ‰ค ฮปc,n(s) โ‰ค ฮปฬ‚c,n,k + ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›1+๐‘ โ„Ž๐‘› ) the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 78 p(ฮปc,n(s)ฯตiฮปc,n ) = p (โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›1+๐‘ โ„Ž๐‘› โ‰ค ฮปc,n(s) โˆ’ ฮปฬ‚c,n,k โ‰ค ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›1+๐‘โ„Ž๐‘› ) p(ฮปc,n(s)ฯตiฮปc,n ) = ๐‘ƒ (โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›1+๐‘ โ„Ž๐‘› โ‰ค ฮปฬ‚c,n,k โˆ’ ฮปc,n(s) โ‰ค ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›1+๐‘ โ„Ž๐‘› ) p(ฮปc,n(s)ฯตiฮปc,n ) = ๐‘ƒ (โˆ’๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค โˆš๐‘›1+๐‘ โ„Ž๐‘› (ฮปฬ‚c,n,k โˆ’ ฮปc,n(s)) โ‰ค ๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )), let ๐‘Œ = โˆš๐‘›1+๐‘โ„Ž๐‘› (ฮปฬ‚c,n,k โˆ’ ฮปc(s)), then based on theorem 1 ๐‘Œ~normal(0, ๐œŽ 2), by using central limit theorem ๐‘ = ๐‘Œ ๐œŽ ~normal(0,1). therefore p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (โˆ’ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๐‘ โ‰ค ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) p(ฮปc,n(s)ฯตiฮปc,n ) = p (๐‘ โ‰ค ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ ๐‘ƒ (๐‘ < โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )). since the normal distribution has a symmetricity property, ๐‘ƒ (๐‘ < โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) = ๐‘ƒ (๐‘ โ‰ฅ โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )), then p(ฮปc(s)ฯตiฮปc ) = p (๐‘ โ‰ค ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ (๐‘ โ‰ฅ โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) p(ฮปc,n(s)ฯตiฮปc,n ) = p (๐‘ โ‰ค ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ 1 + p (๐‘ โ‰ค ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) p(ฮปc,n(s)ฯตiฮปc,n ) = ั„ (ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ 1 + ั„ (ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) p(ฮปc,n(s)ฯตiฮปc,n ) = 1 โˆ’ ๐›ผ 2 โˆ’ 1 + 1 โˆ’ ๐›ผ 2 = 1 โˆ’ ๐›ผ, provided ๐‘› โ†’ โˆž. case (b). assumption (๐’๐Ÿ+๐’ƒ๐’‰๐’ ๐Ÿ“ ) ๐Ÿ ๐Ÿ โ†’ ๐Ÿ p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (ฮปฬ‚c,n,k โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡ โˆš๐‘›1+๐‘ โ„Ž๐‘› โ‰ค ฮปc,n(s) โ‰ค ฮปฬ‚c,n,k + ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡ โˆš๐‘›1+๐‘ โ„Ž๐‘› ) = p (โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡ โˆš๐‘›1+๐‘ โ„Ž๐‘› โ‰ค ฮปc,n(s) โˆ’ ฮปฬ‚c,n,k โ‰ค ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡ โˆš๐‘›1+๐‘ โ„Ž๐‘› ) = ๐‘ƒ (โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡ โˆš๐‘›1+๐‘โ„Ž๐‘› โ‰ค ฮปฬ‚c,n,k โˆ’ ฮปc,n(s) โ‰ค ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡ โˆš๐‘›1+๐‘ โ„Ž๐‘› ) the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 79 = ๐‘ƒ (โˆ’ (๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡) โ‰ค โˆš๐‘›1+๐‘ โ„Ž๐‘› (ฮปฬ‚c,n,k โˆ’ ฮปc,n(s)) โ‰ค (๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡)) suppose that ๐‘Œ = โˆš๐‘›1+๐‘ โ„Ž๐‘› (ฮปฬ‚c,n,k โˆ’ ฮปc(s)) then based on theorem 1b ๐‘Œ~normal(๐œ‡, ๐œŽ 2), and ๐‘ = ๐‘Œ โˆ’ ๐œ‡ ๐œŽ ~normal(0,1). therefore p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (โˆ’ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๐‘ โ‰ค ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) p(ฮปc,n(s)ฯตiฮปc,n ) = p (๐‘ โ‰ค ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ ๐‘ƒ (๐‘ < โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )). since the normal distribution has a symmetricity property ๐‘ƒ (๐‘ < โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) = ๐‘ƒ (๐‘ โ‰ฅ โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )), so p(ฮปc(s)ฯตiฮปc ) = p (๐‘ โ‰ค ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ (๐‘ โ‰ฅ โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) p(ฮปc,n(s)ฯตiฮปc,n ) = p (๐‘ โ‰ค ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ 1 + p (๐‘ โ‰ค ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) p(ฮปc,n(s)ฯตiฮปc,n ) = ั„ (ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )) โˆ’ 1 + ั„ (ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) p(ฮปc,n(s)ฯตiฮปc,n ) = 1 โˆ’ ๐›ผ 2 โˆ’ 1 + 1 โˆ’ ๐›ผ 2 = 1 โˆ’ ๐›ผ, provided ๐‘› โ†’ โˆž. theorem 5. convergence in probability of the confidence interval for ๐€๐’„ and ๐’ƒ = ๐Ÿ if ฮปฬ‚c,n,k is the estimator for periodic component of the intensity function that is given in equation (3). also, iฮปc, is an confidence interval that is given in corollary 2, then for the value b = 1 satisfies p(ฮปc(s)ฯตiฮปc ) โ†’ 1 โˆ’ ฮฑ + o(1), provided n โ†’ โˆž. the proof of theorem 5 case (a) assumption ( ๐‘›2โ„Ž๐‘› 5 ln (๐‘›) ) 1 2 โ†’ ๐ŸŽ p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (ฮปฬ‚c,n,k โˆ’ ๐œŽโˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ฮปc,n(s) โ‰ค ฮปฬ‚c,n,k + ๐œŽโˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) = p (โˆ’๐œŽโˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ฮปc,n(s) โˆ’ ฮปฬ‚c,n,k โ‰ค ๐œŽโˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 80 = ๐‘ƒ (โˆ’๐œŽโˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ฮปฬ‚c,n,k โˆ’ ฮปc,n(s) โ‰ค ๐œŽโˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) = ๐‘ƒ (โˆ’๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค โˆš ๐‘›2โ„Ž๐‘› ln(๐‘›) (ฮปฬ‚c,n,k โˆ’ ฮปc,n(s)) โ‰ค ๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )). let = โˆš ๐‘›2โ„Ž๐‘› ln(๐‘›) (ฮปฬ‚c,n,k โˆ’ ฮปc(s)), then based on theorem 2 ๐‘Œ~normal(0, ๐œŽ 2), by using central limit theorem ๐‘ = ๐‘Œ ๐œŽ ~normal(0,1). therefore p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (โˆ’ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๐‘ โ‰ค ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )) by using the same arguments before, it is obtained p(ฮปc(s) ฯต iฮปc ) = 1 โˆ’ ๐›ผ, provided ๐‘› โ†’ โˆž. case (b). assumption ( ๐‘›2โ„Ž๐‘› 5 ln (๐‘›) ) 1 2 โ†’ ๐Ÿ p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (ฮปฬ‚c,n,k โˆ’ (๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡)โˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› โ‰ค ฮปc(s) โ‰ค ฮปฬ‚c,n,k + (๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡)โˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ) = p (โˆ’๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡)โˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› โ‰ค ฮปc(s) โˆ’ ฮปฬ‚c,n,k โ‰ค ๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡)โˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ) = ๐‘ƒ (โˆ’ั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡)โˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› โ‰ค ฮปฬ‚c,n,k โˆ’ ฮปc(s) โ‰ค ๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡)โˆš ln(๐‘›) ๐‘›2โ„Ž๐‘› ) = ๐‘ƒ (โˆ’ (๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡) โ‰ค โˆš ๐‘›2โ„Ž๐‘› ln(๐‘›) (ฮปฬ‚c,n,k โˆ’ ฮปc(s)) โ‰ค (๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡)), suppose that ๐‘Œ = โˆš ๐‘›2โ„Ž๐‘› ln(๐‘›) (ฮปฬ‚c,n,k โˆ’ ฮปc(s)), then according to theorem 1b ๐‘Œ~normal(๐œ‡, ๐œŽ2) and ๐‘ = ๐‘Œ โˆ’ ๐œ‡ ๐œŽ ~normal(0,1). therefore p(ฮปc,n(s) ฯต iฮปc,n ) = ๐‘ƒ (โˆ’ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๐‘ โ‰ค ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )). the same arguments gave us p(ฮปc(s) ฯต iฮปc ) = 1 โˆ’ ๐›ผ, provided ๐‘› โ†’ โˆž. the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 81 theorem 6. convergence in probability of the confidence interval for ๐€๐’„,๐’ and ๐’ƒ > ๐Ÿ if ฮปฬ‚c,n,k is the estimator for periodic component of the intensity function that is given in equation (3). also, iฮปc,n is a confidence interval that is given in corollary 3, then for the value b > 1 satisfies p(ฮปc(s)ฯตiฮปc ) โ†’ 1 โˆ’ ฮฑ + o(1), provided n โ†’ โˆž. the proof of theorem 6 case a. assumption (๐‘›2โ„Ž๐‘› 5 ) 1 2 โ†’ 0 p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (ฮปฬ‚c,n,k โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›2โ„Ž๐‘› โ‰ค ฮปc(s) โ‰ค ฮปฬ‚c,n,k + ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›2โ„Ž๐‘› ) = p (โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›2โ„Ž๐‘› โ‰ค ฮปc(s) โˆ’ ฮปฬ‚c,n,k โ‰ค ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›2โ„Ž๐‘› ) = ๐‘ƒ (โˆ’๐œŽ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›2โ„Ž๐‘› โ‰ค ฮปฬ‚c,n,k โˆ’ ฮปc(s) โ‰ค ๐œŽ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆš๐‘›2โ„Ž๐‘› ) = ๐‘ƒ (โˆ’๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค โˆš๐‘›2โ„Ž๐‘› (ฮปฬ‚c,n,k โˆ’ ฮปc(s)) โ‰ค ๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 )). let ๐‘Œ = โˆš๐‘›2โ„Ž๐‘› (ฮปฬ‚c,n,k โˆ’ ฮปc(s), then according to theorem 3a ๐‘Œ~normal(0, ๐œŽ 2) and ๐‘ = ๐‘Œ ๐œŽ ~normal(0,1). therefore p(ฮปc(s)ฯตiฮปc ) = ๐‘ƒ (โˆ’ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๐‘ โ‰ค ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )). the same arguments gave us p(ฮปc(s) ฯต iฮปc ) = 1 โˆ’ ๐›ผ, provided ๐‘› โ†’ โˆž. case b. assumption (๐‘›2โ„Ž๐‘› 5 ) 1 2 โ†’ ๐Ÿ p(ฮปc(s)ฯต iฮปc ) = ๐‘ƒ (ฮปฬ‚c,n,k โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡ โˆš๐‘›2โ„Ž๐‘› โ‰ค ฮปc(s) โ‰ค ฮปฬ‚c,n,k + ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡ โˆš๐‘›2โ„Ž๐‘› ) = p (โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡ โˆš๐‘›2โ„Ž๐‘› โ‰ค ฮปc(s) โˆ’ ฮปฬ‚c,n,k โ‰ค ๐œŽ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡ โˆš๐‘›2โ„Ž๐‘› ) the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 82 = ๐‘ƒ (โˆ’ ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡ โˆš๐‘›2โ„Ž๐‘› โ‰ค ฮปฬ‚c,n,k โˆ’ ฮปc(s) โ‰ค ๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡ โˆš๐‘›2โ„Ž๐‘› ) = ๐‘ƒ (โˆ’ (๐œŽั„โˆ’1 (1 โˆ’ ๐›ผ 2 ) โˆ’ ๐œ‡) โ‰ค โˆš๐‘›2โ„Ž๐‘› (ฮปฬ‚c,n,k โˆ’ ฮปc(s)) โ‰ค (๐œŽั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) + ๐œ‡)). suppose that ๐‘Œ = โˆš๐‘›2โ„Ž๐‘› (ฮปฬ‚c,n,k โˆ’ ฮปc(s), then based on theorem 3b ๐‘Œ~normal(๐œ‡, ๐œŽ 2) and ๐‘ = ๐‘Œ โˆ’ ๐œ‡ ๐œŽ ~normal(0,1). therefore p(ฮปc(s) ฯต iฮปc ) = ๐‘ƒ (โˆ’ั„ โˆ’1 (1 โˆ’ ๐›ผ 2 ) โ‰ค ๐‘ โ‰ค ั„โˆ’1 (1 โˆ’ ๐›ผ 2 )). by using the same arguments, it is obtained that p(ฮปc(s) ฯต iฮปc ) = 1 โˆ’ ๐›ผ, provided ๐‘› โ†’ โˆž. conclusions from the results that have been studied, the formula to determine the confidence interval for parameter of the periodic component of the nonhomogeneous poisson process with the intensity in the form of periodic function has been obtained. these confidence intervals have been given for each case of the values of b, this is because the results of previous studies show that the variance of the estimator is given in a different function for each case of the values of b. these confidence intervals have been proved to converge in probability 1 โˆ’ ๐›ผ. the recommendation for further research that can be done is providing numerical simulations for each confidence interval case, there are 6 cases. the simulation can be started by determining the bandwidth function โ„Ž๐‘› which satisfies all the conditions in the given case and determining the probability of the estimator being in the confidence interval. references [1] s. ghahramani, fundamentals of probability: with stochastic processes, third edition. new jersey: pearson prentice hall, 2005. [2] d. j. daley and d. vere-jones, โ€œbasic properties of the poisson process,โ€ an introd. to theory point process. vol. i elem. theory methods, pp. 19โ€“40, 2003. [3] g. last and m. penrose, lectures on the poisson process (vol. 7). cambridge university press, 2017. [4] j. geng, w. shi, and g. hu, โ€œbayesian nonparametric nonhomogeneous poisson process with applications to usgs earthquake data,โ€ arxiv prepr. arxiv1907.03186, 2019. [5] f. grabski, โ€œnonhomogeneous poisson process and compound poisson process in the modelling of random processes related to road accidents,โ€ j. kones, vol. 26, no. 1, pp. 39โ€“46, 2019. [6] e. lawrence, s. vander wiel, c. law, s. b. spolaor, and g. c. bower, โ€œthe nonhomogeneous poisson process for fast radio burst rates,โ€ astron. j., vol. 154, the confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous poisson process ikhsan maulidi 83 no. 3, p. 117, 2017. [7] r. helmers and i. w. mangku, โ€œestimating the intensity of a cyclic poisson process in the presence of linear trend,โ€ ann. inst. stat. math., vol. 61, no. 3, pp. 599โ€“628, 2009. [8] i. w. mangku, โ€œestimating the intensity obtained as the product of a periodic function with the linear trend of a non-homogeneous poisson process,โ€ far east j. math. sci., vol. 51, pp. 141โ€“150, 2011. [9] w. ismayulia, i. w. mangku, and s. siswandi, โ€œpendugaan komponen periodik fungsi intensitas berbentuk fungsi periodik kali tren linear suatu proses poisson non-homogen,โ€ j. math. its appl., vol. 12, no. 1, pp. 49โ€“62, 2013. [10] i. w. mangku, r. budiarti, taslim, and casman, โ€œestimating the intensity obtained as the product of a periodic function with the quadratic trend of a nonhomogeneous poisson process,โ€ far east j. math. sci., vol. 82, no. 1, pp. 33โ€“44, 2013. [11] i. w. mangku, siswadi, and r. budiarti, โ€œconsistency of a kernel-type estimator of the intensity of the cyclic poisson process with the linear trend,โ€ j. indones. math. soc., vol. 15, no. 1, pp. 37โ€“48, 2009. [12] r. helmers and i. w. mangku, โ€œpredicting a cyclic poisson process,โ€ ann. inst. stat. math., vol. 64, no. 6, pp. 1261โ€“1279, 2012. [13] n. leonenko, e. scalas, and m. trinh, โ€œthe fractional non-homogeneous poisson process,โ€ stat. probab. lett., vol. 120, pp. 147โ€“156, 2017. [14] w. erliana, โ€œpendugaan tipe kernel umum untuk intensitas berupa fungsi periodik kali tren fungsi pangkat proses poisson nonhomogen,โ€ institut pertanian bogor, 2014. [15] i. maulidi, i. w. mangku, and h. sumarno, โ€œstrong consistency of kernel-type estimator for the intensity obtained as the product of a periodic function with the power function trend of non-homogeneous poisson process,โ€ br. j. appl. sci. technol., vol. 9, no. 4, pp. 383โ€“387, 2015. [16] i. maulidi, m. ihsan, and v. apriliani, โ€œthe numerical simulation for asymptotic normality of the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous poisson process,โ€ desimal j. mat., vol. 3, no. 3, pp. 271โ€“278, 2020. [17] r. helmers, i. w. mangku, and r. zitikis, โ€œconsistent estimation of the intensity function of a cyclic poisson process,โ€ j. multivar. anal., vol. 84, no. 1, pp. 19โ€“39, 2003. [18] n. valentika, i. w. mangku, and w. erliana, โ€œstrong consistency and asymptotic distribution of estimator for the intensity function having form of periodic function multiplied by power function trend of a poisson process,โ€ int. j. eng. manag. res., vol. 8, no. 2, pp. 232โ€“236, 2018. [19] r. j. serfling, approximation theorems of mathematical statistics. john wiley & sons, 1980. [20] r. v. hogg, j. mckean, and a. t. craig, introduction to mathematical statistics (6th edition). pearson education, 2005. [21] r. m. dudley, real analysis and probability. wardswort & brooks, 1989. solusi numerik model reaksi-difusi (turing) dengan metode beda hingga implisit 1junik rahayu, 2usman pagalay, dan 3ari kusumastuti 1,2,3jurusan matematika uin maulana malik ibrahim malang e-mail: rahayujunik@yahoo.com abstrak alan turing (1952) mengemukakan bahwa sistem interaksi bahan kimia dipengaruhi oleh difusi yang tidak stabil yang kemudian berkembang menjadi pola spasial. hasil dari penelitian ini disebut dengan model reaksi-difusi (turing). pada umumnya model difusi mempunyai difusifitas berupa konstanta. barras dkk. (2006) mengganti mekanisme murray (2003) dalam menganalisis model ini, sehingga terbentuklah model dengan rasio pertumbuhan domain yang tumbuh secara eksponensial sebagai difusifitasnya. hal inilah yang membuat model ini lebih menarik dibandingkan dengan model difusi yang lain. berbagai model matematika dipastikan mempunyai solusi, begitu juga dengan model ini. paper ini membahas penyelesaian numerik pada contoh model. digunakan metode beda hingga implisit sebagai metode dasar menyelesaikan model. dalam model terdapat dua konsentrasi yang bereaksi untuk mencapai suatu kesetimbangan. dari konsentrasi ini akan diperiksa keterikatan pada pertumbuhan domain dengan adanya dinamika gangguan kecil serta pengaruh pertumbuhan domain terhadap penyelesaian numerik model. dari penyelesaian numerik diperoleh bahwa pertumbuhan domain mempengaruhi dua konsentrasi dalam model dan penyelesaian numerik. kata kunci: metode beda hingga implisit, model reaksi-difusi (turing), pertumbuhan domain. abstract alan turing (1952) telling that chemicals interaction system influenced by unstable diffusion which later;then round into pattern of spasial. result of from this research is referred as with of reaction-diffusion (turing) modelโ€™s. in general diffusion modelโ€™s have coeficient diffuson in the form of constanta. barras et. al (2006) changing mechanism of murray (2003) in analysing this model, is so that formed by model with domain growth ratio which grow by eksponensial as its. this matter make this model more is interesting compared to other diffusion model. various mathematics model ascertained to have solution, so also with this model. this paper study the solving of numeric at model of example.used by different method till implisit as basic method finish model. in model there are two concentration reacting to reach an is balance. than this concentration will be checked by binding at domain growth with existence of small trouble dynamics and also influence of domain growth to solving of model numerik. from solving of numeric obtained that domain growth influence two concentration in model and numerical solution. keywords: reaction-diffusion (turing) modelโ€™s, finite difference methods, implicit scheme,domain growth rate. pendahuluan alan turing (1952) mengemukakan bahwa sistem interaksi bahan kimia dipengaruhi oleh difusi yang tidak stabil yang kemudian berkembang menjadi pola spasial. dalam era integrasi biologi, model hasil penelitian alan turing merupakan salah satu contoh pertama bagaimana mengintegrasikan proses sederhana yang dapat memberikan hasil yang kompleks, dalam hal ini, kombinasi dari proses penyetabilan yang menghasilkan sistem yang tidak stabil. pada model tersebut, diasumsikan bahwa sel tidak bergerak tetapi hanya menanggapi pembedaan isyarat kimia. hasil dari penelitian ini disebut dengan model reaksi-difusi (turing). barras dkk (2006) mengganti mekanisme model murray (2003) dalam menganalisis model ini dengan domain pertumbuhan menggunakan kinetika schnakenberg, yang timbul dari suatu penerapan hukum aksi massa untuk skema trimolecular. menurut barras dkk (2006) model terdiri dari 2 persamaan diferensial parsial dan 1 persamaan diferensial biasa, sehingga membentuk sistem. dalam jurnalnya barras dkk (2006) mengungkap bahwa proses transisi dalam mailto:rahayujunik@yahoo.com solusi numerik model reaksi-difusi (turing) dengan metode beda hingga implisit jurnal cauchy โ€“ issn: 2086-0382 19 model mencapai puncak didorong oleh pertumbuhan domain sehingga menghasilkan urutan pola. model matematis yang kompleks seperti model ini, sukar mendapatkan solusinya dengan solusi analitis. walaupun metode numerik dalam pencarian solusi dari suatu sistem juga jarang digunakan akhir-akhir ini, akan tetapi metode ini merupakan alternatif dalam menyelesaikan persoalan matematik. metode ini dapat digunakan untuk mendekati solusi secara eksak. salah satu metode numerik untuk menyelesaikan persamaan diferensial parsial seperti model ini adalah metode beda hingga. dalam metode beda hingga terdapat bermacam skema, salah satunya skema implisit yang stabil tanpa syarat. kajian teori a. analisis persamaan diferensial parsial pada model reaksi-difusi (turing) suatu persamaan yang di dalamnya terdapat turunan parsial dan terdapat dua atau lebih variabel bebas maka persamaan tersebut disebut persamaan diferensial parsial (partial differential equation/pde) (ayres, 1992). bentuk umum persamaan diferensial parsial linear orde 2 dalam 2 variabel bebas adalah: ๐ด๐‘“๐‘ฅ๐‘ฅ + ๐ต๐‘“๐‘ฅ๐‘ฆ + ๐ถ๐‘“๐‘ฆ๐‘ฆ + ๐ท๐‘“๐‘ฅ + ๐ธ๐‘“๐‘ฆ + ๐น๐‘“ = ๐บ menurut sasongko (2010) persamaan di atas dapat dinyatakan sebagai kondisi-kondisi berikut: 1. apabila koefisien , , , , , ,a b c d e f g adalah konstanta atau fungsi yang terdiri dari variabel bebas saja, maka persamaan tersebut disebut linier. 2. apabila koefisien , , , , , ,a b c d e f g adalah fungsi dari variabel tak bebas dan atau merupakan turunan dengan orde yang lebih rendah daripada persamaan diferensialnya , , u u x t ๏‚ถ ๏‚ถ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏‚ถ ๏‚ถ๏ƒจ ๏ƒธ maka persamaan tersebut disebut kuasilinier. 3. apabila koefisien , , , , , ,a b c d e f g adalah fungsi dengan orde turunan yang sama dengan orde persamaan diferensialnya 2 2 2 2 2 , , , u u u x tx t ๏ƒฆ ๏ƒถ๏‚ถ ๏‚ถ ๏‚ถ ๏ƒง ๏ƒท ๏‚ถ ๏‚ถ๏‚ถ ๏‚ถ๏ƒจ ๏ƒธ maka persamaan tersebut disebut persamaan non-linier. tipe dari persamaan diferensial orde dua ditentukan oleh determinan (๐ท) jika: a. 2 4 0,d b ac๏€ฝ ๏€ญ ๏€ผ maka bertipe eliptik. b. 2 4 0,d b ac๏€ฝ ๏€ญ ๏€ฝ maka bertipe parabolik. c. 2 4 0,d b ac๏€ฝ ๏€ญ ๏€พ maka bertipe hiperbolik. model turing menurut barras dkk (2006) berbentuk: 2 2 2 2 2 2 2 2 1u u a uv u t l x v d v b uv v v t l x dl l dt ๏ฒ ๏ฒ ๏ฒ ๏‚ถ ๏‚ถ ๏€ฝ ๏€ซ ๏€ญ ๏€ญ ๏‚ถ ๏‚ถ ๏‚ถ ๏‚ถ ๏€ฝ ๏€ซ ๏€ซ ๏€ญ ๏€ญ ๏‚ถ ๏‚ถ ๏€ฝ dengan mengganti persamaan ๐‘‘๐ฟ ๐‘‘๐‘ก = ๐œŒ๐ฟ menjadi persamaan diferensial biasa, diasumsikan ๐ฟ(0) = 1, maka model menjadi bentuk berikut: 2 2 2 2 1 ( ) ( ( ) ) t xx t x t x u u a uv u l t d v v b uv v v t e l t l ๏ฒ ๏ฒ ๏ฒ ๏€ฝ ๏€ซ ๏€ญ ๏€ญ ๏€ซ ๏€ญ ๏€ฝ ๏€ฝ ๏€ซ ๏€ญ dari derinisi yang telah diuraikan di atas, maka model dapat diklasifikasikan menjadi persamaan diferensial parsial kuasilinier orde dua tipe parabolik. solusi model adalah fungsi ( , )u x t dan ( , )v x t yang memenuhi persamaan di atas. solusi tersebut merupakan solusi umum, sehingga diperlukan subtitusi kondisi batas dan kondisi awal agar didapatkan solusi khusus. kondisi batas yang digunakan pada model adalah dirichlet boundary conditions. untuk interval 0 0.002t๏‚ฃ ๏‚ฃ dan 0 1x๏‚ฃ ๏‚ฃ . nilai batas (0, ) 0.9u t ๏€ฝ ; (0, 0.002) 0.9u ๏€ฝ ; (0, ) 1v t ๏€ฝ dan (0, 0.002) 1v ๏€ฝ untuk semua .t sedangkan kondisi awal yang digunakan untuk model adalah ( )l t yang dirumuskan sebagai berikut: ๐‘ข(๐‘ฅ,0) = ๐‘ฃ(๐‘ฅ,0) = ๐ฟ(๐‘ก) = ๐‘’๐œŒ๐‘ก (1) persamaan tersebut akan digunakan untuk membuat iterasi numerik pada pembahasan. b. analisis model reaksi-difusi (turing) pemodelan matematika mengenai model reaksi-difusi dikemukakan oleh alan turing (1952) yang mengidentifikasi perkembangan embrio menjadi dewasa. dalam penelitiannya alan turing mengasumsikan bahwa sistem interaksi bahan kimia dipengaruhi oleh difusi yang tidak stabil yang kemudian berkembang menjadi pola spasial. barras dkk (2006) mengganti mekanisme model murray (2003) dalam menganalisis model junik rahayu, usman pagalay, dan ari kusumastuti 20 volume 3 no. 1 november 2013 dengan domain pertumbuhan menggunakan kinetika schnakenberg, yang timbul dari suatu penerapan hukum aksi massa untuk skema trimolecular, sehingga terbentuklah model. pada model diasumsikan proses difusi dalam kasus pertumbuhan domain yang tumbuh secara eksponensial. selanjutnya brownian motion untuk persamaan ๐‘ข๐‘ก = 1 ๐ฟ(๐‘ก)2 ๐‘ข๐‘ฅ๐‘ฅ + ๐‘Ž โˆ’ ๐‘ข๐‘ฃ 2 โˆ’ ๐œŒ๐‘ข dapat dituliskan sebagai, ๐‘ข๐‘ก โˆ’ 1 ๐ฟ(๐‘ก)2 ๐‘ข๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž + ๐‘ข๐‘ฃ 2 + ๐œŒ๐‘ข = 0 (2) menurut zauderer (1998:2-5), untuk menyelesaikan persamaan ๏€จ ๏€ฉ,u x t di atas, digunakan asumsi-asumsi sebagai berikut: 1. ekspektasi dari variabel acak ๐‘ฅ atau disebut juga sebagai lokasi perpindahan partikel dalam gelombang yang didefinisikan: ๐ธ(๐‘ฅ) = ๐‘ฅ = (๐‘ โˆ’ ๐‘ž)๐›ฟ dengan c adalah kecepatan difusi, dan dalam masalah ini kecepatan difusi dianggap sama dengan nol. 2. varian dari suatu variabel acak x atau disebut juga dengan besarnya perpindahan yang terjadi dari suatu proses difusi, didefinisikan sebagai berikut: ๐‘‰(๐‘ฅ) = 4๐‘๐›ฟ2 dengan ๐ท adalah konstanta atau koefisien difusi yang dalam hal ini diasumsikan besarnya sama dengan 2/๐ฟ(๐‘ก)2. 3. asumsi dasar difusi yang digunakan adalah ๏€จ ๏€ฉ,u x t yang merupakan distribusi peluang. dimana distribusi peluang dari suatu partikel pada langkah x dan pada waktu yang ke t ๏ด๏€ซ sama dengan peluang ketika berada pada titik x ๏ค๏€ญ pada waktu t dikalikan dengan peluang perpindahan partikel ke arah kanan (p) pada suatu langkah ditambah dengan peluang partikel pada saat berada di titik x ๏ค๏€ซ pada waktu t dikalikan dengan probabilitas perpindahan ke arah kiri (q) pada suatu langkah, dimana 1,p q๏€ซ ๏€ฝ yang dapat dituliskan dalam bentuk berikut: ๐‘ข(๐‘ฅ,๐‘ก + ๐œ) = ๐‘๐‘ข(๐‘ฅ โˆ’ ๐›ฟ,๐‘ก) + ๐‘ž๐‘ข(๐‘ฅ + ๐›ฟ,๐‘ก) (3) dimana ๏ด merupakan partisi waktu. 4. p adalah peluang perpindahan partikel ke arah kanan, sedangkan q adalah peluang perpindahan partikel ke arah kiri, dimana , .p q r๏ƒŽ untuk menyelesaikan brownian motion persamaan ๏€จ ๏€ฉ,u x t di atas, digunakan deret taylor sebagai berikut: a. untuk ๐‘ข(๐‘ฅ,๐‘ก + ๐œ) = ๐‘ข(๐‘ฅ,๐‘ก) + ๐œ๐‘ข๐‘ก(๐‘ฅ,๐‘ก). b. untuk ๐‘ข(๐‘ฅ โˆ’ ๐›ฟ,๐‘ก) = ๐‘ข(๐‘ฅ,๐‘ก) โˆ’ ๐›ฟ๐‘ข๐‘ฅ(๐‘ฅ,๐‘ก) + 1 2 ๐›ฟ2๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ,๐‘ก). c. untuk ๐‘ข(๐‘ฅ + ๐›ฟ,๐‘ก) = ๐‘ข(๐‘ฅ,๐‘ก) + ๐›ฟ๐‘ข๐‘ฅ(๐‘ฅ,๐‘ก) + 1 2 ๐›ฟ2๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ,๐‘ก) sedangkan untuk persamaan ๐‘ฃ๐‘ก = ๐‘‘ ๐ฟ(๐‘ก)2 ๐‘ฃ๐‘ฅ๐‘ฅ + ๐‘ + ๐‘ข๐‘ฃ2 โˆ’ ๐‘ฃ โˆ’ ๐œŒ๐‘ฃ dapat ditulis sebagai: ๐‘ฃ๐‘ก โˆ’ ๐‘‘ ๐ฟ(๐‘ก)2 ๐‘ฃ๐‘ฅ๐‘ฅ โˆ’ ๐‘ โˆ’ ๐‘ข๐‘ฃ 2 + ๐‘ฃ + ๐œŒ๐‘ฃ = 0. menurut zauderer (1998:2-5), untuk menyelesaikan persamaan ๏€จ ๏€ฉ,v x t di atas, digunakan asumsi-asumsi sebagai berikut: 1. ekspektasi dari variabel acak ๐‘ฅ atau disebut juga sebagai lokasi perpindahan partikel dalam gelombang yang didefinisikan: ๏€จ ๏€ฉ ๏€จ ๏€ฉ ,e x x p q ๏ค๏€ฝ ๏€ฝ ๏€ญ dengan c adalah kecepatan difusi, dan dalam masalah ini kecepatan difusi dianggap sama dengan nol. 2. varian dari suatu variabel acak x atau disebut juga dengan besarnya perpindahan yang terjadi dari suatu proses difusi, didefinisikan sebagai berikut: ๏€จ ๏€ฉ 24 ,v x p๏ค๏€ฝ dengan ๐ท adalah konstanta atau koefisien difusi yang dalam hal ini diasumsikan besarnya sama dengan 2๐‘‘/๐ฟ(๐‘ก)2. 3. asumsi dasar difusi yang digunakan adalah ๏€จ ๏€ฉ,v x t yang merupakan distribusi peluang. dimana distribusi peluang dari suatu partikel pada langkah x dan pada waktu yang ke t ๏ด๏€ซ sama dengan peluang ketika berada pada titik x ๏ค๏€ญ pada waktu t dikalikan dengan peluang perpindahan partikel ke arah kanan ๏€จ ๏€ฉp pada suatu langkah ditambah dengan peluang partikel pada saat berada di titik x ๏ค๏€ซ pada waktu t dikalikan dengan probabilitas perpindahan ke arah kiri ๏€จ ๏€ฉq pada suatu langkah, dimana ๐‘ + ๐‘ž = 1, yang dapat dituliskan dalam bentuk berikut: ๐‘ฃ(๐‘ฅ,๐‘ก + ๐œ) = ๐‘๐‘ฃ(๐‘ฅ โˆ’ ๐›ฟ,๐‘ก) + ๐‘ž๐‘ฃ(๐‘ฅ + ๐›ฟ,๐‘ก) (4) dimana ๏ด merupakan partisi waktu. 4. p adalah peluang perpindahan partikel ke arah kanan, sedangkan q adalah peluang solusi numerik model reaksi-difusi (turing) dengan metode beda hingga implisit jurnal cauchy โ€“ issn: 2086-0382 21 perpindahan partikel ke arah kiri, dimana , .p q r๏ƒŽ untuk menyelesaikan brownian motion persamaan ๏€จ ๏€ฉ,v x t di atas, digunakan deret taylor sebagai berikut: a. untuk ๐‘ฃ(๐‘ฅ,๐‘ก + ๐œ) = ๐‘ฃ(๐‘ฅ,๐‘ก) + ๐œ๐‘ฃ๐‘ก(๐‘ฅ,๐‘ก). b. untuk ๐‘ฃ(๐‘ฅ โˆ’ ๐›ฟ,๐‘ก) = ๐‘ฃ(๐‘ฅ,๐‘ก) โˆ’ ๐›ฟ๐‘ข๐‘ฅ(๐‘ฅ,๐‘ก) + 1 2 ๐›ฟ2๐‘ฃ๐‘ฅ๐‘ฅ(๐‘ฅ,๐‘ก). c. untuk ๐‘ฃ(๐‘ฅ + ๐›ฟ,๐‘ก) = ๐‘ข(๐‘ฅ,๐‘ก) + ๐›ฟ๐‘ฃ๐‘ฅ(๐‘ฅ,๐‘ก) + 1 2 ๐›ฟ2๐‘ฃ๐‘ฅ๐‘ฅ(๐‘ฅ,๐‘ก). nilai parameter, kondisi awal dan kondisi batas mengacu pada keterangan barras dkk (2006) dengan ๏ฒ merupakan rasio domain pertumbuhan, u๏ฒ๏€ญ dan v๏ฒ๏€ญ adalah dilution effect, energi kinetik 0.9a ๏€ฝ dan 0.1b ๏€ฝ dan koefisien difusi 0.06.d ๏€ฝ beberapa nilai ๏ฒ yang sesuai dengan keterangan barras dkk (2006) yaitu 0.001,๏ฒ ๏€ฝ 0.05๏ฒ ๏€ฝ dan 0.01.๏ฒ ๏€ฝ c. metode beda hingga skema implisit untuk model reaksi-difusi (turing) dibentuk skema beda hingga untuk turunan parsial fungsi u dan v yang terdiri dari dua variabel bebas x dan .t berikut merupakan deret taylor:(causaon dan mingham, 2010) 2 0 0 0 ( , ) ( , ) ( , ) ... 2! xx x u x x t u x t u x t ๏„ ๏€ซ ๏„ ๏€ฝ ๏€ซ ๏€ซ ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ 1 01 ( , ) , 1 ! n n n x u x t o x n ๏€ญ ๏€ญ ๏„ ๏€ซ ๏€ซ ๏„ ๏€ญ (5) dalam skema implisit, untuk menghitung variabel di suatu titik perlu dibuat suatu sistem persamaan yang mengandung variabel di titik tersebut dan titik-titik sekitarnya pada waktu yang sama (triatmodjo, 2002). berikut merupakan langkah iterasi pada skema implisit: gambar 1. gambar skema implisit gambar skema di atas digunakan untuk menghitung turunan petama dan kedua model reaksi-difusi (turing). pembahasan a. metode beda hingga skema implisit model reaksi-difusi (turing) berikut merupakan model reaksi-difusi (turing): { ๐‘ข๐‘ก = 1 ๐ฟ(๐‘ก)2 ๐‘ข๐‘ฅ๐‘ฅ + ๐‘Ž โˆ’ ๐‘ข๐‘ฃ 2 โˆ’ ๐œŒ๐‘ข ๐‘ฃ๐‘ก = ๐‘‘ ๐ฟ(๐‘ก)2 ๐‘ฃ๐‘ฅ๐‘ฅ + ๐‘ + ๐‘ข๐‘ฃ 2 โˆ’ ๐‘ฃ โˆ’ ๐œŒ๐‘ฃ ๐ฟ(๐‘ก) = ๐‘’๐œŒ๐‘ก pada persamaan ๐‘ข๐‘ก = 1 ๐ฟ(๐‘ก)2 ๐‘ข๐‘ฅ๐‘ฅ + ๐‘Ž โˆ’ ๐‘ข๐‘ฃ 2 โˆ’ ๐œŒ๐‘ข, maka dapat dinyatakan bentuk diskritnya sebagai berikut: โˆ’๐›ผ๐‘ข๐‘–โˆ’1 ๐‘›+1 + (1 + 2๐›ผ)๐‘ข๐‘– ๐‘›+1 โˆ’ ๐›ผ๐‘ข๐‘–+1 ๐‘›+1 = ๐‘ข๐‘– ๐‘› + ฮด๐‘ก(๐‘Ž โˆ’ ๐‘ข๐‘– ๐‘›(๐‘ฃ๐‘– ๐‘›)2 โˆ’ ๐œŒ๐‘ข๐‘– ๐‘› dengan ๐›ผ = ฮด๐‘ก ๐ฟ(๐‘ก)2ฮด๐‘ฅ2 . adapun stensilnya dapat digambarkan sebagai berikut: gambar 2. stensil untuk persamaan ๏€จ ๏€ฉ,u x t selanjutnya pada persamaan 2 2 , ( ) t xx d v v b uv v v l t ๏ฒ๏€ฝ ๏€ซ ๏€ซ ๏€ญ ๏€ญ maka dapat dinyatakan bentuk diskritnya sebagai berikut: ๏€จ ๏€ฉ 2 1 1 1 1 1 1 2 ( ). n n n n n n n n i i i i i i i i v v v v t b u v v v๏ข ๏ข ๏ข ๏ฒ ๏€ซ ๏€ซ ๏€ซ ๏€ญ ๏€ซ ๏€ญ ๏€ซ ๏€ซ ๏€ญ ๏€ฝ ๏€ซ๏„ ๏€ซ ๏€ญ ๏€ญ dengan 2 2 . ( ) t d d l t x ๏ข ๏ก ๏„ ๏€ฝ ๏€ฝ ๏„ stensilnya dapat di lihat pada gambar 3 berikut ini. gambar 3. stensil untuk persamaan ๏€จ ๏€ฉ,v x t jaringan titik hitung beda hingga implisit untuk model pada daerah ๐‘ฅ0 โ‰ค ๐‘ฅ โ‰ค ๐‘… dan ๐‘ก0 โ‰ค junik rahayu, usman pagalay, dan ari kusumastuti 22 volume 3 no. 1 november 2013 ๐‘ก โ‰ค ๐‘‡ adalah sebagai berikut dapat dilihat pada gambar 4. gambar 4. jaringan titik hitung beda hingga implisit untuk model. digunakan kondisi awal sebagai berikut: ๐‘ข(๐‘ฅ,0) = 0.9 + ๐‘๐‘–๐‘™๐‘Ž๐‘›๐‘”๐‘Ž๐‘› ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š ๐‘ฃ(๐‘ฅ,0) = 1 + ๐‘๐‘–๐‘™๐‘Ž๐‘›๐‘”๐‘Ž๐‘› ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š setelah didapatkan nilai awal dan nilai batas, iterasi dilakukan pada hasil diskritisasi dengan sesuai jaringan titik hitung pada gambar 4. b. penyelesaian numerik model reaksidifusi (turing) diselesaikan contoh model reaksi-difusi (turing) pada daerah batas 0 < ๐‘ฅ < 1 dan 0 < ๐‘ก < 0.002, rasio pertumbuhan domain ๐œŒ = 0.001, energi kinetik ๐‘Ž = 0.9 dan ๐‘Ž = 0.1 serta rasio koefisien difusi ๐‘‘ = 0.06 sehingga model dapat dituliskan sebagai berikut: { ๐‘ข๐‘ก = 1 ๐ฟ(๐‘ก)2 ๐‘ข๐‘ฅ๐‘ฅ + 0.9 โˆ’ ๐‘ข๐‘ฃ 2 โˆ’ 0.001๐‘ข ๐‘ฃ๐‘ก = 0.06 ๐ฟ(๐‘ก)2 ๐‘ฃ๐‘ฅ๐‘ฅ + 0.1 + ๐‘ข๐‘ฃ 2 โˆ’ ๐‘ฃ โˆ’ 0.001๐‘ฃ ๐ฟ(๐‘ก) = ๐‘’๐›ผ๐‘ก (6) dipilih nilai ฮด๐‘ก = 0.00002 dan ฮด๐‘ฅ = 0.01. selanjutnya dilakukan iterasi dengan kondisi batas sebagai berikut: ๐‘ข(๐‘ฅ0, ๐‘ก) = ๐‘ข(0,๐‘ก) = 0.9,๐‘ข(๐‘…,๐‘ก) = ๐‘ข(1,๐‘ก) = 0.9 ๐‘ฃ(๐‘ฅ0, ๐‘ก) = ๐‘ฃ(0,๐‘ก) = 1,๐‘ฃ(๐‘…,๐‘ก) = ๐‘ฃ(1,๐‘ก) = 1 sehingga diperoleh: ๐‘ข๐‘– ๐‘› = 0.9,โˆ€๐‘› = 0,1,2,โ€ฆ,100,โˆ€๐‘– = 0,1,2,โ€ฆ,100 ๐‘ฃ๐‘– ๐‘› = 1, โˆ€๐‘› = 0,1,2,โ€ฆ,100, โˆ€๐‘– = 0,1,2,โ€ฆ,100 langkah berikutnya yaitu dilakukan iterasi kondisi awal sebagai berikut: ๐‘ข๐‘– ๐‘› = ๐‘“(๐‘ก๐‘–) = 0.9 + ๐‘๐‘–๐‘™๐‘Ž๐‘›๐‘”๐‘Ž๐‘› ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š, โˆ€๐‘› = 0, โˆ€๐‘– = 1,2,โ€ฆ,99. ๐‘ฃ๐‘– ๐‘› = ๐‘”(๐‘ก๐‘–) = 1 + ๐‘๐‘–๐‘™๐‘Ž๐‘›๐‘”๐‘Ž๐‘› ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š, โˆ€๐‘› = 0, โˆ€๐‘– = 1,2,โ€ฆ,99. setelah didapatkan nilai awal dan nilai batas, iterasi dilakukan pada hasil diskritisasi sesuai jaringan titik hitung pada gambar 5. gambar 5. jaringan titik hitung skema beda hingga implisit untuk model dengan parameter x dan t gambar 6. grafik solusi numerik untuk ๐‘ข(๐‘ฅ,๐‘ก) terhadap jarak (๐‘ฅ) dengan ๐œŒ = 0.001. gambar 7. grafik solusi numerik untuk ๐‘ข(๐‘ฅ,๐‘ก) terhadap waktu (๐‘ก) dengan ๐œŒ = 0.001. gambar 8. grafik solusi numerik untuk ๐‘ฃ(๐‘ฅ,๐‘ก) terhadap jarak (๐‘ฅ) dengan ๐œŒ = 0.001. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.91 0.92 0.93 0.94 0.95 0.96 jarak (x) k o n s e n tr a s i u 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 0.9 0.91 0.92 0.93 0.94 0.95 0.96 waktu (t) k o n s e n tr a s i u 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 0.9 0.91 0.92 0.93 0.94 0.95 0.96 waktu (t) k o n s e n tr a s i u solusi numerik model reaksi-difusi (turing) dengan metode beda hingga implisit jurnal cauchy โ€“ issn: 2086-0382 23 gambar 9. grafik solusi numerik untuk ๐‘ฃ(๐‘ฅ,๐‘ก) terhadap jarak (๐‘ฅ) dengan ๐œŒ = 0.001. gambar 10. grafik solusi numerik untuk ๐‘ข(๐‘ฅ,๐‘ก) terhadap jarak (๐‘ฅ) dengan ๐œŒ = 0.05. gambar 11. grafik solusi numerik untuk ๐‘ข(๐‘ฅ,๐‘ก) terhadap waktu (๐‘ก) dengan ๐œŒ = 0.05. gambar 12. grafik solusi numerik untuk ๐‘ฃ(๐‘ฅ,๐‘ก) terhadap jarak (๐‘ฅ) dengan ๐œŒ = 0.05 gambar 13. grafik solusi numerik untuk ๐‘ฃ(๐‘ฅ,๐‘ก) terhadap waktu (๐‘ก) dengan ๐œŒ = 0.05. gambar 14. grafik solusi numerik untuk ๐‘ข(๐‘ฅ,๐‘ก) terhadap jarak (๐‘ฅ) dengan ๐œŒ = 0.01. gambar 15. grafik solusi numerik untuk ๐‘ข(๐‘ฅ,๐‘ก) terhadap waktu (๐‘ก) dengan ๐œŒ = 0.01. gambar 16. grafik solusi numerik untuk ๐‘ฃ(๐‘ฅ,๐‘ก) terhadap jarak (๐‘ฅ) dengan ๐œŒ = 0.01. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 waktu (t) k o n s e n tr a s i v 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.91 0.92 0.93 0.94 0.95 0.96 jarak (x) k o n s e n tr a s i u 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 jarak (x) k o n s e n tr a s i v 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 jarak (x) k o n s e n tr a s i v 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 waktu (t) k o n s e n tr a s i v 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.91 0.92 0.93 0.94 0.95 0.96 jarak (x) k o n s e n tr a s i u 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 jarak (x) k o n s e n tr a s i v 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 0.9 0.91 0.92 0.93 0.94 0.95 0.96 waktu (t) k o n s e n tr a s i u junik rahayu, usman pagalay, dan ari kusumastuti 24 volume 3 no. 1 november 2013 gambar 17. grafik solusi numerik untuk ๐‘ฃ(๐‘ฅ,๐‘ก) terhadap waktu (๐‘ก) dengan ๐œŒ = 0.01. c. interpretasi penyelesaian numerik model reaksi-difusi (turing) kondisi batas yang digunakan dalam bahasan ini adalah ๏€จ ๏€ฉ ๏€จ ๏€ฉ0 , 0, 0.9,u x t u t๏€ฝ ๏€ฝ ๏€จ ๏€ฉ ๏€จ ๏€ฉ, 1, 0.9.u r t u t๏€ฝ ๏€ฝ ๏€จ ๏€ฉ ๏€จ ๏€ฉ0 , 0, 1,v x t v t๏€ฝ ๏€ฝ ๏€จ ๏€ฉ ๏€จ ๏€ฉ, 1, 1.v r t v t๏€ฝ ๏€ฝ hal tersebut diinterpretasi bahwa 0 x dan r merupakan batas domain yang diselesaikan sehingga efek dilusi sebelum 0 x dan r diabaikan. nilai batas 0.9 dapat dimaknai bahwa energi kinetik non-dimensional pada titik 0 0x ๏€ฝ sebesar 0.9 dan nilai batas 1 dapat dimaknai bahwa energi kinetik non-dimensional pada titik ๐‘ฅ๐‘› = ๐‘… sebesar 1 pada masing-masing konsentrasi untuk semua waktu ๐‘ก. dengan adanya kondisi batas yang diberikan, maka dapat memberikan batasan daerah yang akan diselesaikan. parameter-parameter yang digunakan di dalam model yaitu ๏ฒ merupakan rasio pertumbuhan domain, u๏ฒ๏€ญ dan v๏ฒ๏€ญ adalah dilution effect, energi kinetik pada 0.9a ๏€ฝ dan 0.1b ๏€ฝ dan koefisien difusi 0.06.d ๏€ฝ kondisi awal yang digunakan dalam pembahasan contoh model adalah sebagai berikut: ( ) 0, 9 , 0, 1, 2,..., 99 n i i u f t bilangan random n i๏€ฝ ๏€ฝ ๏€ซ ๏€ข ๏€ฝ ๏€ข ๏€ฝ ( ) 1 , 0, 1, 2,..., 99 n i i v g t bilangan random n i๏€ฝ ๏€ฝ ๏€ซ ๏€ข ๏€ฝ ๏€ข ๏€ฝ kondisi tersebut dapat dimaknai bahwa energi kinetik non-dimensional pada titik ๐‘ฅ0 pada waktu ๐‘ก๐‘– untuk masing-masing konsentrasi dipengaruhi oleh adanya penambahan bilangan random di belakang suatu konstanta. dengan membandingkan gambar 1, 2, 3, 4, 5 dan 6 dapat diketahui bahwa nilai ๏ฒ mempengaruhi perubahan konsentrasi ( , )u x t dan ( , ).v x t sehingga dapat disimpulkan nilai ๏ฒ mempengaruhi penyelesaian numerik pada model reaksi-difusi (turing). penutup berdasarkan pembahasan, dapat diperoleh bahwa untuk menyelesaikan model dengan menttransformasikan dalam bentuk skema beda hingga implisit menggunakan beda maju untuk turunan pertama terhadap waktu dan beda simetrik untuk tururnan kedua terhadap ruang, sehingga diperoleh bentuk diskrit model reaksidifusi (turing) sebagai berikut: ๏€จ ๏€ฉ ๏€จ ๏€ฉ 2 1 1 1 1 1 1 2 ( ) n n n n n n n i i i i i i i u u u u t a u v u๏ก ๏ก ๏ก ๏ฒ ๏€ซ ๏€ซ ๏€ซ ๏€ญ ๏€ซ ๏€ญ ๏€ซ ๏€ซ ๏€ญ ๏€ฝ ๏€ซ๏„ ๏€ญ ๏€ญ ๏€จ ๏€ฉ 2 1 1 1 1 1 1 2 ( ). n n n n n n n n i i i i i i i i v v v v t b u v v v๏ข ๏ข ๏ข ๏ฒ ๏€ซ ๏€ซ ๏€ซ ๏€ญ ๏€ซ ๏€ญ ๏€ซ ๏€ซ ๏€ญ ๏€ฝ ๏€ซ๏„ ๏€ซ ๏€ญ ๏€ญ selanjutnya dilakukan iterasi dengan parameter, kondisi batas dan kondisi awal pada daerah batas yang telah ditentukan pada hasil diskritisasi di atas. untuk menghitung solusi numerik digunakan program yang tertera pada lampiran. berdasar hasil perhitungan diperoleh solusi numerik untuk model reaksi-difusi (turing) berupa matriks ukuran 101x101. simulasi gambar, menunjukkan rasio domain pertumbuhan ( )๏ฒ mempengaruhi dua konsentrasi pada proses difusi serta mempengaruhi penyelesaian numerik model. peneliti lain diharapkan dapat mengembangkan penelitian ini dalam kasus dua dimensi ataupun dengan menurunkan model yang berupa persamaan diferensial parsial menjadi persamaan diferensial biasa sehingga dapat dibandingkan hasilnya dengan penelitian ini. daftar pustaka [1] ayres, f. 1992. persamaan diferensial. jakarta: erlangga. [2] causon, d.m dan mingham, c.g.. 2010. introductory finite difference methods for pdes. united kingdom: ventus publishing aps. [3] barras, i., crampin e. j., dan maini p. k.. 2006. mode transitions in a model reactiondiffusion system driven by domain growth and noise. bulletin of mathematical biology (2006) 68: 981-995. [4] murray, j.d.. 2003. mathematical biology 3rd edition in 2 volumes: spatial models and biomedical applications. new york: springer. [5] sasongko, s. b. 2010. metode numerik dengan scilab. yogyakarta: c.v andi offset. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x 10 -3 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 waktu (t) k o n s e n tr a s i v solusi numerik model reaksi-difusi (turing) dengan metode beda hingga implisit jurnal cauchy โ€“ issn: 2086-0382 25 [6] triatmodjo, b. 2002. metode numerik. yogyakarta: beta offset. [7] turing, a.m.. 1952. the chemical basis of morphogenesis. london: phil. trans. r. soc. [8] zauderer, e.. 1998. partial differential equations of applied mathematics, second edition. new york: john wiley. penerapan logika fuzzy dan sem untuk mengukur kedalaman spiritual dosen, karyawan, dan mahasiswa any tsalasatul fitriyah mahasiswa s2 matematika, fakultas mipa universitas brawijaya malang telp. 08990444003; email: any.tsalasatul@yahoo.com abstract measuring the depth of spiritual used to knowing rank of depth of spiritual. need a measurement to measure of depth of spiritual. in this reseach study case at the state islamic university of maulana malik ibrahim malang. the depth of spiritual is vegue, therefore in this study fuzzy logic used to measure of depth of spiritual. in this reseach used fuzzy multi attribute desicion making (fmadm) with topsis method. in addtion, relationships between variables that affect the depth of spiritual lecture, staff, and student will be investigated using structural equation modeling (sem). form calculation scores of depth of spiritual using topsis method at interval 0 to 1. topsis method can be applied to measure the depth of spiritual of lecture, staff, and student. furthermore the relationship between variables will be analyzed using sem, the results of the analysis data of lecture and staff show that variables have great influence on the variables that are more spiritual depth than behavioral variables. the same conclusion was also obtained based on the analysis of student data. keyword: depth of spiritual, fmadm, sem, topsis abstrak pengukuran kedalaman spiriual digunakan untuk mengetahui tingkat kedalaman spiritual seseorang. untuk mengukur kedalaman spiritual diperlukan patokan atau ukuran yang sesuai. penelitian ini dilakukan di universitas islam negeri maulana malik ibrahim malang. kedalaman spiritual merupakan sesuatu yang kabur, oleh karena itu logika fuzzy dapat membantu untuk pengukuran kedalaman spiritual. logika fuzzy yang digunakan dalam penelitian ini adalah fuzzy multi atributte desicion making (fmadm) dengan metode topsis. dalam penelitian ini digunakan pula structural equation modeling (sem) untuk menguji hubungan antar variabel yang mempengaruhi kedalaman spiritual dosen, karyawan dan mahasiswa. hasil perhitungan skor kedalaman spiritual menggunakan metode topsis berupa skor yang berada pada selang interval antara 0 sampai 1. metode topsis ternyata dapat diterapkan untuk mengukur kedalaman spiritual dosen , karyawan, dan mahasiswa. analisis hubungan antar variabel dengan sem dari data dosen dan karyawan menunjukkan bahwa variabel ibadah memiliki pengaruh yang lebih besar terhadap variabel kedalaman spiritual dibandingkan variabel perilaku. kesimpulan yang sama juga diperoleh berdasarkan analisa pada data mahasiswa. pendahuluan kedalaman spiritual merupakan tingkat perilaku untuk mendekatkan diri kepada tuhannya secara rasa. kedalaman spiritual tidak hanya bisa dinilai dengan ibadah sehari-hari, tapi juga dinilai dengan perilaku yang dilakukan dalam kehidupannya. ibadah adalah mendekatkan diri kepada tuhan, dengan jalan menaati segala perintah-nya, menjauhi larangan-nya dan mengamalkan segala yang diizinkan-nya sebagai tanda mengabdikan/ memperhambakan diri kepada tuhan. demikian pula ibadah juga bermakna untuk mewujudkan keimanan dengan amal-amal sholeh yang merupakan pengembangan ke arah yang positif atau baik dari fitrah manusia. adapun fungsi dasar ibadah bagi manusia untuk menjaga keselamatan akidah, menjaga hubungan antara manusia dengan tuhannya dan berfungsi untuk mendisiplinkan sikap dan prilaku [1]. sayangnya kedalaman spiritual merupakan sesuatu yang kabur untuk diukur, tetapi logika fuzzy dapat membantu dalam pengukurannya karena logika fuzzy memungkinkan nilai keanggotaan antara 0 dan 1. berbagai teori dalam perkembangan logika fuzzy menunjukkan bahwa pada dasarnya logika fuzzy dapat digunakan untuk memodelkan berbagai sistem [2]. salah satu metode dalam logika fuzzy untuk mendukung keputusan adalah fuzzy multi attribute decision making (fmadm), fmadm merupakan suatu metode pengambilan keputusan dari sejumlah alternatif keputusan berdasarkan kriteria tertentu. salah satu metode dalam fmadm adalah metode topsis. metode topsis merupakan metode pengambilan keputusan yang didasarkan pada kriteria-kriteria tertentu. metode ini sering digunakan karena penerapan logika fuzzy dan sem untuk mengukur kedalaman spiritual dosen, karyawan, dan mahasiswa cauchy โ€“ issn: 2086-0382 85 alternatif terpilih yang terbaik tidak hanya memiliki jarak terpendek dari solusi ideal positif, namun juga memiliki jarak terpanjang dari solusi ideal negatif [3]. beberapa peneliti menggunakan fmadm dalam studi kasus menentukan lokasi suatu gudang [4]. juliyanti dkk [5] juga menerapkan fmadm untuk menentukan guru berprestasi dengan metode ahp dan topsis. cabang ilmu matematika yang lain adalah ilmu statistika. dalam statistika terdapat suatu metode, yaitu structural equation modeling (sem) yang merupakan suatu metode statistika yang digunakan untuk menguji serangkaian hubungan antar variabel yang terbentuk dari variabel laten dan variabel manifest. penelitian yang dilakukan renganathan [6] menerapkan metode sem untuk mengukur persepsi pelanggan dalam sektor perbankan. oleh karena itu, pada penelitian ini akan dibahas sistem yang berbasis logika fuzzy dalam hal ini fmadm yang dapat diterapkan untuk mengukur kedalaman spiritual dosen, karyawan, dan mahasiswa serta akan diteliti tentang hubungan antar variabel yang mempengaruhi nilai kedalaman spiritual dosen, karyawan, dan mahasiswa dengan menggunakan sem. kajian teori 1. fuzzy multi attribute desicion making (fmadm) definisi 1: misalkan ๐ด = {๐‘Ž๐‘– |๐‘– = 1, 2, โ€ฆ , ๐‘›} adalah himpunan alternatif-alternatif keputusan dan ๐ถ = {๐‘๐‘—|๐‘— = 1, 2, โ€ฆ , ๐‘š} a dalah himpunan tujuan yang diharapkan, maka akan ditentukan alternatif ๐‘ฅ 0 yang memiliki derajat harapan tertinggi terhadap tujuan-tujuan yang relevan cj [3]. salah satu metode dalam fmadm adalah topsis. menurut kusumadewi dkk [3] prosedur topsis mengikuti langkah-langkah sebagai berikut: 1. membuat matriks keputusan yang ternormalisasi 2. membuat matriks keputusan yang ternormalisasi terbobot 3. menentukan matriks solusi ideal positif dan matriks solusi ideal negatif 4. menentukan jarak antara nilai setiap alternatif dengan matriks solusi ideal positif dan negatif. 5. menentukan nilai preferensi untuk setiap alternatif. 2. weighted least square (wls) estimator menurut wijanto [7], dalam wls, fungsi ๐น(๐‘†, ฯƒ(๐œƒ)) yang diminimumkan adalah sebagai berikut: ๐น๐‘Š๐ฟ๐‘†(๐œƒ) = (๐‘  โˆ’ ๐œŽ) โ€ฒ๐‘Šโˆ’1 (๐‘  โˆ’ ๐œŽ) dimana sโ€™= (s11, s21, s22, s31, ... , skk) adalah suatu vektor dari elemen-elemen pada separuh bagian bawah, termasuk diagonal matrik kovarian s yang berdimensi k x k, yang digunakan untuk mencocokkan model dengan data. ฯƒโ€™= (ฯƒ11, ฯƒ21, ฯƒ22, ฯƒ31, ... , ฯƒkk) adalah suatu vektor dari elemen-elemen yang berkaitan pada โˆ‘(ฮธ) yang dihasilkan kembali dari parameterparameter model ฮธ. w-1 adalah suatu matrik definit positif w-1 yang berdimensi u x u, dimana u= k(k+1)/2 dan elemen-elemennya ditandai dengan wgh,ij. 3. structural equation modeling (sem) definisi 2: sem merupakan teknik analisis multivariat yang dikembangkan guna menutupi keterbatasan yang dimiliki oleh model-model analisis sebelumnya yang telah digunakan secara luas dalam penelitian statistika. model-model yang dimaksud diantaranya adalah regression analysis (analisis regresi), path analysis (analisis jalur), dan confirmatory factor analysis (analisis faktor konfirmatori)[8]. ada beberapa tahapan dalam prosedur sem menurut wijanto (2008), yaitu : 1. spesifikasi model (model specification) 2. identifikasi (identification) 3. estimasi (estimation) 4. uji kecocokan (testing fit) 5. respesifikasi (respecification) metode penelitian studi kasus pada penelitian ini dilakukan di universitas islam negeri maulana malik ibrahim malang. data pada penelitian ini adalah data primer yang diperoleh dari survey kuesioner. kuesioner disebarkan pada dosen, karyawan, dan mahasiswa. sebanyak 405 dosen dan karyawan menjadi resonden sedangkan kuesioner untuk mahasiswa sebanyak 409 responden. analisa data pada penelitian ini menggunakan software matlab untuk mengukur kedalaman spiritual dosen, karyawan dan mahasiswa dengan menggunakan fmadm metode topsis. software lisrel 8.80 digunakan untuk menganalisa guna mengetahui faktor yang mempengaruhi skor kedalaman spiritual dosen, karyawan, dan mahasiswa. any tsalasatul fitriyah 86 volume 3 no. 2 mei 2014 hasil dan pembahasan 1. aplikasi fmadm metode topsis untuk mengukur kedalaman spiritual data yang diperoleh dari hasil survey kuesioner kemudian dianalisis menggunankan fmadm metode topsis. tahapan metode topsis yang pertama adalah membuat matriks ternormalisasi dan matriks ternormalisasi berbobot. matriks ternormalisasi merupakan bentuk perbandingan berpasangan setiap alternatif di setiap kriteria sedangkan matriks ternormalisasi berbobot merupakan matriks yang berisi matriks ternormalisasi yang telah dikalikan dengan bobot preferensi. pada penelitian ini, peneliti memberikan bobot preferensi sebagai berikut: ๐‘Š = [5 5 4 4 3 3 3 2 2 3 3 5 5 ] tahap berikutnya adalah menentukan solusi ideal positif dan solusi ideal negatif. solusi ideal positif didefinisikan sebagai jumlah dari seluruh nilai terbaik yang dapat dicapai untuk setiap atribut, sedangkan solusi negatif-ideal terdiri dari seluruh nilai terburuk yang dicapai untuk setiap atribut. hasil perhitungan solusi ideal positif dan negatif untuk data dosen dan karyawan diperoleh solusi ideal positif (a+) adalah sebagai berikut:0 ๐ด+ = {0,0628; 0,2956; 0.1213; 0.3247; 0.0245; 0.1694; 0.0240; 0.1184; 0.0239; 0.1226; 0.0891; 0.1082} solusi ideal negatif (a-) adalah sebagai berikut: ๐ดโˆ’ = {0.3139; 0.1182; 0.3033; 0.0649; 0.1225; 0.0678; 0.1202; 0.0474; 0.1193; 0.0245; 0.2227; 0.0433} untuk data mahasiswa diperoleh solusi ideal positif (a+) adalah sebagai berikut: ๐ด+ = {0.0778; 0.3384; 0.0708; 0.4148; 0.0573; 0.2559; 0.0431; 0.2011; 0.0444; 0.1256; 0.0232; 0.1829; 0.0359} solusi ideal negatif (a-) adalah sebagai berikut: ๐ดโˆ’ = {0.3889; 0.1354; 0.3541; 0.0830; 0.2867; 0.0512; 0.2157; 0.0402; 0.2220; 0.0251; 0.1159; 0.0366; 0.1795} setelah menentukan solusi ideal positif dan negatif, langkah selanjutnya adalah menentukan jarak antara nilai setiap alternatif dengan matriks solusi ideal positif dan negatif serta menentukan nilai preferensi untuk setiap alternatif. pada penelitian ini diberikan kriteria pada skor kedalaman spiritual yang diperoleh dari hasil perhitungan dengan metode topsis. kriteria tersebut adalah sebagai berikut: skor makna interval 0,00 โ€“ 0,20 kedalaman spiritual kurang sekali interval 0,21 โ€“ 0,40 kedalaman spiritual kurang interval 0,41 โ€“ 0,60 kedalaman spiritual cukup interval 0,61 โ€“ 0,80 kedalaman spiritual baik interval 0,81 โ€“ 1,00 kedalaman spiritual baik sekali hasil perhitungan kedalaman spiritual dosen dan karyawan akan ditunjukkan dalam diagram lingkaran sebagai berikut: gambar 2. kedalaman spiritual dosen dan karyawan hasil perhitungan kedalaman spiritual dosen dan karyawan menunjukkan bahwa sebanyak 33% memiliki skor kedalaman spiritual tertinggi yang berarti kedalaman spiritual baik sekali. skor kedalaman spiritual terendah yang berarti kedalaman spiritual kurang sekali dimiliki sebanyak 7% responden. untuk hasil perhitungan kedalaman spiritual mahasiswa, ditunjukkan dalam diagram lingkaran berikut: pada responden mahasiswa, paling banyak responden memiliki skor pada interval 0,41-0,60 yang berarti kedalaman spiritual cukup dan interval 0,61-0,80 yang bermakna kedalaman spiritual baik yaitu sebanyak 33% dan 45%. 2. aplikasi sem setelah analisis dengan menggunakan fmadm metode topsis, selanjutnya data akan di analisis dengan sem untuk mengetahui hubungan antar variabel yang mempengaruhi variabel kedalaman spiritual. penerapan logika fuzzy dan sem untuk mengukur kedalaman spiritual dosen, karyawan, dan mahasiswa cauchy โ€“ issn: 2086-0382 87 gambar 3. kedalaman spiritual mahasiswa 1. spesifikasi model spesifikasi model pada penelitian ini: a. persamaan struktural ๐พ๐‘† = ๐›พ11๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›พ12๐‘ƒ๐‘’๐‘Ÿ๐‘–๐‘™๐‘Ž๐‘˜๐‘ข + 1 b. persamaan pengukuran variabel eksogen ๐ผ๐ต๐ท. 1 = ๐œ†11๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ1 ๐ผ๐ต๐ท. 2 = ๐œ†21๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ2 ๐ผ๐ต๐ท. 3 = ๐œ†31๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ3 ๐ผ๐ต๐ท. 4 = ๐œ†41๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ4 ๐ผ๐ต๐ท. 5 = ๐œ†51๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ5 ๐ผ๐ต๐ท. 6 = ๐œ†61๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ6 ๐ผ๐ต๐ท. 8 = ๐œ†81๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ8 ๐‘ƒ๐‘…. 1 = ๐œ†92๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ9 ๐‘ƒ๐‘…. 2 = ๐œ†102๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + ๐›ฟ10 c. persamaan pengukuran variabel endogen ๐พ๐‘†. 1 = ๐œ†11๐พ๐‘† + 1 ๐พ๐‘†. 2 = ๐œ†21๐พ๐‘† + 2 ๐พ๐‘†. 3 = ๐œ†31๐พ๐‘† + 3 2. identifikasi identifikasi dimaksudkan untuk menjaga agar model yang dispesifikasi bukan merupakan model yang under-identified. pada data dosen dan karyawan jumlah sampel n=405. jumlah parameter yang akan diestimasi adalah 29 dengan banyaknya indikator variabel laten endogen 3 dan indikator variabel laten eksogen 10, maka degree of freedom yang dihasilkan adalah 62. pada data mahasiswa degree of freedom adalah 75. karena degree of freedom 62 dan 75 sehingga model tersebut overidentified jadi model tersebut dapat diidentifikasikan estimasinya. 3. estimasi pada penelitian ini estimasi parameter menggunakan weigthed least square (wls) estimator karena estimasi parameter wls penggunaannya tidak bergantung pada jenis distribusi datanya serta jenis data pada penelitian ini adalah ordinal [9]. dengan data sebesar 405 dan 409 sudah memenuhi syarat untuk menggunakan estimasi parameter wls. penggunaan estimasi parameter wls disertai dengan penggunaan matriks korelasi sebagai input data. 4. uji kecocokan hasil uji kecocokan menunjukkan bahwa model pada penelitian ini belum fit, karena probabilitas chi-square menunjukkan p=0,00. selain itu nilai ecvi, aic dan caic masih menunjukkan model belum fit. uji kecocokan pada data mahasiswa menunjukkan bahwa model pada penelitian ini belum fit, karena probabilitas chi-square menunjukkan p=0,00. selain itu nilai ecvi, aic dan caic masih menunjukkan model belum fit. karena uji kecocokan pada data dosen dan karyawan maupun pada data mahasiswa menunjukkan hasil yang belum fit, maka perlu dilakukan respeksifikasi agar mendapatkan model yang fit. 5. respeksifikasi untuk mendapatkan model yang cocok, maka peneliti perlu melakukan modifikasi. modifikasi dilakukan dengan menambahkan hubungan path dari beberapa variabel manifest dengan variabel laten, mengkorelasikan error pada beberapa variabel juga dilakukan untuk memodifikasi model. respeksifikasi pada data dosen dan karyawan menghasilkan path diagram estimasi sebagai berikut: dari hasil estimasi pada data dosen dan karyawan setelah respeksifikasi, diketahui bahwa indikator ibd.7 dan ibd.8 yang paling dominan mempengaruhi variabel ibadah, yaitu sebesar 0,8 dan 0,9. pada variabel perilaku, indikator pr.2 yang paling berpengaruh yaitu sebesar 1,41. pada variabel kedalaman spiritual (ks), indikator ks.1 memiliki korelasi dengan ks.2 dan ks.3 sebesar 0,11 dan 0,17 sedangkan faktor yang paling berpengaruh dominan terhadap kedalaman spiritual adalah indikator ks.2 yaitu penghayatan. any tsalasatul fitriyah 88 volume 3 no. 2 mei 2014 gambar 4. hasil estimasi data dosen dan karyawan hasil estimasi model struktural ditunjukkan pada gambar 5 berikut: gambar 5. model struktural data dosen dan karyawan pada estimasi model struktural, variabel ibadah mempunyai korelasi dengan variabel ks sebesar 0,76 dan variabel perilaku memiliki korelasi dengan variabel ks sebesar 0,38 dengan error sebesar 0,23. sedangkan korelasi antara variabel ibadah dengan perilaku sebesar 0,44. setelah memperoleh hasil estimasi, uji kecocokan perlu dilakukan untuk menguji kesesuaian model dengan data. uji kecocokan pada model yang telah respeksifikasi menunjukkan bahwa model telah fit. probabilitas chi-square sebesar 0,0013 menunjukkan model telah fit. ecvi pada model ini adalah sebesar 0,42 namun ecvi for saturated model adalah 0,45 sedangkan ecvi for independence model adalah sebesar 16,55. sehingga dapat dikatakan model sudah fit. nilai aic dan caicjuga telah menunjukkan bahwa model telah fit karena model aic/caic lebih kecil dari independence aic/caic dan saturated aic/caic. nilai nfi, nnfi, pnfi, cfi, ifi, dan rfi. pada model ini dapat dikatakan fit karena nilainya telah mendekati 1. nilai critical n (cn) sebesar 216,86 menunjukkan model ini cukup mewakili data. nilai gfi sebesar 0,82 mengindikasikan bahwa model ini marginal fit dan nilai agfi sebesar 0,91 menyatakan bahwa model pada kasus ini adalah fit. selain pada penilaian goodness of fit, uji kecocokan dilakukan dengan menguji validitas data yang digunakan, pada output lisrel pada path diagram t-value. analisa data menunjukkan t-value pada seluruh indikator yang mempengaruhi variabel laten adalah valid karena nilai t-value tidak ada yang berada pada rentang -2 < t-value < 2. setelah menguji validitas data, uji kecocokan berikutnya adalah menguji reabilitas data. untuk menguji reabilitas data menurut ghozali dan fuad (2005) dapat digunakan rumus construct reability (cr) dan variance extracted (ve). untuk menghitung cr digunakan rumus : ๐ถ๐‘… = (โˆ‘ ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘™๐‘œ๐‘Ž๐‘‘๐‘–๐‘›๐‘”)2 (โˆ‘ ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘™๐‘œ๐‘Ž๐‘‘๐‘–๐‘›๐‘”)2 + โˆ‘ ๐‘’๐‘— dan untuk menghitung ve digunakan rumus: ๐‘‰๐ธ = โˆ‘ ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘™๐‘œ๐‘Ž๐‘‘๐‘–๐‘›๐‘” 2 โˆ‘ ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘™๐‘œ๐‘Ž๐‘‘๐‘–๐‘›๐‘” 2 + โˆ‘ ๐‘’๐‘— perhitungan cr dan ve pada data ini diperoleh cr ibadah sebesar 0,89; cr perilaku sebesar 0,82; dan cr ks sebesar 0,73. dan nilai ve ibadah sebesar 0,5028; ve perilaku sebesar 0,6252; dan ve ks sebesar 0,52. hasil analisa dengan sem pada data dosen dan karyawan dapat dikatakan bahwa semakin tinggi derajat ibadah dan perilaku maka akan semakin tinggi pula kedalaman spiritual yang dimiliki dosen dan karyawan. dengan kata lain terdapat pengaruh positif dan signifikan antara variabel ibadah dan perilaku terhadap variabel kedalaman spiritual. selain itu, penelitian ini juga menemukan adanya variabel ibadah dan penerapan logika fuzzy dan sem untuk mengukur kedalaman spiritual dosen, karyawan, dan mahasiswa cauchy โ€“ issn: 2086-0382 89 variabel perilaku. hasil analisa menunjukkan adanya pengaruh yang positif dan signifikan antara variabel ibadah dengan variabel perilaku. hasil modifikasi pada data mahasiswa, menghasilkan path diagram estimasi sebagai berikut: gambar 6. hasil estimasi data mahasiswa pada data mahasiswa, indikator yang paling berpengaruh terhadap adalah ibd.2, ibd.3, ibd.4, ibd.6, dan ibd.7, yaitu sebesar 0,67, 0,66, 0,64, 0,65, dan 0,68. ibd.6 memiliki korelasi terhadap ibd.1 dan ibd.7 sebesar 0,18 dan 0,11 sedangkan ibd.4 dan ibd.5 berkorelasi sebesar 0,30. pada variabel perilaku, pr.2 dan pr.3 yang memiliki pengaruh paling dominan, yaitu sebesar 0,45 dan 0,51. pada variabel kedalaman spiritual, indikator ks.2 yang paling berpengaruh yaitu sebesar 1,35. indikator ks.1 memiliki korelasi dengan ks.2 dan ks.3 sebesar 0,29 dan -0,60. model struktural yang diperoleh dari hasil estimasi digambarkan pada gambar 7 berikut ini: gambar 7. model struktural data mahasiswa variabel ibadah berpengaruh sebesar 0,56 terhadap variabel ks, sedangkan variabel perilaku berpengaruh sebesar 0,48 dengan error seberar 0,31. korelasi antara variabel ibadah dan perilaku yaitu sebesar 0,26. uji kecocokan goodness of fit yang dihasilkan oleh output lisrel pada data mahasiswa, menunjukkan bahwa model telah fit dengan probabilitas chi-square sebesar 0,0065. ecvi pada model ini adalah sebesar 0,44 dan ecvi for saturated model adalah 0,51 sedangkan ecvi for independence model adalah sebesar 6,54 sehingga dapat dikatakan model sudah fit. nilai aic dan caic juga telah menunjukkan bahwa model telah fit karena model aic/caic lebih kecil dari independence aic/caic dan saturated aic/caic. uji kecocokan dengan nfi, nnfi, pnfi, cfi, ifi, dan rfi pada model ini dapat dikatakan fit karena nilainya telah mendekati 1. nilai critical n (cn) sebesar 291,27 menunjukkan model ini cukup mewakili data. nilai gfi sebesar 0,93 mengindikasikan bahwa model ini good fit dan nilai agfi sebesar 0,88 menyatakan bahwa model pada kasus ini adalah marginal fit. berdasarkan analisa dengan lisrel, seluruh indikator pada model ini adalah valid dengan ditandainya tidak ada nilai t-value yang berada pada rentang antara -2 sampai 2 serta diperoleh cr ibadah sebesar 0,89; cr perilaku sebesar 0,788; dan cr ks sebesar 0,854. untuk nilai variance extracted (ve), ve ibadah sebesar 0,5011; ve perilaku sebesar 0,54; dan ve ks sebesar 0,6625. karena nilai cr pada setiap variabel lebih dari 0,7 dan nilai ve lebih dari 0,5 maka dapat dikatakan bahwa data telah reliabel. hasil analisa dengan sem pada data mahasiswa dapat dikatakan bahwa semakin tinggi derajat ibadah dan perilaku maka akan semakin tinggi pula kedalaman spiritual yang dimiliki oleh mahasiswa. atau dengan kata lain terdapat pengaruh positif dan signifikan antara variabel ibadah dan perilaku terhadap variabel kedalaman spiritual. selain itu, penelitian ini juga menemukan adanya variabel ibadah dan variabel perilaku. hasil analisa menunjukkan any tsalasatul fitriyah 90 volume 3 no. 2 mei 2014 adanya pengaruh yang positif dan signifikan antara variabel ibadah dengan variabel perilaku. kesimpulan berdasakan hasil analisa data responden di lokasi penelitian dengan metode topsis dan sem maka dapat disimpulkan sebagai berikut: 1. fuzzy multi atributte decision making (fmadm) metode topsis dapat diterapkan untuk mengukur kedalaman spiritual dosen, karyawan dan mahasiswa. 2. stuctural equation modeling (sem) dapat digunakan untuk mengetahui hubungan antar variabel yang mempengaruhi kedalaman spiritual dosen, karyawan, serta mahasiswa. berdasarkan analisis data hasil penelitian diperoleh bahwa variabel ibadah yang lebih berpengaruh terhadap variabel kedalaman spiritual dibandingkan variabel perilaku dengan model struktural yang dihasilkan sem pada data dosen dan karyawan adalah: ๐พ๐‘† = 0,76 ๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + 0,38 ๐‘ƒ๐‘’๐‘Ÿ๐‘–๐‘™๐‘Ž๐‘˜๐‘ข +0,23. pada data mahasiswa, model struktural yang dihasilkan sem adalah: ๐พ๐‘† = 0,56 ๐ผ๐‘๐‘Ž๐‘‘๐‘Žโ„Ž + 0,48 ๐‘ƒ๐‘’๐‘Ÿ๐‘–๐‘™๐‘Ž๐‘˜๐‘ข +0,31. daftar pustaka [1] pradana, โ€œibadah dan syariโ€™at,โ€ 2012. . [2] m. djunaidi, e. setiawan, and f. w. andista, โ€œpenentuan jumlah produksi dengan aplikasi metode fuzzymamdani,โ€ j. ilm. tek. ind., vol. 4, no. 2, pp. 90โ€“98, 2005. [3] r. kusumadewi, s., hartati, s., harjoko, a., wardoyo, fuzzy multi-attribute decision making (fmadm). yogyakarta: grahailmu, 2006. [4] m. ashrafzadeh, f. m. rafiei, n. m. isfahani, and z. zare, โ€œapplication of fuzzy topsis method for the selection of warehouse location: a case study,โ€ interdiscip. j. contemp. res. bus., vol. 3, no. 9, pp. 655โ€“667, 2012. [5] j. juliyanti, i. mohammad isa, and m. imam, โ€œpemilihan guru berprestasi menggunakan metode ahp dan topsis,โ€ pemantapan keprofesionalan peneliti, pendidik, dan prakt. mipa untuk mendukung pembang. karakter bangsa, 2011. [6] r. renganathan, s. balach, and k. govindarajan, โ€œcustomer perception towards banking sector: structural equation modeling approach,โ€ african j. bus. manag., vol. 6, no. 46, pp. 11426โ€“ 11436, 2012. [7] s. h. wijanto, โ€œstructural equation modeling dengan lisrel 8.8: konsep dan tutorial,โ€ 2008. [8] t. m. hox, j.j dan bechger, โ€œan introduction to structural equation modeling, family science review,โ€ vol. 11, pp. 354โ€“373, 1998. [9] i. dan f. ghozali, struktural equation modeling teori, konsep, dan aplikasi dengan program lisrel lisrel 8.80 edisi 3. semarang: badan penerbit universitas diponegoro, 2005. kajian teori 1. fuzzy multi attribute desicion making (fmadm) 2. weighted least square (wls) estimator 3. structural equation modeling (sem) metode penelitian hasil dan pembahasan 1. aplikasi fmadm metode topsis untuk mengukur kedalaman spiritual 2. aplikasi sem kesimpulan daftar pustaka hybrid model of singular spectrum analysis and arima for seasonal time series data cauchy โ€“jurnal matematika murni dan aplikasi volume 7(2) (2022), pages 302-315 p-issn: 2086-0382; e-issn: 2477-3344 submitted: december 01, 2021 reviewed: december 10, 2021 accepted: december 23, 2021 doi: http://dx.doi.org/10.18860/ca.v7i1.14136 hybrid model of singular spectrum analysis and arima for seasonal time series data gumgum darmawan1,2,*, dedi rosadi1, budi n ruchjana2 1gadjah mada university, yogyakarta, indonesia 2padjadjaran university, bandung, indonesia *corresponding author email: gumgum.darmawan@gmail.ugm.ac.id*, dedirosadi@gadjahmada.edu, budi.nurani@unpad.ac.id abstract hybrid models between singular spectrum analysis (ssa) and autoregressive integrated moving average (arima) have been developed by several researchers. in the ssa-arima hybrid model, ssa is used in the decomposition and reconstruction process, while forecasting is done through the arima model. in this paper, hybrid ssa-arima uses two auto grouping models. the purpose of this paper is to analyze seasonal data using the ssa-arima hybrid by auto grouping. the first model namely the alexandrov method and the second method is alternative auto grouping with long memory approach. the two hybrid models were tested for two types of seasonal pattern, multiplicative and additive seasonal time series data. the analysis results using both methods give accurate result; as seen from the mape generated the 12 observations for future, the value is below 5%. for additive seasonal pattern, the hybrid ssa-arima method with alexandrov auto grouping is more accurate (mape= 0.13%) than the hybrid ssa-arima method with alternative method but for multiplicative seasonal pattern the hybrid ssa-arima with alternative auto grouping is more accurate (mape = 3.63%) than the hybrid ssa-arima method with alexandrov method. keywords: arima; automatic grouping; long memory effect; seasonal pattern, singular spectrum analysis introduction singular spectrum analysis (ssa) is a relatively new non-parametric method that has proved its capability in various time series types. solving all these problems correspond to the so-called basic capabilities of ssa. besides, the method has several extensions. first, the multivariate version of the method permits the simultaneous expansion of several time series data; see, for example, [1]. second, the ssa ideas lead to several forecasting procedures for time series; see [2]. third, ssa has been utilized for change-point detection in time series. the ssa technique has been used as a filtering method in [3]. fifth, a family of the causality test based on the multivariate ssa technique has been introduced in [4]. sixth, ssa can be applied for missing value imputation [5]. ssa can be applied in various disciplines, from mathematics and physics to economics and financial mathematics, meteorology and oceanography, to social sciences. http://dx.doi.org/10.18860/ca.v7i1.14136 mailto:gumgum.darmawan@gmail.ugm.ac.id mailto:dedirosadi@gadjahmada.edu mailto:budi.nurani@unpad.com hybrid model of singular spectrum analysis and arima for seasonal time series data g.darmawan 303 for instance, in climatology ([6], [7], [8]) and biomedical data time series analysis [9]. hybrid modeling of ssa in time series data has been carried out by many researchers. the hybrid model is carried out so that the advantages of two or more models make a positive contribution to the forecasting results. ssa hybrid model with other time series models includes arima, neural network, arimax, par, varimax, and others. [10], performed hybrid ssa with neural network.[11] perform the hybrid ssa-algorithm firefly-bp neural network process. [12] carried out a hybrid ssa model with armax. [13] combining the ssa model with par(p), this model was applied to wind speed data.[14], built the ssa-varimax hybrid model and used it for climate data. the arima model is often used as a comparison for the ssa model, such as [15], comparing ssa, arima, and other time series models for tourism cases in various countries in europe. the result has indicated that there is no good time series model for all tourism data. [16] compared ssa and arima for predicting ambulance demand. the ssa-arima hybrid model studied by [17] was applied to the annual runoff data. [18], the ssa-arima hybrid model was compared with the basic ssa and arima models. the result showed that the ssa-arima hybrid model was the most accurate. however, many of these papers do not discuss specific data forms (e.g., seasonal patterns), so we consider it necessary to examine this hybrid model for seasonal data. in this study, the ssa and the arima were employed collectively to forecast two types of time series data. both models run to get fast and accurate computation. in ssa, there are two methods of automatic grouping (alexandrov and alternative). the forecasting performance of the hybrid ssa-arima model was compared between the two methods (alternative vs. alexandrov). this paper contributes to the analysis of the seasonal patterns (additive and multiplicative) by the ssa-arima hybrid. the purpose of this paper was to analyze seasonal data using the ssa-arima hybrid by auto grouping for two types of seasonal patterns. this paper was organized as follows: the current section was an introduction where we briefly outlined the use of ssa and introduced our study. in the next section, the methods section, we described the detailed methodology of ssa and arima, briefly outlined forecasting using a linear recurrent formula, identification of fractional differencing parameter, identification of hidden periodicities based on periodogram and automatic grouping on alexandrov method ([19], [20]) also alternative automatic grouping [21]. this section also included a proposed algorithm for automatic hybrid ssaarima. in the results and discussion section, we demonstrated the abilities of hybrid ssaarima in real-time series data. in this part, we also investigated three types of time series data: seasonal with no trend, multiplicative seasonal with the trend, and additive seasonal with the trend. this section also discussed the comparison result between hybrid ssa-arima with the alexandrov method and hybrid ssa-arima with an alternative method for real data analysis. methods singular spectrum analysis the (non-parametric) ssa method has received a fair amount of attention in the literature. the first phase of ssa is the decomposition, where the time series are broken down into four components: trend, seasonal, cyclical, and noise. this phase consists of the embedding and singular value decomposition steps. the second phase, namely the reconstruction phase, consists of grouping and diagonal average process. the hybrid model of singular spectrum analysis and arima for seasonal time series data g.darmawan 304 forecasting process can be done once the four stages have been completed. for the completeness of presentation of our method, we presented the complete phase of the ssa algorithm in the following section. embedding the embedding step will transform one-dimensional time series ๏€จ ๏€ฉ1 2 tx = x , x , ....., x into multi-dimensional series 1 2 kx , x , ..., x with vectors ๐‘‹ = (๐‘‹๐‘–,๐‘‹๐‘–+1,๐‘‹๐‘–+2, . . ,๐‘‹๐‘–+๐ฟโˆ’1) ๐‘‡ โˆˆ ๐‘…๐ฟ , where ๐‘– = 1,2,โ€ฆ,๐พ, ๐พ = ๐‘‡ โˆ’ ๐ฟ + 1. the parameter window length l defines the embedding process, where 2 โ‰ค ๐ฟ โ‰ค ๐‘‡ โˆ’ 1 [22]. if we need to emphasize the size (dimension) of the vectors xi, then we shall call them l-lagged vectors. the l-trajectory matrix (or simply the trajectory matrix) of the series x is defined as ๐‘‹ = [ ๐‘ฅ1 ๐‘ฅ2 โ‹ฏ ๐‘ฅ๐พ ๐‘ฅ2 โ‹ฎ ๐‘ฅ3 โ‹ฎ โ€ฆ โ‹ฏ ๐‘ฅ๐พ+1 โ‹ฎ ๐‘ฅ๐ฟ ๐‘ฅ๐ฟ+1 โ€ฆ ๐‘ฅ๐‘‡ ] (1) the lagged vectors xi are the columns of the trajectory matrix x. both the rows and column of x are sub-series of the original series. the (i,j) element of matrix x is ๐‘ฅ๐‘–๐‘— = ๐‘ฅ๐‘–+๐‘—โˆ’1 which yields that x has equal elements on the โ€˜antidiagonalsโ€™ i+j=const. hence the trajectory matrix is a hankel matrix. singular value decomposition the second step, the svd step, makes the singular value decomposition of the trajectory matrix x and represents it as a sum of rank-one bi-orthogonal elementary matrices. set ๐‘† = ๐‘‹๐‘‹๐‘‡ and denoted by ๐œ†1,๐œ†2,โ€ฆ,๐œ†๐ฟthe eigenvalues of s taken in the decreasing order of magnitude (๐œ†1 โ‰ฅ ๐œ†2 โ‰ฅ โ‹ฏ โ‰ฅ ๐œ†๐ฟ โ‰ฅ 0)and by u1, u2,โ€ฆ., ul the orthonormal system of the eigenvectors of the matrix s corresponding to these eigenvalues. ๐‘‘ = ๐‘š๐‘Ž๐‘ฅ{๐‘–,๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐œ†๐‘– > 0} = ๐‘Ÿ๐‘Ž๐‘›๐‘˜ ๐‘‹ if we denote ๐‘‰๐‘– = ๐‘‹๐‘‡๐‘ˆ๐‘– โˆš๐œ†๐‘– , then the svd of the trajectory matrix can be written as ๐‘‹ = ๐‘‹1 + ๐‘‹2 + โ‹ฏ+ ๐‘‹๐‘‘, where eigenvector ui, eigenvalues iฮป form matrix ๐‘‰๐‘– ๐‘‡๐‘‹. the three elements of svd forming are called eigen triple. grouping the purpose of this step is to appropriately identify the trend, the oscillatory components with different periods and noise. this step can be skipped if one does not want to extract hidden information by regrouping and filtering components precisely. the grouping procedure partitions the set of indices 1,2,โ€ฆ., l into m disjoint subsets ๐ผ = ๐ผ1, ๐ผ2,โ€ฆ,๐ผ๐‘š, so the elementary matrix in equation (2) is regrouped into m groups. let ๐ผ = {๐‘–1, ๐‘–2,โ€ฆ, ๐‘–๐‘}. then the resultant matrix xi corresponding to the group i is defined as ๐‘‹๐‘– = ๐‘‹๐‘–1 + ๐‘‹๐‘–2+.. .+๐‘‹๐‘–๐‘. the matrices are computed for i1, i2,โ€ฆim, and substituted into equation (2) to obtain the new expansion. the grouping process is the phase when the lxk matrix is grouped into several sub-groups, namely trend patterns, seasonal or periodic, and noise patterns. here, in this paper, the patterns are identified by fourier series analysis and long-memory analysis. fourier series analysis is hybrid model of singular spectrum analysis and arima for seasonal time series data g.darmawan 305 used to identify a seasonal pattern, and long memory series analysis is used to identify the differencing parameter of data. we use the gph method [23] to identify the differencing parameter of time series. diagonal averaging the next step in basic ssa transforms each resultant matrix of the grouped decomposition (3) into a new one-dimensional series of length n and is called diagonal averaging. let y denote a matrix with orde (lxk), with the elements ๏‚ฃ ๏‚ฃ ๏‚ฃ ๏‚ฃijy ,1 i l,1 j k , and define l* = min(l, k), k*=max(l, k), and t=l+k-1. let ๐‘ฆ๐‘–๐‘— โˆ— = ๐‘ฆ๐‘–๐‘— if l