Super Total Labeling (a,d)-Edge Antimagic on the Firecracker Graph CAUCHY –Jurnal Matematika Murni dan Aplikasi Volume 6(3) (2020), Pages 133-139 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: August 18, 2020 Reviewed: October 01, 2020 Accepted: November 10, 2020 DOI: http://dx.doi.org/10.18860/ca.v6i3.10145 Super Total Labeling (a,d)-Edge Antimagic on the Firecracker Graph Juhari Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang Email: juhari@uin-malang.ac.id ABSTRACT An An (a, d)-edge antimagic total labeling on (p, q)-graph G is a one-to-one map f from V (G) βˆͺ E(G) onto the integers 1, 2, . . ., p + q with the property that the edge-weights, w(uv) = f (u) + f(v) + f(uv) where uv ∈ E(G), form an arithmetic progression starting from a and having common difference d. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we investigate the existence of super (a, d)-edge antimagic total labeling of Firecracker Graph. Keywords: Super (a, d)-Edge-Antimagic Total Labeling; Firecracker Graph (Fn, k) INTRODUCTION The first label appears in the middle of the year 1960 it started by a Ringel and Rosa hypotheses [1]. In 1967 Rosa called this label as liberation Ξ²-valuation from a graph with e side, if there is the function that mapping one to one from the set of points 𝑉(𝐺) to set of integers 0,1,2, … . , 𝑒, so every side XY in graph G gets a different label |𝑓(π‘₯) βˆ’ 𝑓(𝑦)| for every edges in graph G. One type of graf liberation is super total labeling (π‘Ž, 𝑑)-antimagic edge (SEATL), where a smallest side dan d different value. This liberation introduced by Simanjutak, Bertault and Miller in the year 2000 [1], [2], [3]. The entire release (π‘Ž, 𝑑)-edge antimagic is total labeling in some kinds of graf G that started by labeling all of the graphs first with consecutive original numbers, then proceed with buying all sides of the map such that the side weights form an arithmetic sequence with the first term and different d [4], [5]. The type of star graph, the super total labeling (π‘Ž, 𝑑)-edge antimagic (SEATL) not yet found one of which is a graph firecracker that hasn't been labelled previously. This prompted the writer to examine how super total labeling (π‘Ž 𝑑)-edge antimagic (SEATL) on the firecracker graph (Fn, k). Some of the problems formulated are as follows: (1) The upper limit d, so the firecracker graph has super total labeling (a, d)-edge antimagic? And (2) How bijective function of super total labeling (π‘Ž, 𝑑)-edge antimagic the firecracker graph? In order not to be widespread, this research needs to be done, and this research needs to be done on total labeling (π‘Ž, 𝑑)-edge antimagic the firecracker graph (Fn, k) with n β‰₯ 2; k β‰₯ 3. In this session, n and k are a provision of the definition firecracker graph. Super Total Labeling (𝒂, 𝒅)-Edge Antimagic. A graph is said to have total labeling (π‘Ž, 𝑑)-edge antimagic if there is a one-to-one mapping of one 𝑉(𝐺) βˆͺ 𝐸(𝐺) to integers. 1,2,3, … , 𝑝 + π‘ž so the set of side weight 𝑀(𝑒𝑣) = 𝑓(𝑒) + http://dx.doi.org/10.18860/ca.v6i3.10145 mailto:juhari@uin-malang.ac.id Super Total Labeling (a,d)-Edge Antimagic on the Firecracker Graph Juhari 134 𝑓(𝑣) + 𝑓(𝑒𝑣) on all edge G is π‘Ž, π‘Ž + 𝑑, … , π‘Ž + (π‘ž βˆ’ 1)𝑑 for π‘Ž > 0 and 𝑑 >0 both integers [6]. The total labeling (π‘Ž, 𝑑)-edge antimagic called super total labeling (π‘Ž, 𝑑)- edge antimagic if 𝑓(𝑉) = {1,2,3, . . , 𝑝} and 𝑓(𝐸) = {𝑝 + 1, 𝑝 + 2, 𝑝 + 3, … , 𝑝 + π‘ž}. To search upper limit different value d super total slowly (π‘Ž, 𝑑)-edge antimagic can certain by lemma [1], [7]: Lemma 1 If a graph (p, q) is super total labeling (a,d)-edge antimagic so 𝑑 β‰₯ 2𝑝+π‘žβˆ’5 π‘žβˆ’1 Prove. 𝑓(𝑉) = {1,2,3, . . , 𝑝} and 𝑓(𝐸) = {𝑝 + 1, 𝑝 + 2, 𝑝 + 3, … , 𝑝 + π‘ž} For example, graph (𝑝, π‘ž) is super total labeling (π‘Ž, 𝑑)-edge antimagic by mapping 𝑓: 𝑉(𝐺) βˆͺ 𝐸(𝐺) β†’ {1,2,3, … , 𝑝 + π‘ž}. The minimum value that possible from the smallest weight side 𝛼(𝑒) + 𝛼(𝑒𝑣) + 𝛼(𝑣) = 1 + (𝑝 + 1) + 2 = 𝑝 + 4 and can be written: 𝑝 + 4 ≀ 𝛼. While on the other side, t h e maximum value that possible from the biggest weight side gained by the sum of 2 smallest labels and biggest label or can be written (𝑝 βˆ’ 1) + (𝑝 + π‘ž) + 𝑝 = 3𝑝 + π‘ž βˆ’ 1. Result: π‘Ž + (π‘ž βˆ’ 1) 𝑑 ≀ 3𝑝 + π‘ž βˆ’ 1 𝑑 ≀ 3𝑝 + π‘ž βˆ’ 1 βˆ’ (𝑝 + 4) π‘ž βˆ’ 1 𝑑 ≀ 2𝑝 + π‘ž βˆ’ 5 π‘ž βˆ’ 1 The equation above has proved and got value𝑑 β‰₯ 2𝑝+π‘žβˆ’5 π‘žβˆ’1 from many kinds or graph family. Firecracker Graph Firecracker graph is a graph that gets by star graph combination exactly one leaf of each graph is connected [8], [9], [10], usually symbolized 𝐹𝑛,π‘˜ where n is the number of merged star graphs, while k is the number of points of each connected star graph. METHODS This research uses axiomatic descriptive method, which is by decreasing the existing axioms or theorems [11], [12], then applied in super total labeling (π‘Ž, 𝑑)-edge antimagic on the firecracker graph 𝐹𝑛,π‘˜ . In addition, some systematic research techniques are as follows: (1) Count the number of points v and side e on the firecracker graph 𝐹𝑛,π‘˜ ; (2) Determine the upper limit of the different d values in the firecracker graph 𝐹𝑛,π‘˜ in accordance with the Lemma 1; (3) determine or find EAVL label (edge-antimagic vertex labeling) or labeling points (π‘Ž, 𝑑)- edge antimagic of the firecracker graph 𝐹𝑛,π‘˜ ; (4) determine the algorithm of the functional function EAVL 𝑓(π‘₯𝑖.𝑙 ) on the firecracker graph 𝐹𝑛,π‘˜ by looking at the labeling pattern on the graph firecracker 𝐹𝑛,π‘˜ which has been found then grouping the numbers on the label of points that form arithmetic rows ; (5) determine the algorithm for the functional function of side weights EAVL (𝑀) on the firecracker graph 𝐹𝑛,π‘˜ by looking at the firecracker graph labeling pattern;(6) label the sides of the firecracker graph 𝐹𝑛,π‘˜ with SEATL (Super Edge Antimagic Total Labeling) or super total labeling (π‘Ž, 𝑑)-edge antimagic for each corresponding different value d;(7) Determine the bijective function on the firecracker graph 𝐹𝑛,π‘˜ ; and (8) Write a conclusion. Super Total Labeling (a,d)-Edge Antimagic on the Firecracker Graph Juhari 135 RESULTS AND DISCUSSION The first step in determining the labeling of super total (π‘Ž, 𝑑)-edge antimagic is to determine the number of points and the number of edges on the graph under study, in this case, firecracker graph. After that, select the value of d in the labeling that will be examined using lemma 1. The labeling pattern can be determined by detecting the way (pattern recognition) after labeling a specific firecracker graph. Next, to determine patterns in general, the objective function is found by using the principle of an arithmetic sequence. The following will be presented lemma and theorems that have been found. Lemma 2. There is a point labeling (π‘Ž, 1)- edge antimagic on the firecracker graph 𝐹𝑛,π‘˜ if n odd, n β‰₯ 2, and k β‰₯ 3. Prove. First defined π‘₯𝑖.𝑙 is the point in the graph component of the firecracker 𝐹𝑛,π‘˜ ,where 1 ≀ i ≀ n and 0 ≀ l ≀ k βˆ’ 1. Based on research results,if 𝛼: 𝑉(𝐹𝑛,π‘˜ ) β†’ {1,2, … , π‘›π‘˜} so 𝛼 labelation can be written as follow: 𝑖; if i odd (1 ≀ 𝑖 ≀ 𝑛), and l=0 (𝑛 + 𝑖); if i even (2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1), and l=0 𝑖; if i even (12 ≀ 𝑖 ≀ 𝑛 βˆ’ 1), and l=1 (𝑛 + 𝑖); if i odd (1 ≀ 𝑖 ≀ 𝑛), and l=1 𝑛(𝑙 + 1) βˆ’ π‘–βˆ’1 2 ; if i odd (1 ≀ 𝑖 ≀ 𝑛), and (2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1) (𝑙𝑛 + π‘›βˆ’π‘–βˆ’1 2 ) + 1; if i even (2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1), and (2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1) From the equation above 𝛼(π‘₯𝑖,𝑙 ) is an objective function that maps 𝑉(𝐹𝑛,π‘˜ ) = {𝑣1, 𝑣2, 𝑣3, … , π‘£π‘›π‘˜ } to the set of integers {1,2, … , π‘›π‘˜}. If 𝑀𝛼 is defindes as the weight edge of the labeling point Ξ±, so 𝑀𝛼 is formulated: 𝑀𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (𝑛 + 2𝑖) ; 1 ≀ 𝑖 ≀ 𝑛, and 𝑙 = 1 𝑀𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) = (𝑛 + 2𝑖 + 1) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 𝑙 = 1 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (𝑙 + 1)𝑛 + (𝑖+1) 2 ; if i odd, 1 ≀ 𝑖 ≀ 𝑛, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 𝑀𝛼4(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (𝑙 + 1)𝑛 + (𝑛+𝑖+1) 2 ; if i even, 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 Theorem 1. There is super total labeling (2π‘›π‘˜ + 𝑛 + 1,0)-edge antimagic on the firecracker graph 𝐹𝑛,π‘˜ if n odd, n β‰₯ 2, and k β‰₯ 3. Prove. First define the edge label 𝑓𝛼 : 𝐸(𝐹𝑛,π‘˜ ) = {𝑒1, 𝑒2, . . . , π‘’π‘›π‘˜βˆ’1} β†’ {π‘›π‘˜ + 1, π‘›π‘˜ + 2, … , 2π‘›π‘˜ βˆ’ 1}, so the edge label 𝑓𝛼 for super total labeling (π‘Ž, 0)- edge antimagic on the graph 𝐹𝑛,π‘˜ can be formulated as follows: 𝑓𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) = 2(π‘›π‘˜ βˆ’ 𝑖) + 1 ; 1 ≀ 𝑖 ≀ 𝑛 and 𝑙 = 1 𝑓𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) = 2(π‘›π‘˜ βˆ’ 𝑖) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 and 𝑙 = 1 𝑓𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (2π‘˜ βˆ’ 𝑙)𝑛 + (1βˆ’π‘–) 2 ; if i odd, 1 ≀ 𝑖 ≀ 𝑛, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 𝑓𝛼4(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (2π‘˜ βˆ’ 𝑙)𝑛 + (βˆ’2π‘›βˆ’π‘–+6) 2 ; if i even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 Next, if there is WΞ± even that defined as weight of super total labeling 𝛼(π‘₯𝑖,𝑙 ) = = Super Total Labeling (a,d)-Edge Antimagic on the Firecracker Graph Juhari 136 𝛼(π‘₯𝑖,𝑙 ), 𝛼(π‘₯𝑖,𝑙 π‘₯𝑖,0), and 𝛼(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ), so WΞ± can be obtained by adding up the edge weight formula EAVL 𝑀𝛼 and the formula of edge label 𝑓𝛼 with the terms of boundaries i and l which correspond and can be stated as follows: π‘Šπ›Ό1 = 𝑀𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) + 𝑓𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) ; 1 ≀ 𝑖 ≀ 𝑛, and 𝑙 = 1 π‘Šπ›Ό2 = 𝑀𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖,0) + 𝑓𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖,0) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 𝑙 = 1 π‘Šπ›Ό3 = 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) + 𝑓𝛼3 (π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) ; if i odd, 1 ≀ 𝑖 ≀ 𝑛, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 π‘Šπ›Ό4 = 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) + 𝑓𝛼3 (π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) ; if i even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1,and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 By substituting the equation above is obtained: π‘Šπ›Ό1 = (𝑛 + 2𝑖) + 2(π‘›π‘˜ βˆ’ 𝑖) + 1 = 2π‘›π‘˜ + 𝑛 + 1 π‘Šπ›Ό2 = 2(π‘›π‘˜ βˆ’ 𝑖) + (𝑛 + 2𝑖 + 1) = 2π‘›π‘˜ + 𝑛 + 1 π‘Šπ›Ό3 = (2π‘˜ βˆ’ 𝑙)𝑛 + (1βˆ’π‘–) 2 + (𝑙 + 1)𝑛 + (𝑖+1) 2 = 2π‘›π‘˜ + 𝑛 + 1 π‘Šπ›Ό4 = (2π‘˜ βˆ’ 𝑙)𝑛 + (βˆ’2π‘›βˆ’π‘–+6) 2 + (𝑙 + 1)𝑛 + (𝑛+𝑖+1) 2 = 2π‘›π‘˜ + 𝑛 + 1 Based on the equation above, the set of total labeling edge weights can be written as π‘Šπ›Ό = {π‘Šπ›Ό1, π‘Šπ›Ό2, π‘Šπ›Ό3, π‘Šπ›Ό4}. It can also be seen that π‘Šπ›Ό1 = π‘Šπ›Ό2 = β‹― = π‘Šπ›Ό4 = 2π‘›π‘˜ + 𝑛 + 1 or can be written as follows: ⋃ 4𝑑=1 π‘Šπ›Όπ‘‘ = {2π‘›π‘˜ + 𝑛 + 1,2π‘›π‘˜ + 𝑛 + 1, … , 2π‘›π‘˜ + 𝑛 + 1}. From this it can be concluded that the firecracker graph 𝐹𝑛,π‘˜ have Super (2π‘›π‘˜ + 𝑛 + 1,0)- edge antimagic if n odd, n β‰₯ 2, and k β‰₯ 3. Theorem 2. There are super total labeling ((π‘˜ + 1)𝑛 + 3,2)-edge antimagic on the graph firecracker 𝐹𝑛,π‘˜ if n odd (𝑛 β‰₯ 2), and π‘˜ β‰₯ 3. Prove. First define the edge label 𝑓𝛼 : 𝐸(𝐹𝑛,π‘˜ ) = {𝑒1, 𝑒2, . . . , π‘’π‘›π‘˜βˆ’1} β†’ {π‘›π‘˜ + 1, π‘›π‘˜ + 2, … , 2π‘›π‘˜ βˆ’ 1}, so edge label 𝑓𝛼 for super total labeling (π‘Ž, 2)- edge antimagic on the graph 𝐹𝑛,π‘˜ can be formulated as follows: 𝑓𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (π‘›π‘˜ + 2𝑖 βˆ’ 1) ; 1 ≀ 𝑖 ≀ 𝑛 and 𝑙 = 1 𝑓𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) = (π‘›π‘˜ + 2𝑖) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 and 𝑙 = 1 𝑓𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (π‘˜ + 𝑙)𝑛 + (π‘–βˆ’1) 2 ; if i odd, 1 ≀ 𝑖 ≀ 𝑛, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 𝑓𝛼4(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (π‘˜ + 𝑙)𝑛 + (𝑛+π‘–βˆ’1) 2 ; if i even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 Next, WΞ± defined as weight of super total labeling edge 𝛼(π‘₯𝑖,𝑙 ), 𝛼(π‘₯𝑖,𝑙 π‘₯𝑖,0), and 𝛼(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) π‘Šπ›Ό1 = 𝑀𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) + 𝑓𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) ; 1 ≀ 𝑖 ≀ 𝑛, and 𝑙 = 1 π‘Šπ›Ό2 = 𝑀𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖,0) + 𝑓𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖,0) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 𝑙 = 1 π‘Šπ›Ό3 = 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) + 𝑓𝛼3 (π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) ; if i odd, 1 ≀ 𝑖 ≀ 𝑛, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 π‘Šπ›Ό4 = 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) + 𝑓𝛼3 (π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) ; if i even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1,and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 By substituting the equation above is obtained: π‘Šπ›Ό1 = (𝑛 + 2𝑖) + (π‘›π‘˜ + 2𝑖 βˆ’ 1) = (π‘˜ + 1)𝑛 + 4𝑖 βˆ’ 1 π‘Šπ›Ό2 = (𝑛 + 2𝑖 + 1) + (π‘›π‘˜ + 2𝑖) = (π‘˜ + 1)𝑛 + 4𝑖 + 1 π‘Šπ›Ό3 = (𝑙 + 1)𝑛 + (𝑖+1) 2 + (π‘˜ + 𝑙)𝑛 + (π‘–βˆ’1) 2 Super Total Labeling (a,d)-Edge Antimagic on the Firecracker Graph Juhari 137 = (π‘˜ + 2𝑙 + 1)𝑛 + 𝑖 π‘Šπ›Ό4 = (𝑙 + 1)𝑛 + (𝑛+𝑖+1) 2 + (π‘˜ + 𝑙)𝑛 + (𝑛+π‘–βˆ’1) 2 = (π‘˜ + 2𝑙 + 2)𝑛 + 𝑖 Based on the equation above, the set of total labeling edge weights can be written as π‘Šπ›Ό = {π‘Šπ›Ό1, π‘Šπ›Ό2, π‘Šπ›Ό3, π‘Šπ›Ό4}. It can also be seen that π‘Šπ›Ό1 = π‘Šπ›Ό2 = β‹― = π‘Šπ›Ό4 = 2π‘›π‘˜ + 𝑛 + 1 or can be written as follows: ⋃ 4𝑑=1 π‘Šπ›Όπ‘‘ = {(π‘˜ + 1)𝑛 + 3, (π‘˜ + 1)𝑛 + 5, … , (3π‘˜ + 1)𝑛 βˆ’ 1}. From this it can be concluded that the firecracker graph 𝐹𝑛,π‘˜ have Super ((π‘˜ + 1)𝑛 + 3,2)- edge antimagic if n odd, n β‰₯ 2, and k β‰₯ 3. Theorem 3. There is super total labeling (2π‘›π‘˜ + 1,1)-edge antimagic on the graph firecracker 𝐹𝑛,π‘˜ if n even (𝑛 β‰₯ 2), and π‘˜ β‰₯ 3. Prove. To determine the total super labeling (π‘Ž, 1)–edge antimagic, defined first π‘“π‘Ž : 𝐸(𝐹𝑛,π‘˜ ) = {𝑒1, 𝑒2, … , π‘’π‘›π‘˜βˆ’1} β†’ {π‘›π‘˜ + 1, π‘›π‘˜ + 2, … ,2π‘›π‘˜ βˆ’ 1}which is the labeling edge label and can be formulated: 𝑓𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (2π‘›π‘˜ βˆ’ 4𝑖 + 2) ; 1 ≀ 𝑖 ≀ 𝑛 and 𝑙 = 1 𝑓𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) = (2π‘›π‘˜ βˆ’ 4𝑖) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 and 𝑙 = 1 𝑓𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (2π‘˜ βˆ’ 𝑙)𝑛 + 3𝑛 βˆ’ 𝑖 ; if i odd, 1 ≀ 𝑖 ≀ 𝑛, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 𝑓𝛼4(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (2π‘˜ βˆ’ 𝑙)𝑛 + 2𝑛 βˆ’ 1 ; if i even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 If π‘Šπ›Ό defined as the total labeling edge weight 𝛼(π‘₯𝑖,𝑙 ), 𝛼(π‘₯𝑖,𝑙 π‘₯𝑖,0), and 𝛼(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ). π‘Šπ›Ό1 = 𝑀𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) + 𝑓𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) ; 1 ≀ 𝑖 ≀ 𝑛, and 𝑙 = 1 π‘Šπ›Ό2 = 𝑀𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖,0) + 𝑓𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖,0) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 𝑙 = 1 π‘Šπ›Ό3 = 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) + 𝑓𝛼3 (π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) ; if i odd, 1 ≀ 𝑖 ≀ 𝑛, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 π‘Šπ›Ό4 = 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) + 𝑓𝛼3 (π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) ; if i even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1,and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 By substituting the equation above is obtained: π‘Šπ›Ό1 = (𝑛 + 2𝑖) + (2π‘›π‘˜ βˆ’ 4𝑖 + 2) = ( 2π‘›π‘˜ + 𝑛 βˆ’ 2𝑖 + 2 ) π‘Šπ›Ό2 = (2π‘›π‘˜ βˆ’ 4𝑖) + (𝑛 + 2𝑖 + 1) = ( 2π‘›π‘˜ + 𝑛 βˆ’ 2𝑖 + 1 ) π‘Šπ›Ό3 = (2π‘˜ βˆ’ 𝑙)𝑛 + 3𝑛 βˆ’ 𝑖 + (𝑙 + 1)𝑛 + (𝑖+1) 2 = ( 2π‘›π‘˜ + 4𝑛 + (𝑖+1) 2 ) π‘Šπ›Ό4 = (2π‘˜ βˆ’ 𝑙)𝑛 + 2𝑛 βˆ’ 𝑖 + (𝑙 + 1)𝑛 + (𝑛+𝑖+1) 2 = ( 2π‘›π‘˜ + 7𝑛+1βˆ’π‘– 2 ) Based on the equation above, the set of total labeling edge weights can be witten with π‘Šπ›Ό = {π‘Šπ›Ό1, π‘Šπ›Ό2, π‘Šπ›Ό3, π‘Šπ›Ό4}. It can also be seen that the smalest edge lies in π‘Šπ›Ό2 and the biggest edge weights lies in π‘Šπ›Ό1, can be stated that π‘Šπ›Ό forming arithmetic lines with initial term 2π‘›π‘˜ + 1 and different 1 (one), or can be written ⋃ 4𝑑=1 π‘Šπ›Όπ‘‘ = {2π‘›π‘˜ + 1,2π‘›π‘˜ + 2,2π‘›π‘˜ + 3, … , ((3π‘›π‘˜ βˆ’ 1) + 𝑖)}. So, can be conclude that the firecracker graph 𝐹𝑛,π‘˜ have Super (2π‘›π‘˜ + 1,1)-EAT; n even (𝑛 β‰₯ 2), and π‘˜ β‰₯ 3. Super Total Labeling (a,d)-Edge Antimagic on the Firecracker Graph Juhari 138 Theorem 4. There is super total labeling {π‘›π‘˜ + 𝑛 + 4,3} –edge antimagic on the combination of firecracker graph π‘šπΉπ‘›π‘˜ if π‘š β‰₯ 2, n even (𝑛 β‰₯ 2), and 𝑛 β‰₯ 3. Prove. To determine the total super labeling (π‘Ž, 1)-edge antimagic, defined first π‘“π‘Ž : 𝐸(𝐹𝑛,π‘˜ ) = {𝑒1, 𝑒2, … , π‘’π‘›π‘˜βˆ’1} β†’ {π‘›π‘˜ + 1, π‘›π‘˜ + 2, … ,2π‘›π‘˜ βˆ’ 1} which is the edge label and can be formulated: 𝑓𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (π‘›π‘˜ + 4𝑖 βˆ’ 2) ; 1 ≀ 𝑖 ≀ 𝑛 and 𝑙 = 1 𝑓𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) = (π‘›π‘˜ + 4𝑖) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 and 𝑙 = 1 𝑓𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (2π‘˜ βˆ’ 𝑙)𝑛 + 𝑖 βˆ’ 1 ; if i odd, 1 ≀ 𝑖 ≀ 𝑛,and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 𝑓𝛼4(π‘₯𝑖,𝑙 π‘₯𝑖,0) = (2π‘˜ βˆ’ 𝑙)𝑛 + 𝑛 + 𝑖 βˆ’ 1 ; if i even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1,and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 If π‘Šπ›Ό defined as the total edge labeling weights 𝛼(π‘₯𝑖,𝑙 ), 𝛼(π‘₯𝑖,𝑙 π‘₯𝑖,0), and 𝛼(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ). π‘Šπ›Ό1 = 𝑀𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) + 𝑓𝛼1(π‘₯𝑖,𝑙 π‘₯𝑖,0) ; 1 ≀ 𝑖 ≀ 𝑛, and 𝑙 = 1 π‘Šπ›Ό2 = 𝑀𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖,0) + 𝑓𝛼2(π‘₯𝑖,𝑙 π‘₯𝑖,0) ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 𝑙 = 1 π‘Šπ›Ό3 = 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) + 𝑓𝛼3 (π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) ; if i odd, 1 ≀ 𝑖 ≀ 𝑛, and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 π‘Šπ›Ό4 = 𝑀𝛼3(π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) + 𝑓𝛼3 (π‘₯𝑖,𝑙 π‘₯𝑖+1,𝑙 ) ; if i even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1,and 2 ≀ 𝑙 ≀ π‘˜ βˆ’ 1 By substituting the equation above is obtained: π‘Šπ›Ό1 = (𝑛 + 2𝑖) + (π‘›π‘˜ + 4𝑖 + 2) = ( π‘›π‘˜ + 𝑛 + 6𝑖 + 2 ) π‘Šπ›Ό2 = (π‘›π‘˜ + 2𝑖 + 1) + (π‘›π‘˜ + 4𝑖) = ( 2π‘›π‘˜ + 𝑛 + 6𝑖 + 1 ) π‘Šπ›Ό3 = (𝑙 + 1)𝑛 + (𝑖+1) 2 + (2π‘˜ βˆ’ 𝑙)𝑛 + 𝑖 βˆ’ 1 = ( 2π‘›π‘˜ + 𝑛 + (1βˆ’π‘–) 2 ) π‘Šπ›Ό4 = (2π‘˜ βˆ’ 𝑙)𝑛 + 𝑛 βˆ’ 𝑖 + 1 + (𝑙 + 1)𝑛 + (𝑛+𝑖+1) 2 = ( 2π‘›π‘˜ + 5𝑛+2π‘–βˆ’1 2 ) Based on the equation above, the set of total labeling edge weights can be written with π‘Šπ›Ό = {π‘Šπ›Ό1, π‘Šπ›Ό2, π‘Šπ›Ό3, π‘Šπ›Ό4}. It can also be seen that the smalest edge lies in π‘Šπ›Ό1 and the biggest edge weights lies in π‘Šπ›Ό2, can be stated that π‘Šπ›Ό forming arithmetic lines with initial term π‘›π‘˜ + 𝑛 + 4 and different 3 (one), or can be written ⋃ 4𝑑=1 π‘Šπ›Όπ‘‘ = {π‘›π‘˜ + 𝑛 + 4, π‘›π‘˜ + 𝑛 + 7, π‘›π‘˜ + 𝑛 + 10, … , ((3π‘›π‘˜ + 1)𝑛 + 𝑖)}. So, can be conclude that the firecracker graph 𝐹𝑛,π‘˜ have Super (2π‘›π‘˜ + 1,1)-EAT; n even (𝑛 β‰₯ 2), and π‘˜ β‰₯ 3. CONCLUSIONS Based on the result, can be concluded that firecracker graph 𝐹𝑛,π‘˜ have super total labeling (π‘Ž, 𝑑)-edge antimagic, with 𝑑 ∈ {0,1,2,3} and bijective function in some of Lemma and Theorem show about super complete labeling (π‘Ž, 𝑑)-edge antimagic on the firecracker graph. The bijective function for each liberation with d different value have shown in equation (1),(2),(3) until (10) above. Open problem: super total labeling (π‘Ž, 𝑑)-edge antimagic on the firecracker graph 𝐹𝑛,π‘˜ for d=0 and d=2 where n even and π‘˜ β‰₯ 3; super total labeling d=1 and d=3 where n odd and π‘˜ β‰₯ 3. Super Total Labeling (a,d)-Edge Antimagic on the Firecracker Graph Juhari 139 REFERENCES [1] Dafik, β€œStructural Properties and Labeling of Graphs Statement of Authorship,” no. November, pp. 1–139, 2007. [2] M. Baca, L. Brankovic, M. Lascsakova, O. Phanalasy, and A. Semanicova– FenovcΔ±kova, β€œOn d-Antimagic Labelings of Plane Graphs,” Electron. J. Graph Theory Appl., vol. 1, no. 1, pp. 28–39, 2013. [3] M. A. Muttaqien and A. Suyitno, β€œPelabelan Total Sisi Ajaib Pada Graf Double Star dan Graf Sun,” Unnes J. Math., vol. 2, no. 2, 2013. [4] R. H. Utomo, H. Tjahjana, B. Irawanto, and L. Ratnasari, β€œPelabelan Total Super Trimagic Sisi Pada Beberapa Graf,” J. Fundam. Math. Appl., vol. 1, no. 1, p. 52, Jun. 2018. [5] T. Utomo and N. Riskiana Dewi, β€œDimensi Metrik Graf Amal (nKm),” Limits J. Math. Its Appl., vol. 15, no. 1, p. 71, Mar. 2018. [6] V. Swaminathan and P. Jeyanthi, "Super edge-magic strength of firecrackers, banana trees and unicyclic graphs," Discrete Math., vol. 306, no. 14, pp. 1624– 1636, 2006. [7] S. Chattopadhyay and P. Panigrahi, β€œSome structural properties of power graphs and k -power graphs of finite semigroups,” J. Discret. Math. Sci. Cryptogr., vol. 20, no. 5, pp. 1101–1119, Jul. 2017. [8] Y.-N. Chen, W.-C.; Lu, H.-I; and Yeh, β€œOperations of Interlaced Trees and Graceful Trees,” Southeast Asian Bull. Math, vol. 21, pp. 337–348, 1997. [9] J. A. Gallian, "A dynamic survey of graph labeling," Electron. J. Comb., vol. 1, no. DynamicSurveys, pp. 1–256, 2018. [10] K. A. Sugeng and D. R. Silaban, "On b-edge consecutive edge labeling of some regular tree," Indones. J. Comb., vol. 4, no. 1, p. 76, 2020. [11] I. Halikin, β€œPelabelan Lokal Titik Graf Hasil Diagram Lattice Subgrup Zn,” Al- Khwarizmi J. Pendidik. Mat. dan Ilmu Pengetah. Alam, vol. 6, no. 1, pp. 47–56, Mar. 2018. [12] A. S. Meliana Deta Anggraeni, Mulyono, β€œPelabelan L(3,2,1) dan Pembentukan Graf Middle Pada Beberapa Graf Khusus,” vol. 2, no. 1, pp. 76–83, 2013.