Trace of Positive Integer Power of Squared Special Matrix CAUCHY โ€“Jurnal Matematika Murni dan Aplikasi Volume 6(4) (2021), Pages 200-211 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: September 15, 2020 Reviewed: January 04, 2021 Accepted: January 27, 2021 DOI: http://dx.doi.org/10.18860/ca.v6i4.10312 Trace of Positive Integer Power of Squared Special Matrix Rahmawati1, Aryati Citra2, Fitry Aryani3, Corry Corazon Marzuki4, Yuslenita Muda5 1,2,3,4,5 Department of Mathematics, Faculty of Science and Technology, State Islamic University of Sultan Syarif Kasim Riau St. HR. Soebrantas No. 155 Simpang Baru, Panam, Pekanbaru, 28293 Email: 1rahmawati@uin-suska.ac.id , 2aryaticitra1@gmail.com, 3khodijah_fitri@uin-suska.ac.id, 4corry@uin-suska.ac.id, 5yuslenita.muda@uin-suska.ac.id ABSTRACT The rectangle matrix to be discussed in this research is a special matrix where each entry in each line has the same value which is notated by ๐ด๐‘›. The main aim of this paper is to find the general form of the matrix trace of ๐ด๐‘› powered positive integer ๐‘š or notated by ๐‘‡๐‘Ÿ(๐ด๐‘›) ๐‘š. To prove whether the general form of the matrix trace of ๐ด๐‘› powered positive integer can be confirmed, mathematics induction and direct proof are used. The main results present the general formula of (๐ด๐‘›) ๐‘š and ๐‘‡๐‘Ÿ(๐ด๐‘›) ๐‘š with observing the pattern of power matrix for 2 โ‰ค ๐‘š โ‰ค 11,๐‘› โ‰ฅ 2, and ๐‘š โˆˆ โ„ค+. Keywords: direct proof; mathematics induction; matrix trace; squared matrix INTRODUCTION The calculation of trace of power of square matrix has become attention. According to Brezinski [1], trace of power of matrix is often used in some fields of mathematics, especially Network Analysis, Number Theory, Dynamic Systems, Matrix Theory, and Differential Equations. The discussion about trace matrix has been widely studied by several researchers before. Datta et.al [2], has obtained algorithm of trace of power of squared matrix ๐‘‡๐‘Ÿ(๐ด๐‘˜), with ๐‘˜ is an integer and ๐ด is Hassenberg matrix with a codiagonal unit. There is also discussion of trace in several applications in matrix theory and numerical linear algebra. For example in determining the eigenvalue of a symmetric matrix, the basic procedure in estimating a trace (๐ด๐‘›) and trace (๐ดโˆ’๐‘›) with ๐‘› integers, this is explained in Pan [3]. Chu. Mt [4] discussed symbolic calculations on the power of squared tridiagonal of matrix trace. For example, ๐ด a symmetric positive definite matrix, and for example {๐œ†๐‘˜} notated its eigen value. For ๐‘ž โˆˆ โ„, ๐ด ๐‘ž also symmetric definite matrices, and are listed in Hignam [5] with formula ๐‘‡๐‘Ÿ(๐ด๐‘ž) = โˆ‘๐œ†๐‘˜ ๐‘ž ๐‘˜ . According to Zarelua [6] in quantum and combinatorial theory, the trace matrix is a whole number in relation to the Euler equations ๐‘‡๐‘Ÿ(๐ด๐‘ ๐‘Ÿ ) = ๐‘‡๐‘Ÿ(๐ด๐‘ ๐‘Ÿโˆ’1 ) ๐‘š๐‘œ๐‘‘(๐‘๐‘Ÿ) http://dx.doi.org/10.18860/ca.v6i4.10312 mailto:rahmawati@uin-suska.ac.id mailto:aryaticitra1@gmail.com mailto:khodijah_fitri@uin-suska.ac.id mailto:corry@uin-suska.ac.id mailto:yuslenita.muda@uin-suska.ac.id Trace of Positive Integer Power of Squared Special Matrix Rahmawati 201 For all matrix A integers, p is the prime number and r original number. Then this article also discuss about invariant in dynamic system which is illustrate as form of trace of integer squared matrix, for example the number Lefschetz. Next, Pahade and Jha [7], discuss about the formation of general form of trace matrix ordo 2 ร— 2 square with powered positive integer. In that article there are two general forms of order trace 2ร— 2 with integer square n. First, the general form of order trace matrix trace 2 x 2 with even number square ๐‘›, is ๐‘‡๐‘Ÿโ€„(๐ด๐‘›)โ€„=โ€„โˆ‘ โ€„ (โˆ’1)๐‘Ÿ ๐‘Ÿโ€„! ๐‘› 2โ„ ๐‘Ÿ=0 โ€„๐‘›โ€„[๐‘›โ€„ โˆ’โ€„(๐‘Ÿ + 1)]โ€„[๐‘›โ€„ โˆ’โ€„(๐‘Ÿ + 2)]โ€„โ‹ฏโ€„[๐‘› โˆ’ (๐‘Ÿ +(๐‘Ÿ โˆ’ 1))]โ€„(Detโ€„(๐ด)) ๐‘Ÿโ€„ (๐‘‡๐‘Ÿโ€„(๐ด)) ๐‘›โˆ’2๐‘Ÿ . Second, the main form of trace matrix 2 ร— 2 with odd number square ๐‘›, is ๐‘‡๐‘Ÿโ€„(๐ด๐‘›)โ€„=โ€„โˆ‘ โ€„ (โˆ’1)๐‘Ÿ ๐‘Ÿโ€„! (๐‘›โˆ’1) 2โ„ ๐‘Ÿ=0 โ€„๐‘›โ€„[๐‘›โ€„โˆ’โ€„(๐‘Ÿ + 1)]โ€„[๐‘›โ€„ โˆ’โ€„(๐‘Ÿ + 2)]โ€„โ‹ฏโ€„[๐‘› โˆ’ (๐‘Ÿ + (๐‘Ÿ โˆ’ 1))]โ€„(Detโ€„(๐ด)) ๐‘Ÿโ€„ (๐‘‡๐‘Ÿโ€„(๐ด)) ๐‘›โˆ’2๐‘Ÿ . In the network analysis field, especially on triangle counting in a graph, based on Avron [8], when analyzing a complex network, the important problem is calculating the total numbers of triangle on the simple connected graph. This number is equal to ๐‘‡๐‘Ÿ(๐ด3) 6โ„ , where ๐ด is adjacency matrix from the graph. Then, in 2017, Pahade and Jha [9] discuss about trace of squared adjacency matrix on positive integers. In the paper, there is A symmetrical adjacency matrix on a complete simple graph with vertex n, for even number k is formulated ๐‘‡๐‘Ÿ(๐ด๐‘˜) = โˆ‘๐‘ (๐‘˜,๐‘Ÿ)๐‘›(๐‘› โˆ’ 1)๐‘Ÿ(๐‘› โˆ’ 2)๐‘˜โˆ’2๐‘Ÿ ๐‘› 2 ๐‘Ÿ=1 and for odd number k is formulated ๐‘‡๐‘Ÿ(๐ด๐‘˜) = โˆ‘ ๐‘ (๐‘˜,๐‘Ÿ)๐‘›(๐‘› โˆ’ 1)๐‘Ÿ(๐‘› โˆ’ 2)๐‘˜โˆ’2๐‘Ÿ ๐‘›โˆ’1 2 ๐‘Ÿ=1 with ),( rks is a number thats depend on k and r, and defined as ๐‘ (๐‘˜,1) = 1,๐‘ (๐‘˜, ๐‘˜ 2 ) = 1,๐‘ (๐‘˜, ๐‘˜โˆ’1 2 ) = ๐‘˜โˆ’1 2 , and ๐‘ (๐‘˜,๐‘Ÿ) = ๐‘ (๐‘˜ โˆ’ 1,๐‘Ÿ)+ ๐‘ (๐‘˜ โˆ’ 2,๐‘Ÿ โˆ’ 1). Next, by this research, it will be decided the trace of rectangle matrix with the real number entries which for every entry row has an equal value. In this research, there are some related definitions and theorems. Definition 1.1 (Anton [10]) If ๐ด is a rectangle matrix, then the definition of squared of powered non negative integers of ๐ด is ๐ด0 โ€„= โ€„๐ผโ€„,โ€„๐ด๐‘› โ€„=โ€„๐ด๐ดโ€ฆ๐ดโŸ ๐‘›โ€„๐‘“๐‘Ž๐‘˜๐‘ก๐‘œ๐‘Ÿ โ€„(๐‘›โ€„ > โ€„0). Next, If ๐ด is invertible, then the definition of squared of powered negative integers of ๐ด is ๐ดโˆ’๐‘› โ€„=โ€„(๐ดโˆ’1)๐‘› โ€„=โ€„๐ดโˆ’1๐ดโˆ’1 โ€ฆ๐ดโˆ’1โŸ ๐‘›โ€„๐‘“๐‘Ž๐‘˜๐‘ก๐‘œ๐‘Ÿ . Theorem 1.1 (Andrilli, [11]) If ๐ด is a rectangle matrix, and if ๐‘Ÿ and ๐‘  are nonnegative integers, then 1. ๐ด๐‘Ÿโ€„๐ด๐‘  โ€„=โ€„๐ด๐‘Ÿโ€„+โ€„๐‘  2. (๐ด๐‘Ÿ)๐‘  โ€„=โ€„๐ด๐‘Ÿ๐‘  = (๐ด๐‘ )๐‘ก Trace of Positive Integer Power of Squared Special Matrix Rahmawati 202 Definition 1.2 [10] If ๐ด is a rectangle matrix, then the trace of ๐ด which is stated as ๐‘‡๐‘Ÿ(๐ด), is defined as the total entries on main diagonal of ๐ด. Trace from ๐ด cannot be defined when ๐ด is not a rectangle matrix ๐‘‡๐‘Ÿโ€„(๐ด)โ€„=โ€„๐‘Ž11 + ๐‘Ž22 + โ‹ฏ+ ๐‘Ž๐‘›๐‘› = โˆ‘ โ€„๐‘Ž๐‘–๐‘– ๐‘› ๐‘–=1 . (1.1) Theorem 1.2 [12] If ๐ด and ๐ต are rectangle matrix in the same order and ๐‘ is r scale, then apply: a. ๐‘‡๐‘Ÿ(๐ด)โ€„= โ€„๐‘‡๐‘Ÿ(๐ด๐‘‡), b. ๐‘‡๐‘Ÿ(๐‘๐ด)โ€„= โ€„๐‘โ€„๐‘‡๐‘Ÿ(๐ด), (1.2) c. ๐‘‡๐‘Ÿ(๐ดโ€„+ โ€„๐ต)โ€„= โ€„๐‘‡๐‘Ÿ(๐ด) + ๐‘‡๐‘Ÿ(๐ต), d. ๐‘‡๐‘Ÿ(๐ด๐ต)โ€„= โ€„๐‘‡๐‘Ÿ(๐ต๐ด). METHODS The method used in order to reach the aim of this paper is using literature study or conceptual foundation by following steps. ๏‚ท Finding the general formula of power matrix (๐ด๐‘›) ๐‘š with ๐‘šโ€„ โˆˆโ€„โ„ค+ and proof it using mathematical induction, ๏‚ท Determining trace matrix (๐ด๐‘›) ๐‘š, notated by ๐‘‡๐‘Ÿโ€„(๐ด๐‘›) ๐‘š, finding the general formula and using mathematical induction, we proof the formula obtained. RESULTS AND DISCUSSION This research is going to discuss about positive integers squared trace of m from special matrix of ๐‘› ๐‘ฅ ๐‘› order with the entries of real numbers where each entry has the same value in a row, which is noted with matrix ๐ด๐‘› ๐‘š. The research started by deciding the general form of matrix square of ๐ด๐‘› ๐‘š by calculating matrix square in order of 2 x 2 to order of 5 x 5 squared by m positive integers. After the general matrix of ๐ด๐‘› ๐‘š is formed, then this research is continued by looking for ๐‘‡๐‘Ÿ(๐ด๐‘› ๐‘š). Special Matrix Order of ๐’โ€„ร— โ€„๐’โ€„(๐’โ€„ โ‰ฅ โ€„๐Ÿ) Squared by ๐’Ž Positive Integers This part is going to explain about squaring of special matrix order of ๐‘›โ€„ ร—โ€„๐‘›โ€„,๐‘› โ‰ฅ 2 with the real number entries where each entry has the same value in a row, this matrix is formulated as follows ๐ด๐‘› โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] โ€„,โ€„๐‘Ž๐‘– โ€„โˆˆ โ€„โ„โ€„;โ€„โ€„๐‘–โ€„ = โ€„1,โ€„2,โ€„โ€ฆโ€„, โ€„๐‘›. (2.1) It is special matrix in order of 22 ๏‚ด to 55 ๏‚ด which is formulated as follows. ๐ด2 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ] , ๐ด3 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ] , ๐ด4 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ], ๐ด5 โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5] Trace of Positive Integer Power of Squared Special Matrix Rahmawati 203 For ๐‘› = 2, it is decided the matrix squaring values of (๐ด2) 2 to (๐ด2) 11 which are presented in Table 1 below. Table 1. Special Matrix Squaring Values of (๐ด2) 2 to (๐ด2) 11 No Special Matrix Squaring of ๐‘จ2 Matrix Squaring Values ๐‘จ2 1. (๐ด2) 2 (๐‘Ž1โ€„+โ€„๐‘Ž2)โ€„๐ด2 2. (๐ด2) 3 (๐‘Ž1โ€„+โ€„๐‘Ž2) 2โ€„๐ด2 3. (๐ด2) 4 (๐‘Ž1โ€„+โ€„๐‘Ž2) 3โ€„๐ด2 4. (๐ด2) 5 (๐‘Ž1โ€„+โ€„๐‘Ž2) 4โ€„๐ด2 5. (๐ด2) 6 (๐‘Ž1โ€„+โ€„๐‘Ž2) 5โ€„๐ด2 6. (๐ด2) 7 (๐‘Ž1โ€„+โ€„๐‘Ž2) 6โ€„๐ด2 7. (๐ด2) 8 (๐‘Ž1โ€„+โ€„๐‘Ž2) 7โ€„๐ด2 8. (๐ด2) 9 (๐‘Ž1โ€„+โ€„๐‘Ž2) 8โ€„๐ด2 9. (๐ด2) 10 (๐‘Ž1โ€„+โ€„๐‘Ž2) 9โ€„๐ด2 10. (๐ด2) 11 (๐‘Ž1โ€„+โ€„๐‘Ž2) 10โ€„๐ด2 After getting the values of special matrix squaring of ๐ด2 which are in Table 1, then it can be predicted that the general form of the special matrix squaring based on its recursive pattern is (๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘šโˆ’1โ€„๐ด2. According to the prediction, then the general form of matrix squaring of ๐ด2 is presented in Theorem 2.1 below. Theorem 2.1 If given the special matrix of ๐ด2 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ] ;โ€„๐‘Ž1,โ€„๐‘Ž2 โ€„โˆˆ โ€„โ„, then (๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘šโˆ’1โ€„๐ด2 with ๐‘šโ€„ โˆˆโ€„โ„ค +. (2.2) Proof: Using mathematic induction. For example ๐‘(๐‘š)โ€„:โ€„(๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘šโˆ’1โ€„๐ด2 1. For ๐‘š = 1 then ๐‘โ€„(1)โ€„:โ€„(๐ด2) 1 โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) 1โˆ’1โ€„๐ด2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) 0โ€„๐ด2 =โ€„๐ด2 2. For ๐‘š = ๐‘˜ then it is assumed that ๐‘โ€„(๐‘˜) is correct, which is ๐‘โ€„(๐‘˜)โ€„:โ€„(๐ด2) ๐‘˜ โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โˆ’1โ€„๐ด2 Will be presented for ๐‘šโ€„ = โ€„๐‘˜ + 1 then ๐‘โ€„(๐‘˜ + 1) is also correct, which is ๐‘โ€„(๐‘˜ + 1)โ€„:โ€„(๐ด2) ๐‘˜+1 โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โ€„๐ด2. (2.3) Then, (๐ด2) ๐‘˜+1 โ€„=โ€„(๐ด2) ๐‘˜โ€„(๐ด2) =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โˆ’1โ€„๐ด2โ€„๐ด2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โˆ’1โ€„(๐ด2) 2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โˆ’1โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2)โ€„๐ด2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) (๐‘˜โˆ’1)+1โ€„๐ด2 =โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘˜โ€„๐ด2 By giving attention to the Equation (2.3) then ๐‘โ€„(๐‘˜ + 1) is correct. Due to Step (1) and (2) are presented correctly, then Theorem 2.1 is proven. โˆŽ Trace of Positive Integer Power of Squared Special Matrix Rahmawati 204 For ๐‘› = 3, it is decided the value of matrix squaring of (๐ด3) 2 to (๐ด3) 11 which are presented in Table 2 below. Table 2. The Value of Special Matrix Squaring of (๐ด3) 2 to (๐ด3) 11 No Special Matrix Squaring of ๐ด3 The Value Matrix Squaring of ๐ด3 1. (๐ด3) 2 ๏€จ ๏€ฉ 3321 Aaaa ๏€ซ๏€ซ 2. (๐ด3) 3 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 2โ€„๐ด3 3. (๐ด3) 4 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 3โ€„๐ด3 4. (๐ด3) 5 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 4โ€„๐ด3 5. (๐ด3) 6 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 5โ€„๐ด3 6. (๐ด3) 7 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 6โ€„๐ด3 7. (๐ด3) 8 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 7โ€„๐ด3 8. (๐ด3) 9 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 8โ€„๐ด3 9. (๐ด3) 10 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 9โ€„๐ด3 10. (๐ด3) 11 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) 10โ€„๐ด3 After getting the values of the special matrix squaring of ๐ด3 which is in Table 2, then it can be predicted the general form of the special matrix squaring is based on its recursive pattern which is (๐ด3) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) ๐‘šโˆ’1โ€„๐ด3. According to the prediction, then the general form of matrix squaring of 3A is presented in Theorem 2.2 below. Theorem 2.2 If given the special matrix of ๐ด2 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ] ;โ€„๐‘Ž1,โ€„๐‘Ž2,โ€„๐‘Ž3 โ€„โˆˆ โ€„โ„, then (๐ด3) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) ๐‘šโˆ’1โ€„๐ด3 with ๐‘šโ€„ โˆˆโ€„โ„ค +. (2.4) Proof: Applying the same steps with Theorem 2.1, then this theorem is proved. โˆŽ For ๐‘› = 4, it is decided the value of matrix squaring of (๐ด4) 2 to (๐ด4) 11 which are presented in Table 3 below. Table 3. The Value of Special Matrix Squaring of (๐ด4) 2 to (๐ด4) 11 No Special Matrix Squaring of ๐ด4 Matrix Squaring Value of๐ด4 1. (๐ด4) 2 (๐‘Ž1 +โ€„๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4)โ€„๐ด4 2. (๐ด4) 3 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 2โ€„๐ด4 3. (๐ด4) 4 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 3โ€„๐ด4 4. (๐ด4) 5 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 4โ€„๐ด4 5. (๐ด4) 6 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 5โ€„๐ด4 6. (๐ด4) 7 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 6โ€„๐ด4 7. (๐ด4) 8 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 7๐ด4 8. (๐ด4) 9 (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 8๐ด4 9. (๐ด4) 10 (๐‘Ž1 +๐‘Ž2 +๐‘Ž3โ€„+ ๐‘Ž4) 9๐ด4 10. (๐ด4) 11 (๐‘Ž1โ€„+ ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 10๐ด4 After getting the values of special matrix squaring of ๐ด4 which is in Table 3, then it can be predicted that the general form of the special matrix squaring is based on its recursive pattern which is (๐ด4) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3โ€„+โ€„๐‘Ž4) ๐‘šโˆ’1โ€„๐ด4. According to the Trace of Positive Integer Power of Squared Special Matrix Rahmawati 205 prediction, then the general form of matrix squaring of ๐ด4 is presented in Theorem 2.3 below. Theorem 2.3 If given the special matrix of ๐ด4 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ];โ€„โ€„๐‘Ž1,โ€„๐‘Ž2,โ€„๐‘Ž3,โ€„๐‘Ž4 โ€„โˆˆ โ€„โ„, then (๐ด4) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3โ€„+โ€„๐‘Ž4) ๐‘šโˆ’1โ€„๐ด4 with ๐‘šโ€„ โˆˆโ€„โ„ค +. (2.5) Proof: Adopting the proof in Theorem 2.1, then this theorem is proven as well. โˆŽ For ๐‘› = 5, it is decided the value of matrix squaring of (๐ด5) 2 to (๐ด5) 11 which is presented in the Table 4 below. Table 4. The Value of Special Matrix Squaring of (๐ด5) 2to (๐ด5) 11 No Special Matrix Squaring of ๐ด5 Matrix Squaring Value of ๐ด5 1. (๐ด5) 2 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5)โ€„๐ด5 2. (๐ด5) 3 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 2๐ด5 3. (๐ด5) 4 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 3๐ด5 4. (๐ด5) 5 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 4๐ด5 5. (๐ด5) 6 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 5๐ด5 6. (๐ด5) 7 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 6๐ด5 7. (๐ด5) 8 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 7๐ด5 8. (๐ด5) 9 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 8๐ด5 9. (๐ด5) 10 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 9๐ด5 10. (๐ด5) 11 (๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) 10๐ด5 After getting the values of matrix squaring of ๐ด5 which is in Table 3, then in can be predicted that the general form of the special matrix squaring is based on its recursive pattern which is (๐ด5) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) ๐‘šโˆ’1๐ด5. According to the prediction, then the general form of matrix squaring of ๐ด5 is presented in Theorem 2.4 below. Theorem 2.4 If given the special matrix of ๐ด5 โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5] ; ๐‘Ž1,๐‘Ž2,๐‘Ž3,๐‘Ž4,๐‘Ž5 โˆˆ โ„ then (๐ด5) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3โ€„+ ๐‘Ž4 + ๐‘Ž5) ๐‘šโˆ’1๐ด5 with ๐‘šโ€„ โˆˆโ€„โ„ค +. (2.6) Proof: It is clear from above theorems. โˆŽ By giving attention to the recursive pattern of Equation (2.2), Equation (2.4), Equation (2.5) and Equation (2.6) which are Trace of Positive Integer Power of Squared Special Matrix Rahmawati 206 (๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2) ๐‘šโˆ’1โ€„๐ด2 (๐ด3) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3) ๐‘šโˆ’1โ€„๐ด3 (๐ด4) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3โ€„+โ€„๐‘Ž4) ๐‘šโˆ’1โ€„๐ด4 (๐ด5) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„๐‘Ž3โ€„+โ€„๐‘Ž4โ€„+โ€„๐‘Ž5) ๐‘šโˆ’1โ€„๐ด5. It can be predicted that the general form of the special matrix squaring in order of ๐‘› ร—๐‘›, ๐‘› โ‰ฅ 2 is equal to the Equation (2.1), which is (๐ด๐‘›) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ€ฆโ€„+โ€„๐‘Ž๐‘›) ๐‘šโˆ’1โ€„๐ด๐‘› =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 ๐ด๐‘› According to the prediction, then the general form of special matrix squaring in order of ๐‘›โ€„ ร—โ€„๐‘›โ€„,๐‘› โ‰ฅ 2 is equal to Equation (2.1) is presented in the Theorem 2.5 below. Theorem 2.5 If given the special matrix in order ๐‘› ร—๐‘›โ€„, ๐‘› โ‰ฅ 2 which is ๐ด๐‘› โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] โ€„;โ€„๐‘Ž๐‘– โ€„โˆˆ โ€„โ„โ€„, โ€„โ€„๐‘–โ€„ = โ€„1, โ€„2,โ€„โ€ฆโ€„, โ€„๐‘› then (๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1๐ด๐‘›โ€„, โ€„๐‘‘๐‘’๐‘›๐‘”๐‘Ž๐‘›โ€„๐‘šโ€„ โˆˆโ€„โ„ค +. Proof: Again, by using mathematic induction, for example ๐‘โ€„(๐‘š)โ€„:โ€„(๐ด๐‘›) ๐‘š โ€„= โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1๐ด๐‘›โ€„, with ๐‘š โˆˆ โ„ค + 1. For ๐‘šโ€„ = โ€„1 then ๐‘โ€„(1)โ€„:โ€„(๐ด๐‘›) 1 โ€„=โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) 1โˆ’1 ๐ด๐‘› =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) 0 ๐ด๐‘› = ๐ด๐‘› 2. For km ๏€ฝ is assumed that ๐‘โ€„(๐‘˜) is correct, which is ๐‘โ€„(๐‘˜)โ€„:โ€„(๐ด๐‘›) ๐‘˜ โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1๐ด๐‘›, with ๐‘šโ€„ โˆˆโ€„โ„ค +. Will be presented for ๐‘šโ€„ = โ€„๐‘˜ + 1 then ๐‘โ€„(๐‘˜โ€„ + โ€„1) is also correct, which is ๐‘โ€„(๐‘˜โ€„ + โ€„1)โ€„:โ€„(๐ด๐‘›) ๐‘˜+1 โ€„=โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) (๐‘˜+1)โˆ’1 ๐ด๐‘› =โ€„โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜๐ด๐‘› (2.7) The proof is below (๐ด๐‘›) ๐‘˜+1 โ€„=โ€„(๐ด๐‘›) ๐‘˜โ€„(๐ด๐‘›) Trace of Positive Integer Power of Squared Special Matrix Rahmawati 207 =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1 ๐ด๐‘›๐ด๐‘› =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1 [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] โ€„ =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1โ€„ [ ๐‘Ž1 2โ€„+โ€„๐‘Ž1๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘› ๐‘Ž1 2โ€„+โ€„๐‘Ž1๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘› โ‹ฏ ๐‘Ž1 2โ€„+โ€„๐‘Ž1๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž1๐‘Ž๐‘› ๐‘Ž1๐‘Ž2โ€„+โ€„๐‘Ž2 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘› ๐‘Ž1๐‘Ž2โ€„+โ€„๐‘Ž2 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ‹ฏ ๐‘Ž1๐‘Ž2โ€„+โ€„๐‘Ž2 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ‹ฎ โ‹ฎ โ€„ โ‹ฎ ๐‘Ž1๐‘Ž๐‘– โ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› ๐‘Ž1๐‘Ž๐‘– โ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ‹ฏ ๐‘Ž1๐‘Ž๐‘– โ€„+โ€„๐‘Ž2๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– 2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž1๐‘Ž๐‘› โ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘› 2 ๐‘Ž1๐‘Ž๐‘› โ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘› 2 โ‹ฏ ๐‘Ž1๐‘Ž๐‘› โ€„+โ€„๐‘Ž2๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘–๐‘Ž๐‘› โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘› 2] =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1 โ€„ [ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž1 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž1 โ‹ฏ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž1 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž2 (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž2 โ‹ฏ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘– (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘– โ‹ฏ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘› (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘› โ‹ฏ (๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„๐‘Ž๐‘›] =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘– โ€„+โ€„โ‹ฏโ€„+โ€„๐‘Ž๐‘›)โ€„ [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โˆ’1โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 )โ€„๐ด๐‘› =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) (๐‘˜โˆ’1)+1โ€„๐ด๐‘› =โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘˜โ€„๐ด๐‘› By giving attention to the Equation (2.7) then ๐‘โ€„(๐‘˜โ€„+ โ€„1) is correct. Due to step (1) and (2) are presented correctly, then the Theorem 2.5 is proven. โˆŽ Trace of Special Matrix in Order ๐’โ€„ร—โ€„๐’โ€„(๐’โ€„ โ‰ฅ โ€„๐Ÿ) Squared by Positive Integers In this part is going to be given the trace of special matrix of ๐ด2 ๐‘š,๐ด3 ๐‘š,๐ด4 ๐‘š, and ๐ด5 ๐‘š which are contained in Theorem 3.1 to Theorem 3.4 as follows. Theorem 3.1 If it is given the special matrix of ๐ด2 = [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ] ; ๐‘Ž1,๐‘Ž2 โˆˆ โ„ then ๐‘‡๐‘Ÿโ€„(๐ด2) ๐‘š = (๐‘Ž1 + ๐‘Ž2) ๐‘š, with ๐‘š โˆˆ โ„ค+. (3.1) Proof. The Proof of Theorem uses direct proof. Because of the known matrix of ๐ด2 then ๐‘‡๐‘Ÿ(๐ด2) = ๐‘Ž1 + ๐‘Ž2. According to Theorem 2.1, is got Equation (2.2) which is (๐ด2) ๐‘š = (๐‘Ž1 + ๐‘Ž2) ๐‘šโˆ’1๐ด2. By using the Definition 1.2 and Theorem 1.2 (b), it is formulated ๐‘‡๐‘Ÿโ€„(๐ด2) ๐‘š = ๐‘‡๐‘Ÿ((๐‘Ž1 + ๐‘Ž2) ๐‘šโˆ’1๐ด2) = (๐‘Ž1 + ๐‘Ž2) ๐‘šโˆ’1๐‘‡๐‘Ÿ(๐ด2) = (๐‘Ž1 + ๐‘Ž2) ๐‘šโˆ’1(๐‘Ž1 + ๐‘Ž2) = (๐‘Ž1 + ๐‘Ž2) (๐‘šโˆ’1)+1 Trace of Positive Integer Power of Squared Special Matrix Rahmawati 208 = (๐‘Ž1 + ๐‘Ž2) ๐‘š. According to the proof, then Theorem 3.1 is proven. โˆŽ Theorem 3.2 If it is given special matrix of ๐ด3 = [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ] ;๐‘Ž1,๐‘Ž2,๐‘Ž3 โˆˆ โ„ then ๐‘‡๐‘Ÿโ€„(๐ด3) ๐‘š = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) ๐‘š, with ๐‘š โˆˆ โ„ค+. (3.2) Proof. It is clear from above theorem. โˆŽ Theorem 3.3 If it is given the special matrix of ๐ด4 โ€„=โ€„[ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ];โ€„๐‘Ž1,โ€„๐‘Ž2,โ€„๐‘Ž3,โ€„๐‘Ž4 โ€„โˆˆ โ€„โ„, then ๐‘‡๐‘Ÿโ€„(๐ด4) ๐‘š = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) ๐‘š, with ๐‘š โˆˆ โ„ค+. (3.3) Proof. The proof is clear. โˆŽ Theorem 3.4 If given the special matrix of ๐ด5 โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž2 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž3 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž4 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5 ๐‘Ž5] ; ๐‘Ž1,โ€„๐‘Ž2,โ€„๐‘Ž3,๐‘Ž4 and ๐‘Ž5 โ€„โˆˆ โ€„โ„ then ๐‘‡๐‘Ÿโ€„(๐ด5) ๐‘š = (๐‘Ž1 +๐‘Ž2 +๐‘Ž3 +๐‘Ž4 +๐‘Ž5) ๐‘š, with ๐‘š โˆˆ โ„ค+. (3.4) Proof. Clearly proven by following Theorem 3.1. โˆŽ By giving attention to the recursive pattern on Equation (3.1), Equation (3.2), Equation (3.3) and Equation (3.4) which are ๐‘‡๐‘Ÿโ€„(๐ด2) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2) ๐‘š ๐‘‡๐‘Ÿโ€„(๐ด3) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3) ๐‘š ๐‘‡๐‘Ÿโ€„(๐ด4) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) ๐‘š ๐‘‡๐‘Ÿโ€„(๐ด5) ๐‘š โ€„=โ€„(๐‘Ž1 + ๐‘Ž2โ€„+ ๐‘Ž3 + ๐‘Ž4 + ๐‘Ž5) ๐‘š. It can be predicted that the general form of the trace of special matrix in order ๐‘› ๐‘ฅ ๐‘›,๐‘› โ‰ฅ 2 is equal to Equation (2.1) squared by positive integer (nonnegative integer) which is ๐‘‡๐‘Ÿโ€„(๐ด๐‘›) ๐‘š โ€„=โ€„(๐‘Ž1โ€„+โ€„๐‘Ž2โ€„+โ€„โ€ฆโ€„+โ€„๐‘Ž๐‘›) ๐‘š = (โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘š . According to the prediction, then the general form of trace of special matrix in order ๐‘› ๐‘ฅ ๐‘›โ€„,๐‘› โ‰ฅ 2 is presented in Theorem 3.5 below. Trace of Positive Integer Power of Squared Special Matrix Rahmawati 209 Theorem 3.5 If given special matrix in order ๐‘› ๐‘ฅ ๐‘›โ€„,๐‘› โ‰ฅ 2 which is ๐ด๐‘› โ€„=โ€„ [ ๐‘Ž1 ๐‘Ž1 โ‹ฏ ๐‘Ž1 ๐‘Ž2 ๐‘Ž2 โ‹ฏ ๐‘Ž2 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘– ๐‘Ž๐‘– โ‹ฏ ๐‘Ž๐‘– โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘Ž๐‘› ๐‘Ž๐‘› โ‹ฏ ๐‘Ž๐‘›] โ€„,โ€„โ€„๐‘Ž๐‘– โ€„โˆˆ โ€„โ„โ€„;โ€„โ€„๐‘–โ€„ = โ€„1,โ€„2,โ€„โ€ฆโ€„, โ€„๐‘›. then ๐‘‡๐‘Ÿโ€„(๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘š, with ๐‘šโ€„ โˆˆโ€„โ„ค+. Proof: This theorem will be proven by direct proof. Because matrix ๐ด๐‘› is known, then ๐‘‡๐‘Ÿโ€„(๐ด๐‘›)โ€„=โ€„โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 . From Theorem 2.5, obtained (๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1๐ด๐‘›. So that by using Definition 1.2 and Theorem 1.2 (b) obtained ๐‘‡๐‘Ÿ(๐ด๐‘›) ๐‘š โ€„= โ€„๐‘‡๐‘Ÿโ€„((โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 ๐ด๐‘›) โ€„=โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 โ€„๐‘‡๐‘Ÿโ€„(๐ด๐‘›) = (โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) =โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘š . Based on the evidence, then Theorem 3.5 is Proven. โˆŽ The Application of Matrix ๐‘จ๐’ ๐’Ž and ๐‘ป๐’“(๐‘จ๐’ ๐’Ž) in Examples The following is given the example of question related to Theorem 2.5 and Theorem 3.5 as follows. Example 1. Consider Matrix ๐ด4 as follows ๐ด4 = [ 3 3 3 3 12 12 12 12 25 25 25 25 10 10 10 10 ] Determine (๐ด4) 80 and ๐‘‡๐‘Ÿ(๐ด4) 80. Solution: By giving attention to matrix ๐ด4, value of ๐‘Ž1 = 3,๐‘Ž2 = 12,๐‘Ž3 = 25, and ๐‘Ž4 = 10. Based on Theorem 2.5 obtained (๐ด4) 80 = (โˆ‘๐‘Ž๐‘– 4 ๐‘–=1 ) 80โˆ’1 ๐ด4 = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 79๐ด4 = (3+ 12 + 25 + 10)79 [ 3 3 3 3 12 12 12 12 25 25 25 25 10 10 10 10 ] Trace of Positive Integer Power of Squared Special Matrix Rahmawati 210 = (50)79 [ 3 3 3 3 12 12 12 12 25 25 25 25 10 10 10 10 ] Based on Theorem 3.5 obtained ๐‘‡๐‘Ÿ(๐ด4) 80 = (โˆ‘๐‘Ž๐‘– 4 ๐‘–=1 ) 80 = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4) 80 = (3+ 12 + 25 + 10)80 = (50)80 Example 2. Given matrix ๐ด5 as follows ๐ด5 = [ 8 8 8 8 8 5/16 5/16 5/16 5/16 5/16 โˆ’12 โˆ’12 โˆ’12 โˆ’12 โˆ’12 2/3 2/3 2/3 2/3 2/3 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12] Determine (๐ด5) 27 and ๐‘‡๐‘Ÿ(๐ด5) 27. Solution : By giving attention to matrix ,5A value of ๐‘Ž1 = 8,๐‘Ž2 = 5/16,๐‘Ž3 = โˆ’12,๐‘Ž4 = 2/3 and ๐‘Ž5 = โˆ’5/12. Based on Theorem 2.5 obtained (๐ด5) 27 = (โˆ‘๐‘Ž๐‘– 5 ๐‘–=1 ) 27โˆ’1 ๐ด5 = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4 + ๐‘Ž5) 26๐ด5 = (8 + (5/16) +(โˆ’12) +(2/3) + (โˆ’5/12))26 [ 8 8 8 8 8 5/16 5/16 5/16 5/16 5/16 โˆ’12 โˆ’12 โˆ’12 โˆ’12 โˆ’12 2/3 2/3 2/3 2/3 2/3 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12] = (โˆ’3 7 16 )26 [ 8 8 8 8 8 5/16 5/16 5/16 5/16 5/16 โˆ’12 โˆ’12 โˆ’12 โˆ’12 โˆ’12 2/3 2/3 2/3 2/3 2/3 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12 โˆ’5/12] According to Theorem 3.5 it is formulated ๐‘‡๐‘Ÿ(๐ด5) 27 = (โˆ‘๐‘Ž๐‘– 5 ๐‘–=1 ) 27 = (๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + ๐‘Ž4 + ๐‘Ž5) 27 = (8+ (5/16) + (โˆ’12) + (2/3) +(โˆ’5/12))27 = (โˆ’3 7 16 )27. Trace of Positive Integer Power of Squared Special Matrix Rahmawati 211 CONCLUSIONS Based on elaboration and discussion in previous part, several conclusions can be drawn as follows. 1. The general form of integer of a special matrix form in order ๐‘› ร— ๐‘›โ€„,๐‘› โ‰ฅ 2 in Equation (2.1) is as follows. (๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘šโˆ’1 โ€„๐ด๐‘›, โ€„withโ€„๐‘šโ€„ โˆˆโ€„โ„ค +. 2. General form of trace in a special matrix form in order ๐‘› ร— ๐‘›โ€„,๐‘› โ‰ฅ 2 in Equation (2.1) is as follows. ๐‘‡๐‘Ÿโ€„(๐ด๐‘›) ๐‘š โ€„=โ€„(โˆ‘ โ€„๐‘Ž๐‘– ๐‘› ๐‘–=1 ) ๐‘š, โ€„withโ€„๐‘šโ€„ โˆˆโ€„โ„ค+. ACKNOWLEDGMENTS We thank all authors (RR, AC, FA, CCM, and YM) for their responsibility to designed the research and approved the final manuscript. RR, AC wrote the manuscript, FA, CCM gave their suggestion and edited the manuscript and YM read, edited for the final content of the manuscript. None of the authors had a conflict of interest. REFERENCES [1] C. Brezinski, P. Fika, and M. Mitrouli, โ€œEstimations of the trace of powers of positive self-adjoint operators by extrapolation of the moments,โ€ Electron. Trans. Numer. Anal., vol. 39, pp. 144โ€“155, 2012. [2] B. N. Datta and K. Datta, โ€œAn algorithm for computing powers of a Hessenberg matrix and its applications,โ€ Linear Algebra Appl., vol. 14, no. 3, pp. 273โ€“284, 1976, doi: 10.1016/0024-3795(76)90072-0. [3] V. Pan, โ€œEstimating the extremal eigenvalues of a symmetric matrix,โ€ Comput. Math. with Appl., vol. 20, no. 2, pp. 17โ€“22, 1990, doi: 10.1016/0898- 1221(90)90236-D. [4] M. T. Chu, โ€œSymbolic Calculation of the Trace of the Power of a Tridiagonal Matrix,โ€ vol. 268, pp. 257โ€“268, 1985. [5] N. Higham, โ€œFunctions of matrices: theory and computation, Chapter 5 Matrix Sign Function,โ€ Soc. Ind. Appl. Math., no. March, p. 445, 2008. [6] A. V. Zarelua, โ€œOn congruences for the traces of powers of some matrices,โ€ Proc. Steklov Inst. Math., vol. 263, no. 1, pp. 78โ€“98, 2008, doi: 10.1134/S008154380804007X. [7] J. Pahade and M. Jha, โ€œTrace of Positive Integer Power of Real 2 x 2 Matrices,โ€ Adv. Linear Algebr. & Matrix Theory, vol. 05, no. 04, pp. 150โ€“155, 2015, doi: 10.4236/alamt.2015.54015. [8] H. Avron, โ€œCounting Triangles in Large Graphs using Randomized Matrix Trace Estimation Categories and Subject Descriptors,โ€ Kdd-Ldmta, 2010. [9] J. K. Pahade and M. Jha, โ€œTrace of Positive Integer Power of Adjacency Matrix,โ€ Glob. J. Pure Appl. Math., vol. 13, no. 6, pp. 2079โ€“2087, 2017. [10] C. R. Howard Anton, Elementary Linear Algebra: Applications Version, 11th Edition 11. 2013. [11] J. Asquith and B. Kolman, Elementary Linear Algebra, vol. 71, no. 457. 1987. [12] J. E. Gentle, Matrix Algebra, Theory, Computations, and Applications in Statistics, vol. 102. 2009.