Strongly Summable Vector Valued Sequence Spaces Defined by 2 Modular CAUCHY –Jurnal Matematika Murni dan Aplikasi Volume 6(4) (2021), Pages 279-285 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: January 23, 2021 Reviewed: March 29, 2021 Accepted: April 07, 2021 DOI: http://dx.doi.org/10.18860/ca.v6i4.11484 Strongly Summable Vector Valued Sequence Spaces Defined by 2 Modular B. A. Nurnugroho1, P.W. Prasetyo2 1,2Departement of Mathematical Education, Universitas Ahmad Dahlan, Yogyakarta, Indonesia Email: burhanudin@pmat.uad.ac.id ABSTRACT Summability is an important concept in sequence spaces. One summability concept is strongly Cesaro summable. In this paper, we study a subset of the set of all vector-valued sequence in 2- modular space. Some facts that we investigated in this paper include linearity, the existence of modular and completeness with respect to these modular. Keywords: Strongly; Summable; Sequence Spaces; 2-modular INTRODUCTION Summability is an important concept in sequence spaces. The familiar example of sequence spaces that using the summability concept is ℓ𝑝 spaces. In [1], it is explained that Kutner discusses spaces of strongly Cesaro summable sequences, and furthermore, Maddox generalizes this concept. If πœ” denote the set of all infinite sequence of real/complex numbers, then the set 𝑀 = {(π‘₯π‘˜ ) ∈ πœ”: βˆƒπΏ, βˆ‹ lim π‘›β†’βˆž 1 𝑛 βˆ‘|π‘₯π‘˜ βˆ’ 𝐿| = 0 𝑛 π‘˜=1 }, denote the space of strongly Cesaro summable sequence [2] [3]. Let 𝑋 be a real linear space of dimension 𝑑 β‰₯ 2. A 2-norm on 𝑋 is a function β€–. , . β€–: 𝑋 Γ— 𝑋 β†’ ℝ , where for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, satisfy (i) β€–π‘₯, 𝑦‖ = 0 if and only if π‘₯ and 𝑦 are linearly dependent (ii) β€–π‘₯, 𝑦‖ = ‖𝑦, π‘₯β€– (iii) ‖𝛼π‘₯, 𝑦‖ = |𝛼|β€–π‘₯, 𝑦‖, 𝛼 ∈ ℝ (iv) β€–π‘₯ + 𝑦, 𝑧‖ ≀ β€–π‘₯, 𝑧‖ + ‖𝑦, 𝑧‖. The pair (𝑋, β€–. , . β€–) is then called a 2-normed space [4]. The concept is initially introduced by Gahler [5] in the middle of 1963. Furthermore, in 1989, Misiak generalized the 2- normed concept to be n-normed [6]. Since then, many kinds research on 2-normed (n- normed) spaces, include research on strongly Cesaro summable vector-valued sequences or the generalize in 2-normed (n-normed) spaces [7] [8] [9] [10] [11]. In 1950, Nakano developed modular function and it was generalized by Musielak and Orlicz [12] [13]. Modular is the generalization of the norm. Let π‘Œ be a real linear space, a functional 𝑔: π‘Œ β†’ β„βˆ— is said tobe modular if it satisfies the following conditions: (i) 𝑔(π‘₯) = 0 if and if π‘₯ = 0 (ii) 𝑔(βˆ’π‘₯) = 𝑔(π‘₯) (iii) 𝑔(𝛼π‘₯ + 𝛽𝑦) ≀ 𝑔(π‘₯) + 𝑔(𝑦), every π‘₯, 𝑦 ∈ π‘Œ, 𝛼, 𝛽 β‰₯ 0, 𝛼 + 𝛽 = 1. http://dx.doi.org/10.18860/ca.v6i4.11484 mailto:burhanudin@pmat.uad.ac.id Strongly Summable Vector Valued Sequence Spaces Defined by 2 Modular B. A. Nurnugroho 280 The pair (π‘Œ, 𝑔) is then called a modular space. Following the 2-norm (n-norm) concept, K. Nourouzi and S. Shabanian in 2009 initially introduced the n-modular concept [14] [15]. Let 𝑋 be a real linear space of dimension 𝑑 β‰₯ 2. A 2-modular on 𝑋 is a function 𝜌(. , . ): 𝑋 Γ— 𝑋 β†’ β„βˆ— where for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, satisfy (i) 𝜌(π‘₯, 𝑦) = 0 if and only if π‘₯ and 𝑦 are linearly dependent (ii) 𝜌(π‘₯, 𝑦) = 𝜌(𝑦, π‘₯) (iii) 𝜌(βˆ’π‘₯, 𝑦) = 𝜌(π‘₯, 𝑦), (iv) 𝜌(𝛼π‘₯ + 𝛽𝑦, 𝑧) ≀ 𝜌(π‘₯, 𝑧) + 𝜌(𝑦, 𝑧), every 𝛼, 𝛽 β‰₯ 0, 𝛼 + 𝛽 = 1. The pair (𝑋, β€–. , . β€–) is then called a 2-modular space. The 2-modular space, with 𝜌 satisfies Ξ”2-condition, if there exist 𝐿 > 0, such that 𝜌(2π‘₯, 𝑦) ≀ 𝐿𝜌(π‘₯, 𝑦), for all π‘₯, 𝑦 ∈ 𝑋. A sequence (π‘₯π‘˜ ) in 𝑋 is said to be 2-modular convergent to π‘₯0 ∈ 𝑋 if lim π‘˜β†’βˆž 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) = 0, βˆ€π‘¦ ∈ 𝑋. It means that for every πœ– > 0, there exists an π‘˜0 ∈ β„•, such that for any π‘˜ ∈ β„•, π‘˜ β‰₯ π‘˜0, we have 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) < πœ–, βˆ€π‘¦ ∈ 𝑋. Furthermore, a sequence (π‘₯π‘˜ ) in 𝑋 is called 2-modular Cauchy sequence if, for all 𝑦 ∈ 𝑋, we have lim π‘˜,π‘™β†’βˆž 𝜌(π‘₯π‘˜ βˆ’ π‘₯𝑙 , 𝑦) = 0. The standard example of a 2-modular space is 𝑋 = ℝ2, with 2-modular on ℝ2 define by 𝜌(οΏ½Μ…οΏ½, οΏ½Μ…οΏ½) = √|det ( π‘₯1 π‘₯2 𝑦1 𝑦2 )|, Where οΏ½Μ…οΏ½ = (π‘₯1, π‘₯2), οΏ½Μ…οΏ½ = (𝑦1, 𝑦2) ∈ ℝ 2. Clearly that 𝜌 satisfies Ξ”2-condition and the sequence (( 1 𝑛 , 0)) in ℝ2 is 2-modular convergent to (0,0) ∈ ℝ2. This paper will be constructed t spaces of strongly Cesaro summable vector-valued sequences in 2-modular spaces based on the facts presented above. METHODS Let (𝑋, 𝜌) be a 2-modular space, with 𝜌 satisfies Ξ”2-condition and the dimension of 𝑋 greater than one. We define π‘‹πœŒ = {π‘₯ ∈ 𝑋: 𝜌(π‘₯, 𝑦) < ∞, βˆ€π‘¦ ∈ 𝑋}. Because 𝜌 satisfies Ξ”2-condition, then there exists 𝐾 > 0, such that for all π‘₯, 𝑦 ∈ π‘‹πœŒ, 𝑧 ∈ 𝑋 and 𝛼 ∈ ℝ, we have 𝜌(π‘₯ + 𝑦, 𝑧) = 𝜌 ( 2π‘₯ + 2𝑦 2 , 𝑧) ≀ 𝜌(2π‘₯, 𝑧) + 𝜌(2𝑦, 𝑧) ≀ 𝐾𝜌(π‘₯, 𝑧) + 𝐾𝜌(𝑦, 𝑧) < ∞ Based on Archimedean property, there exists 𝑛0 ∈ β„•, such that 𝛼 ≀ 2 𝑛0 𝜌(𝛼π‘₯, 𝑧) ≀ 𝜌(2𝑛0 π‘₯, 𝑧) ≀ 𝐾𝑛0 𝜌(π‘₯, 𝑧) < ∞. Hence, we have that π‘‹πœŒ is a subspace linear of 𝑋. Furthermore (π‘‹πœŒ, 𝜌) is a 2-modular space too. The notation πœ”(π‘‹πœŒ) will donate as the set of all sequences in π‘‹πœŒ Strongly Summable Vector Valued Sequence Spaces Defined by 2 Modular B. A. Nurnugroho 281 πœ”(π‘‹πœŒ) = {(π‘₯π‘˜ ): π‘₯π‘˜ ∈ 𝑋, π‘˜ ∈ β„•} (1) where linear space operations are defined coordinatewise, (π‘₯π‘˜ ) + (π‘¦π‘˜ ) = (π‘₯π‘˜ + π‘¦π‘˜ ), 𝛼(π‘₯π‘˜ ) = (𝛼π‘₯π‘˜ ) for all (π‘₯π‘˜ ), (π‘¦π‘˜ ) ∈ πœ”(π‘‹πœŒ) and 𝛼 ∈ ℝ. The goal of this paper is that we want to extend the concept of strongly Cesaro summable to 2-modular spaces valued sequences, defined as 𝑀0 𝜌 (π‘‹πœŒ) = {(π‘₯π‘˜ ) ∈ πœ”(π‘‹πœŒ): π‘™π‘–π‘š π‘›β†’βˆž 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑦) 𝑛 π‘˜=1 = 0, βˆ€π‘¦ ∈ π‘‹πœŒ } (2) 𝑀 𝜌(π‘‹πœŒ ) = {(π‘₯π‘˜ ) ∈ πœ”(π‘‹πœŒ): βˆƒπ‘₯0 ∈ π‘‹πœŒ, π‘™π‘–π‘š π‘›β†’βˆž 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) 𝑛 π‘˜=1 = 0, βˆ€π‘¦ ∈ π‘‹πœŒ } (3) Furthermore, we also studied the properties of 𝑀0 𝜌 (π‘‹πœŒ) and 𝑀 𝜌(π‘‹πœŒ). RESULTS AND DISCUSSION Henceforth, if not specified then 𝑋 is a 2-modular space with 2-modular 𝜌, that satisfies the Ξ”2-conditions. First, we will prove that the mean Cesaro theorem applies to 2-modular space. Theorem 1. Let sequence (π‘₯π‘˜ ) in π‘‹πœŒ 2-modular convergent to π‘₯0 ∈ π‘‹πœŒ, then lim π‘›β†’βˆž 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) 𝑛 π‘˜=1 = 0, βˆ€π‘¦ ∈ π‘‹πœŒ Proof. Since the sequence (π‘₯π‘˜ ) in π‘‹πœŒ 2-modular convergent to π‘₯0 ∈ π‘‹πœŒ, then for all πœ– > 0, there exists π‘›πœ– ∈ β„•, such that for all π‘˜ β‰₯ π‘›πœ– , we have 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) < πœ– 2 , for all 𝑦 ∈ 𝑋. Note that, for all 𝑛 β‰₯ π‘›πœ– , we have 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) = 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) π‘›πœ– π‘˜=1 + 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) 𝑛 π‘˜=π‘›πœ–+1 𝑛 π‘˜=1 ≀ 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)1β‰€π‘˜β‰€π‘›πœ– π‘šπ‘Žπ‘₯ π‘›πœ– π‘˜=1 + 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)π‘›πœ–+1β‰€π‘˜β‰€π‘› π‘šπ‘Žπ‘₯ 𝑛 π‘˜=π‘›πœ–+1 = 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)1β‰€π‘˜β‰€π‘›πœ– π‘šπ‘Žπ‘₯ 𝑛 βˆ‘ 1 π‘›πœ– π‘˜=1 + 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)π‘›πœ–+1β‰€π‘˜β‰€π‘› π‘šπ‘Žπ‘₯ 𝑛 βˆ‘ 1 𝑛 π‘˜=π‘›πœ–+1 = 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)1β‰€π‘˜β‰€π‘›πœ– π‘šπ‘Žπ‘₯ π‘›πœ– 𝑛 + 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)π‘›πœ–+1β‰€π‘˜β‰€π‘› π‘šπ‘Žπ‘₯ 𝑛 βˆ’ π‘›πœ– 𝑛 = 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)1β‰€π‘˜β‰€π‘›πœ– π‘šπ‘Žπ‘₯ π‘›πœ– 𝑛 + 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)π‘›πœ–+1β‰€π‘˜β‰€π‘› π‘šπ‘Žπ‘₯ = 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)1β‰€π‘˜β‰€π‘›πœ– π‘šπ‘Žπ‘₯ π‘›πœ– 𝑛 + πœ– 2 . Strongly Summable Vector Valued Sequence Spaces Defined by 2 Modular B. A. Nurnugroho 282 By Archimedean property, there exists 𝑛′ β‰₯ π‘›πœ– , such that for all 𝑛 β‰₯ 𝑛′, we have 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦)1β‰€π‘˜β‰€π‘›πœ– π‘šπ‘Žπ‘₯ π‘›πœ– 𝑛 < πœ– 2 . Hence, for all 𝑛 β‰₯ 𝑛′, we have 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) 𝑛 π‘˜=1 < πœ–. In other words, the proof is complete. ∎ Based on Theorem 1, we can say that for all 2-modular convergent sequence (π‘₯π‘˜ ) in π‘‹πœŒ is an element of 𝑀 𝜌(π‘‹πœŒ). Theorem 2. The set 𝑀 𝜌(π‘‹πœŒ) is a linear subspace of πœ”(π‘‹πœŒ). Proof. Note that for all (π‘₯π‘˜ ), (π‘¦π‘˜ ) ∈ 𝑀 𝜌(π‘‹πœŒ) and 𝛼 ∈ ℝ, there exsist π‘₯0, 𝑦0 ∈ π‘‹πœŒ so that for all 𝑦 ∈ π‘‹πœŒ, we have lim π‘›β†’βˆž 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ x0, 𝑦) 𝑛 π‘˜=1 = 0, and lim π‘›β†’βˆž 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ y0, 𝑦) 𝑛 π‘˜=1 = 0. Therefore, 𝜌 satisfy Ξ”2-condition, then there exists 𝐿 > 0 and 𝑛0 ∈ β„• so that 0 ≀ 𝜌((π‘₯π‘˜ + π‘¦π‘˜ ) βˆ’ (π‘₯0 + 𝑦0), 𝑦) = 𝜌((π‘₯π‘˜ βˆ’ π‘₯0) + (π‘¦π‘˜ βˆ’ 𝑦0), 𝑦) ≀ 𝜌(2(π‘₯π‘˜ βˆ’ π‘₯0), 𝑦) + 𝜌(2(π‘¦π‘˜ βˆ’ 𝑦0), 𝑦) ≀ 𝐿𝜌((π‘₯π‘˜ βˆ’ π‘₯0), 𝑦) + 𝐿𝜌((π‘¦π‘˜ βˆ’ 𝑦0), 𝑦) and 0 ≀ 𝜌(𝛼π‘₯π‘˜ βˆ’ 𝛼𝑙, 𝑦) = 𝜌(𝛼(π‘₯π‘˜ βˆ’ 𝑙), 𝑦) ≀ 𝜌(2𝑛0 (π‘₯π‘˜ βˆ’ π‘₯0), 𝑦) ≀ 𝐿𝑛0 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦). Hence, we have lim π‘›β†’βˆž 1 𝑛 βˆ‘ 𝜌((π‘₯π‘˜ + π‘¦π‘˜ ) βˆ’ (π‘₯0 + 𝑦0), 𝑦) 𝑛 π‘˜=1 = 0 and lim π‘›β†’βˆž 1 𝑛 βˆ‘ 𝜌(𝛼π‘₯π‘˜ βˆ’ 𝛼π‘₯0, 𝑦) 𝑛 π‘˜=1 = 0. In other words (π‘₯π‘˜ ) + (π‘¦π‘˜ ), 𝛼(π‘₯π‘˜ ) ∈ 𝑀 𝜌(π‘‹πœŒ), and we proof that 𝑀 𝜌(π‘‹πœŒ) is a subspace linear of πœ”(π‘‹πœŒ).∎ Theorem 3. If (π‘₯π‘˜ ) ∈ 𝑀 𝜌(π‘‹πœŒ), then for all 𝑦 ∈ π‘‹πœŒ, ( 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑦) 𝑛 π‘˜=1 ) is a bounded sequence of real numbers. Proof. If (π‘₯π‘˜ ) ∈ 𝑀 𝜌(π‘‹πœŒ), then there exist π‘₯0 ∈ π‘‹πœŒ, such that for all 𝑦 ∈ π‘‹πœŒ, we have lim nβ†’βˆž 1 n βˆ‘ ρ(xk βˆ’ π‘₯0, y) n k=1 = 0. Hence, there exist 𝑛0 ∈ β„•, such that for all 𝑛 ∈ β„•, with 𝑛 β‰₯ 𝑛0 we have Strongly Summable Vector Valued Sequence Spaces Defined by 2 Modular B. A. Nurnugroho 283 1 n βˆ‘ ρ(xk βˆ’ π‘₯0, y) n k=1 ≀ 1. Since 𝜌 satisfies the Ξ”2-conditions, there exist 𝐿 > 0, for all 𝑦 ∈ π‘‹πœŒ, we have 𝜌(π‘₯π‘˜ , 𝑦) = 𝜌 ( 2(π‘₯π‘˜ βˆ’ π‘₯0) 2 + 2π‘₯0 2 , 𝑦) ≀ 𝐿𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) + 𝐿𝜌(π‘₯0, 𝑦). It implies, 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑦) 𝑛 π‘˜=1 ≀ 𝐿 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ βˆ’ π‘₯0, 𝑦) 𝑛 π‘˜=1 + 𝐿𝜌(π‘₯0, 𝑦). If we set 𝑀 = sup {𝜌(π‘₯1 βˆ’ π‘₯0, 𝑦), 1 2 βˆ‘ 𝜌(xk βˆ’ π‘₯0, y), β‹― , 1 n0 βˆ’ 1 βˆ‘ ρ(x1 βˆ’ π‘₯0, y) n0βˆ’1 k=1 , 1 2 k=1 } then it follows that we have 𝐾 = 𝐿(𝑀 + 𝜌(π‘₯0, 𝑦)), such that 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑦) ≀ 𝐾, 𝑛 π‘˜=1 for all 𝑛 ∈ β„•. This implies that for all 𝑦 ∈ π‘‹πœŒ, ( 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑦) 𝑛 π‘˜=1 ) is a bounded sequence. ∎ Theorem 4. Function 𝑔((π‘₯π‘˜ )) = sup { 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑧) 𝑛 π‘˜=1 , βˆ€π‘§ ∈ π‘‹πœŒ} (5) is a modular on 𝑀 𝜌(π‘‹πœŒ). Proof. If (π‘₯π‘˜ ) = 𝟎 is the zero sequence. Then it is clear that 𝑔((π‘₯π‘˜ )) = 0. Conversely, if ((π‘₯π‘˜ )) = 0, then we have sup { 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑧) 𝑛 π‘˜=1 , βˆ€π‘§ ∈ π‘‹πœŒ} = 0. Hence, it implies for all 𝑛 ∈ β„• and 𝑧 ∈ π‘‹πœŒ, we have 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , π‘¦π‘˜ ) 𝑛 π‘˜=1 = 0 ⇔ 𝜌(π‘₯π‘˜ , 𝑧) = 0 ⇔ π‘₯π‘˜ = 0, βˆ€π‘˜ ∈ β„•. Thus, it is evident that (π‘₯π‘˜ ) = 𝟎. Since 𝜌(βˆ’π‘₯, 𝑦) = 𝜌(π‘₯, 𝑦) applies, for all π‘₯, 𝑦 ∈ π‘‹πœŒ, consequently, it is clear that 𝑔(βˆ’(π‘₯π‘˜ )) = 𝑔((π‘₯π‘˜ )). Finally, for all 𝛼, 𝛽 β‰₯ 0 with 𝛼 + 𝛽 = 1, the for all (π‘₯π‘˜ ), (π‘¦π‘˜ ) ∈ 𝑀 𝜌(π‘‹πœŒ) we have, 𝑔(𝛼(π‘₯π‘˜ ) + 𝛽(π‘¦π‘˜ )) = sup { 1 𝑛 βˆ‘ 𝜌(𝛼π‘₯π‘˜ + 𝛽 π‘¦π‘˜ , 𝑧) 𝑛 π‘˜=1 , βˆ€π‘§ ∈ π‘‹πœŒ} = sup { 1 𝑛 βˆ‘( 𝜌(π‘₯π‘˜ , z) + 𝜌(π‘¦π‘˜ , 𝑧)) 𝑛 π‘˜=1 , βˆ€π‘§ ∈ π‘‹πœŒ} Strongly Summable Vector Valued Sequence Spaces Defined by 2 Modular B. A. Nurnugroho 284 ≀ sup { 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑧) 𝑛 π‘˜=1 , βˆ€π‘§ ∈ π‘‹πœŒ} + sup { 1 𝑛 βˆ‘ 𝜌(π‘¦π‘˜ , 𝑧 ) 𝑛 π‘˜=1 , βˆ€π‘§ ∈ π‘‹πœŒ} = 𝑔((π‘₯π‘˜ )) + 𝑔((π‘¦π‘˜ )). This completes the proof. ∎ Theorem 5. If π‘‹πœŒ 2-modular complete, then (𝑀 𝜌(π‘‹πœŒ), 𝑔) is a modular complete. Proof. Let 𝑛 ∈ β„• and (π‘₯𝑖 ) be a 2-modular Cauchy sequence in 𝑀 𝜌(π‘‹πœŒ), where π‘₯ 𝑖 = (π‘₯π‘˜ 𝑖 ), for all 𝑖 ∈ β„•. Hence, for all πœ– > 0, there exists 𝑛0 ∈ β„•, such that for all 𝑖, 𝑗 ∈ β„•, with 𝑖, 𝑗 β‰₯ 𝑛0, we have 𝑔(π‘₯𝑖 βˆ’ π‘₯ 𝑗 ) = sup { 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ 𝑗 , 𝑧) 𝑛 π‘˜=1 , βˆ€π‘§ ∈ π‘‹πœŒ} < πœ–. It implies that, for all 𝑖, 𝑗 β‰₯ 𝑛0, we have 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ 𝑗 , 𝑧) 𝑛 π‘˜=1 < πœ–, βˆ€π‘§ ∈ π‘‹πœŒ, or βˆ‘ 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ 𝑗 , 𝑧) 𝑛 π‘˜=1 < π‘›πœ–, βˆ€π‘§ ∈ π‘‹πœŒ, such that, 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ 𝑗 , 𝑧) < π‘›πœ–, βˆ€π‘§ ∈ π‘‹πœŒ. Hence, for all π‘˜ ∈ β„•, (π‘₯π‘˜ 𝑖 ) is a 𝜌-Cauchy sequence in π‘‹πœŒ. Since π‘‹πœŒ complete 2-modular, then (π‘₯π‘˜ 𝑖 ) is 2-modular convergent in π‘‹πœŒ, for all π‘˜ ∈ β„•. Therefore, for π‘˜ ∈ β„•, there exist π‘₯π‘˜ ∈ π‘‹πœŒ , such that for all 𝑧 ∈ π‘‹πœŒ, we have lim π‘–β†’βˆž 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ , 𝑧) = 0. Since, for all 𝑖, 𝑗 β‰₯ 𝑛0, we have 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ , 𝑧) 𝑛 π‘˜=1 = lim π‘—β†’βˆž 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ 𝑗 , 𝑧) 𝑛 π‘˜=1 < πœ–, βˆ€π‘§ ∈ π‘‹πœŒ, then 𝑔 ((π‘₯π‘˜ 𝑖 ) βˆ’ (π‘₯π‘˜ )) = sup ( 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ , 𝑧) 𝑛 π‘˜=1 ) < πœ–, for all 𝑖 β‰₯ 𝑛0, such that 𝜌(π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ , 𝑧) < π‘›πœ–, for all 𝑖 β‰₯ 𝑛0 Therefore (π‘₯𝑖 ) modular convergent to (π‘₯π‘˜ ), and (π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ ) ∈ 𝑀(π‘‹πœŒ). Since (π‘₯π‘˜ 𝑖 ) ∈ 𝑀(π‘‹πœŒ) and 𝑀(π‘‹πœŒ) is a linear spaces, so we have (π‘₯π‘˜ ) = (π‘₯π‘˜ 𝑖 ) βˆ’ (π‘₯π‘˜ 𝑖 βˆ’ π‘₯π‘˜ ) ∈ 𝑀(π‘‹πœŒ). This complete the proof that (𝑀 𝜌(π‘‹πœŒ), 𝑔) is a complete modular (𝜌-complete). ∎ CONCLUSIONS If (𝑋, 𝜌) is a 2-modular space, with 𝜌 satisfies Ξ”2-condition, then we can construct 𝑀 𝜌(π‘‹πœŒ) βŠ‚ 𝑀(π‘‹πœŒ) is the space of strongly Cesaro summable vector-valued sequences in 2-modular (π‘‹πœŒ, 𝜌). It certainly can be shown that 𝑀 𝜌(π‘‹πœŒ) is a linear space. Furthermore, if (π‘₯π‘˜ ) ∈ 𝑀 𝜌(π‘‹πœŒ), then we can prove that for all 𝑦 ∈ π‘‹πœŒ, ( 1 𝑛 βˆ‘ 𝜌(π‘₯π‘˜ , 𝑦) 𝑛 π‘˜=1 ) is a bounded Strongly Summable Vector Valued Sequence Spaces Defined by 2 Modular B. A. Nurnugroho 285 sequence of real numbers. This fact provides a guarantee for us to be able to build a modular 𝑔 on 𝑀 𝜌(π‘‹πœŒ). Finally, we proved that (𝑀 𝜌(π‘‹πœŒ), 𝑔) is modular complete, if (π‘‹πœŒ, 𝜌) is a 2-modular complete. ACKNOWLEDGMENTS The author would like to thank LPPM UAD for funding this research REFERENCES [1] T. Bilgin, "On Strong A-Summability Defined By A Modulus," Chinese Journal of Mathematics, vol. 24, no. 2, pp. 159-166, 1996. [2] F. Nuray and B. Aydin, "Strongly Summable And Statistically Convergent,," InformacinΔ—s Technologijos Ir Valdymas, vol. 1, no. 30, pp. 74-76, 2004. [3] J. Connor, "On Strong Matrix Summability With Respect To A Modulus And Statistical Convergence," Canad. Math. Bull., vol. 32, no. 2, pp. 194-198, 1989. [4] H. Gunawan and M. , "On finite dimensional 2-normed spaces," Soochow J. Math, vol. 27, no. 3, pp. 321-329, 2001. [5] S. GΓ€hler, " 2- metrische Raume und ihre topologishe Struktur, Math.," Math. Nachr, vol. 26, no. 1-4, pp. 115-148, 1963. [6] A. Misiak, "n-Inner Product Spaces," Math. Narchr, vol. 140, no. 1, pp. 299-319, 1989. [7] H. Dutta, B. S. Reddy and S. S. Cheng, "Strongly Summable Sequences Defined Over Real n-Normed Spaces," Applied Mathematics E-Notes, vol. 10, pp. 199-209, 2010. [8] K. Raj and S. K. Sharma, "Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz function," Acta Univ. Sapientiae, Mathematica, vol. 3, no. 1, pp. 97- 109, 2011. [9] R. Anand and K. Raj, "Complete paranormed Orlicz Lorentz sequence spaces over n- normed," Journal of the Egyptian Mathematical Society, vol. 25, pp. 151-154, 2017. [10] D. Hemen, "On n-Normed Linear Space Valued Strongly (C,1)-Summable Difference Sequences," Asian-European Journal of Mathematics, vol. 3, no. 4, pp. 565-575, 2010. [11] M. Mursaleen, S. K. Sharma and A. Kilicman, "Sequence Spaces Defined by Musielak- Orlicz Function over 𝑛-Normed Spaces," Abstract and Applied Analysis, vol. 2013, 2013. [12] L. Maligranda, "Hidegoro Nakano (1909–1974) – on the centenary of his birth," in Proceedings of the International Symposium on Banach and Function Spaces III, Kitakyushu, Japan, 2009. [13] J. Musielak and W. Orlicz, "On modular spaces," Studia Mathematica, vol. 18, no. 1, pp. 49-65, 1959. [14] K. Nourouzi and S. Shabania, "Operators Defined on n-Modular Spaces," Mediterr. J. Math., vol. 6, pp. 431-446, 2009. [15] B. A. Nurnugroho, S. and A. Zulijanto, "2-Linear Operator On 2-Modular Spaces," Far East Journal of Mathematical Sciences , vol. 102, no. 12, pp. 3193-3210, 2017.