A Note on Generalized Strongly p-Convex Functions of Higher Order CAUCHY –Jurnal Matematika Murni dan Aplikasi Volume 7(2) (2022), Pages 152-157 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: July 16, 2021 Reviewed: October 12, 2021 Accepted: October 18, 2021 DOI: http://dx.doi.org/10.18860/ca.v7i1.12938 A Note on Generalized Strongly p-Convex Functions of Higher Order Corina Karim*, Ekadion Maulana Mathematics Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia *Corresponding Author Email: co_mathub@ub.ac.id* rm.ekadion.m@gmail.com ABSTRACT Generalized strongly 𝑝-convex functions of higher order is a new concept of convex functions which introduced by Saleem et al. in 2020. The Schur type inequality for generalized strongly 𝑝- convex functions of higher order also studied by them. This paper aims to revise Schur type inequality for generalized strongly 𝑝-convex functions of higher order in their paper. In order to revise it, we show that the contradiction was true. This paper showed that Schur type inequality for generalized strongly 𝑝-convex functions of higher order previously is not valid and we give the correct Schur type inequality for generalized strongly 𝑝-convex functions of higher order. Keywords: Schur type inequality; 𝑝-Convex functions; Strongly convex of higher order INTRODUCTION Convexity is a basic notion in many branches of applied mathematics. Convexity is an important thing on Functional analysis, Geometry, Mathematical programming, Probability, and Statistics. On Functional analysis, convexity has intended to ensure existence and uniqueness of solutions of problems of Calculus of variations and optimal control. On Mathematical programming, convexity has intended to ensure convergence of optimization algorithms [1]. Convexity appears in ancient Greek Geometry. Archimedes (ca. 250 BC) used convexity on study of the area and arch length. Archimedes has been the first person who gave a definition of convexity, similar to the geometric definition which used till today, a set is said to be convex if it contains all line segments between each of its points [1]. Some geometric properties of convex sets and functions have studied before 1960 by great mathematicians Hermann Minkowski and Werner Fenchel. In 1891, Minkowski proved that, in Euclidean space ℝ𝑛 , every compact convex set with center at the origin and volume greater than 2𝑛 contains at least one point with integer coordinates different from the origin [2]. Afterwards, in 1951, Werner Fenchel’s monograph stimulated the development of convexity theory. Several researchers have been considered for classical convexity such that some of these new concepts are based on an extension of the domain of convex functions or http://dx.doi.org/10.18860/ca.v7i1.12938 mailto:co_mathub@ub.ac.id mailto:rm.ekadion.m@gmail.com A Note on Generalized Strongly p-Convex Functions of Higher Order Corina Karim 153 sets to a generalized form[3-9]. Some examples of these new concepts are quasi- convexity [10], exponential convexity [11, 12], logarithmical convexity [13], β„Ž-convexity [14, 15], and 𝑝-convexity [3, 4, 16, 17]. 𝑝-Convex funtions and their properties was introduced by Zhang and Wan [16] in 2007. In 2018 Maden et al. [17] discussed strongly 𝑝-convex funtions and Hermite-Hadamard inequality for it. In 2020, Saleem et al. [3, 4] discussed about generalized 𝑝-convex funtions and generalized strongly 𝑝-convex funtions of higher order. In [3] discussed definition and properties of generalized strongly 𝑝-convex functions of higher order also some of type inequalities which are Hermite-Hadamard, FejΓ©r, and Schur. In Schur type inequality for generalized strongly 𝑝-convex funtions of higher order in [3] indirectly mentioned that πœ™(π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 ) ≀ (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 )πœ™ ( π‘₯3 𝑝 βˆ’π‘₯2 𝑝 π‘₯3 𝑝 βˆ’π‘₯1 𝑝) for any π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 , π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ∈ (0,1) and π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 < π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 with π‘ž > 0 and πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž . So, this paper revises the correction of Schur type inequality in [3]. METHODS In this section, we discussed about some definitions which are implemented with generalized strongly 𝑝-convex functions of higher order. We also give examples of strongly 𝑝-convex funtions of higher order and its generalized. Definition 1. (See [1]) (Convex Set) Let 𝑋 βŠ‚ ℝ𝑛. 𝑋 is called to be convex if 𝑑π‘₯ + (1 βˆ’ 𝑑)𝑦 ∈ 𝑋, (1) For any π‘₯, 𝑦 ∈ 𝑋 and 𝑑 ∈ [0,1]. Definition 2. (See [3]) ( 𝒑-Convex Set) Let 𝑋 βŠ‚ ℝ𝑛. 𝑋 is called to be 𝑝-convex if [𝑑π‘₯𝑝 + (1 βˆ’ 𝑑)𝑦𝑝] 1 𝑝 ∈ 𝑋, (2) for any π‘₯, 𝑦 ∈ 𝑋 and 𝑑 ∈ [0,1]. Definition 3. (See [18]) (q-Convex Uniform) Let 𝑋 be a Banach space and real number π‘ž β‰₯ 2. Defined 𝛿𝑋 (πœ–) = inf {1 βˆ’ β€– 𝑓+𝑔 2 β€– ; 𝑓, 𝑔 ∈ 𝑋, ‖𝑓‖ ≀ 1, ‖𝑔‖ ≀ 1, ‖𝑓 βˆ’ 𝑔‖ β‰₯ πœ–}. 𝑋 is called to be 𝑝-convex uniform if there exists a constant 𝑐 > 0 such that 𝛿𝑋 (πœ–) β‰₯ π‘πœ– π‘ž , for 0 < πœ– ≀ 2. Lemma 1. (See [19]) Let 𝑋 be a π‘ž-convex uniform with π‘ž β‰₯ 2, then there exists a constant πœ‡ > 0 such that ‖𝑑π‘₯ + (1 βˆ’ 𝑑)π‘¦β€–π‘ž ≀ 𝑑‖π‘₯β€–π‘ž + (1 βˆ’ 𝑑)β€–π‘¦β€–π‘ž βˆ’ πœ‡πœ™(𝑑)β€–π‘₯ βˆ’ π‘¦β€–π‘ž for every π‘₯, 𝑦 ∈ 𝑋 and 𝑑 ∈ (0,1), where πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž . Lemma 1 used to prove an example of strongly 𝑝-convex funtions of higher order and generalized strongly 𝑝-convex funtions of higer order. It has been proved in [19]. A Note on Generalized Strongly p-Convex Functions of Higher Order Corina Karim 154 Definition 4. (See [3]) (Strongly 𝒑-Convex Functions of Higher Order) Let 𝑋 be a 𝑝-convex set. A function 𝑓: 𝑋 β†’ ℝ is called to be strongly 𝑝-convex functions of higher order if for any π‘₯, 𝑦 ∈ 𝑋 and 𝑑 ∈ [0,1], then 𝑓 ([𝑑π‘₯𝑝 + (1 βˆ’ 𝑑)𝑦𝑝] 1 𝑝) ≀ 𝑑𝑓(π‘₯) + (1 βˆ’ 𝑑)𝑓(𝑦) βˆ’ πœ‡πœ™(𝑑)β€–π‘₯𝑝 βˆ’ π‘¦π‘β€–π‘ž , (3) with πœ‡ β‰₯ 0, π‘ž > 0, and πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž. Example: Let π‘ž β‰₯ 2 and 𝑝 > 1. Defined 𝑋 = {π‘₯ ∈ ℝ; |π‘₯|𝑝 ∈ π‘™π‘ž } and πœ“: 𝑋 β†’ ℝ, where πœ“(π‘₯) = β€–|π‘₯|π‘β€–π‘ž π‘ž , then πœ“ is strongly 𝑝–convex functions of higher order. Definition 5. (See [3]) (Generalized Strongly 𝒑-Convex Funtions of Higher Order) Let 𝑋 be a 𝑝-convex set. A function 𝑓: 𝑋 β†’ ℝ is called to be strongly 𝑝-convex functions of higher order with respect to πœ‚: 𝐴 Γ— 𝐴 β†’ 𝐡, with 𝐴, 𝐡 βŠ† ℝ if for any π‘₯, 𝑦 ∈ 𝑋 and 𝑑 ∈ [0,1], then 𝑓 ([𝑑π‘₯𝑝 + (1 βˆ’ 𝑑)𝑦𝑝] 1 𝑝) ≀ 𝑓(𝑦) + πœ‚(𝑓(π‘₯), 𝑓(𝑦)) βˆ’ πœ‡πœ™(𝑑)β€–π‘₯𝑝 βˆ’ π‘¦π‘β€–π‘ž , (4) with πœ‡ β‰₯ 0, π‘ž > 0, and πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž. Example: Function πœ“ in example of strongly 𝑝-convex functions of higher order with respect to πœ‚(π‘₯, 𝑦) = π‘₯ βˆ’ 𝑦 is generalized strongly 𝑝-convex functions of higher order with rescpect to πœ‚. RESULTS AND DISCUSSION In this section, we discussed about revised Schur type inequality for generalized strongly 𝑝-convex functions of higher order. We showed that πœ™(π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 ) ≀ (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 )πœ™ ( π‘₯3 𝑝 βˆ’π‘₯2 𝑝 π‘₯3 𝑝 βˆ’π‘₯1 𝑝) is not valid for any π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 , π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ∈ (0,1) and π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 < π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 with π‘ž > 0 and πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž . Theorem 1. (Schur type inequality) Let 𝑋 is 𝑝-convex set and 𝐴, 𝐡 βŠ‚ ℝ. Defined a generalized strongly 𝑝-convex function of higher order with respect to πœ‚(βˆ™,βˆ™): 𝐴 Γ— 𝐴 β†’ 𝐡 with πœ‡ β‰₯ 0 and 𝑝 > 0, then for every π‘₯1, π‘₯2, π‘₯3 ∈ 𝑋 such that π‘₯1 < π‘₯2 < π‘₯3 and π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 , π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 , π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 ∈ (0,1), then the following inequality hold 𝑓(π‘₯3)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) βˆ’ 𝑓(π‘₯2)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) + (π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 )πœ‚(𝑓(π‘₯1), 𝑓(π‘₯3)) βˆ’ (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 )πœ‡πœ™ ( π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝) β€–π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 β€– π‘ž β‰₯ 0. (5) Proof: Let π‘₯1, π‘₯2, π‘₯3 ∈ 𝑋 with some criterion which are π‘₯1 < π‘₯2 < π‘₯3 and π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 , π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 , π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 ∈ (0,1). Based on those criteria, then we have 0 < π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 < π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 and 0 < π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 < π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 . (6) Based on (6), then we have A Note on Generalized Strongly p-Convex Functions of Higher Order Corina Karim 155 π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 , π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 ∈ (0,1). (7) It’s clear that π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 = 1 ⟺ π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 βˆ’ π‘₯2 𝑝 + π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 = 1 ⇔ (π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 ) + (π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 ) π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 = 1 ⇔ π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 + π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 = 1. (8) Choose 𝑑 = π‘₯3 𝑝 βˆ’π‘₯2 𝑝 π‘₯3 𝑝 βˆ’π‘₯1 𝑝, so from (8) can get 𝑑 + π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 = 1 ⇔ π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 = 1 βˆ’ 𝑑 ⇔ π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 = (1 βˆ’ 𝑑)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) ⇔ π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 = (1 βˆ’ 𝑑)π‘₯3 𝑝 βˆ’ (1 βˆ’ 𝑑)π‘₯1 𝑝 ⇔ π‘₯2 𝑝 βˆ’ π‘₯1 𝑝 = (1 βˆ’ 𝑑)π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 + 𝑑π‘₯1 𝑝 ⇔ π‘₯2 𝑝 = 𝑑π‘₯1 𝑝 + (1 βˆ’ 𝑑)π‘₯3 𝑝 ⇔ π‘₯2 = (𝑑π‘₯1 𝑝 + (1 βˆ’ 𝑑)π‘₯3 𝑝 ) 1 𝑝. (9) From (9), we can write 𝑓(π‘₯2) = 𝑓 ([𝑑π‘₯1 𝑝 + (1 βˆ’ 𝑑)π‘₯3 𝑝 ] 1 𝑝). (10) After that, because 𝑓 is generalized strongly 𝑝-convex functions of higher order, then from (10) and 𝑑 = π‘₯3 𝑝 βˆ’π‘₯2 𝑝 π‘₯3 𝑝 βˆ’π‘₯1 𝑝 we can get 𝑓(π‘₯2) ≀ 𝑓(π‘₯3) + ( π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝) πœ‚(𝑓(π‘₯1), 𝑓(π‘₯3)) βˆ’ πœ‡πœ™ ( π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝) β€–π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 β€– π‘ž (11) If all segments on (11) times by π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 , then we have 𝑓(π‘₯2)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) ≀ 𝑓(π‘₯3)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) + ( π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝) πœ‚(𝑓(π‘₯1), 𝑓(π‘₯3))(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) βˆ’ πœ‡πœ™ ( π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝) β€–π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 β€– π‘ž (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) ⟺ 𝑓(π‘₯3)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) βˆ’ 𝑓(π‘₯2)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) + (π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 )πœ‚(𝑓(π‘₯1), 𝑓(π‘₯3)) βˆ’ (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 )πœ‡πœ™ ( π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝 ) β€–π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 β€– π‘ž β‰₯ 0, this completes the proof of theorem 1. To show that πœ™(π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 ) ≀ (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 )πœ™ ( π‘₯3 𝑝 βˆ’π‘₯2 𝑝 π‘₯3 𝑝 βˆ’π‘₯1 𝑝) is not valid for any π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 , π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ∈ (0,1) and π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 < π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 with π‘ž > 0 and πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž , first we take π‘ž = 2, then we have πœ™(𝑑) = 𝑑2(1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)2 = 𝑑2 βˆ’ 𝑑3 + 𝑑(1 βˆ’ 2𝑑 + 𝑑2) = 𝑑2 βˆ’ 𝑑3 + 𝑑 βˆ’ 2𝑑2 + 𝑑3 = 𝑑 βˆ’ 𝑑2 = 𝑑(1 βˆ’ 𝑑). (12) After that, we have to take π‘₯ = π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 = 1 2 and 𝑦 = π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 = 1 4 , then its clear that π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 = 1 4 < 1 2 = π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 . So, we can get πœ™ ( 1 4 ) = 1 4 (1 βˆ’ 1 4 ) = 3 16 , A Note on Generalized Strongly p-Convex Functions of Higher Order Corina Karim 156 1 2 πœ™ ( 1 4⁄ 1 2⁄ ) = 1 2 πœ™ ( 1 2 ) = 1 2 [ 1 2 (1 βˆ’ 1 2 )] = 1 8 = 2 16 . And πœ™ ( 1 4 ) = 3 16 > 2 16 = 1 2 πœ™ ( 1 4⁄ 1 2⁄ ). So, there exists π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 = 1 4 , π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 = 1 2 and π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 = 1 4 < π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 = 1 2 with π‘ž = 2 and πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž but (π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 ) > (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 )πœ™ ( π‘₯3 𝑝 βˆ’π‘₯2 𝑝 π‘₯3 𝑝 βˆ’π‘₯1 𝑝) . In other words, πœ™(π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 ) > (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 )πœ™ ( π‘₯3 𝑝 βˆ’π‘₯2 𝑝 π‘₯3 𝑝 βˆ’π‘₯1 𝑝) is not valid for π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 , π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ∈ (0,1) and π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 < π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 with π‘ž > 0 and πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž . Remarks: If πœ™ satisfies π‘₯πœ™(𝑦) β‰₯ πœ™(π‘₯𝑦) for any π‘₯, 𝑦 ∈ (0,1) and π‘ž > 0, then (5) can be written as 𝑓(π‘₯3)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) βˆ’ 𝑓(π‘₯2)(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ) + (π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 )πœ‚(𝑓(π‘₯1), 𝑓(π‘₯3)) βˆ’ πœ‡πœ™(π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 )β€–π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 β€– π‘ž β‰₯ 0. CONCLUSION Schur type inequality for generalized strongly 𝑝-convex functions of higher order on [3] has a correction. (π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 )πœ‡πœ™ ( π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 π‘₯ 3 𝑝 βˆ’ π‘₯ 1 𝑝) β‰₯ πœ™(π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ), is not valid for any π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 , π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 ∈ (0,1) and π‘₯3 𝑝 βˆ’ π‘₯2 𝑝 < π‘₯3 𝑝 βˆ’ π‘₯1 𝑝 with 𝑝, π‘ž > 0, 𝑑 ∈ [0,1], and πœ™(𝑑) = π‘‘π‘ž (1 βˆ’ 𝑑) + 𝑑(1 βˆ’ 𝑑)π‘ž . So, (5) is the correct Schur type inequality for generalized strongly 𝑝-convex funtions of higher order. ACKNOWLEDGMENTS This paper supported by the DPP/SPP grant No. 1519/UN10.F09/PN/2021 at Mathematics and Natural Sciences Faculty, Universitas Brawijaya. REFERENCES [1] D. Henrion, "Convexity", The Princeton Companion to Applied Mathematics, part II, vol. 8, pp. 89-90, 2015. [2] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex Analysis: Theory and Applications, 2003. [3] M. S. Saleem, Y. M. Chu, N. Jahangir, H. Akhtar, and C. Y. Jung, "On generalized strongly p-convex functions of higher order", Journal of Mathematics, vol. 2020, Hindawi, 2020. [4] C. Zhang, M. S. Saleem, W. Nazeer, N. Shoukat, and Y. Rao, "Operator (p, Ξ·)-Convexity and some classical inequalities". Journal of Mathematics, vol. 2020, Hindawi. [5] M. R. Delavar and S. S. Dragomir, "On Ξ·-convexity", Math. Innequal. Appl, vol. 20, pp. 203-216, 2017. [6] M. A. Noor and K. I. Noor, "Higher order strongly general convex functions and variational inequalities", AIMS Mathematics, vol. 55, pp. 3646-3663, 2020. [7] M. A. Noor and K. I. Noor, "Higher order general convex functions and variational A Note on Generalized Strongly p-Convex Functions of Higher Order Corina Karim 157 inequalities", Canad. J. Appl. Math, vol. 3, pp. 1-17, 2021. [8] M. U. Awan, M. A. Noor, K. I. Noor, and F. Safdar, "On strongly generalized convex funtions", Filomat, vol. 31, pp. 5783-5790, 2017. [9] S. Z. Ullah, M. A. Khan, and Y. M. Chu, "A note on generalized convex funtions", Journal of Inequalities and Applications, vol. 291, 2019. [10] B. de Finneti, "Sulle stratificazioni covesse", Ann. Mat. Pura Appl, vol. 30, pp. 173- 183, 1949. [11] M. A. Noor and K. I. Noor, "On expopentially convex funtions", Journal of Orissa Mathematical Society, vol. 38, pp. 33-51, 2019. [12] M. A. Noor and K. I. Noor, "Strongly exponentially convex funtions", U.P.B. Sci. Bull, vol. 81, 2019. [13] J. E. PečariΔ‡, F. Proschan, Y. L. Tong, Convex Funtions, Partial Orderings, and Statistical Applications, Academic Press, Boston, 1992. [14] S. VaroΕ‘anec, "On h-convexity", Math. Anal. Appl, vol. 326, pp. 303-311, 2007. [15] H. Angulo, J. GimΓ©nez, A. M. Moros, and K. Nikodem, "On strongly h-convex funtions", Ann. Funct. Anal, vol. 2, pp. 85-91, 2011. [16] K. Zhang and J. Wan, "p-Convex funtions and their properties", Pure and Applied Mathematics, vol. 23, 2007. [17] S. Maden, S. Turhan, and Δ°. Δ°scan, Hermite-Hadamard inequality for strongly p-convex funtions, Springer, Berlin, 2018. [18] H. K. Xu, "Fixed point theorem for uniformly Lipschitzian semigroups in uniformly convex spaces", Journal of Mathematical Analysis and Applications, vol. 152, pp. 391- 398, 1990. [19] B. Prus and R. Smarzewski, "Strongly unique best approximations and centersin uniformly convex spaces", Journal of Mathematical Analysis and Applications, vol. 121, pp. 10-21, 1987.