Multipolar Intuitionistic Fuzzy Ideal in B-Algebras CAUCHY –Jurnal Matematika Murni dan Aplikasi Volume 7(2) (2022), Pages 293-301 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: November 17, 2021 Reviewed: December 10, 2021 Accepted: January 20, 2022 DOI: http://dx.doi.org/10.18860/ca.v7i1.14003 Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo*, Noor Hidayat, Vira Hari Krisnawati Department of Mathematics, University of Brawijaya, Malang, Indonesia *Corresponding Author Email: amigo.royyan@yahoo.com* ABSTRACT B-algebra is an algebraic structure which combine some properties from 𝐡𝐢𝐾-algebras and 𝐡𝐢𝐼-algebras. Some researchers have investigated the concept of multipolar fuzzy ideals in 𝐡𝐢𝐾/𝐡𝐢𝐼-algebras and multipolar intuitionistic fuzzy set in 𝐡-algebras. In this paper, we construct a new structure which is called a multipolar intuitionistic fuzzy ideal in 𝐡-algebras. This structure is a combination of three structures such as multipolar fuzzy ideals in 𝐡𝐢𝐾/𝐡𝐢𝐼-algebras, fuzzy 𝐡-subalgebras in 𝐡-algebras, and multipolar intuitionistic fuzzy 𝐡-algebras. We investigated and proved some characterizes of the multipolar intuitionistic fuzzy ideal, such as a necessary condition and sufficient condition. Keywords: B-algebras; multipolar fuzzy ideal; multipolar intuitionistic fuzzy set; multipolar intuitionistic fuzzy ideal INTRODUCTION Zadeh [1] introduced a new idea, namely a fuzzy set as a non-empty set with a degree of membership whose value in interval [0,1] in 1965. The degree of membership of each member of the set is determined by the membership function. That notion from Zadeh became the basis for further researchers to develop fuzzy concepts in various fields such as graph theory, data analysis, decision making, and so on. A simple example of an algebraic structure is a group. Not only groups, 𝐡𝐢𝐾-algebras, 𝐡𝐢𝐼-algebras and 𝐡-algebras are also other examples of algebraic structures. Imai and Iseki [2] proposed the notion a new algebraic structure called 𝐡𝐢𝐾-algebras in 1966. 𝐡𝐢𝐾-algebras is an important class of algebraic structure which is constructed from two different fragments, set theory and propositional calculus. In the same year, Iseki [3] continued his research to propose the notion of 𝐡𝐢𝐼-algebras which is generalization from 𝐡𝐢𝐾-algebras. A new idea about algebraic structure is called 𝐡- algebras which satisfies some properties from 𝐡𝐢𝐾-algebras and 𝐡𝐢𝐼-algebras was proposed by Neggers and Kim in [4]. They also investigated its properties. Zhang [5] introduced the concepts of bipolar fuzzy sets which is the extension of fuzzy set. Meng [6] studied about fuzzy implicative ideals in 𝐡𝐢𝐾-algebras in 1997. Moreover, Muhiuddin and Al-Kadi [7] introduced bipolar fuzzy implicative ideals in 𝐡𝐢𝐾-algebras. They discussed about the relationship between a bipolar fuzzy ideal and bipolar fuzzy implicative ideal. Furthermore, Chen et al. [8] introduced the concepts of multipolar fuzzy sets which is the extension of bipolar fuzzy set. Kang et al. [9] proposed http://dx.doi.org/10.18860/ca.v7i1.14003 mailto:amigo.royyan@yahoo.com Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo 294 the concepts about multipolar intuitionistic fuzzy set with finite degree and its application in 𝐡𝐢𝐾/𝐡𝐢𝐼-algebras. In 1999, Attanasov [10] introduced the new notion about intuitionistic fuzzy set. Jun et al. [11] defined fuzzy 𝐡-algebras. Then, Al-Masarwah and Ahmad [12] discussed about multipolar fuzzy ideals in 𝐡𝐢𝐾/𝐡𝐢𝐼-algebras. Ahn and Bang [13] studied fuzzy 𝐡-subalgebras in 𝐡-algebras. Recently, Borzooei et al. [14] proposed the concept about multipolar intuitionistic fuzzy 𝐡-algebras and some properties. They constructed a simple multipolar fuzzy set. Then, they also discussed about multipolar intuitionistic fuzzy subalgebras of 𝐡-algebras. In this paper, we construct a new structure which is called a multipolar intuitionistic fuzzy ideal in 𝐡-algebras. This structure is a combination of three structures which are the results of research by Al-Masarwah and Ahmad [12], Ahn and Bang [13], and Borzooei et al. [14]. Next, we investigated and proved some necessary condition and sufficient condition of the multipolar intuitionistic fuzzy ideal. METHODS By using literary study and analogical related concepts from [12], [13] and [14], we propose the terminology of multipolar intuitionistic fuzzy ideal in 𝐡-algebras. We start to describe the structure of 𝐡-algebra, fuzzy 𝐡-algebra, and multipolar intuitionistic fuzzy sets. Each structure is given its definition, examples, and some of its properties. Definition 2.1 [15] 𝐡-algebra is a nonempty set 𝑋 with 0 as identity element (right) and a binary operation βˆ— satisfying the following axioms for all π‘₯, 𝑦, 𝑧 ∈ 𝑋: i. π‘₯ βˆ— π‘₯ = 0. ii. π‘₯ βˆ— 0 = π‘₯. iii. (π‘₯ βˆ— 𝑦) βˆ— 𝑧 = π‘₯ βˆ— (𝑧 βˆ— (0 βˆ— 𝑦)). For all π‘₯, 𝑦 ∈ 𝑋, we define a partial ordering relation " ≀ " on 𝑋 by π‘₯ ≀ 𝑦 if and only if π‘₯ βˆ— 𝑦 = 0 ([14]). Example 2.2 [15] Let 𝑋 = {0, π‘Ž, 𝑏, 𝑐} be a set with Cayley table as follows: Table 1: Cayley table for (𝑋;βˆ— ,0). βˆ— 𝟎 𝒂 𝒃 𝒄 𝟎 0 0 𝑏 𝑏 𝒂 π‘Ž 0 𝑐 𝑏 𝒃 𝑏 𝑏 0 0 𝒄 𝑐 𝑏 π‘Ž 0 Then, (𝑋;βˆ— ,0) is a 𝐡-algebra. Example 2.3 [15] Let (β„€; βˆ’,0) with β€²β€² βˆ’ β€²β€² be a substraction operation of integers β„€. Then, (β„€; βˆ’,0) is a 𝐡-algebra. Example 2.4 Let (ℝ+ βˆ’ {0};βˆ— ,1) with β€²β€² βˆ— β€²β€² be a binary operation of ℝ+ βˆ’ {0} defined by π‘₯ βˆ— 𝑦 = π‘₯ 𝑦 . Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo 295 Then, (ℝ+ βˆ’ {0};βˆ— ,1) is a 𝐡-algebra. Proposition 2.5 [16] If (𝑋;βˆ— ,0) is a 𝐡-algebra, then for all π‘₯, 𝑦, 𝑧 ∈ 𝑋 satisfies the following conditions. i. (π‘₯ βˆ— 𝑦) βˆ— (0 βˆ— 𝑦) = π‘₯. ii. π‘₯ βˆ— (𝑦 βˆ— 𝑧) = (π‘₯ βˆ— (0 βˆ— 𝑧)) βˆ— 𝑦. iii. If π‘₯ βˆ— 𝑦 = 0 then π‘₯ = 𝑦. iv. 0 βˆ— (0 βˆ— π‘₯) = π‘₯. v. (π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧) = π‘₯ βˆ— 𝑦. vi. 0 βˆ— (π‘₯ βˆ— 𝑦) = 𝑦 βˆ— π‘₯. vii. π‘₯ βˆ— 𝑦 = 0 if and only if 𝑦 βˆ— π‘₯ = 0. viii. If 0 βˆ— π‘₯ = 0 then 𝑋 contains only 0. Definition 2.6 [16] A 𝐡-algebra (𝑋;βˆ— ,0) is called commutative 𝐡-algebra if for all π‘₯, 𝑦 ∈ 𝑋 satisfies: π‘₯ βˆ— (0 βˆ— 𝑦) = 𝑦 βˆ— (0 βˆ— π‘₯). Example 2.7 Let (β„€; βˆ’,0) with β€²β€² βˆ’ β€²β€² be a substraction operation of integers β„€. Then, (β„€; βˆ’,0) is a commutative 𝐡-algebra. Proposition 2.8 [16] If (𝑋;βˆ— ,0) is a commutative 𝐡-algebra, then for all π‘₯, 𝑦, 𝑧, 𝑑 ∈ 𝑋 satisfies the following rules. i. (0 βˆ— π‘₯) βˆ— (0 βˆ— 𝑦) = 𝑦 βˆ— π‘₯. ii. (𝑧 βˆ— 𝑦) βˆ— (𝑧 βˆ— π‘₯) = π‘₯ βˆ— 𝑦. iii. (π‘₯ βˆ— 𝑦) βˆ— 𝑧 = (π‘₯ βˆ— 𝑧) βˆ— 𝑦. iv. (π‘₯ βˆ— (π‘₯ βˆ— 𝑦)) βˆ— 𝑦 = 0. v. (π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑑) = (𝑑 βˆ— 𝑧) βˆ— (𝑦 βˆ— π‘₯). Definition 2.9 [15] Let (𝑋;βˆ— ,0) be a 𝐡-algebra. A nonempty subset 𝐼 of 𝑋 is called ideal of 𝑋 if it satisfies: i. 0 ∈ 𝐼, ii. for all π‘₯, 𝑦 ∈ 𝑋, if 𝑦 ∈ 𝐼 and π‘₯ βˆ— 𝑦 ∈ 𝐼 then π‘₯ ∈ 𝐼. Example 2.10 [15] Let 𝐼 = β„€+ ⋃ {0} be a subset of 𝐡-algebra (β„€; βˆ’,0), then 𝐼 is ideal of β„€. Let (𝑋;βˆ— ,0) be a 𝐡-algebra. A non empty subset 𝐼 of 𝑋 is called subalgebras (𝐡-subalgebras) of 𝑋 if for all π‘₯, 𝑦 ∈ 𝐼 satisfies 0 ∈ 𝐼 and π‘₯ βˆ— 𝑦 ∈ 𝐼 ([15]). Definition 2.11 [11] Let (𝑋;βˆ— ,0) be a 𝐡-algebra. A fuzzy set 𝐴 in 𝑋 is called fuzzy 𝐡-algebra if it satisfies the inequality for all π‘₯, 𝑦 ∈ 𝑋, πœ‡π΄(π‘₯ βˆ— 𝑦) β‰₯ min{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)}. Let (𝑋;βˆ— ,0) be a 𝐡-algebra. A fuzzy set 𝐴 in 𝑋 is called fuzzy ideal 𝐡-algebra ([17]) if it satisfies for all π‘₯, 𝑦 ∈ 𝑋, πœ‡π΄(0) β‰₯ πœ‡π΄(π‘₯), πœ‡π΄(π‘₯) β‰₯ min{πœ‡π΄(π‘₯ βˆ— 𝑦), πœ‡π΄(𝑦)}. Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo 296 A 𝐡-algebra (𝑋;βˆ— ,0) in the Example 2.2. If we define a fuzzy set 𝐴 in 𝑋 by πœ‡π΄(0) = πœ‡π΄(𝑏) = 1 and πœ‡π΄(π‘Ž) = πœ‡π΄(𝑐) = 0.5, then 𝐴 is fuzzy ideal of 𝑋. Moreover, a 𝐡-algebra (ℝ+ βˆ’ {0};βˆ— ,1) in the Example 2.4, if we define a fuzzy set 𝐴 in ℝ+ βˆ’ {0} by πœ‡π΄(π‘₯) = { 1 𝑖𝑓 π‘₯ = 1, 0.5 𝑖𝑓 π‘₯ β‰  1, then 𝐴 is fuzzy ideal of ℝ+ βˆ’ {0}. Let (𝑋;βˆ— ,0) be a 𝐡-algebra. A multipolar intuitionistic fuzzy set over 𝑋 is a mapping (β„“Μ‚, οΏ½Μ‚οΏ½) ∢ 𝑋 β†’ ([0,1] Γ— [0,1])π‘š π‘₯ ↦ (β„“Μ‚(π‘₯), οΏ½Μ‚οΏ½(π‘₯)), where β„“Μ‚ ∢ 𝑋 β†’ [0,1]π‘š and οΏ½Μ‚οΏ½ ∢ 𝑋 β†’ [0,1]π‘š are multipolar fuzzy sets over 𝑋 which is satisfies the condition for all π‘₯ ∈ 𝑋, β„“Μ‚(π‘₯) + οΏ½Μ‚οΏ½(π‘₯) ≀ 1 where πœ‹π‘– ∢ [0,1] π‘š β†’ [0,1] such that (πœ‹π‘– ∘ β„“Μ‚)(π‘₯) + (πœ‹π‘– ∘ οΏ½Μ‚οΏ½)(π‘₯) ≀ 1 for 𝑖 = 1,2, … , π‘š (see [14]). RESULTS AND DISCUSSION In this section, we will describe the structure of multipolar intuitionistic fuzzy ideal in 𝐡-algebras. The description begins with the definition of the new structure, then examples are given, and its properties are determined and proven. Definition 3.1 Let (𝑋;βˆ— ,0) be a 𝐡-algebra. A multipolar intuitionistic fuzzy set (β„“Μ‚, οΏ½Μ‚οΏ½) over 𝑋 is called multipolar intuitionistic fuzzy ideal in 𝑋 if it satisfies: i. (βˆ€π‘₯ ∈ 𝑋)(β„“Μ‚(0) β‰₯ β„“Μ‚(π‘₯) and οΏ½Μ‚οΏ½(0) ≀ οΏ½Μ‚οΏ½(π‘₯)) such that (πœ‹π‘– ∘ β„“Μ‚)(0) β‰₯ (πœ‹π‘– ∘ β„“Μ‚)(π‘₯) and (πœ‹π‘– ∘ οΏ½Μ‚οΏ½)(0) ≀ (πœ‹π‘– ∘ οΏ½Μ‚οΏ½)(π‘₯), ii. (βˆ€π‘₯, 𝑦 ∈ 𝑋)(β„“Μ‚(π‘₯) β‰₯ inf{β„“Μ‚(π‘₯ βˆ— 𝑦), β„“Μ‚(𝑦)} and οΏ½Μ‚οΏ½(π‘₯) ≀ sup{οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦), οΏ½Μ‚οΏ½(𝑦)}) such that (πœ‹π‘– ∘ β„“Μ‚)(π‘₯) β‰₯ inf{(πœ‹π‘– ∘ β„“Μ‚)(π‘₯ βˆ— 𝑦), (πœ‹π‘– ∘ β„“Μ‚)(𝑦)} and (πœ‹π‘– ∘ οΏ½Μ‚οΏ½)(π‘₯) ≀ sup{(πœ‹π‘– ∘ οΏ½Μ‚οΏ½)(π‘₯ βˆ— 𝑦), (πœ‹π‘– ∘ οΏ½Μ‚οΏ½)(𝑦)}, for 𝑖 = 1,2, … . , π‘š. Example 3.2 Let (𝑋;βˆ— ,0) be a 𝐡-algebra in the Example 2.2. Given a multipolar intuitionistic fuzzy set (β„“Μ‚, οΏ½Μ‚οΏ½) over 𝑋 by (β„“Μ‚, οΏ½Μ‚οΏ½) ∢ 𝑋 β†’ ([0,1] Γ— [0,1])5, Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo 297 π‘₯ ↦ { ((0.7,0.3), (0.6,0.25), (0.7,0.15), (0.63,0.2), (0.8,0.18)) 𝑖𝑓 π‘₯ ∈ {0, 𝑏}, ((0.3,0.6), (0.4,0.5), (0.5,0.4), (0.2,0.7), (0.4,0.5)) 𝑖𝑓 π‘₯ ∈ {π‘Ž, 𝑐}. Then, (β„“Μ‚, οΏ½Μ‚οΏ½) is 5-polar intuitionistic fuzzy ideal of 𝑋. Example 3.3 Let (ℝ+ βˆ’ {0};βˆ— ,1) be a 𝐡-algebra in the Example 2.4. Given a multipolar intuitionistic fuzzy set (β„“Μ‚, οΏ½Μ‚οΏ½) over ℝ+ βˆ’ {0} by (β„“Μ‚, οΏ½Μ‚οΏ½) ∢ 𝑋 β†’ ([0,1] Γ— [0,1])5, π‘₯ ↦ { ((1,0), (1,0), (1,0), (1,0), (1,0)) 𝑖𝑓 π‘₯ = 1, ((0.5,0.5), (0.4,0.4), (0.3,0.3), (0.2,0.2), (0.1,0.1)) 𝑖𝑓 π‘₯ β‰  1. Then, (β„“Μ‚, οΏ½Μ‚οΏ½) is 5-polar intuitionistic fuzzy ideal of ℝ+ βˆ’ {0}. For any πœ” ∈ 𝑋 and multipolar intuitionistic fuzzy set (β„“Μ‚, οΏ½Μ‚οΏ½) in 𝑋, we give the conditions for the set 𝐼(πœ”) to be an ideal of 𝑋 and its example. Theorem 3.4 Let (𝑋;βˆ— ,0) be a 𝐡-algebra and π‘₯ ∈ 𝑋. If (β„“Μ‚, οΏ½Μ‚οΏ½) is a multipolar intuitionistic fuzzy ideal of 𝑋, then 𝐼(πœ”) is an ideal of 𝑋 where 𝐼(πœ”) = {π‘₯ ∈ 𝑋|β„“Μ‚(π‘₯) β‰₯ β„“Μ‚(πœ”) π‘Žπ‘›π‘‘ οΏ½Μ‚οΏ½(π‘₯) ≀ οΏ½Μ‚οΏ½(πœ”)}. Proof. Let (β„“Μ‚, οΏ½Μ‚οΏ½) be a multipolar intuitionistic fuzzy ideal of 𝑋 where 𝐼(πœ”) = {π‘₯ ∈ 𝑋|β„“Μ‚(π‘₯) β‰₯ β„“Μ‚(πœ”) and οΏ½Μ‚οΏ½(π‘₯) ≀ οΏ½Μ‚οΏ½(πœ”)}. i. By using Definition 3.1 (i) we have that β„“Μ‚(0) β‰₯ β„“Μ‚(π‘₯) β‰₯ β„“Μ‚(πœ”) and οΏ½Μ‚οΏ½(0) ≀ οΏ½Μ‚οΏ½(π‘₯) ≀ οΏ½Μ‚οΏ½(πœ”). Hence, 0 ∈ 𝐼(πœ”). ii. Let π‘₯, 𝑦 ∈ 𝑋 such that π‘₯ βˆ— 𝑦 ∈ 𝐼(πœ”) and 𝑦 ∈ 𝐼(πœ”). Then, β„“Μ‚(π‘₯ βˆ— 𝑦) β‰₯ β„“Μ‚(πœ”) and οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦) ≀ οΏ½Μ‚οΏ½(πœ”), β„“Μ‚(𝑦) β‰₯ β„“Μ‚(πœ”) and οΏ½Μ‚οΏ½(𝑦) ≀ οΏ½Μ‚οΏ½(πœ”). By using Definition 3.1 (ii), we have β„“Μ‚(π‘₯) β‰₯ inf{β„“Μ‚(π‘₯ βˆ— 𝑦), β„“Μ‚(𝑦)} β‰₯ β„“Μ‚(πœ”) and οΏ½Μ‚οΏ½(π‘₯) ≀ sup{οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦), οΏ½Μ‚οΏ½(𝑦)} ≀ οΏ½Μ‚οΏ½(πœ”), such that β„“Μ‚(π‘₯) β‰₯ β„“Μ‚(πœ”) and οΏ½Μ‚οΏ½(π‘₯) ≀ οΏ½Μ‚οΏ½(πœ”). Hence, π‘₯ ∈ 𝐼(πœ”). Therefore, 𝐼(πœ”) is an ideal of 𝑋. ∎ Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo 298 Example 3.5 Let (𝑋;βˆ— ,0) be a 𝐡-algebra in the Example 2.2. Given a multipolar intuitionistic fuzzy ideal (β„“Μ‚, οΏ½Μ‚οΏ½) over 𝑋 in the Example 3.2 where 𝐼(𝑏) = {0, 𝑏|β„“Μ‚(0) β‰₯ β„“Μ‚(𝑏) and οΏ½Μ‚οΏ½(0) ≀ οΏ½Μ‚οΏ½(𝑏), β„“Μ‚(𝑏) β‰₯ β„“Μ‚(𝑏) and οΏ½Μ‚οΏ½(𝑏) ≀ οΏ½Μ‚οΏ½(𝑏)}. Then, 𝐼(𝑏) is an ideal of 𝑋. Next, we discuss some properties of multipolar intuitionistic fuzzy ideal in 𝐡-algebras. Proposition 3.6 Let (𝑋;βˆ— ,0) be a 𝐡-algebra. Every multipolar intuitionistic fuzzy ideal (β„“Μ‚, οΏ½Μ‚οΏ½) over 𝑋 satisfies the following implication for all π‘₯, 𝑦 ∈ 𝑋, if π‘₯ ≀ 𝑦 then β„“Μ‚(π‘₯) β‰₯ β„“Μ‚(𝑦) and οΏ½Μ‚οΏ½(π‘₯) ≀ οΏ½Μ‚οΏ½(𝑦). Proof. Let π‘₯, 𝑦 ∈ 𝑋 such that π‘₯ ≀ 𝑦. So, π‘₯ βˆ— 𝑦 = 0. By using Definition 3.1 (i) and (ii), we have that β„“Μ‚(π‘₯) β‰₯ inf{β„“Μ‚(π‘₯ βˆ— 𝑦), β„“Μ‚(𝑦)} = inf{β„“Μ‚(0), β„“Μ‚(𝑦)} = β„“Μ‚(𝑦) and οΏ½Μ‚οΏ½(π‘₯) ≀ sup{οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦), οΏ½Μ‚οΏ½(𝑦)} = sup{οΏ½Μ‚οΏ½(0), οΏ½Μ‚οΏ½(𝑦)} = οΏ½Μ‚οΏ½(𝑦). ∎ Proposition 3.7 Let (𝑋;βˆ— ,0) be a commutative 𝐡-algebra. For any multipolar intuitionistic fuzzy ideal (β„“Μ‚, οΏ½Μ‚οΏ½) over 𝑋, if for all π‘₯, 𝑦 ∈ 𝑋 satisfies β„“Μ‚(π‘₯ βˆ— 𝑦) β‰₯ β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 𝑦) π‘Žπ‘›π‘‘ οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦) ≀ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 𝑦), then for all π‘₯, 𝑦, 𝑧 ∈ 𝑋 satisfies β„“Μ‚((π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧)) β‰₯ β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 𝑧) π‘Žπ‘›π‘‘ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧)) ≀ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 𝑧). Proof. Let π‘₯, 𝑦, 𝑧 ∈ 𝑋 such that ((π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧 ≀ (π‘₯ βˆ— 𝑦) βˆ— 𝑧. By using Proposition 2.5 and 2.8, we have that ((π‘₯ βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧) βˆ— 𝑧 = ((π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧 ≀ (π‘₯ βˆ— 𝑦) βˆ— 𝑧. From Proposition 3.6, we have β„“Μ‚ (((π‘₯ βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧) βˆ— 𝑧) β‰₯ β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 𝑧) and οΏ½Μ‚οΏ½ (((π‘₯ βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧) βˆ— 𝑧) ≀ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 𝑧). Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo 299 So, from Proposition 2.8, we get β„“Μ‚((π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧)) = β„“Μ‚ ((π‘₯ βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧) β‰₯ β„“Μ‚ (((π‘₯ βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧) βˆ— 𝑧) β‰₯ β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 𝑧) and οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧)) = οΏ½Μ‚οΏ½ ((π‘₯ βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧) ≀ οΏ½Μ‚οΏ½ (((π‘₯ βˆ— (𝑦 βˆ— 𝑧)) βˆ— 𝑧) βˆ— 𝑧) ≀ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 𝑧). ∎ Proposition 3.8 Let (𝑋;βˆ— ,0) be a 𝐡-algebra. For any multipolar intuitionistic fuzzy ideal (β„“Μ‚, οΏ½Μ‚οΏ½) over 𝑋, if for all π‘₯, 𝑦, 𝑧 ∈ 𝑋 satisfies β„“Μ‚((π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧)) β‰₯ β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 𝑧) π‘Žπ‘›π‘‘ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑧) βˆ— (𝑦 βˆ— 𝑧)) ≀ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 𝑧), then for all π‘₯, 𝑦 ∈ 𝑋 satisfies β„“Μ‚(π‘₯ βˆ— 𝑦) β‰₯ β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 𝑦) π‘Žπ‘›π‘‘ οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦) ≀ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 𝑦). Proof. Let π‘₯, 𝑦, 𝑧 ∈ 𝑋. If 𝑧 is replaced by 𝑦 on the assumption, then by using Definition 2.1 (i) and (ii) we have β„“Μ‚(π‘₯ βˆ— 𝑦) = β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 0) = β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— (𝑦 βˆ— 𝑦)) = β„“Μ‚(π‘₯ βˆ— 𝑦) β‰₯ β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 𝑦) and οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦) = οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 0) = οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— (𝑦 βˆ— 𝑦)) = οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦) ≀ οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 𝑦). ∎ Based on Proposition 3.7 and Proposition 3.8, we get the following corollary. Corollary If we assume that 𝑋 is a commutative 𝐡-algebra, then the statements in Proposition 3.7 and Proposition 3.8 are equivalent. Furthermore, we also give another condition of multipolar intuitionistic fuzzy ideal in 𝐡-algebras such that make this following proposition. Proposition 3.9 Let (𝑋;βˆ— ,0) be a 𝐡-algebra. A multipolar intuitionistic fuzzy set (β„“Μ‚, οΏ½Μ‚οΏ½) over 𝑋 is a multipolar intuitionistic fuzzy ideal (β„“Μ‚, οΏ½Μ‚οΏ½) over 𝑋 if and only if for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, (π‘₯ βˆ— 𝑦) βˆ— 𝑧 = 0 implies β„“Μ‚(π‘₯) β‰₯ inf{β„“Μ‚(𝑦), β„“Μ‚(𝑧)} and οΏ½Μ‚οΏ½(π‘₯) ≀ sup{οΏ½Μ‚οΏ½(𝑦), οΏ½Μ‚οΏ½(𝑧)}. Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo 300 Proof. We assume that (β„“Μ‚, οΏ½Μ‚οΏ½) is a multipolar intuitionistic fuzzy ideal over 𝑋. Let π‘₯, 𝑦, 𝑧 ∈ 𝑋 such that (π‘₯ βˆ— 𝑦) βˆ— 𝑧 = 0. So, π‘₯ βˆ— 𝑦 ≀ 𝑧. By using Definition 3.1 (i) and (ii), we have β„“Μ‚(π‘₯) β‰₯ inf{β„“Μ‚(π‘₯ βˆ— 𝑦), β„“Μ‚(𝑦)} β‰₯ inf{inf{β„“Μ‚((π‘₯ βˆ— 𝑦) βˆ— 𝑧), β„“Μ‚(𝑧)} , β„“Μ‚(𝑦)} = inf{inf{β„“Μ‚(0), β„“Μ‚(𝑧)} , β„“Μ‚(𝑦)} = inf{β„“Μ‚(𝑦), β„“Μ‚(𝑧)} and οΏ½Μ‚οΏ½(π‘₯) ≀ sup{οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦), οΏ½Μ‚οΏ½(𝑦)} ≀ sup{sup{οΏ½Μ‚οΏ½((π‘₯ βˆ— 𝑦) βˆ— 𝑧), οΏ½Μ‚οΏ½(𝑧)} , οΏ½Μ‚οΏ½(𝑦)} = sup{sup{οΏ½Μ‚οΏ½(0), οΏ½Μ‚οΏ½(𝑧)} , οΏ½Μ‚οΏ½(𝑦)} = sup{οΏ½Μ‚οΏ½(𝑦), οΏ½Μ‚οΏ½(𝑧)}. Conversely, we assume for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, (π‘₯ βˆ— 𝑦) βˆ— 𝑧 = 0. Then β„“Μ‚(π‘₯) β‰₯ inf{β„“Μ‚(𝑦), β„“Μ‚(𝑧)} and οΏ½Μ‚οΏ½(π‘₯) ≀ sup{οΏ½Μ‚οΏ½(𝑦), οΏ½Μ‚οΏ½(𝑧)}. Let π‘₯ ∈ 𝑋. By using Definition 2.1 (ii) and Definition 2.11, we have β„“Μ‚(0) = β„“Μ‚(π‘₯ βˆ— π‘₯) β‰₯ inf{β„“Μ‚(π‘₯), β„“Μ‚(π‘₯)} = β„“Μ‚(π‘₯) and οΏ½Μ‚οΏ½(0) = οΏ½Μ‚οΏ½(π‘₯ βˆ— π‘₯) ≀ sup{οΏ½Μ‚οΏ½(π‘₯), οΏ½Μ‚οΏ½(π‘₯)} = οΏ½Μ‚οΏ½(π‘₯). Then, let π‘₯, 𝑦 ∈ 𝑋. By using Definition 2.1 (i), we have (π‘₯ βˆ— 𝑦) βˆ— (π‘₯ βˆ— 𝑦) = 0 such that β„“Μ‚(π‘₯) β‰₯ inf{β„“Μ‚(𝑦), β„“Μ‚(π‘₯ βˆ— 𝑦)} and οΏ½Μ‚οΏ½(π‘₯) ≀ sup{οΏ½Μ‚οΏ½(𝑦), οΏ½Μ‚οΏ½(π‘₯ βˆ— 𝑦)}. Hence, (β„“Μ‚, οΏ½Μ‚οΏ½) is a multipolar intuitionistic fuzzy ideal over 𝑋. ∎ CONCLUSIONS In this paper, we apply the terminology of multipolar intuitionistic fuzzy ideal in 𝐡-algebras and investigate some properties. We also explain the conditions for a multipolar intuitionistic fuzzy set to be a multipolar intuitionistic fuzzy ideal and give some examples. These definitions and main results can be applied with similarly in other algebraic structure such as 𝐡𝐺-algebras, 𝐡𝐹-algebras and 𝐡𝐷-algebras. REFERENCES [1] Zadeh, L.A. 1965. Fuzzy Sets. Information and Control, Vol. 8, no. 3, 338-353. [2] Imai, Y.; Iseki, K. 1966. On axiom system of propositional calculi, XIV. Japan Acad 42, 19-22. [3] Iseki, K. 1966. An algebra related with a propositional calculus. Japan Acad 42, 26-29. [4] Neggers, J.; Kim, H. S. 2002. On B-algebras. Mate Vesnik, no. 54, 21-29. Multipolar Intuitionistic Fuzzy Ideal in B-Algebras Royyan Amigo 301 [5] Zhang, W.R.; Yang, Y. 1994. Bipolar fuzzy sets. Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, 835–840. Anchorage, AK, USA. [6] Meng, J.; Jun, Y.B.; Kim, H.S. 1997. Fuzzy Implicative Ideals of BCK-Algebras. Fuzzy Sets and Systems, Vol. 89, 243-248. [7] Muhiuddin, G.; Al-Kadi, D. 2021. Bipolar Fuzzy Implicative Ideals of BCK-Algebras. Journal of Mathematics. [8] Chen, J.; Li, S.; Ma, S.; Wang, X. 2014. m-polar fuzzy sets: An extension of bipolar fuzzy sets. Sci. World J. [9] Kang, K.T.; Song, Seok-Zun.; Jun, Y.B. 2020. Multipolar Intuitionistic Fuzzy Set with Finite Degree and Its Application in BCK/BCI-Algebras. MDPI, 8, 177. [10] Attanassov, K.T. 1999. Intuitionistic Fuzzy Sets Theory and Applications. Bulgaria. [11] Jun, Y.B.; Roh, E.H.; Kim, H.S. 2002. On fuzzy B-algebras. Czechoslovak Mathematical Journal, Vol. 52, no. 2, 375β€”384. [12] Al-Masarwah, A.; Ahmad, A.G. 2019. m-Polar Fuzzy Ideals of BCK/BCI-Algebras. Journal of King Saud University-Science, Vol. 31, no. 4, 1220–1226. [13] Ahn, S.S.; Bang, K. 2003. On fuzzy subalgebras in B-algebras. Commun Korean Math. Soc, Vol. 10, no. 3, 429-437. [14] Borzooei, R.A.; Kim, H.S.; Jun, Y.B.; Ahn, S.S. 2020. On Multipolar Intuitionistic Fuzzy B-Algebras. MDPI, 8, 907. [15] Fitria, E.; Gemawati, S.; Kartini. 2017. Prime Ideals in B-algebras. International Journal of Algebra, Vol. 11, no. 7, 301-309. [16] Abdullah, H.K; Atshan, A.A. 2017. Complete Ideal and n-Ideal of B-algebras. Applied Mathematical Sciences, Vol. 11, no. 35, 1705-1713. [17] Senapati, T.; Bhowmik, M.; Pal, M. 2011. Fuzzy Closed Ideals of B-Algebras. IJCSET, Vol. 1, no. 10, 669-673.