๐œผโˆ’๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐จ๐ง๐ข๐ฌ๐ญ๐ข๐œ ๐…๐ฎ๐ณ๐ณ๐ฒ ๐’๐จ๐Ÿ๐ญ ๐†๐ซ๐จ๐ฎ๐ฉ๐ฌ CAUCHY โ€“Jurnal Matematika Murni dan Aplikasi Volume 7(3) (2022), Pages 354-361 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: December 23, 2021 Reviewed: May 25, 2022 Accepted: July 17, 2022 DOI: http://dx.doi.org/10.18860/ca.v7i3.14555 ๐œผโˆ’๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐จ๐ง๐ข๐ฌ๐ญ๐ข๐œ ๐…๐ฎ๐ณ๐ณ๐ฒ ๐’๐จ๐Ÿ๐ญ ๐†๐ซ๐จ๐ฎ๐ฉ๐ฌ Mustika Ana Kurfia*, Noor Hidayat, Corina Karim Mathematics Department, Universitas Brawijaya, Malang, Indonesia Email: muzematika@gmail.com ABSTRACT The fuzzy set theory was introduced by Zadeh in 1965 and the soft set theory was introduced by Molodtsov in 1999. Recently, many researchers have developed these two theories and combined the theory of fuzzy set and soft set became the fuzzy soft set. In this research, we present the idea of the ๐œ‚ โˆ’intuitionistic fuzzy soft group defined on the ๐œ‚ โˆ’intuitionistic fuzzy soft set. The main purpose of this research is to create a new concept, which is an ๐œ‚ โˆ’intuitionistic fuzzy group. To achieve this, we combine the concept of ๐œ‚ โˆ’intuitionistic fuzzy group and intuitionistic fuzzy soft group. As the main result, we prove the correlation between intuitionistic fuzzy soft group and ๐œ‚ โˆ’intuitionistic fuzzy soft group along with some properties of ๐œ‚ โˆ’intuitionistic fuzzy soft group. Also, we prove some properties of subgroup of an ๐œ‚ โˆ’intuitionistic fuzzy soft group. An ๐œ‚ โˆ’intuitionistic fuzzy soft homomorphism is also proved. Keywords: intuitionistic fuzzy group; intuitionistic fuzzy soft group; ๐œ‚ โˆ’intuitionistic fuzzy group; ๐œ‚ โˆ’intuitionistic fuzzy soft group INTRODUCTION The theory of fuzzy has been studied by many researchers in various fields. Zadeh introduced the fuzzy set theory in [1] by defining a membership function that maps each member of a set to a closed interval of 0 and 1. Then Atanassov formed the intuitionistic fuzzy set that consist of membership function and nonmembership function in [2]. The theory of fuzzy set and intuitionistic fuzzy set was developed into group theory became fuzzy subgroup in [3] and intuitionistic fuzzy subgroup in [4]. The intuitionistic fuzzy subgroup was studied in various types. For example, the intuitionistic L-fuzzy subgroups formed in [5], the (๐‘ , ๐‘ก] โˆ’intuitionistic fuzzy subgroups defined in [6], definition of (๐›ผ, ๐›ฝ)cut of intuitionistic fuzzy subgroups in [7], and t-intuitionistic fuzzy subgroups in [8]. Doda and Sharma studied the finite groups of different orders and gave the idea of recording the count of intuitionistic fuzzy subgroups in [9]. Zhou and Xu extended the intuitionistic fuzzy sets based on the hesitant fuzzy membership in [10]. The concept of the (๐œ†, ๐œ‡) โˆ’intuitionistic fuzzy subgroups and normal subgroups were defined in [11]. Then the fundamental properties of t-intuitionistic fuzzy abelian subgroup along with the homomorphism of t-intuitionistic fuzzy abelian subgroup were studied in [12]. Latif, et al. studied the fundamental theorems of t-intuitionistic fuzzy isomorphism of t-intuitionistic fuzzy subgroup in [13]. Moreover, the concept of ๐œ‰ โˆ’intuitionistic fuzzy subgroup, ๐œ‰ โˆ’intuitionistic fuzzy cosets, and ๐œ‰ โˆ’intuitionistic fuzzy normal subgroup were characterized in [14]. Based on those research, Shuaib, et al. in [15] formed a concept http://dx.doi.org/10.18860/ca.v7i3.14555 mailto:muzematika@gmail.com ๐œ‚ โˆ’Intuitionistic Fuzzy Soft Groups Mustika Ana Kurfia 355 called an ๐œ‚ โˆ’intuitionistic fuzzy subgroup on an ๐œ‚ โˆ’intuitionistic fuzzy set along with ๐œ‚ โˆ’intuitionistic fuzzy homomorphism. While the theory of soft set is introduced in [16] which is an ordered pair of parameter and function that maps each member of parameter to the power set of an empty set. The soft sets constructed in the form of membership function became fuzzy soft sets defined in [17]. Maji, et al. introduced the concept of intuitionistic fuzzy soft set which is a generalization of intuitionistic fuzzy set and soft set in [18]. Furthermore, the operation properties and algebraic structure of intuitionistic fuzzy soft set were discussed in [19]. Soft group on the soft set is defined in [16]. Then Aygรผnoglu and Aygun in [20] developed the concept of soft group in the form of membership function became fuzzy soft group. The concept of intuitionistic fuzzy soft set to semigroup was applied in [21] and intuitionistic fuzzy soft ideals over ordered ternary semigroup was defined in [22]. The concept of soft group is developed into an intersection called soft int-group in [23]. Moreover, Karaaslan, et al. in [24] applied the concept of soft int-group into intuitionistic fuzzy soft set by forming the intuitionistic fuzzy soft group and investigate some properties of intuitionistic fuzzy soft group. Based on [15] and [24], we introduce the notion of the ๐œ‚ โˆ’intuitionistic fuzzy soft group on the ๐œ‚ โˆ’intuitionistic fuzzy soft set and give some basic properties. Moreover, we define the notion of the ๐œ‚ โˆ’intuitionistic fuzzy subgroup and investigate the properties of homomorphism of an ๐œ‚ โˆ’intuitionistic fuzzy soft group. METHODS The method of this research is literature review, data collecting techniques by conducting review studies of books, notes, and other scientific research results related to the object of the problem. In this paper, we begin by forming the definition of ๐œ‚ โˆ’intuitionistic fuzzy soft set based on the definition of intuitionistic fuzzy soft set and ๐œ‚ โˆ’intuitionistic fuzzy set. Then, we form the definition of ๐œ‚ โˆ’intuitionistic fuzzy soft group based on the definition of intuitionistic fuzzy soft group. We continue to prove some properties of the ๐œ‚ โˆ’intuitionistic fuzzy soft group along with subgroup of an ๐œ‚ โˆ’intuitionistic fuzzy soft group. Moreover, we continue to define the definition of image and pre-image of an ๐œ‚ โˆ’intuitionistic fuzzy soft group and prove the homomorphism of an ๐œ‚ โˆ’intuitionistic fuzzy soft group. Here is shown the definition of intuitionistic fuzzy soft set, ๐œ‚ โˆ’intuitionistic fuzzy set, and intuitionistic fuzzy soft group. Definition 1[18]. Let ๐‘‹ be a non empty set and ๐ธ be a set of parameter with ๐ด โŠ† ๐ธ. Let โ„โ„ฑ(๐‘‹) be a set of all intuitionistic fuzzy set of ๐‘‹. An intuitionistic fuzzy soft set of ๐ด over ๐‘‹ is defined by ฮ“๐ด = {(๐‘Ž, ๐›พ๐ด(๐‘Ž)): ๐‘Ž โˆˆ ๐ด}, where ๐›พ๐ด(๐‘Ž): ๐ธ โ†’ โ„โ„ฑ(๐‘‹) such as ๐›พ๐ด(๐‘Ž) = โˆ… if ๐‘Ž โˆ‰ ๐ด. Therefore, for all ๐‘Ž โˆˆ ๐ธ, ๐›พ๐ด(๐‘Ž) is called intuitionistic fuzzy value set of ๐‘Ž. ๐›พ๐ด(๐‘Ž) can be written as ๐›พ๐ด(๐‘Ž) = {(๐‘ฅ, ๐œ‡๐›พ๐ด(๐‘Ž)(๐‘ฅ), ๐œ‡๐›พ๐ด(๐‘Ž)(๐‘ฅ)) : ๐‘ฅ โˆˆ ๐‘‹}, for all ๐‘Ž โˆˆ ๐ธ. Definition 2 [15]. Suppose ๐ด is an intuitionistic fuzzy set of a non empty set ๐‘‹ where ๐œ‡๐ด be a membership function and ๐œˆ๐ด be a nonmembership function in ๐ด. Let ๐œ‚ โˆˆ [0, 1]. An ๐œ‚ โˆ’intuitionistic fuzzy set is defined by ๐ด๐œ‚ = {(๐‘ฅ, ๐œ‡๐ด๐œ‚ (๐‘ฅ), ๐œˆ๐ด๐œ‚ (๐‘ฅ)): ๐‘ฅ โˆˆ ๐‘‹}, where ๐œ‡๐ด๐œ‚ (๐‘ฅ) = ๐œ“[๐œ‡๐ด(๐‘ฅ), ๐œ‚] = โˆš๐œ‡๐ด(๐‘ฅ) โ‹… ๐œ‚ and ๐œˆ๐ด๐œ‚ (๐‘ฅ) = ๐œ“ โ€ฒ[๐œˆ๐ด(๐‘ฅ), 1 โˆ’ ๐œ‚] = โˆš๐œˆ๐ด(๐‘ฅ) โ‹… (1 โˆ’ ๐œ‚). ๐œ‚ โˆ’Intuitionistic Fuzzy Soft Groups Mustika Ana Kurfia 356 Definition 3 [24]. Let ๐บ be an arbitrary group and ฮ“๐บ be an intuitionistic fuzzy soft set over universe ๐‘‹, then ฮ“๐บ is called intuitionistic fuzzy soft group on ๐บ over ๐‘‹ if 1. ๐›พ๐บ (๐‘ฅ๐‘ฆ) โŠ‡ ๐›พ๐บ (๐‘ฅ) โˆฉ ๐›พ๐บ (๐‘ฆ), 2. ๐›พ๐บ (๐‘ฅ โˆ’1) = ๐›พ๐บ (๐‘ฅ), for all ๐‘ฅ โˆˆ ๐บ. RESULTS AND DISCUSSION In this section, we introduce the notion of ๐œ‚ โˆ’intuitionistic fuzzy soft group on ๐œ‚ โˆ’intuitionistic fuzzy soft set. Inspiring from Definition 1 and Definition 2, we define the notion of ๐œ‚ โˆ’intuitionistic fuzzy soft set. Definition 4. Suppose ฮ“๐ด be an intuitionistic fuzzy soft set of parameter ๐ด over universe ๐‘‹ and ๐œ‚ โˆˆ [0, 1]. An ๐œ‚ โˆ’intuitionistic fuzzy soft set of ๐ด over ๐‘‹ is defined by ฮ“๐ด ๐œ‚ = {(๐‘Ž, ๐›พ๐ด ๐œ‚ (๐‘Ž)): ๐‘Ž โˆˆ ๐ด}, where ๐›พ๐ด ๐œ‚(๐‘Ž) is an ๐œ‚ โˆ’intuitionistic fuzzy set of ๐‘‹ defined as ๐›พ๐ด ๐œ‚ (๐‘Ž) = ฮจ[๐›พ๐ด(๐‘Ž), ๐œ‚], for all ๐‘Ž โˆˆ ๐ด, where ฮจ[๐›พ๐ด(๐‘Ž), ๐œ‚] = {(๐‘ฅ, ๐œ“[๐œ‡๐›พ๐ด(๐‘Ž)(๐‘ฅ), ๐œ‚], ๐œ“[๐œˆ๐›พ๐ด(๐‘Ž)(๐‘ฅ), 1 โˆ’ ๐œ‚]): ๐‘ฅ โˆˆ ๐‘‹}. The value of ๐œ“[๐œ‡๐›พ๐ด(๐‘Ž)(๐‘ฅ), ๐œ‚] = โˆš๐œ‡๐›พ๐ด(๐‘Ž)(๐‘ฅ) โ‹… ๐œ‚ and ๐œ“[๐œˆ๐›พ๐ด(๐‘Ž)(๐‘ฅ), 1 โˆ’ ๐œ‚] = โˆš๐œ‡๐›พ๐ด(๐‘Ž)(๐‘ฅ) โ‹… (1 โˆ’ ๐œ‚). Some basic properties such as intersection and union of ๐œ‚ โˆ’intuitionistic fuzzy soft set is proved by the following proposition. Proposition 1. The intersection of any two ๐œ‚ โˆ’intuitionistic fuzzy soft sets is an ๐œ‚ โˆ’intuitionistic fuzzy soft set. Proof. Let ฮ“๐ด ๐œ‚ = {(๐‘Ž, ๐›พ๐ด ๐œ‚ (๐‘Ž)): ๐‘Ž โˆˆ ๐ด} and ฮ“๐ต ๐œ‚ = {(๐‘, ๐›พ๐ต ๐œ‚(๐‘)): ๐‘ โˆˆ ๐ต}, respectively be two ๐œ‚ โˆ’intuitionistic fuzzy soft sets of ๐ด and ๐ต over ๐‘‹. For any ๐‘ โˆˆ ๐ด โˆฉ ๐ต, then ๐›พ(๐ดโˆฉฬŒ๐ต)๐œ‚ (๐‘) = ฮจ[๐›พ๐ดโˆฉฬŒ๐ต (๐‘), ๐œ‚] = {( ๐‘ฅ, ๐œ“[min[๐œ‡๐›พ๐ด(๐‘)(๐‘ฅ), ๐œ‡๐›พ๐ต(๐‘)(๐‘ฅ)] , ๐œ‚], ๐œ“[max[๐œˆ๐›พ๐ด(๐‘)(๐‘ฅ), ๐œˆ๐›พ๐ต(๐‘)(๐‘ฅ)] , 1 โˆ’ ๐œ‚] ) : ๐‘ฅ โˆˆ ๐‘‹} = {( ๐‘ฅ, ๐œ“[min[๐œ‡๐›พ๐ด(๐‘)(๐‘ฅ), ๐œ‚] , min[ ๐œ‡๐›พ๐ต(๐‘)(๐‘ฅ), ๐œ‚]], ๐œ“[max[๐œˆ๐›พ๐ด(๐‘)(๐‘ฅ), 1 โˆ’ ๐œ‚] , max[๐œˆ๐›พ๐ต(๐‘)(๐‘ฅ), 1 โˆ’ ๐œ‚]] ) : ๐‘ฅ โˆˆ ๐‘‹} = {( ๐‘ฅ, min[๐œ“[๐œ‡๐›พ๐ด(๐‘)(๐‘ฅ), ๐œ‚] , ๐œ“[ ๐œ‡๐›พ๐ต(๐‘)(๐‘ฅ), ๐œ‚]], max[๐œ“[๐œˆ๐›พ๐ด(๐‘)(๐‘ฅ), 1 โˆ’ ๐œ‚] , ๐œ“[ ๐œˆ๐›พ๐ต(๐‘)(๐‘ฅ), 1 โˆ’ ๐œ‚]] ) : ๐‘ฅ โˆˆ ๐‘‹} = ฮจ[๐›พ๐ด(๐‘), ๐œ‚] โˆฉ ฮจ[๐›พ๐ต (๐‘), ๐œ‚] = ๐›พ๐ด๐œ‚โˆฉฬƒ๐ต๐œ‚ (๐‘). Hence ฮ“๐ด ๐œ‚ โˆฉฬƒ ฮ“๐ต ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft set. โˆŽ Remark 1. The union of any two ๐œ‚ โˆ’intuitionistic fuzzy soft set is an ๐œ‚ โˆ’intuitionistic fuzzy soft set. The notion of ๐œ‚ โˆ’intuitionistic fuzzy soft group is defined based on Definition 3. An ๐œ‚ โˆ’intuitionistic fuzzy soft group must satisfy 2 axioms to be an ๐œ‚ โˆ’intuitionistic fuzzy soft group. Definition 5. Let ๐บ be a group and ฮ“๐บ ๐œ‚ be an ๐œ‚ โˆ’intuitionistic fuzzy soft set over universe ๐‘ˆ, then ฮ“๐บ ๐œ‚ is called an ๐œ‚ โˆ’intuitionistic fuzzy soft group over ๐‘ˆ if 1. ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆ) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆ), 2. ๐›พ๐บ ๐œ‚ (๐‘ฅโˆ’1) = ๐›พ๐บ ๐œ‚ (๐‘ฅ), for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ. ๐œ‚ โˆ’Intuitionistic Fuzzy Soft Groups Mustika Ana Kurfia 357 The property of the identity element of the group on an ๐œ‚ โˆ’intuitionistic fuzzy soft group is proved by the following proposition. Proposition 2. Let ๐บ be a group and ฮ“๐บ ๐œ‚ be an ๐œ‚ โˆ’intuitionistic fuzzy soft group over universe ๐‘ˆ, then ๐›พ๐บ ๐œ‚ (๐‘’) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) for all ๐‘ฅ โˆˆ ๐บ. Proof. Let ฮ“๐บ ๐œ‚ = {(๐‘ฅ, ๐›พ๐บ ๐œ‚ (๐‘ฅ)): ๐‘ฅ โˆˆ ๐บ} be an ๐œ‚ โˆ’intuitionistic fuzzy soft group and ๐‘’ be an identity element of ๐บ. For ๐‘’ โˆˆ ๐บ, then ๐›พ๐บ ๐œ‚ (๐‘’) = ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฅ โˆ’1). Since ฮ“๐บ ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group, then ๐›พ๐บ ๐œ‚ (๐‘’) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฅโˆ’1) = ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฅ) = ๐›พ๐บ ๐œ‚ (๐‘ฅ). So, ๐›พ๐บ ๐œ‚ (๐‘’) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ), for all ๐‘ฅ โˆˆ ๐บ. โˆŽ An ๐œ‚ โˆ’intuitionistic fuzzy soft set is called an ๐œ‚ โˆ’intuitionistic fuzzy soft group if it satisfies 2 axioms in Definition 5. Here we prove the alternative way of ๐œ‚ โˆ’intuitionistic fuzzy soft group. Theorem 1. An ๐œ‚ โˆ’intuitionistic fuzzy soft set is called ๐œ‚ โˆ’intuitionistic fuzzy soft group if and only if ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ. Proof. (โ‡’) Let ฮ“๐บ ๐œ‚ = {(๐‘ฅ, ๐›พ๐บ ๐œ‚ (๐‘ฅ)): ๐‘ฅ โˆˆ ๐บ} be an ๐œ‚ โˆ’intuitionistic fuzzy soft group. From Definition 5, then for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ we have ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆโˆ’1) = ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆ). (โ‡) Since ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ, then ๐›พ๐บ ๐œ‚ (๐‘ฅโˆ’1) = ๐›พ๐บ ๐œ‚ (๐‘’๐‘ฅ) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘’) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฅ) = ๐›พ๐บ ๐œ‚ (๐‘ฅ), and ๐›พ๐บ ๐œ‚ (๐‘ฅ) = ๐›พ๐บ ๐œ‚ (๐‘’(๐‘ฅโˆ’1)โˆ’1) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘’) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฅโˆ’1) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ)โˆ’1 โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฅโˆ’1) = ๐›พ๐บ ๐œ‚ (๐‘ฅโˆ’1). Hence ๐›พ๐บ ๐œ‚ (๐‘ฅโˆ’1) = ๐›พ๐บ ๐œ‚ (๐‘ฅ) for all ๐‘ฅ โˆˆ ๐บ. Then for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ we have ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆ) = ๐›พ๐บ ๐œ‚ (๐‘ฅ(๐‘ฆโˆ’1)โˆ’1) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆโˆ’1) = ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆ). Hence ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆ) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ. Therefore, ฮ“๐บ ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group. โˆŽ Since ๐œ‚ โˆ’intuitionistic fuzzy soft group is defined based on intuitionistic fuzzy soft group, so there is a correlation between those concepts. The following theorem, we prove that every intuitionistic fuzzy soft group is an ๐œ‚ โˆ’intuitionistic fuzzy soft group. Theorem 2. If ฮ“๐บ is an intuitionistic fuzzy soft group, then ฮ“๐บ ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group for all ๐œ‚ โˆˆ [0, 1]. Proof. Let ฮ“๐บ = {(๐‘ฅ, ๐›พ๐บ (๐‘ฅ)): ๐‘ฅ โˆˆ ๐บ} be an intuitionistic fuzzy soft group over the universe ๐‘ˆ where ๐›พ๐บ (๐‘ฅ) = {(๐‘ข, ๐œ‡๐›พ๐บ(๐‘ฅ)(๐‘ข), ๐œˆ๐›พ๐บ(๐‘ฅ)(๐‘ข)) : ๐‘ข โˆˆ ๐‘ˆ}. For any ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ and ๐œ‚ โˆˆ [0, 1], then ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) = ฮจ[๐›พ๐บ (๐‘ฅ๐‘ฆ โˆ’1), ๐œ‚]. Since ฮ“๐บ is an intuitionistic fuzzy soft group, then ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) โŠ‡ ฮจ[(๐›พ๐บ (๐‘ฅ) โˆฉ ๐›พ๐บ (๐‘ฆ)), ๐œ‚] = {( ๐‘ข, ๐œ“[min[๐œ‡๐›พ๐บ(๐‘ฅ)(๐‘ข), ๐œ‡๐›พ๐บ(๐‘ฆ)(๐‘ข)], ๐œ‚], ๐œ“[max[๐œˆ๐›พ๐บ(๐‘ฅ)(๐‘ข), ๐œˆ๐›พ๐บ(๐‘ฆ)(๐‘ข)], 1 โˆ’ ๐œ‚] ) : ๐‘ข โˆˆ ๐‘ˆ} = {( ๐‘ฅ, ๐œ“[min[๐œ‡๐›พ๐บ(๐‘ฅ)(๐‘ข), ๐œ‚] , min[ ๐œ‡๐›พ๐บ(๐‘ฆ)(๐‘ข), ๐œ‚]], ๐œ“[max[๐œˆ๐›พ๐บ(๐‘ฅ)(๐‘ข), 1 โˆ’ ๐œ‚] , max[๐œˆ๐›พ๐บ(๐‘ฆ)(๐‘ข), 1 โˆ’ ๐œ‚]] ) : ๐‘ข โˆˆ ๐‘ˆ} ๐œ‚ โˆ’Intuitionistic Fuzzy Soft Groups Mustika Ana Kurfia 358 = {( ๐‘ฅ, min[๐œ“[๐œ‡๐›พ๐บ(๐‘ฅ)(๐‘ข), ๐œ‚] , ๐œ“[ ๐œ‡๐›พ๐บ(๐‘ฆ)(๐‘ข), ๐œ‚]], max[๐œ“[๐œˆ๐›พ๐บ(๐‘ฅ)(๐‘ข), 1 โˆ’ ๐œ‚] , ๐œ“[ ๐œˆ๐›พ๐บ(๐‘ฆ)(๐‘ข), 1 โˆ’ ๐œ‚]] ) : ๐‘ข โˆˆ ๐‘ˆ} = ฮจ[๐›พ๐บ (๐‘ฅ), ๐œ‚] โˆฉ ฮจ[๐›พ๐บ (๐‘ฆ), ๐œ‚] = ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆ). Therefore, ฮ“๐บ ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group. โˆŽ Here we define the ๐œ‚ โˆ’intuitionistic fuzzy subgroup of an ๐œ‚ โˆ’intuitionistic fuzzy group. The properties of ๐œ‚ โˆ’intuitionistic fuzzy subgroup are proved in the following theorem. Definition 6. Suppose ๐บ be a group and ๐ป be a subgroup of ๐บ. Let ฮ“๐บ ๐œ‚ be an ๐œ‚ โˆ’intuitionistic fuzzy soft group over universe ๐‘ˆ, then ฮ“๐ป ๐œ‚ is called an ๐œ‚ โˆ’intuitionistic fuzzy soft subgroup of ฮ“๐บ ๐œ‚ if ฮ“๐ป ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group over ๐‘ˆ. Theorem 3. Let ฮ“๐บ ๐œ‚ be an ๐œ‚ โˆ’intuitionistic fuzzy soft group over universe ๐‘ˆ. Suppose ฮ“๐ป ๐œ‚ and ฮ“๐‘ ๐œ‚ be two ๐œ‚ โˆ’intuitionistic fuzzy soft subgroups of ฮ“๐บ ๐œ‚ , then ฮ“๐ป ๐œ‚ โˆฉฬƒ ฮ“๐‘ ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft subgroup of ฮ“๐บ ๐œ‚ . Proof. Defined ฮ“๐ป ๐œ‚ โˆฉฬƒ ฮ“๐‘ ๐œ‚ = {(๐‘ฅ, ๐›พ๐ปโˆฉฬƒ๐‘ ๐œ‚ (๐‘ฅ)): ๐‘ฅ โˆˆ ๐ป โˆฉ ๐‘}. For any ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ, then ๐›พ๐ปโˆฉฬƒ๐‘ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) = ๐›พ๐ป ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) โˆฉ ๐›พ๐‘ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) โŠ‡ (๐›พ๐ป ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐ป ๐œ‚ (๐‘ฆ)) โˆฉ (๐›พ๐‘ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐‘ ๐œ‚ (๐‘ฆ)) = (๐›พ๐ป ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐‘ ๐œ‚ (๐‘ฅ)) โˆฉ (๐›พ๐ป ๐œ‚ (๐‘ฆ) โˆฉ ๐›พ๐‘ ๐œ‚ (๐‘ฆ)) = ๐›พ๐ปโˆฉฬƒ๐‘ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐ปโˆฉฬƒ๐‘ ๐œ‚ (๐‘ฆ). Hence ฮ“๐ป ๐œ‚ โˆฉฬƒ ฮ“๐‘ ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft subgroup of ฮ“๐บ ๐œ‚ . โˆŽ Theorem 4. Let ฮ“๐บ ๐œ‚ be an ๐œ‚ โˆ’intuitionistic fuzzy soft group over universe ๐‘ˆ and ๐‘’ be an identity elemen of ๐บ. Then ฮ“๐บ ๐œ‚ |๐‘’ = {(๐‘ฅ, ๐›พ๐บ ๐œ‚ (๐‘ฅ)): ๐›พ๐บ ๐œ‚ (๐‘ฅ) = ๐›พ๐บ ๐œ‚ (๐‘’), ๐‘ฅ โˆˆ ๐บ} is an ๐œ‚ โˆ’intuitionistic fuzzy subgroup of ๐บ. Proof. Since (๐‘’, ๐›พ๐บ ๐œ‚ (๐‘’)) โˆˆ ฮ“๐บ ๐œ‚ |๐‘’, then ฮ“๐บ ๐œ‚ |๐‘’ โ‰  โˆ…. Let (๐‘ฅ, ๐›พ๐บ ๐œ‚ (๐‘ฅ)), (๐‘ฆ, ๐›พ๐บ ๐œ‚ (๐‘ฆ)) โˆˆ ฮ“๐บ ๐œ‚ |๐‘’ , we have ๐›พ๐บ ๐œ‚ (๐‘ฅ) = ๐›พ๐บ ๐œ‚ (๐‘ฆ) = ๐›พ๐บ ๐œ‚ (๐‘’) for ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ. Then ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘ฆ) = ๐›พ๐บ ๐œ‚ (๐‘’) โˆฉ ๐›พ๐บ ๐œ‚ (๐‘’) = ๐›พ๐บ ๐œ‚ (๐‘’). Since ๐›พ๐บ ๐œ‚ (๐‘’) โŠ‡ ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1), then ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1) = ๐›พ๐บ ๐œ‚ (๐‘’). Thus (๐‘ฅ๐‘ฆโˆ’1, ๐›พ๐บ ๐œ‚ (๐‘ฅ๐‘ฆโˆ’1)) โˆˆ ฮ“๐บ ๐œ‚ |๐‘’ . Therefore ฮ“๐บ ๐œ‚ |๐‘’ is an ๐œ‚ โˆ’intuitionistic fuzzy subgroup of ๐บ. โˆŽ Here notioned the definition of image and pre-image of an ๐œ‚ โˆ’intuitionistic fuzzy soft group. Definition 7. Let ฮ“๐ด ๐œ‚ and ฮ“๐ต ๐œ‚ be two ๐œ‚ โˆ’intuitionistic fuzzy soft sets over universe ๐‘ˆ, and let ๐œ™: ๐ด โ†’ ๐ต, then 1. Image of ฮ“๐ด ๐œ‚ under the map ๐œ™, denoted by ๐œ™(ฮ“๐ด ๐œ‚ ) defined by ๐œ™(ฮ“๐ด ๐œ‚ ) = {(๐‘, ๐œ™(๐›พ๐ด ๐œ‚ )(๐‘)): ๐‘ โˆˆ ๐ต}, where for all ๐‘ โˆˆ ๐ต, then ๐œ™(๐›พ๐ด ๐œ‚ )(๐‘) = { โˆฉ {๐›พ๐ด ๐œ‚ (๐‘Ž): ๐‘Ž โˆˆ ๐ด, ๐‘“(๐‘Ž) = ๐‘}, if ๐œ™(๐‘Ž) โˆˆ ๐œ™(๐ด), ๐›พโˆ… ๐œ‚ , others. 2. Pre-image of ฮ“๐ต ๐œ‚ under ๐œ™, denoted by ๐œ™โˆ’1(ฮ“๐ต ๐œ‚ ) defined by ๐œ™โˆ’1(ฮ“๐ต ๐œ‚ ) = {(๐‘Ž, ๐œ™โˆ’1(๐›พ๐ต ๐œ‚)(๐‘Ž)): ๐‘Ž โˆˆ ๐ด}, where for all ๐‘Ž โˆˆ ๐ด, then ๐œ™โˆ’1(๐›พ๐ต ๐œ‚)(๐‘Ž) = ๐›พ๐ต ๐œ‚ (๐œ™(๐‘Ž)). Lemma 1. Let ฮ“๐ด ๐œ‚ and ฮ“๐ต ๐œ‚ be two ๐œ‚ โˆ’intuitionistic fuzzy soft sets over ๐‘ˆ, then ๐œ™(ฮ“๐ด ๐œ‚ ) and ๐œ™โˆ’1(ฮ“๐ต ๐œ‚ ) are ๐œ‚ โˆ’intuitionistic fuzzy soft sets over universe ๐‘ˆ. ๐œ‚ โˆ’Intuitionistic Fuzzy Soft Groups Mustika Ana Kurfia 359 Proof. Let ฮ“๐ด ๐œ‚ = {(๐‘Ž, ๐›พ๐ด ๐œ‚ (๐‘Ž)): ๐‘Ž โˆˆ ๐ด} and ฮ“๐ต ๐œ‚ = {(๐‘, ๐›พ๐ต ๐œ‚(๐‘)): ๐‘ โˆˆ ๐ต} respectively be two ๐œ‚ โˆ’intuitionistic fuzzy soft sets of ๐ด and ๐ต over ๐‘ˆ. Let ๐œ™: ๐ด โ†’ ๐ต. From Definition 7, there is ๐‘ โˆˆ ๐œ™(๐ด) such that ๐œ™(๐‘Ž) = ๐‘, then ๐œ™(๐›พ๐ด ๐œ‚ )(๐‘) =โˆฉ {๐›พ๐ด ๐œ‚ (๐‘Ž): ๐‘Ž โˆˆ ๐ด, ๐œ™(๐‘Ž) = ๐‘}. From proposition 1, we have ๐œ™(๐›พ๐ด ๐œ‚)(๐‘) is an ๐œ‚ โˆ’intuitionistic fuzzy set. If ๐œ™(๐‘Ž) โˆ‰ ๐œ™(๐ด), then ๐œ™(๐›พ๐ด ๐œ‚ )(๐‘) = ๐›พโˆ… ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy set. Then โˆ€๐‘Ž โˆˆ ๐ด, we have ๐œ™โˆ’1(๐›พ๐ต ๐œ‚ )(๐‘Ž) = ๐›พ๐ต ๐œ‚ (๐œ™(๐‘Ž)) is an ๐œ‚ โˆ’intuitionistic fuzzy set. Therefore, ๐œ™(ฮ“๐ด ๐œ‚) and ๐œ™โˆ’1(ฮ“๐ต ๐œ‚ ) are ๐œ‚ โˆ’intuitionistic fuzzy soft sets over ๐‘ˆ. โˆŽ The map ๐‘“: ๐บ1 โ†’ ๐บ2 of a group ๐บ1 to a group ๐บ2 is called homomorphism if for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ1 then ๐‘“(๐‘ฅ๐‘ฆ) = ๐‘“(๐‘ฅ)๐‘“(๐‘ฆ). The following theorems, we prove that every image and pre- image of the ๐œ‚ โˆ’intuitionistic fuzzy group under the homomorphism function are the ๐œ‚ โˆ’intuitionistic fuzzy soft group. Theorem 5. Let ฮ“๐บ1 ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group over universe ๐‘ˆ and ๐œ™hom: ๐บ1 โˆ’ ๐บ2, then ๐œ™(ฮ“๐บ1 ๐œ‚ ) is an ๐œ‚ โˆ’intuitionistic fuzzy soft group. Proof. Let ๐บ1 and ๐บ2 are two groups, ๐œ™hom: ๐บ1 โˆ’ ๐บ2, and ฮ“๐บ1 ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group over ๐‘ˆ. Let ๐‘ข, ๐‘ฃ โˆˆ ๐บ2, ๐‘ข โˆ‰ ๐œ™(๐บ1) or ๐‘ฃ โˆ‰ ๐œ™(๐บ1), then ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ข) โˆฉ ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ฃ) = ๐›พโˆ… ๐œ‚, means ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ข๐‘ฃ) โŠ‡ ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ข) โˆฉ ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ฃ). Since ๐‘ข โˆ‰ ๐œ™(๐บ1), then ๐‘ข โˆ’1 โˆ‰ ๐œ™(๐บ1), so ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ขโˆ’1) = ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ข) = ๐›พโˆ… ๐œ‚ . Suppose ๐œ™(๐‘ฅ) = ๐‘ข and ๐œ™(๐‘ฆ) = ๐‘ฃ for ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ1. Let ๐‘ง = ๐‘ฅ๐‘ฆ, then 1. ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ข๐‘ฃ) =โˆฉ {๐›พ๐บ1 ๐œ‚ (๐‘ง): ๐‘ง โˆˆ ๐บ1, ๐œ™(๐‘ง) = ๐‘ข๐‘ฃ} =โˆฉ {๐›พ๐บ1 ๐œ‚ (๐‘ฅ๐‘ฆ): ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ1, ๐œ™(๐‘ฅ๐‘ฆ) = ๐‘ข๐‘ฃ} โŠ‡โˆฉ {๐›พ๐บ1 ๐œ‚ (๐‘ฅ) โˆฉ ๐›พ๐บ1 ๐œ‚ (๐‘ฆ): ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ1, ๐œ™(๐‘ฅ) = ๐‘ข, ๐œ™(๐‘ฆ) = ๐‘ฃ} = (โˆฉ {๐›พ๐บ1 ๐œ‚ (๐‘ฅ): ๐‘ฅ โˆˆ ๐บ1, ๐œ™(๐‘ฅ) = ๐‘ข}) โˆฉ (โˆฉ {๐›พ๐บ1 ๐œ‚ (๐‘ฆ): ๐‘ฆ โˆˆ ๐บ1, ๐œ™(๐‘ฆ) = ๐‘ฃ}) = ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ข) โˆฉ ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ฃ). 2. ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ข) =โˆฉ {๐›พ๐บ1 ๐œ‚ (๐‘ฅ): ๐‘ฅ โˆˆ ๐บ1, ๐œ™(๐‘ฅ) = ๐‘ข} =โˆฉ {๐›พ๐บ1 ๐œ‚ (๐‘ฅโˆ’1): ๐‘ฅ โˆˆ ๐บ1, ๐œ™(๐‘ฅ โˆ’1) = ๐‘ขโˆ’1} = ๐œ™(๐›พ๐บ1 ๐œ‚ )(๐‘ขโˆ’1). Therefore, ๐œ™(ฮ“๐บ1 ๐œ‚ ) is an ๐œ‚ โˆ’intuitionistic fuzzy soft group over ๐‘ˆ. โˆŽ Theorem 6. Let ฮ“๐บ2 ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group over universe ๐‘ˆ and ๐œ™hom: ๐บ1 โˆ’ ๐บ2, then ๐œ™ โˆ’1(ฮ“๐บ2 ๐œ‚ ) is an ๐œ‚ โˆ’intuitionistic fuzzy soft group. Proof. Let ๐บ1 and ๐บ2 are two groups, ๐œ™hom: ๐บ1 โˆ’ ๐บ2, and ฮ“๐บ2 ๐œ‚ is an ๐œ‚ โˆ’intuitionistic fuzzy soft group over ๐‘ˆ. For all ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ1 we have 1. ๐œ™โˆ’1(๐›พ๐บ2 ๐œ‚)(๐‘ฅ๐‘ฆ) = ๐›พ๐บ2 ๐œ‚ (๐œ™(๐‘ฅ๐‘ฆ)) = ๐›พ๐บ2 ๐œ‚ (๐œ™(๐‘ฅ)๐œ™(๐‘ฆ)) โŠ‡ ๐›พ๐บ2 ๐œ‚ (๐œ™(๐‘ฅ)) โˆฉ ๐›พ๐บ2 ๐œ‚ (๐œ™(๐‘ฅ)) = ๐œ™โˆ’1(๐›พ๐บ2 ๐œ‚ )(๐‘ฅ) โˆฉ ๐œ™โˆ’1(๐›พ๐บ2 ๐œ‚ )(๐‘ฆ). 2. ๐œ™โˆ’1(๐›พ๐บ2 ๐œ‚)(๐‘ฅโˆ’1) = ๐›พ๐บ2 ๐œ‚ (๐œ™(๐‘ฅโˆ’1)) = ๐›พ๐บ2 ๐œ‚ ((๐œ™(๐‘ฅ)) โˆ’1 ) = ๐›พ๐บ2 ๐œ‚ (๐œ™(๐‘ฅ)) = ๐œ™โˆ’1(๐›พ๐บ2 ๐œ‚ )(๐‘ฅ). ๐œ‚ โˆ’Intuitionistic Fuzzy Soft Groups Mustika Ana Kurfia 360 Therefore, ๐œ™โˆ’1(ฮ“๐บ2 ๐œ‚ ) is an ๐œ‚ โˆ’intuitionistic fuzzy soft group over ๐‘ˆ. โˆŽ Based on Theorem 5 and Theorem 6, we know that image and pre-image of an ๐œ‚ โˆ’intuitionistic fuzzy soft group under ๐œ‚ โˆ’intuitionistic fuzzy soft homomorphism are also an ๐œ‚ โˆ’intuitionistic fuzzy group. CONCLUSIONS Based on the result, it is concluded that ๐œ‚ โˆ’intuitionistic fuzzy soft group depends on intuitionistic fuzzy soft group. It is proved that every intuitionistic fuzzy soft group is an ๐œ‚ โˆ’intuitionistic fuzzy soft group. The definition of ๐œ‚ โˆ’intuitionistic fuzzy soft subgroup and itโ€™s properties are presented. The ๐œ‚ โˆ’intuitionistic fuzzy soft homomorphism show that image and pre-image of an ๐œ‚ โˆ’intuitionistic fuzzy soft group are also ๐œ‚ โˆ’intuitionistic fuzzy soft groups. For the future research, it is suggested to notion the ๐œ‚ โˆ’intuitionistic fuzzy soft ring along with the properties. REFERENCES [1] L. A. Zadeh, โ€œFuzzy sets,โ€ Inf. Control, vol. 8, no. 3, pp. 338โ€“353, 1965, doi: 10.1016/S0019-9958(65)90241-X. [2] K. T. Atanassov, โ€œIntuitionistic fuzzy sets,โ€ Fuzzy Sets Syst., vol. 20, no. 1, pp. 87โ€“96, 1986, doi: 10.1016/S0165-0114(86)80034-3. [3] A. Rosenfeld, โ€œFuzzy groups,โ€ J. Math. Anal. Appl., vol. 35, no. 3, pp. 512โ€“517, 1971, doi: 10.1016/0022-247X(71)90199-5. [4] R. Biswas, โ€œIntuitionistic Fuzzy Subgroups,โ€ Math. Forum, vol. 10, pp. 37โ€“46, 1989. [5] N. Palaniappan, S. Naganathan, and K. Arjunan, โ€œA study on intuitionistic L-fuzzy subgroups,โ€ Appl. Math. Sci., vol. 3, no. 53, pp. 2619โ€“2624, 2009. [6] X. Yuan, H. Li, and E. . Lee, โ€œOn The Definition of The Intuitionistic Fuzzy Subgroups,โ€ Comput. Math. with Apl., vol. 59, pp. 3117โ€“3129, 2010. [7] P. K. Sharma, โ€œ(ฮฑ,ฮฒ)Cut of Intuitionistic Fuzzy Subgroups,โ€ Int. Math. Forum, vol. 6, no. 53, pp. 2605โ€“2614, 2011. [8] P. K. Sharma, โ€œt- Intuitionistic Fuzzy Subgroups,โ€ Int. J. Fuzzy Math. Syst., vol. 2, no. 3, pp. 233โ€“243, 2012. [9] N. Doda and P. K. Sharma, โ€œCounting the number of intuitionistic fuzzy subgroups of finite Abelian groups of different order,โ€ Notes Intuitionistic Fuzzy Sets, vol. 19, no. 4, pp. 42โ€“47, 2013. [10] W. Zhou and Z. Xu, โ€œExtended Intuitionistic Fuzzy Sets Based on the Hesitant Fuzzy Membership and their Application in Decision Making with Risk Preference,โ€ Int. J. Intelegence Syst., vol. 00, pp. 1โ€“27, 2017, doi: 10.1002/int. [11] S. Sun and C. Liu, โ€œ(ฮป,ฮผ)-Intuitionistic Fuzzy Subgroups of Groups with Operators,โ€ Int. J. Math. Comput. Sci., vol. 10, no. 9, pp. 456โ€“462, 2016. [12] M. Gulzar, D. Alghazzawi, M. H. Mateen, and N. Kausar, โ€œA certain class of T- intuitionistic fuzzy subgroups,โ€ IEEE Access, vol. 8, pp. 163260โ€“163268, 2020, doi: 10.1109/ACCESS.2020.3020366. ๐œ‚ โˆ’Intuitionistic Fuzzy Soft Groups Mustika Ana Kurfia 361 [13] L. Latif, U. Shuaib, H. Alolaiyan, and A. Razaq, โ€œOn Fundamental Theorems of t- Intuitionistic Fuzzy Isomorphism of t-Intuitionistic Fuzzy Subgroups,โ€ IEEE Access, vol. 6, pp. 2169โ€“3536, 2018. [14] U. Shuaib, M. Amin, S. Dilbar, and F. Tahir, โ€œOn Algebraic Attributes of ฮพ - Intuitionistic Fuzzy Subgroups,โ€ Int. J. Math. Comput. Sci., vol. 15, no. 1, pp. 395โ€“411, 2020. [15] U. Shuaib, H. Alolaiyan, A. Razaq, D. Saba, and F. Tahir, โ€œOn some algebraic aspects of ฮท-intuitionistic fuzzy subgroups,โ€ J. Taibah Univ. Sci., vol. 14, no. 1, pp. 463โ€“469, 2020, doi: 10.1080/16583655.2020.1745491. [16] H. AktaลŸ and N. ร‡aวงman, โ€œSoft sets and soft groups,โ€ Inf. Sci. (Ny)., vol. 177, no. 13, pp. 2726โ€“2735, 2007, doi: 10.1016/j.ins.2006.12.008. [17] P. . Maji, A. . Roy, and R. Biswas, โ€œFuzzy Soft Sets,โ€ J. Fuzzy Math., vol. 9, no. 3, pp. 589โ€“602, 2001. [18] P. . Maji, R. Biswas, and A. . Roy, โ€œIntuitionistic Fuzzy Soft Set,โ€ J. Fuzzy Math., vol. 9, no. 3, pp. 677โ€“692, 2001. [19] Y. Yin, H. Li, and Y. Bae, โ€œOn algebraic structure of intuitionistic fuzzy soft sets,โ€ Comput. Math. with Appl., vol. 64, no. 9, pp. 2896โ€“2911, 2012, doi: 10.1016/j.camwa.2012.05.004. [20] A. Aygรผnoglu and H. Aygun, โ€œIntroduction to Fuzzy Soft Groups,โ€ Comput. Math. with Appl., vol. 58, pp. 1279โ€“1286, 2009, doi: 10.1016/j.camwa.2009.07.047. [21] J. Zhou, โ€œIntuitionistic fuzzy soft semigroups,โ€ Math. Aeterna, vol. 1, no. 03, pp. 173โ€“ 183, 2011. [22] M. Akram and N. Yaqoob, โ€œIntuitionistic fuzzy soft ordered ternary semigroups,โ€ Int. J. Pure Appl. Math., vol. 84, no. 2, pp. 93โ€“107, 2013, doi: 10.12732/ijpam.v84i2.8. [23] N. Cagman, F. Citak, and H. Aktas, โ€œSoft int-group and its applications to group theory,โ€ Neural Comput Applic, vol. 21, no. 1, pp. S151โ€“S158, 2012, doi: 10.1007/s00521-011-0752-x. [24] F. Karaaslan, K. Kaygisiz, and N. Cagman, โ€œOn Intuitionistic Fuzzy Soft Groups,โ€ J. New Results Sci., vol. 2, no. 3, pp. 72โ€“86, 2013.