Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces CAUCHY – JURNAL MATEMATIKA MURNI DAN APLIKASI Volume 4 (4) (2017), Pages 167-175 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: 13 March 2017 Reviewed: 26 May 2017 Accepted: 30 May 2017 DOI: http://dx.doi.org/10.18860/ca.v4i4.4100 Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman Department of Islamic Studies, Faculty of Tarbiyah, STAI Ma’Had Aly Al-Hikam, Malang, Indonesia Email: miminanira@gmail.com ABSTRACT In this paper, we will discuss some applications of almost surjective -isometry mapping, one of them is in Lorentz space (𝐿𝑝,π‘ž -space). Furthermore, using some classical theorems of 𝑀 βˆ—-topology and concept of closed subspace 𝛼-complemented, for every almost surjective -isometry mapping f : X β†’ Y, where Y is a reflexive Banach space, then there exists a bounded linear operator T : Y β†’ X with ‖𝑇‖ ≀ 𝛼 such that ‖𝑇𝑓(π‘₯) βˆ’ π‘₯β€– ≀ 4 for every π‘₯ ∈ 𝑋. Keywords: almost surjectivity; -isometry; Lorentz space; reflexive space. INTRODUCTION Suppose 𝑋 and π‘Œ be real Banach spaces. A mapping π‘ˆ: 𝑋 β†’ π‘Œ is called an isometry if β€–π‘ˆ(π‘₯) βˆ’ π‘ˆ(𝑦)β€–π‘Œ = β€–π‘₯ βˆ’ 𝑦‖𝑋 , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝑋. Mazur-Ulam showed that if π‘ˆ is a surjective isometry, then π‘ˆ is affine. In other word, a surjective isometry mapping can be translated. This result lead to the following definition. Definition 1.1. Let 𝑋 and π‘Œ be real Banach spaces. A mapping 𝑓: 𝑋 β†’ π‘Œ is called an - isometry if there exists β‰₯ 0 such that |‖𝑓(π‘₯) βˆ’ 𝑓(𝑦)β€–π‘Œ βˆ’ β€–π‘₯ βˆ’ 𝑦‖𝑋 | ≀ , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝑋. If = 0, then 0-isometry is just an isometry. There are other names of -isometry, some of them are nearisometry [13], approximate isometry ([1], [7]), and perturbed metric preserved [3]. To simplify, the norm fuction is just written as β€–βˆ™β€– without mentioning the vector space. Definition 1.1 above begs a question, β€œfor every -isometry f, does always exist an isometry mapping U and 𝛾 > 0 such that ‖𝑓(π‘₯) βˆ’ π‘ˆ(π‘₯)β€– ≀ 𝛾 (1.1) for all π‘₯ ∈ 𝑋?”. This problem was first investigated by Hyers-Ulam in 1945 [7] (therefore, -isometry problems are also called as Hyers-Ulam problems) and they found that for every surjective - isometry mapping f in the Euclidean spaces, there always exists a surjective isometry mapping U http://dx.doi.org/10.18860/ca.v4i4.4100 mailto:miminanira@gmail.com Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman 168 satisfying (1.1) with 𝛾 = 10. Some years later, D. G Bourgin studied -isometry mapping in the Lebesgue space with 𝛾 = 12. In 1983, Gevirtz delivered 𝛾 = 5 which was hold for any Banach space X and Y [6]. This result was sharpened by OmladiΔ‡ and Ε emrl [10]. Theorem 1.2. Let X and Y be Banach spaces and f : X β†’ Y is a surjective -isometry, there exists a linear surjective isometry mapping U: X β†’ Y such that ‖𝑓(π‘₯) βˆ’ π‘ˆ(π‘₯)β€– ≀ 2 , π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝑋. There are many applications of -isometry mapping, such as Dai-Dong who use -isometry mapping to determine the smoothness and rotundity of Banach spaces. Ε emrl and VΓ€isΓ€lΓ€ proposed a definition of almost surjective mapping as follows [13]. Definition 1.3. Let f : X β†’ Y is a mapping, π‘Œ1 is a closed subspace of Y, and 𝛿 β‰₯ 0. A mapping f is called almost surjective onto Y if for every 𝑦 ∈ π‘Œ1, there exists π‘₯ ∈ 𝑋 with ‖𝑓(π‘₯) βˆ’ 𝑦‖ ≀ 𝛿 and for every 𝑒 ∈ 𝑋, there exists 𝑣 ∈ π‘Œ1 with ‖𝑓(𝑒) βˆ’ 𝑣‖ ≀ 𝛿. Using Definition 1.3, Ε emrl and VΓ€isΓ€lΓ€ weakened the surjective condition become almost surjective [13] (see also [14]). Theorem 1.4. Let E and F be Hilbert spaces and f : E β†’ F is an almost surjective -isometry with 𝑓(0) = 0 that satisfies sup ‖𝑦‖=1 lim |𝑑|β†’βˆž inf ‖𝑑𝑦 βˆ’ 𝑓(𝐸) 𝑑 β€– < 1 , (1.2) then there exists a linear surjective isometry π‘ˆ: 𝐸 β†’ 𝐹 such that ‖𝑓(π‘₯) βˆ’ π‘ˆ(π‘₯)β€– ≀ 2 , π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝐸. Ε emrl and VΓ€isΓ€lΓ€ showed that this result is true for E and F are Lebesgue spaces [13]. Vestfrid decrease the value 1 become Β½ in (1.2) and is valid for any Banach space [15]. On the other hand, Figiel proved that for any isometry mapping U : X β†’ Y with U(0) = 0, there exists an operator πœ™ ∢ π‘ π‘π‘Žπ‘›Μ…Μ… Μ…Μ… Μ…Μ… Μ… π‘ˆ(π‘₯) β†’ 𝑋 with β€–πœ™β€– = 1 such that πœ™ Β° π‘ˆ = 𝐼, the identity on X [5]. Using Figiel’s theorem, Cheng et. al. Give the following lemma [2] (see also Qian [11]). Lemma 1.5. If f : ℝ β†’ π‘Œ is a surjective -isometry with f(0) = 0, then there exists πœ™ ∈ π‘Œβˆ— with β€–πœ™β€– = 1 such that |βŒ©πœ™, 𝑓(𝑑)βŒͺ βˆ’ 𝑑| ≀ 3 , π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑑 ∈ ℝ. Using Vestfrid’s theorem and Lemma 1.5, Minan et. al. showed that the following lemma is true [12]. Theorem 1.6. Let X and Y be real Banach spaces, f : X β†’ Y is an -isometry with f(0) = 0. If the mapping f satisfies almost surjective condition, i. e. sup π‘¦βˆˆπ‘†π‘Œ lim |𝑑|β†’βˆž inf ‖𝑑𝑦 βˆ’ 𝑓(𝑋) 𝑑 β€– < 1 2 , then for every π‘₯βˆ— ∈ π‘‹βˆ—, there exists a linear functional πœ™ ∈ π‘Œβˆ— with β€–πœ™β€– = β€–π‘₯βˆ—β€– = π‘Ÿ such that |βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ 4 π‘Ÿ, π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝑋. Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman 169 RESULTS AND DISCUSSION We will discuss some applications of Theorem 1.6. Therefore, this paper will be organized as follows. Firstly, we will discuss two applications of Theorem 1.6, one of them is to determine the stability of almost surjective -isometry in 𝐿𝑝,π‘ž -spaces (also called as Lorentz spaces). Next, we will discuss the stability of almost surjective -isometry in reflexive Banach spaces. The used notations and terminology are standard. 𝑀 βˆ— (pronounced β€œweak star”) topology of the dual of normed space X is the smallest topology of π‘‹βˆ— such that for every π‘₯ ∈ 𝑋, the linear functional π‘₯βˆ— β†’ π‘₯βˆ—π‘₯ on π‘‹βˆ— is continuous. The author is greatly indebted to anonymous referee for a number of important suggestions that help the author to simplify the proof. 1. Applications of Theorem 1.6 Let X and Y be Banach spaces and π‘Œ ∈ 𝔅(𝑋, π‘Œ). For bounded set 𝐢 βŠ‚ X, is defined ‖𝑇‖𝐢 = sup{‖𝑇π‘₯β€– ∢ π‘₯ ∈ 𝐢}. If there is 𝑐 ∈ 𝐢 such that ‖𝑇𝑐‖ = ‖𝑇‖𝐢 , the T attains its supremum over C. Operator T is called as norm-attaining operator. Theorem 2.1. Let 𝑋 and π‘Œ be real Banach spaces, f : X β†’ Y is an almost surjective -isometry with 𝑓(0) = 0 satisfies sup π‘¦βˆˆπ‘†π‘Œ lim |𝑑|β†’βˆž inf ‖𝑑𝑦 βˆ’ 𝑓(𝑋) 𝑑 β€– < 1 2 , (2.1) then β€–βˆ‘ πœ†π‘– 𝑓(π‘₯𝑖 )β€– + 4 β‰₯ β€–βˆ‘ πœ†π‘– π‘₯𝑖 β€– for every π‘₯1, … , π‘₯𝑛 ∈ 𝑋 and every πœ†1, … , πœ†π‘› ∈ ℝ , where βˆ‘ πœ†π‘– 𝑛 𝑖=1 = 1. Proof. Let π‘₯1, … , π‘₯𝑛 ∈ 𝑋 and 𝑋𝑛 = π‘ π‘π‘Žπ‘› (π‘₯1, … , π‘₯𝑛 ). Banach spaces X and Y that satisfy (2.1) are strictly convex [12]. In addition, π‘‹βˆ— and π‘Œβˆ— are 𝑀 βˆ—-compact convex, so that for every π‘₯βˆ— ∈ π‘†π‘‹π‘›βˆ— , there exists a linear functional πœ‘π‘₯βˆ— ∈ π‘†π‘Œβˆ— such that |βŒ©πœ‘π‘₯βˆ— , 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯ βˆ—, π‘₯βŒͺ| ≀ 4 , π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝑋𝑛 . Since f is an almost surjective -isometry, then for every 𝑦 ∈ π‘†π‘Œ, there exists π‘₯0 ∈ 𝑋 such that f(π‘₯0) = 𝑦. Therefore, ‖𝑦 βˆ’ 𝑓(𝑋) 𝑑 β€– = ‖𝑓(π‘₯0) βˆ’ 𝑓(𝑑π‘₯) 𝑑 β€– β‰₯ |β€–πœ‘π‘₯βˆ— ‖‖𝑓(π‘₯0)β€– βˆ’ β€–πœ‘π‘₯βˆ— β€– β€– 𝑓(𝑑π‘₯) 𝑑 β€–| βˆ’ β€–π‘₯βˆ—β€–β€–π‘₯0 βˆ’ π‘₯β€– + β€–π‘₯ βˆ—β€–β€–π‘₯0 βˆ’ π‘₯β€– β‰₯ |β€–πœ‘π‘₯βˆ— ‖‖𝑓(π‘₯0)β€– βˆ’ β€–πœ‘π‘₯βˆ— ‖‖𝑓(π‘₯)β€–| βˆ’ β€–π‘₯ βˆ—β€–β€–π‘₯0 βˆ’ π‘₯β€– + β€–π‘₯ βˆ—β€–β€–π‘₯0 βˆ’ π‘₯β€– β‰₯ sup π‘₯βˆ—βˆˆπ‘†π‘‹π‘› βˆ— |〈π‘₯ βˆ—, π‘₯0 βˆ’ π‘₯βŒͺ| βˆ’ |〈π‘₯ βˆ—, π‘₯0 βˆ’ π‘₯βŒͺ| + |βŒ©πœ‘π‘₯βˆ— , 𝑓(π‘₯0)βŒͺ βˆ’ βŒ©πœ‘π‘₯βˆ— , 𝑓(π‘₯)βŒͺ| = sup π‘₯βˆ—βˆˆπ‘†π‘‹π‘› βˆ— |〈π‘₯ βˆ—, π‘₯0 βˆ’ π‘₯βŒͺ| βˆ’ |〈π‘₯ βˆ—, π‘₯0 βˆ’ π‘₯βŒͺ| + |βŒ©πœ‘π‘₯βˆ— , 𝑓(π‘₯0) βˆ’ 𝑓(π‘₯)βŒͺ| β‰₯ sup π‘₯βˆ—βˆˆπ‘†π‘‹π‘› βˆ— |〈π‘₯ βˆ—, π‘₯0 βˆ’ π‘₯βŒͺ| βˆ’ |〈π‘₯ βˆ—, π‘₯0 βˆ’ π‘₯βŒͺ βˆ’ βŒ©πœ‘π‘₯βˆ— , 𝑓(π‘₯0) βˆ’ 𝑓(π‘₯)βŒͺ| Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman 170 Recall that 𝑋 and π‘Œ are strictly convex, so 𝑓(π‘₯0) βˆ’ 𝑓(π‘₯) = βˆ‘ |πœ†π‘– |𝑓(π‘₯𝑖 ) 𝑛 𝑖=1 and π‘₯0 βˆ’ π‘₯ = βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 . Since π‘₯ βˆ— ∈ π‘†π‘‹π‘›βˆ— , i. e. β€–π‘₯ βˆ—β€– = 1, then π‘₯βˆ— is norm attaining functional. Hence, sup π‘₯βˆ—βˆˆπ‘†π‘‹π‘› βˆ— |〈π‘₯βˆ—, βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 βŒͺ| = β€–π‘₯ βˆ—(βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 )β€– = β€–βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 β€–. Therefore, β€–βˆ‘ |πœ†π‘– |𝑓(π‘₯𝑖 ) 𝑛 𝑖=1 β€– β‰₯ β€–βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 β€– βˆ’ |〈π‘₯βˆ—, βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 βŒͺ βˆ’ βŒ©πœ‘π‘₯βˆ— , βˆ‘ |πœ†π‘– |𝑓(π‘₯𝑖 ) 𝑛 𝑖=1 βŒͺ| = β€–βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 β€– βˆ’ βˆ‘ |πœ†π‘– | 𝑛 𝑖=1 |〈π‘₯βˆ—, βˆ‘ π‘₯𝑖 𝑛 𝑖=1 βŒͺ βˆ’ βŒ©πœ‘π‘₯βˆ— , βˆ‘ 𝑓(π‘₯𝑖 ) 𝑛 𝑖=1 βŒͺ| = β€–βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 β€– βˆ’ |〈π‘₯βˆ—, βˆ‘ π‘₯𝑖 𝑛 𝑖=1 βŒͺ βˆ’ βŒ©πœ‘π‘₯βˆ— , βˆ‘ 𝑓(π‘₯𝑖 ) 𝑛 𝑖=1 βŒͺ| β‰₯ β€–βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 β€– βˆ’ 4 or β€–βˆ‘ |πœ†π‘– |𝑓(π‘₯𝑖 ) 𝑛 𝑖=1 β€– + 4 β‰₯ β€–βˆ‘ |πœ†π‘– |π‘₯𝑖 𝑛 𝑖=1 β€– . ∎ Next, we will discuss an application of Theorem 1.6 in 𝐿𝑝,π‘ž -spaces. Let 𝐿(Ξ©) is an algebra of equivalence classes of real valued measured function over (Ξ©, βˆ‘, πœ‡). The distribution 𝛿𝑓 (𝑠) for 𝑓 ∈ 𝐿(Ξ©) is defined as 𝛿𝑓 (𝑠) ∢= πœ‡(|𝑓| > 𝑠) 𝐿𝑝,π‘ž-spaces are collections of all measured function over Ξ© such that ‖𝑓‖𝑝,π‘ž ∢= ( π‘ž 𝑝 ∫ 𝑓 βˆ—(𝑑)π‘ž 𝑑 ( π‘ž 𝑝 ) βˆ’ 1 𝑑𝑑 ∞ 0 ) 1 π‘ž < ∞ where 𝑓 βˆ—(𝑑) ∢= inf{𝑠 > 0 ∢ 𝛿𝑓 (𝑠) < 𝑑} , 𝑑 > 0. If p = q, then 𝐿𝑝,𝑝(Ξ©) is just Lebesgue space 𝐿𝑝(Ξ©). The following theorem shows that there exists an isomorphism operator [8] in 𝐿𝑝,π‘ž -spaces. Theorem 2.2. Suppose that 1 ≀ 𝑝,π‘ž ≀ ∞, 𝑝 β‰  π‘ž, 𝑝 β‰  1, 𝑝 β‰  2. Then there exists no weakly sequence {π‘“π‘˜ }π‘˜=1 ∞ in 𝐿𝑝,π‘ž (0,1) such that for some 𝐢 > 0 and for any subsequence {π‘“π‘˜ β€²}π‘˜=1 ∞ of {π‘“π‘˜ }π‘˜=1 ∞ , the estimate πΆβˆ’1𝑁1/𝑝 ≀ β€–βˆ‘ π‘“π‘˜ β€² 𝑁 π‘˜=1 β€– 𝑝,π‘ž ≀ 𝐢𝑁1/𝑝 holds. Now, using Theorem 2.2, the author will show that the following theorem is true. Theorem 2.3. Let X =𝐿𝑝,π‘ž and Y be Banach space. If f : X β†’ Y is an almost surjective -isometry with f(0) = 0, then there exists an operator S : Y β†’ X with ‖𝑆‖ = 1 such that ‖𝑆𝑓(π‘₯) βˆ’ π‘₯β€– ≀ 4 , π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝑋. Proof. From Theorem 2.2, then π΅π‘‹βˆ— is a 𝑀 βˆ—-closed convex hull of 𝑀 βˆ—-exposed point in 𝐿𝑝,π‘ž . Let 𝑑 ∈ (0,1) and π‘₯βˆ— ∈ π‘†π‘‹βˆ— . Theorem 1.6 implies that there exists πœ™π‘‘ ∈ π‘†π‘Œβˆ— such that |βŒ©πœ™π‘‘ , 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯𝑑 βˆ—, π‘₯βŒͺ| ≀ 4 , π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝑋. Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman 171 Let S : Y β†’ X is defined by S(y) = βŒ©πœ™π‘‘ , 𝑓(π‘₯)βŒͺ𝑒𝑑 = π‘₯0. Clearly ‖𝑆‖ = 1 and ‖𝑆𝑓(π‘₯) βˆ’ π‘₯‖𝑝,π‘ž = ( π‘ž 𝑝 ∫(π‘₯0(𝑑) π‘ž βˆ’ π‘₯(𝑑)π‘ž )𝑑 ( π‘ž 𝑝 ) βˆ’ 1 𝑑𝑑 1 0 ) 1 π‘ž ≀ sup π‘‘βˆˆ(0,1) |βŒ©πœ™π‘‘ , 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯𝑑 βˆ—, π‘₯βŒͺ| ≀ 4 . ∎ 2. Almost Surjective 𝜺-Isometry in The Reflexive Banach Spaces A normed space is reflexive if the natural mapping πœ‹(π‘₯) from 𝑋 into π‘‹βˆ—βˆ— which is defined by πœ‹(π‘₯) : f β†’ f(x) where 𝑓 ∈ π‘‹βˆ—, is onto π‘‹βˆ—βˆ—, or 𝑋 β‰ˆ π‘‹βˆ—βˆ—. Therefore, every reflexive normed space is Banach space. In addition, every closed subspace of reflexive Banach space is reflexive [4]. Proposition 3.1 (Megginson [9], Proposition 1.11.11). Let X be reflexive normed space. Every functional π‘₯βˆ— ∈ π‘‹βˆ— is norm-attaining functional. The following definitions are classic (for more detail see [4]). Let X be Banach space and 𝑀 βŠ‚ 𝑋. The polar set of M is π‘€βˆ˜ ∢= { π‘₯βˆ— ∈ π‘‹βˆ— ∢ 〈π‘₯βˆ—, π‘₯βŒͺ ≀ 1, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑀}. Conversely, 𝑀° ∢= { π‘₯ ∈ 𝑋 ∢ 〈π‘₯βˆ—, π‘₯βŒͺ ≀ 1, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯βˆ— ∈ 𝑀°}Β° . The annihilator of M is 𝑀βŠ₯ ∢= { π‘₯βˆ— ∈ π‘‹βˆ— ∢ 〈π‘₯βˆ—, π‘₯βŒͺ = 0, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑀}, and preannihilator 𝑀βŠ₯ is 𝑀βŠ₯ ∢= { π‘₯ ∈ 𝑋: 〈π‘₯βˆ—, π‘₯βŒͺ = 0 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ βŠ₯ π‘₯ βˆ— ∈ 𝑀βŠ₯}. For an almost surjective -isometry mapping f : X β†’ Y with f(0) = 0 and > 0, 𝐢(𝑓) is a closed convex hull of f(X), E is an annihilator of subspace FβŠ‚ π‘Œβˆ— where F is a set of all bounded functionals over 𝐢(𝑓), and π‘€πœ€ ∢= {πœ™ ∈ π‘Œ βˆ—: πœ™ 𝑖𝑠 π‘π‘œπ‘’π‘›π‘‘π‘’π‘‘ 𝑏𝑦 𝛽 π‘œπ‘£π‘’π‘Ÿ 𝐢(𝑓), π‘“π‘œπ‘Ÿ 𝛽 > 0}. Obviously, 𝐢(𝑓) is symmetric, then π‘€πœ€ is linear subspace of π‘Œ βˆ— with π‘€πœ€ = ⋃ 𝑛𝐢(𝑓) °∞ 𝑛=1 . Therefore, 𝐸 = β‹‚{π‘˜π‘’π‘Ÿπœ™ ∢ πœ™ ∈ 𝑀}. The following lemma is easy to be proved (see [2]). Lemma 3.2. Let Y be Banach space, the following statements are equicalence. (1) 𝐢(𝑓) βŠ‚ 𝐸 + 𝐹 for a bounded 𝐡 βŠ‚ π‘Œ; (2) π‘€πœ€ is 𝑀 βˆ—-closed; (3) π‘€πœ€ is closed. For every almost surjective -isometry f, is defined a linear mapping β„“ : π‘‹βˆ— β†’ 2π‘Œ βˆ— by β„“π‘₯βˆ— ∢= {πœ™ ∈ π‘Œβˆ—: |βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ 𝛽 , π‘“π‘œπ‘Ÿ 𝛽 > 0 π‘Žπ‘›π‘‘ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋}. Since β„“ is a linear mapping, the definition of π‘€πœ€ implies β„“0 = {πœ™ ∈ π‘Œβˆ—: |βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈0, π‘₯βŒͺ| ≀ 𝛽 } = {πœ™ ∈ π‘Œβˆ—: |βŒ©πœ™, 𝑓(π‘₯)βŒͺ| ≀ 𝛽 } = {πœ™ ∈ π‘Œβˆ—: πœ™ 𝑖𝑠 π‘π‘œπ‘’π‘›π‘‘π‘’π‘‘ 𝑏𝑦 𝛽 π‘œπ‘£π‘’π‘Ÿ 𝐢(𝑓)} = π‘€πœ€ and β„“π‘₯ βˆ— = β„“(π‘₯βˆ— + 0) = β„“π‘₯βˆ— + β„“0 βŠƒ πœ™ + β„“0 = πœ™ + π‘€πœ€. Lemma 3.3. If π‘₯βˆ— β‰  π‘¦βˆ—, then β„“π‘₯βˆ— ∩ β„“π‘¦βˆ— = βˆ…. Proof. Suppose that β„“π‘₯βˆ— ∩ β„“π‘¦βˆ— is nonempty, then there exists πœ‘ ∈ β„“π‘₯βˆ— ∩ β„“π‘¦βˆ—. Assume πœ‘π‘₯βˆ— = {πœ‘ ∈ π‘Œ βˆ—: |βŒ©πœ‘, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ 𝛽 , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋) and Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman 172 πœ‘π‘¦βˆ— = {πœ‘ ∈ π‘Œ βˆ—: |βŒ©πœ‘, 𝑓(π‘₯)βŒͺ βˆ’ βŒ©π‘¦βˆ—, π‘₯βŒͺ| ≀ 𝛽 , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋). For π‘₯βˆ— β‰  π‘¦βˆ—, there exists πœ‘ ∈ β„“π‘₯βˆ— ∩ β„“π‘¦βˆ— such that πœ‘π‘₯βˆ— = πœ‘π‘¦βˆ— . This is impossible because πœ‘ is a linear functional and the proof is complete. ∎ Let π‘ˆ ∈ 𝔅(𝑋, π‘Œ). Then π‘ˆβˆ— ∈ 𝔅(π‘Œβˆ—, π‘‹βˆ—) is called an adjoint operator such that βŒ©π‘ˆπ‘₯, 𝑓βŒͺ = 〈π‘₯, π‘ˆβˆ—π‘“βŒͺ for all π‘₯ ∈ 𝑋. Two results below are classic. Proposition 3.4 (Fabian et. al. [4], Proposition 2.6). Let M is a closed subspace of Banach space X. Then (𝑋/π‘Œ)βˆ— is isometric with 𝑀βŠ₯ and π‘€βˆ— is isometric with π‘‹βˆ—/𝑀βŠ₯. Theorem 3.5 (Megginson [9], Proposition 3.1.11). Let X and Y be normed spaces. If π‘ˆ ∈ 𝔅(𝑋, π‘Œ), then π‘ˆβˆ— is 𝑀 βˆ—-to-𝑀 βˆ— continuous. Conversely, if 𝑄 is 𝑀 βˆ—-to-𝑀 βˆ— linear continuous operator from π‘Œβˆ— to π‘‹βˆ—, then there exists π‘ˆ ∈ 𝔅(𝑋, π‘Œ) such that π‘ˆβˆ— = 𝑄. Now, using Proposition 3.4 and Theorem 3.5, we will show that the following theorem is true. Theorem 3.6. Let X and Y be Banach spaces, f : X β†’ Y is an almost surjective -isometry with f(0) = 0, and 𝑀 = β„“Μ…0. Then (1) 𝑄: π‘‹βˆ— β†’ π‘Œβˆ—/𝑀, which is defined by 𝑄π‘₯βˆ— = β„“π‘₯βˆ— + 𝑀, is linear isometry. (2) If M is 𝑀 βˆ—-closed, then 𝑄 is an adjoint operator of π‘ˆ: 𝐸 β†’ 𝑋 with β€–π‘ˆβ€– = 1. Proof. (1) From Lemma 3.3 and definition of β„“, it is clear that 𝑄 is linear. Lemma 3.2 implies 𝑀 = β„“Μ…0 = π‘€πœ€Μ…Μ… Μ…Μ… . For every π‘₯ βˆ— ∈ π‘‹βˆ—, ‖𝑄π‘₯βˆ—β€– = inf{β€–πœ™ βˆ’ π‘šβ€– : πœ™ ∈ β„“π‘₯βˆ—, π‘š ∈ 𝑀} = inf{β€–πœ™ βˆ’ π‘šβ€– : πœ™ ∈ β„“π‘₯βˆ—, π‘š ∈ π‘€πœ€ }. From definition of β„“π‘₯βˆ— and π‘€πœ€, we have ‖𝑄π‘₯βˆ—β€– = inf{β€–πœ™β€– : πœ™ ∈ β„“π‘₯βˆ—}. Theorem 1.6 gives inf{β€–πœ™β€– : πœ™ ∈ β„“π‘₯βˆ—} ≀ β€–π‘₯βˆ—β€–. (3.1) To show the conversely, from definition of β„“, there exists 𝛽 > 0 such that |βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ 𝛽 , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋. For any 𝛿 > 0, we can choose π‘₯0 ∈ 𝑆𝑋 such that 〈π‘₯βˆ—, π‘₯0βŒͺ > β€–π‘₯ βˆ—β€– βˆ’ 𝛿. For all 𝑛 ∈ β„•, we get |βŒ©πœ™, 𝑓(𝑛π‘₯0) 𝑛 βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯0βŒͺ| ≀ 𝛽 𝑛 As 𝑛 β†’ ∞, β€–πœ™β€– β‰₯ lim sup 𝑛 |βŒ©πœ™, 𝑓(𝑛π‘₯0) 𝑛 βŒͺ| = 〈π‘₯βˆ—, π‘₯0βŒͺ > β€–π‘₯ βˆ—β€– βˆ’ 𝛿. Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman 173 Since 𝛿 is arbitrary, then β€–πœ™β€– β‰₯ β€–π‘₯βˆ—β€–. (3.2) From (3.1) and (3.2), then β€–πœ™β€– = β€–π‘₯βˆ—β€– which shows that 𝑄 is an isometry. (2) Since 𝑀 is 𝑀 βˆ—-closed, then 𝑀 = { 𝑀βŠ₯ }βŠ₯ = { π‘€πœ€ βŠ₯ }βŠ₯ = 𝐸βŠ₯. Therefore, π‘Œβˆ—/𝑀 = π‘Œβˆ—/𝐸βŠ₯. From definitions of 𝐸 and π‘€πœ€, Proposition 3.4 implies π‘Œ βˆ—/𝐸βŠ₯ = πΈβˆ—. We will prove that πœ™ is 𝑀 βˆ—-to-𝑀 βˆ— continuous over the unit ball π΅π‘‹βˆ— . Let 𝐼 is an index set and 𝛼 ∈ 𝐼. Suppose there exists net (π‘₯βˆ—) βŠ‚ π΅π‘‹βˆ— which is 𝑀 βˆ—-converging to π‘₯βˆ— ∈ π‘‹βˆ—. Using Theorem 1.6, there exists net (πœ™π›Ό ) βŠ‚ π‘Œ βˆ— with β€–πœ™π›Ό β€– = β€–π‘₯𝛼 βˆ— β€– = π‘Ÿπ›Ό ≀ 1 such that |βŒ©πœ™π›Ό , 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯𝛼 βˆ— , π‘₯βŒͺ| ≀ 4 π‘Ÿπ›Ό , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋. Since (πœ™π›Ό ) is 𝑀 βˆ—-compact, then there exists 𝑀 βˆ—-limit point ∈ π‘Œβˆ— such that |βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ 4 π‘Ÿ, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋 Therefore, 𝑄π‘₯𝛼 βˆ— = β„“π‘₯𝛼 βˆ— + 𝑀 = πœ™π›Ό + 𝑀 is 𝑀 βˆ—-convergence to πœ™ + 𝑀 = 𝑄π‘₯βˆ—. This result shows that 𝑄: π΅π‘‹βˆ— β†’ 𝐸 βˆ— is 𝑀 βˆ—-to-𝑀 βˆ— continuous. From Theorem 3.5, there exists π‘ˆ: 𝐸 β†’ 𝑋 such that π‘ˆβˆ— = 𝑄. Definition of 𝐸 shows that π‘ˆ is a surjective mapping. Since π‘ˆβˆ— = 𝑄 is a linear isometry, then β€–π‘ˆβ€– = 1. ∎ Before discussing the stability of an almost surjective -isometry in reflexive Banach space, we need some resuls below. Proposition 3.7 (Fabian et. al. [4], Proposition 3.114). Let Y be reflexive Banach space. If 𝑀 is a closed subspace of Y, then 𝑀 is Banach space. Corollary 3.8. If Y be reflexive Banach space, then the mapping 𝑄 in Theorem 3.6 is an adjoint operator. Proof. Since Y is reflexive, from Proposition 3.7, 𝑀 is 𝑀 βˆ—-closed. The proof can be completed by Theorem 3.6. Definition 3.9. Let X be Banach space and 0 ≀ Ξ± < ∞. A closed subspace 𝑀 βŠ‚ 𝑋 is called 𝛼- complemented in X if there is a closed subspace 𝑁 βŠ‚ 𝑋 with 𝑀 ∩ 𝑁 = {0} and projection 𝑃: 𝑋 β†’ 𝑀 π‘Žπ‘™π‘œπ‘›π‘” 𝑁 such that 𝑋 = 𝑀 + 𝑁 and ‖𝑃‖ ≀ 𝛼. Theorem 3.10. Let X and Y be Banach spaces where Y is reflexive, and f : X β†’ Y is an almost surjective -isometry, then there exists a bounded linear operator T : Y β†’ X and ‖𝑇‖ ≀ 𝛼 such that ‖𝑇𝑓(π‘₯) βˆ’ π‘₯β€– ≀ 4 , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋. Proof. Since Y is reflexive, from Corollary 3.8 and Theorem 3.6, there exists a surjective operator π‘ˆ: 𝐸 β†’ 𝑋 with β€–π‘ˆβ€– = 1 such that 𝑄 = π‘ˆβˆ—. Since 𝐸 is 𝛼-complemented in Y, there is a closed subspace 𝐹 βŠ‚ π‘Œ and 𝐸 ∩ 𝐹 = {0} such that 𝐸 + 𝐹 = π‘Œ and projection 𝑃: π‘Œ β†’ 𝐸 π‘Žπ‘™π‘œπ‘›π‘” 𝐹 satisfies ‖𝑃‖ ≀ 𝛼. Let 𝑇 = π‘ˆπ‘ƒ, then ‖𝑇‖ = β€–π‘ˆπ‘ƒβ€– ≀ β€–π‘ˆβ€–β€–π‘ƒβ€– = ‖𝑃‖ ≀ 𝛼. Furthermore, βŒ©π‘„π‘₯βˆ—, 𝑃𝑦βŒͺ = βŒ©π‘„π‘₯βˆ—, 𝑦βŒͺ for all π‘₯βˆ— ∈ π‘‹βˆ— and 𝑦 ∈ π‘Œ. Therefore, Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman 174 |βŒ©π‘„π‘₯βˆ—, 𝑃𝑓(𝑋)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| = |βŒ©π‘„π‘₯βˆ—, 𝑓(𝑋)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ 4 β€–π‘₯βˆ—β€–, (3.3) for all π‘₯ ∈ 𝑋 and π‘₯βˆ— ∈ π‘‹βˆ—. Definition of adjoint operator gives βŒ©π‘„π‘₯βˆ—, 𝑃𝑓(𝑋)βŒͺ = 〈π‘₯βˆ—, π‘„βˆ—π‘ƒπ‘“(𝑋)βŒͺ = 〈π‘₯βˆ—, π‘ˆπ‘ƒπ‘“(𝑋)βŒͺ = 〈π‘₯βˆ—, 𝑇𝑓(𝑋)βŒͺ. (3.4) Substitute (3.4) into (3.3), then |〈π‘₯βˆ—, 𝑇𝑓(𝑋)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| = |〈π‘₯βˆ—, 𝑇𝑓(𝑋) βˆ’ π‘₯βŒͺ| ≀ 4 β€–π‘₯βˆ—β€– for all π‘₯ ∈ 𝑋 and π‘₯βˆ— ∈ π‘‹βˆ—. In addition, |〈π‘₯βˆ—, 𝑇𝑓(𝑋) βˆ’ π‘₯βŒͺ| ≀ β€–π‘₯βˆ—β€–β€–π‘‡π‘“(𝑋) βˆ’ π‘₯β€– ≀ 4 β€–π‘₯βˆ—β€– or ‖𝑇𝑓(𝑋) βˆ’ π‘₯β€– ≀ 4 for all π‘₯ ∈ 𝑋. ∎ CONCLUSION In this paper, the author has shown simple applications of Theorem 1.6. In addition, almost surjective -isometries are remain stable in the reflexive Banach spaces. Open Problem 1. This paper has shown that almost surjective -isometries are stable in Lorentz spaces when the conditions in Theorem 2.2 are satisfied. Is it possible to generalize these restrictions? Open Problem 2. According to the results of this paper, is it possible to determine the stability of almost surjective -isometries in the higher dual of Banach spaces? REFERENCES [1] D. G. Bourgin, "Approximate isometries", Bull. Amer. Math. Soc., vol. 52, no. 8, pp. 704-713, 1954. [2] L. Cheng, Y. Dong, and W. Zhang, "On stability of non-linear non-surjective Ξ΅-isometries of Banach spaces", J. Funct. Anal., vol. 264, no. 3, pp. 713-734, 2013. [3] L. Cheng and Y. Zhou, "On perturbed metric-preserved mapping and their stability characteristic", J. Funct. Anal., vol. 264, no. 8, pp. 4995-5015, 2014. [4] M. Fabian, P. Habala, P. HΓ‘jek, V. Montesinos, and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, Springer, New York, 2010. [5] T. Figiel, "On nonlinear isometric embedding of normed linear spaces", Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., vol. 16, pp. 185-188, 1968. [6] J. Gevirtz, "Stability of isometries on Banach spaces", Proc. Amer. Math. Soc., vol. 89, no. 4, pp. 633-636, 1983. [7] D. H. Hyers and S. M. Ulam, "On approximate isometries", Bull. Amer. Math. Soc., vol. 51, no. 4, pp. 288-292, 1945. [8] A. Kuryakov and F. Sukochev, "Isomorphic classification of Lp,q-spaces", J. Funct. Anal. vol. 269, no. 8, pp. 2611-2630, 2015. Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces Minanur Rohman 175 [9] R. E. Megginson, An Introduction to Banach Space Theory, Graduate Text in Mathematics 183, Springer, New York, 1989. [10] M. Omladič and P. Ε emrl, "On nonlinear perturbation of isometries", Math. Ann. vol. 303, no. 4, pp. 617-628, 1995. [11] S. Qian, "Ξ΅-isometries embedding", Proc. Amer. Math. Soc., vol. 123, no. 6, pp. 1797-1803, 1995. [12] M. Rohman, R. B. E. Wibowo, and Marjono, "Stability of an almost surjective epsilon- isometry in the dual of real Banach spaces", Aust. J. Math. Anal. Appl., vol. 13, no. 1, pp. 1-9, 2016. [13] P. Ε emrl and J. VΓ€isΓ€lΓ€, "Nonsurjective nearisometries of Banach spaces", J. Funct. Anal., vol. 198, no. 1, pp. 268-278, 2003. [14] I. A. Vestfid, "Almost surjective Ξ΅-isometries of Banach spaces", Colloq. Math., vol. 100, no. 1, pp. 17-22, 2004. [15] I. A. Vestfrid, "Stability of almost surjective Ξ΅-isometries of Banach spaces", J. Funct. Anal., vol. 269, no. 7, pp. 2165-2170, 2015.