On the Metric Dimension of Some Operation Graphs CAUCHY –Jurnal Matematika Murni dan Aplikasi Volume 5(3) (2018), Pages 88-94 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: 23 July 2018 Reviewed: 08 October 2018 Accepted: 30 November 2018 DOI: http://dx.doi.org/10.18860/ca.v5i3.5331 On the Metric Dimension of Some Operation Graphs Marsidi1, Ika Hesti Agustin2, Dafik3, Ridho Alfarisi4, Hendrik Siswono5 1Mathematics Edu. Depart. IKIP PGRI Jember Indonesia 2Mathematics Depart. University of Jember Indonesia 3Mathematics Edu. Depart. University of Jember Indonesia 4Elementary School Teacher Edu. Depart. University of Jember Indonesia 5Majoring in Early Childhood Edu. Depart. IKIP PGRI Jember Indonesia Email: marsidiarin@gmail.com, ikahesti@fmipa.unej.ac.id, d.dafik@gmail.com ABSTRACT Let 𝐺 be a simple, finite, and connected graph. An ordered set of vertices of a nontrivial connected graph 𝐺 is π‘Š = {𝑀1,𝑀2,𝑀3,…,π‘€π‘˜} and the π‘˜-vector π‘Ÿ(𝑣|π‘Š) = (𝑑(𝑣,𝑀1),𝑑(𝑣,𝑀2),…,𝑑(𝑣,π‘€π‘˜)) represent vertex 𝑣 that respect to π‘Š, where 𝑣 ∈ 𝐺 and 𝑑(𝑣,𝑀𝑖) is the distance between vertex 𝑣 and 𝑀𝑖 for 1 ≀ 𝑖 ≀ π‘˜. The set π‘Š called a resolving set for 𝐺 if different vertex of 𝐺 have different representations that respect to π‘Š. The minimum cardinality of resolving set of 𝐺 is the metric dimension of 𝐺, denoted by dim⁑(𝐺). In this paper, we give the local metric dimension of some operation graphs such as joint graph 𝑃𝑛 + πΆπ‘š, amalgamation of parachute, amalgamation of fan, and π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š). Keywords: metric dimension, resolving set, operation graphs. INTRODUCTION All graphs in this paper are simple, finite and connected, for basic definition of graph we can see in Chartrand [1]. Chartrand [2] define the length of a shortest path between two vertices 𝑒 and 𝑣 is the distance 𝑑(𝑒,𝑣) between two vertices in a connected graph G. An ordered set of vertices of a nontrivial connected graph 𝐺 is π‘Š = {𝑀1,𝑀2,𝑀3,…,π‘€π‘˜} and the π‘˜-vector π‘Ÿ(𝑣|π‘Š) = (𝑑(𝑣,𝑀1),𝑑(𝑣,𝑀2),…,𝑑(𝑣,π‘€π‘˜)) represent vertex 𝑣 that respect to π‘Š. The set π‘Š called a resolving set for 𝐺 if different vertex of 𝐺 have different representations that respect to π‘Š. The minimum of cardinality of resolving set of G is the metric dimension of 𝐺, denoted by dim(𝐺) [3]. There are many articles explained about metric dimension such as [2], [4], [5], [6], and [7]. [8] defined a shackle graphs π‘ β„Žπ‘Žπ‘π‘˜(𝐺1,𝐺2,…,πΊπ‘˜) constructed by nontrivial connected graphs 𝐺1,𝐺2,…,πΊπ‘˜ such that 𝐺𝑖 and 𝐺𝑗 have no a common vertex for every 𝑖, 𝑗 ∈ [1,π‘˜] with |𝑖 βˆ’ 𝑗| β‰₯ 2, and for every 𝑙 ∈ [1,π‘˜ βˆ’ 1], 𝐺𝑙 and 𝐺𝑙+1 share exactly one common vertex (called linkage vertex) and the π‘˜ βˆ’ 1 linking vertices are all different. [9] defined an amalgamation of graphs constructed from isomorphic connected graphs 𝐻 and the choice of the vertex 𝑣𝑗 as a terminal is irrelevant. For any π‘˜ positive integer, we denote such an amalgamation by π‘Žπ‘šπ‘Žπ‘™(𝐻,π‘˜), where π‘˜ denotes the number of copies of 𝐻. Proposition 1. [2] Let 𝐺 be a connected graph or order 𝑛⁑ β‰₯ ⁑2, then the following hold: a. π‘‘π‘–π‘š(𝐺) = 1⁑if and only if graph 𝐺 is a path graph b. π‘‘π‘–π‘š(𝐺) = 𝑛 βˆ’ 1 if and only if graph 𝐺 is a complete graph c. For 𝑛 β‰₯ 3, π‘‘π‘–π‘š(𝐢𝑛) = 2 mailto:marsidiarin@gmail.com,%20ikahesti@fmipa.unej.ac.id mailto:d.dafik@gmail.com On the Metric Dimension of Some Operation Graphs Marsidi 89 d. For 𝑛 β‰₯ 4, π‘‘π‘–π‘š(𝐺) = 𝑛 βˆ’ 2 if and only if 𝐺 = 𝐾𝑝,π‘žβ‘(𝑝,π‘ž β‰₯ 1),𝐺 = 𝐾𝑝 + πΎπ‘žΜ…Μ…Μ…Μ… (𝑝 β‰₯ 1,π‘ž β‰₯ 2). RESULTS AND DISCUSSION Theorem 2.1. For 𝑛 β‰₯ 2 and π‘š β‰₯ 7, the metric dimension of joint graph 𝑃𝑛 + πΆπ‘š is π‘‘π‘–π‘š(𝑃𝑛 + πΆπ‘š) = ⌈ 𝑛 2 βŒ‰β‘+⁑⌊ π‘šβˆ’1 2 βŒ‹. Proof. The joint of path and cycle graph, denoted by 𝑃𝑛 + πΆπ‘š is a connected graph with vertex set 𝑉(𝑃𝑛 + πΆπ‘š) = {π‘₯𝑗; ⁑1 ≀ 𝑗 ≀ 𝑛} βˆͺ {𝑦𝑙; ⁑1 ≀ 𝑙 ≀ π‘š} and edge set 𝐸(𝑃𝑛 + πΆπ‘š) = {π‘₯𝑗𝑦𝑙; ⁑1 ≀ 𝑗 ≀ 𝑛; ⁑1 ≀ 𝑙 ≀ π‘š} βˆͺ {π‘₯𝑗π‘₯𝑗+1; ⁑1 ≀ 𝑗 ≀ 𝑛 βˆ’ 1} βˆͺ {𝑦𝑙𝑦𝑙+1; ⁑1 ≀ 𝑙 ≀ π‘š βˆ’ 1} βˆͺ {𝑦𝑛𝑦1}. The cardinality of vertex set and edge set, respectively are |𝑉(𝑃𝑛 + πΆπ‘š)|⁑= ⁑𝑛⁑ + β‘π‘š and |𝐸(𝑃𝑛 + πΆπ‘š)| = ⁑𝑛(π‘š + 1) + π‘š. If we show that π‘‘π‘–π‘š(𝑃𝑛 + πΆπ‘š) = ⌈ 𝑛 2 βŒ‰β‘+⁑⌊ π‘šβˆ’1 2 βŒ‹ for 𝑛⁑ β‰₯ 2 dan π‘š β‰₯ 7, then we will show the lower bound namely π‘‘π‘–π‘š(𝑃𝑛 + πΆπ‘š) β‰₯ ⌈ 𝑛 2 βŒ‰β‘+⁑⌊ π‘šβˆ’1 2 βŒ‹ βˆ’ 1. Assume that π‘‘π‘–π‘š(𝑃𝑛 + πΆπ‘š) < ⌈ 𝑛 2 βŒ‰β‘+⁑⌊ π‘šβˆ’1 2 βŒ‹. This can be shown with take resolving set π‘Š = {π‘₯1,𝑦1,𝑦5} so that it obtained the representation of the vertices π‘₯,𝑦 ∈ 𝑉(𝑃2 + 𝐢7) respect to π‘Š. It can be seen that there is at least two vertices in 𝑃𝑛 + πΆπ‘š which have the same representation respect to π‘Š, one of them is π‘Ÿ(𝑦4|π‘Š)⁑= (1,2,1) and π‘Ÿ(𝑦6|π‘Š)⁑= (1,2,1) such that we have the cardinality of resolving set of π‘‘π‘–π‘š(𝑃𝑛 + πΆπ‘š) β‰₯ ⌈ 𝑛 2 βŒ‰β‘+⁑⌊ π‘šβˆ’1 2 βŒ‹. Furthermore, we will prove that π‘‘π‘–π‘š(𝑃𝑛 + πΆπ‘š) ≀ ⌈ 𝑛 2 βŒ‰β‘+⁑⌊ π‘šβˆ’1 2 βŒ‹ with determine the resolving set π‘Š = {π‘₯𝑗; ⁑1 ≀ 𝑗 ≀ 2⌊ 𝑛 2 βŒ‹ ; ⁑𝑖 ∈ π‘œπ‘‘π‘‘} βˆͺ {𝑦𝑙; ⁑1 ≀ 𝑙 ≀ 2⌊ π‘šβˆ’1 2 βŒ‹ ; ⁑𝑗 ∈ π‘œπ‘‘π‘‘}. So, we have the cardinality of resolving set of 𝑃𝑛 + πΆπ‘š namely |π‘Š| = 2⌈ 𝑛 2 βŒ‰ 2 ⁑+ 2⌈ π‘šβˆ’1 2 βŒ‰ 2 = ⌊ 𝑛 2 βŒ‹ + ⌊ π‘šβˆ’1 2 βŒ‹. The representation of the vertices 𝑦 ∈ 𝐹𝑛 and π‘₯ ∈ 𝐹𝑛 respect to π‘Š as follows. π‘Ÿ(π‘₯𝑗|π‘Š)⁑=⁑{(π‘Žπ‘–π‘—); ⁑1 ≀ 𝑗 ≀ 𝑛,1 ≀ 𝑖 ≀ (⌈ 𝑛 2 βŒ‰ + 1) + (⌊ π‘šβˆ’1 2 βŒ‹)}, where π‘Žπ‘–π‘— = { 0;π‘“π‘œπ‘Ÿβ‘π‘– = 𝑗+1 2 ,1 ≀ 𝑗 ≀ 𝑛,𝑗 ∈ π‘œπ‘‘π‘‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ 1;π‘“π‘œπ‘Ÿβ‘(⌈ 𝑛 2 βŒ‰ + 1) ≀ 𝑖 ≀ (⌈ 𝑛 2 βŒ‰ + 1) + (⌊ π‘šβˆ’1 2 βŒ‹) ,1 ≀ 𝑗 ≀ 𝑛⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑ π‘œπ‘Ÿβ‘π‘– = 𝑗 2 ,2 ≀ 𝑗 ≀ 𝑛,𝑗 ∈ π‘’π‘£π‘’π‘›β‘π‘œπ‘Ÿβ‘π‘– = 𝑗 2 + 1,2 ≀ 𝑗 ≀ 𝑛,𝑗 ∈ 𝑒𝑣𝑒𝑛 2;π‘“π‘œπ‘Ÿβ‘π‘–, 𝑗 = π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ π‘Ÿ(𝑦𝑙|π‘Š) = {(π‘Žπ‘–π‘—); ⁑1 ≀ 𝑗 ≀ π‘š,1 ≀ 𝑖 ≀ (⌈ 𝑛 2 βŒ‰ + 1) + (βŒŠπ‘šβˆ’1 2 βŒ‹)}, where π‘Žπ‘–π‘— = { 0;π‘“π‘œπ‘Ÿβ‘π‘– = (⌈ 𝑛 2 βŒ‰) + 𝑗+1 2 ,1 ≀ 𝑗 ≀ π‘š βˆ’ 2,𝑗 ∈ π‘œπ‘‘π‘‘ 1;π‘“π‘œπ‘Ÿβ‘1 ≀ 𝑖 ≀ (⌈ 𝑛 2 βŒ‰) ,1 ≀ 𝑗 ≀ π‘š βˆ’ 2⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑ π‘œπ‘Ÿβ‘π‘– = (⌈ 𝑛 2 βŒ‰) + 𝑗 2 ,2 ≀ 𝑗 ≀ π‘š,𝑗 ∈ 𝑒𝑣𝑒𝑛⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑ π‘œπ‘Ÿβ‘π‘– = (⌈ 𝑛 2 βŒ‰) + 𝑗+1 2 + 1,2 ≀ 𝑗 ≀ π‘š,𝑗 ∈ 𝑒𝑣𝑒𝑛⁑⁑⁑⁑ 2;π‘“π‘œπ‘Ÿβ‘π‘–, 𝑗 = π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ It can be seen that every vertex in 𝑃𝑛 + πΆπ‘š have distinct representation respect to π‘Š, such that the cardinality of resolvng set in 𝑃𝑛 + πΆπ‘š is ⌈ 𝑛 2 βŒ‰β‘+⁑⌊ π‘šβˆ’1 2 βŒ‹ or π‘‘π‘–π‘š(𝐹𝑛) ≀ ⌈ 𝑛 2 βŒ‰β‘+ ⁑⌊ π‘šβˆ’1 2 βŒ‹. Thus, we conclude that π‘‘π‘–π‘š(𝑃𝑛 + πΆπ‘š)⁑=⁑⌈ 𝑛 2 βŒ‰β‘+⁑⌊ π‘šβˆ’1 2 βŒ‹ for 𝑛 β‰₯ 2 and π‘š β‰₯ 7. ∎ On the Metric Dimension of Some Operation Graphs Marsidi 90 Fig 1. The Metric Dimension of Joint Graph 𝑃6 + 𝐢4. Theorem 2.2. For 𝑛 β‰₯ 7, the metric dimension of amalgamation of parachute π‘Žπ‘šπ‘Žπ‘™β‘(𝑃𝐢7,𝑣,π‘š) is π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣 = 𝐴,π‘š)) = 6π‘š 2 . Proof. The amalgamation of parasut graph, denoted by π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š) is a connected graph with vertex set 𝑉(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) = {π‘₯𝑖 𝑗 ; ⁑1 ≀ 𝑖 ≀ 7; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {𝑦𝑖 𝑗 ; ⁑1 ≀ 𝑖 ≀ 7; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {𝐴} and edge set 𝐸(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) = {𝐴⁑π‘₯𝑖 𝑗 ; ⁑1 ≀ 𝑖 ≀ 7; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {⁑π‘₯𝑖 𝑗 ⁑π‘₯𝑖+1 𝑗 ; ⁑1 ≀ 𝑖 ≀ 6; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {⁑𝑦𝑖 𝑗 ⁑𝑦𝑖+1 𝑗 ; ⁑1 ≀ 𝑖 ≀ 6; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {⁑π‘₯1 𝑗 ⁑𝑦1 𝑗 ; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {⁑π‘₯7 𝑗 ⁑𝑦7 𝑗 ; ⁑1 ≀ 𝑗 ≀ π‘š}. The cardinality of vertex set and edge set, respectively are |𝑉(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š))|⁑= 14m⁑ + ⁑1 and |𝐸(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š))|⁑= ⁑21π‘š. If we show that π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) β‰₯ 6π‘š 2 r 𝑛⁑ = ⁑7, then we will show the best lower bound namely π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) β‰₯ 7π‘š 2 βˆ’ 1. Assume that π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) < 6π‘š 2 .⁑This can be shown with take resolving set π‘Š = {π‘₯1 1,π‘₯4 1,π‘₯6 1,π‘₯1 2,π‘₯4 2,π‘₯6 2,π‘₯1 3,π‘₯4 3,π‘₯6 3,π‘₯1 4,π‘₯4 4,π‘₯6 4} so that it obtained the representation of the vertices π‘₯,𝑦 ∈ 𝑉(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) respect to π‘Š. It can be seen that there is at least two vertices in π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,4) which have the same representation respect to π‘Š, one of them is π‘Ÿ(π‘₯3 1|π‘Š)⁑= (2,1,2,2,2,2,2,2,2,2,2) and π‘Ÿ(π‘₯5 1|π‘Š)⁑= (2,1,2,2,2,2,2,2,2,2,2) such that we have the cardinality of resolving set of (π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) β‰₯ ⌈ 6π‘š 2 βŒ‰. Furthermore, we will prove that π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) ≀ ⌈ 6π‘š 2 βŒ‰ with determine the resolving set π‘Š = {π‘₯𝑖 𝑗 ; ⁑4 ≀ 𝑖 ≀ 7; ⁑2 ≀ 𝑗 ≀ π‘š;⁑𝑖 = π‘œπ‘‘π‘‘} βˆͺ {π‘₯1 𝑗 ; ⁑1 ≀ 𝑗 ≀ π‘š}. So, we have the cardinality of resolving set of π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š) namely |π‘Š|⁑=⁑|{π‘₯𝑖 𝑗 ; ⁑4 ≀ 𝑖 ≀ 7; ⁑2 ≀ 𝑗 ≀ π‘š;𝑖 = π‘œπ‘‘π‘‘} βˆͺ {π‘₯1 𝑗 ;1 ≀ 𝑗 ≀ π‘š}| = ( 4 2 π‘š)⁑+ π‘š = ( 6π‘š 2 ). The representation of the vertices 𝑦 ∈ (π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š = 4)) and π‘₯ ∈ (π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š = 4)) respect to π‘Š as follows. π‘Ÿ(π‘₯𝑖 𝑗 |π‘Š) = {(π‘Žπ‘–π‘˜ 𝑗 ); ⁑1 ≀ 𝑖 ≀ 𝑛,1 ≀ 𝑗 ≀ π‘š,1 ≀ π‘˜ ≀ 6π‘š 2 }, where π‘Žπ‘–π‘˜ = { 0;π‘“π‘œπ‘Ÿβ‘π‘˜ = 1,π‘˜ = 2𝑖,2 ≀ 𝑖 ≀ (⌊ 𝑛 2 βŒ‹) ,1 ≀ 𝑗 ≀ π‘šβ‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ 1;π‘“π‘œπ‘Ÿβ‘π‘˜ = 𝑖+1 2 ,3 ≀ 𝑖 ≀ 𝑛,𝑖 ∈ π‘œπ‘‘π‘‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ 1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘˜ = π‘–βˆ’1 2 ,5 ≀ 𝑖 ≀ 7,𝑖 ∈ π‘œπ‘‘π‘‘,1 ≀ 𝑗 ≀ π‘š 2;π‘“π‘œπ‘Ÿβ‘1 ≀ 𝑗 ≀ π‘š,π‘˜,𝑖 = π‘œπ‘‘β„Žπ‘’π‘Ÿβ‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ On the Metric Dimension of Some Operation Graphs Marsidi 91 π‘Ÿ(𝑦|π‘Š) = {(π‘Žπ‘–π‘˜); ⁑1 ≀ 𝑖 ≀ 7,1 ≀ π‘˜ ≀ 6π‘š+2 2 }, where π‘Žπ‘–π‘˜ = { 1;π‘“π‘œπ‘Ÿβ‘π‘˜ = 3𝑗 βˆ’ 2,𝑖 = 1,1 ≀ 𝑗 ≀ π‘šβ‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ 2;π‘“π‘œπ‘Ÿβ‘π‘˜ = 6π‘š+2 2 , 𝑖 = 1,7,1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘˜ = 3𝑗 βˆ’ 2,𝑖 = 2,⁑⁑⁑⁑⁑⁑⁑⁑⁑ 1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘˜ = 3𝑗, 𝑖 = 7,1 ≀ 𝑗 ≀ π‘šβ‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ 3; β‘π‘“π‘œπ‘Ÿβ‘π‘˜ = 6π‘š+2 2 , 𝑖 = 2,6,1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘˜ = 3𝑗 βˆ’ 2,𝑖 = 3,⁑⁑⁑⁑⁑⁑⁑⁑ 1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘˜ = 3𝑗, 𝑖 = 6,1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘– = 1,⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑ π‘˜ β‰  3𝑗 βˆ’ 2β‘π‘Žπ‘›π‘‘β‘π‘˜ = 6π‘š+2 2 β‘π‘œπ‘Ÿβ‘π‘– = 7,π‘˜ β‰  3π‘—β‘π‘Žπ‘›π‘‘β‘π‘˜ = 6π‘š+2 2 ⁑⁑⁑⁑⁑⁑⁑⁑⁑ 4; β‘π‘“π‘œπ‘Ÿβ‘π‘˜ = 6π‘š+2 2 , 𝑖 = 3,5,1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘˜ = 3𝑗 βˆ’ 2,𝑖 = 4,⁑⁑⁑⁑⁑⁑⁑⁑ 1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘˜ = 3𝑗, 𝑖 = 5,1 ≀ 𝑗 ≀ π‘šβ‘π‘œπ‘Ÿβ‘π‘– = 2,⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑ π‘˜ β‰  3𝑗 βˆ’ 2β‘π‘Žπ‘›π‘‘β‘π‘˜ = 6π‘š+2 2 β‘π‘œπ‘Ÿβ‘π‘– = 6,π‘˜ β‰  3π‘—β‘π‘Žπ‘›π‘‘β‘π‘˜ = 6π‘š+2 2 ⁑⁑⁑⁑⁑⁑⁑⁑⁑ 5; β‘π‘“π‘œπ‘Ÿβ‘π‘˜ = 6π‘š+2 2 , 𝑖 = 3,3π‘—β‘π‘œπ‘Ÿβ‘π‘˜ β‰  3𝑗 βˆ’ 2β‘π‘Žπ‘›π‘‘β‘π‘˜ β‰  6π‘š+2 2 , 𝑖 = 3, π‘œπ‘Ÿβ‘π‘˜ β‰  3π‘—β‘π‘Žπ‘›π‘‘β‘π‘˜ β‰  6π‘š+2 2 , 𝑖 = 5⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑ 6;π‘“π‘œπ‘Ÿβ‘π‘– = 4β‘π‘Žπ‘›π‘‘β‘π‘– β‰  3π‘—β‘π‘Žπ‘›π‘‘β‘π‘– β‰  3𝑗 βˆ’ 2β‘π‘Žπ‘›π‘‘β‘π‘– β‰  6π‘š+2 2 ⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑ It can be seen that every vertex in π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š) have distinct representation respect to π‘Š, such that the cardinality of resolvng set in π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š) is 6π‘š 2 or π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š)) ≀ 6π‘š 2 . Thus, we conclude that π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝑃𝐢7,𝑣,π‘š))⁑=⁑ 6π‘š 2 . ∎ Fig 2. The Metric Dimension of Amalgamation of Parachute π΄π‘šπ‘Žπ‘™β‘(𝑃𝐢7,𝑣,3). Theorem 2.3. For 𝑛 β‰₯ 6, the metric dimension of amalgamation of fan graph π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š) is: On the Metric Dimension of Some Operation Graphs Marsidi 92 π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝐴,π‘š)) = { π‘›π‘š 2 βˆ’ 1,π‘“π‘œπ‘Ÿβ‘π‘›β‘is⁑even π‘›π‘š βˆ’ π‘š 2 ,π‘“π‘œπ‘Ÿβ‘π‘›β‘is⁑odd⁑⁑⁑⁑ Proof. The amalgamation of fan graph, denoted by π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š) is a connected graph with vertex set 𝑉(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š)) = {π‘₯𝑖 𝑗 ; ⁑1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {𝑦𝑗; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {π‘₯𝑛 π‘š} and edge set 𝐸(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š)) = {⁑π‘₯𝑖 𝑗 ⁑π‘₯𝑖+1 𝑗 ; ⁑1 ≀ 𝑖 ≀ 𝑛 βˆ’ 2; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {𝑦𝑗π‘₯𝑖 𝑗 ; ⁑1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1; ⁑1 ≀ 𝑗 ≀ π‘š} βˆͺ {⁑π‘₯π‘›βˆ’1 𝑗 ⁑π‘₯1 𝑗+1 ; ⁑1 ≀ 𝑗 ≀ π‘š βˆ’ 1} βˆͺ {⁑π‘₯π‘›βˆ’1 π‘š ⁑π‘₯𝑛 π‘š} βˆͺ {𝑦𝑗π‘₯1 𝑗+1 ; ⁑1 ≀ 𝑗 ≀ π‘š βˆ’ 1} βˆͺ {π‘¦π‘šπ‘₯𝑛 π‘š}. The cardinality of vertex set and edge set, respectively are |𝑉(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š))|⁑= nm⁑ + ⁑1 and |𝐸(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š))| = π‘š(2𝑛 βˆ’ 1). If we show that π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š)) = π‘›π‘š 2 βˆ’ 1 for𝑛 β‰₯ 7 and 𝑛 is even, then we will show the best lower bound namely π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š)) β‰₯ π‘›π‘š 2 βˆ’ 1. Assume that π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š)) < π‘›π‘š 2 βˆ’ 1.⁑This can be shown with take resolving set π‘Š = {π‘₯1 1,π‘₯4 1,π‘₯1 2,π‘₯4 2,π‘₯6 2,π‘₯1 3,π‘₯4 3,π‘₯6 3,π‘₯1 4,π‘₯4 4} so that it obtained the representation of the vertices 𝑦 ∈ 𝑉(π‘Žπ‘šπ‘Žπ‘™(𝐹6,𝑣 = 𝑦,4)) and π‘₯𝑖 𝑗 ∈ 𝑉(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 6,4)) respect to π‘Š. It can be seen that there is at least two vertices in π‘Žπ‘šπ‘Žπ‘™(𝐹6,𝑣 = 𝑦,4) which have the same representation respect to π‘Š, one of them is π‘Ÿ(π‘₯6 1|π‘Š)⁑= (2,2,2,2,2,2,2,2,2,2) and π‘Ÿ(π‘₯6 4|π‘Š)⁑= (2,2,2,2,2,2,2,2,2,2) such that we have the cardinality of resolving set of π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š)) β‰₯ π‘›π‘š 2 βˆ’ 1. Furthermore, we will prove that π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š)) ≀ π‘›π‘š 2 βˆ’ 1 with determine the resolving set π‘Š = {π‘₯𝑖 𝑗 ; ⁑4 ≀ 𝑖 ≀ 𝑛; ⁑2 ≀ 𝑗 ≀ π‘š;⁑𝑖 = π‘œπ‘‘π‘‘} βˆ’ {π‘₯𝑛 π‘š} βˆͺ {π‘₯1 𝑗 ; ⁑1 ≀ 𝑗 ≀ π‘š}. So, we have the cardinality of resolving set of π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣 = 𝑦,π‘š) namely |π‘Š| = ⁑|{π‘₯𝑖 𝑗 ; ⁑4 ≀ 𝑖 ≀ 𝑛; ⁑1 ≀ 𝑗 ≀ π‘š;𝑖⁑is⁑even} βˆ’ {π‘₯𝑛 π‘š} βˆͺ {π‘₯1 𝑗 ;1 ≀ 𝑗 ≀ π‘š}| = ( π‘›βˆ’2 2 )π‘šβ‘ + π‘š βˆ’ 1 = ( π‘›π‘š 2 βˆ’ 1). The representation of the vertices 𝑦 ∈ 𝐹𝑛 and π‘₯ ∈ 𝐹𝑛 respect to π‘Šβ€² as follows. π‘Ÿ(π‘₯𝑖 𝑗 |π‘Š) = {(π‘Žπ‘–π‘˜ 𝑗 ); ⁑1 ≀ 𝑖 ≀ 𝑛,1 ≀ 𝑗 ≀ π‘š,1 ≀ π‘˜ ≀ π‘›π‘š 2 βˆ’ 1}, where π‘Žπ‘–π‘˜ = { 0;π‘“π‘œπ‘Ÿβ‘π‘˜ = 1,π‘˜ = 2𝑖,2 ≀ 𝑖 ≀ (⌊ 𝑛 2 βŒ‹) ,1 ≀ 𝑗 ≀ π‘šβ‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ 1;π‘“π‘œπ‘Ÿβ‘π‘˜ = 𝑖+1 2 ,3 ≀ 𝑖 ≀ 𝑛,𝑖 ∈ π‘œπ‘‘π‘‘,1 ≀ 𝑗 ≀ π‘šβ‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ π‘˜ = π‘–βˆ’1 2 ,5 ≀ 𝑖 ≀ 𝑛,𝑖 ∈ π‘œπ‘‘π‘‘,1 ≀ 𝑗 ≀ π‘šβ‘π‘Žπ‘›π‘‘β‘(π‘˜ β‰  π‘š ∩ 𝑖 β‰  𝑛) 2;π‘“π‘œπ‘Ÿβ‘1 ≀ 𝑗 ≀ π‘š,π‘˜,𝑖 = π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘ β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘ π‘Ÿ(𝑦|π‘Š) = {(π‘Žπ‘–π‘˜); ⁑1 ≀ 𝑖 ≀ 𝑛,1 ≀ π‘˜ ≀ π‘›βˆ’2 2 }, where π‘Žπ‘–π‘˜ = {1;π‘“π‘œπ‘Ÿβ‘1 ≀ π‘˜ ≀ π‘›π‘šβˆ’π‘› 2 , 𝑖 = 1 It can be seen that every vertex in π‘Žπ‘šπ‘Žπ‘™(𝐹6,𝑣,4) have distinct representation respect to π‘Š, such that the cardinality of resolvng set in π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣,π‘š) is π‘›π‘š 2 βˆ’ 1 or π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣,π‘š)) ≀ π‘›π‘š 2 βˆ’ 1. Thus, we conclude that π‘‘π‘–π‘š(π‘Žπ‘šπ‘Žπ‘™(𝐹𝑛,𝑣,π‘š)) =⁑ π‘›π‘š 2 βˆ’ 1. ∎ On the Metric Dimension of Some Operation Graphs Marsidi 93 Fig 3. The Metric Dimension of Amalgamation of Fan Graph Aπ‘šπ‘Žπ‘™(𝐹6,𝑣 = 𝑦,3). Theorem 2.4. For π‘š β‰₯ 2, the metric dimension of π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š) is π‘‘π‘–π‘š(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) = 2. Proof. The shackle of fan graph, denoted by π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)is a connected graph with vertex set 𝑉(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) = {π‘₯𝑗; ⁑1 ≀ 𝑗 ≀ π‘š + 1} βˆͺ {𝑦𝑗; ⁑1 ≀ 𝑗 ≀ π‘š + 1} and edge set 𝐸(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) = {π‘₯𝑗𝑦𝑗; ⁑1 ≀ 𝑗 ≀ π‘š + 1} βˆͺ {π‘₯𝑗𝑦𝑗+1; ⁑1 ≀ 𝑗 ≀ 𝑛} βˆͺ {π‘₯𝑗+1𝑦𝑗; ⁑1 ≀ 𝑗 ≀ π‘š}. The cardinality of vertex set and edge set, respectively are |𝑉(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š))| = ⁑2π‘š + 2 and |𝐸(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š))| = 3π‘š + 1. The proof that the lower bound of π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š) is π‘‘π‘–π‘š(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) β‰₯ 2. Based on Proposition 1, that π‘‘π‘–π‘š(𝐺) = 1 if only if 𝐺 β‰… 𝑃𝑛. The graph π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š) does not isomorphic to path 𝑃𝑛 such that π‘‘π‘–π‘š(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) β‰₯ 2. Furthermore, we proof that the upper bound of π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š) is π‘‘π‘–π‘š(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) ≀ 2, we choose the resolving set π‘Š = {π‘₯1,𝑦1}. The representation of the vertices 𝑣 ∈ 𝑉(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) respect to π‘Š as follows. π‘Ÿ(π‘₯𝑗|π‘Š) =⁑(𝑗 βˆ’ 1,𝑗);𝑗 ∈ π‘œπ‘‘π‘‘ π‘Ÿ(𝑦𝑗|π‘Š) =⁑(𝑗, 𝑗 βˆ’ 1);𝑗 ∈ π‘œπ‘‘π‘‘ π‘Ÿ(π‘₯𝑗|π‘Š) =⁑(𝑗, 𝑗 βˆ’ 1);𝑗 ∈ 𝑒𝑣𝑒𝑛 π‘Ÿ(𝑦𝑗|π‘Š) =⁑(𝑗 βˆ’ 1,𝑗);𝑗 ∈ 𝑒𝑣𝑒𝑛 Vertex 𝑣 ∈ 𝑉(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) are distict. So, we have the cardinality of resolving set π‘Š is |π‘Š| = 2. Thus, the upper bound of π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š) is π‘‘π‘–π‘š(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) ≀ 2. It concludes that π‘‘π‘–π‘š(π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š)) = 2. ∎ On the Metric Dimension of Some Operation Graphs Marsidi 94 Fig 4. The Metric Dimension of Sβ„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,3). CONCLUSIONS In this paper, the result show that the local metric dimension of some graph operation such as joint graph 𝑃𝑛 + πΆπ‘š, amalgamation of parachute, amalgamation of fan, and π‘ β„Žπ‘Žπ‘π‘˜(𝐻2 2,𝑒,π‘š). ACKNOWLEDGMENTS We gratefully acknowledge the support from DRPM KEMENRISTEKDIKTI 2018 indonesia. REFERENCES [1] G. Chartrand, E. Salehi, and P. Zhang, "The partition dimension of a graph," Aequationes Math., vol. 59, pp. 45-54, 2000. [2] G. Chartrand, L. Eroh, and M. A. Johnson, " Resolvability in graphs and the metric dimension of a graph," Discrate Appl. Math., vol. 105, pp. 99-113, 2000. [3] Marsidi, Dafik, I. H. Agustin, and R. Alfarisi, β€œOn the local metric dimension of line graph of special graph,” CAUCHY, vol. 4, no. 3, pp. 125-130, 2016. [4] I. G. Yero, D. Kuziak, and J. S. RodrΓ­guez-VelΓ‘zquez, β€œOn the metric dimension of corona product graphs,” Computers and Mathematics with Applications, vol. 61, pp. 2793-2798, 2011. [5] H. Fernau, P. Heggernes, P. Hof, D. Meister, and R. Saei, β€œComputing the metric dimension for chain graphs,” Information Processing Letters, vol. 115, pp. 671-676, 2015. [6] J. CΓ‘ceres, C. Hernando, M. Mora, I. M. Pelayo, and M. L. Puertas, β€œOn the metric dimension of infinite graphs,” Discrete Applied Mathematics, vol. 160, pp. 2618-2626, 2012. [7] M. Fehr, S. Gosselin, and O. R. Oellermann, β€œThe metric dimension of cayley digraphs,” Discrete Mathematics, vol. 360, pp. 31-41, 2006. [8] T. K. Maryati, A. N. M. Salman, and E. T. Baskoro, β€œOn H-supermagic labelings for certain shackles and amalgamations of a connected graph,” Utilitas Mathematica, 2010. [9] I. H. Agustin, Dafik, S. Latifah, and R. M. Prihandini, β€œA super (A,D)-Bm-antimagic total covering of a generalized amalgamation of fan graphs,” CAUCHY, vol. 4, no. 4, pp. 146- 154, 2017.