On the Local Adjacency Metric Dimension of Generalized Petersen Graphs CAUCHY –Jurnal Matematika Murni dan Aplikasi Volume 6(1) (2019), Pages 10-17 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: February 22, 2019 Reviewed: October 02, 2019 Accepted: November 30, 2019 DOI: http://dx.doi.org/10.18860/ca.v6i1.6487 On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi1, Dafik2, Ika Hesti Agustin3, Ridho Alfarisi4 1Mathematics Edu. Depart. IKIP PGRI Jember Indonesia 2Mathematics Edu. Depart. University of Jember Indonesia 3Mathematics Depart. University of Jember Indonesia 4Elementary School Teacher Edu. Depart. University of Jember Indonesia Email: marsidiarin@gmail.com, d.dafik@gmail.com, ikahesti@fmipa.unej.ac.id. ABSTRACT The local adjacency metric dimension is one of graph topic. Suppose there are three neighboring vertex π‘Ž, 𝑏, 𝑐 in path π‘Ž βˆ’ 𝑐. Path π‘Ž βˆ’ 𝑐 is called local if π‘Ž,𝑏,𝑐 where each has representation: a is not equals 𝑏 and π‘Ž may equals to 𝑐. Let’s say, π‘₯,𝑦 ∈ 𝑉(𝐺). For an order set of vertices 𝐻 = {β„Ž1,β„Ž2, . . . ,β„Žπ‘˜}, the adjacency representation of 𝑣 with respect to 𝐻 is the ordered π‘˜-tuple π‘Ÿπ΄(π‘₯𝑗|𝐻) = (𝑑𝐴(π‘₯,β„Ž1),𝑑𝐴(π‘₯,β„Ž2), . . . ,𝑑𝐴(π‘₯,β„Žπ‘˜)), where 𝑑𝐴(π‘₯,β„Ž) represents the adjacency distance π‘₯ βˆ’ β„Ž. The distance 𝑑𝐴(π‘₯,β„Ž) defined by 0 if π‘₯ = β„Žπ‘–, 1 if π‘₯ adjacent with β„Ž, and 2 if π‘₯ does not adjacent with β„Ž. The set 𝐻 is a local adjacency resolving set of 𝐺 if for every two distinct vertices π‘₯, 𝑦 and π‘₯ adjacent with y then π‘Ÿπ΄(π‘₯𝑗|𝐻) =π‘Ÿπ΄(𝑦𝑗|𝐻). A minimum local adjacency resolving set in 𝐺 is called local adjacency metric basis. The cardinality of vertices in the basis is a local adjacency metric dimension of 𝐺, denoted by (π‘‘π‘–π‘šπ΄,𝑙(𝐺)). Next, we investigate the local adjacency metric dimension of generalized Petersen graph. Keywords: Local Resolving Set; Local (Adjacency) Metric Dimension; Adjacency Metric Dimension; Generalized Petersen. INTRODUCTION A graph 𝐺 is defined by set of 𝑉(𝐺) and 𝐸(𝐺), the set of vertices and the set of edges of 𝐺, for more details of the definition in [1,2]. The metric dimension is one of interesting studied graph topics. Local means that every adjacent two vertices or two edges has distinct representation. Let’s say, there are three neighboring vertex in a path, π‘Ž, 𝑏, 𝑐 where each has representation: π‘Ž = 𝑏 and π‘Ž may equals 𝑐. Then, the path π‘Ž βˆ’ 𝑐 is called local. The local adjacency metric dimension is combination of local metric dimension and adjacency metric dimension [3]. Let 𝐺 = (𝑉,𝐸) be a connected simple finite graph and 𝑒, 𝑣 in 𝐺. For an ordered set of vertices 𝑋 = {π‘₯1,π‘₯2, . . . ,π‘₯π‘˜}, the adjacency representation of 𝑣 with respect to 𝑋 is the ordered π‘˜-tuple π‘Ÿπ΄(𝑣|𝑋) = (𝑑𝐴(𝑣,π‘₯1),𝑑𝐴(𝑣,π‘₯2), . . . , 𝑑_𝐴 (𝑣,π‘₯_π‘˜)), where 𝑑𝐴(𝑒,𝑣) represents the adjacency distance 𝑒 βˆ’ 𝑣. 𝑑𝐴(𝑒,𝑣) defines by 0 if 𝑒 = 𝑣𝑖, 1 if 𝑒 ∼ 𝑣, and 2 if 𝑒 ≉ 𝑣. We called 𝑋 is a local adjacency resolving set of G if for every two distinct vertices 𝑒, 𝑣 and 𝑒 ∼ 𝑣 then π‘Ÿπ΄(𝑒|𝑋) =π‘Ÿπ΄(𝑣|𝑋). A local adjacency metric basis of G is a minimum local adjacency resolving set in G. The cardinality of vertices in the basis is a local adjacency metric dimension of 𝐺(π‘‘π‘–π‘šπ΄,𝑙(𝐺)). The research is originated by Rodriguez, et al. [3] about local adjacency metric dimension of corona graphs. Marsidi, et. al. Determined the local metric dimension of line graph of special graphs. Then in 2017 Rinurwati, et al. [5] researched about local adjacency metric dimension of some wheel related graphs with pendant vertices. http://dx.doi.org/10.18860/ca.v6i1.6487 mailto:d.dafik@gmail.com On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi 11 Recently, Darmaji, et al. [4] studied about local adjacency metric dimension of sun graph and stacked book graph this year. RESULTS AND DISCUSSION In this section, we investigate the local adjacency metric dimension of generalized Petersen graph 𝐺𝑃(𝑛,π‘˜) for π‘˜ = 2 as follows Theorem 1. The local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3𝑛+2 7 , for 𝑛 ≑ 4 π‘šπ‘œπ‘‘ 7. Proof. The vertex set of 𝐺𝑃(𝑛,2) is 𝑉(𝐺𝑃(𝑛,2)) = {π‘₯𝑖,𝑦𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛}. We choose the local adjacensy resolving set π‘Š = {𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7}⋃{𝑦𝑛 βˆ’2} such that we have the vertex representation respect to 𝐻 as follows. π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 3 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 6 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(π‘¦π‘›βˆ’1|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑛|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2,1,2,2,…,2}, for 𝑖 ≑ 2 π‘šπ‘œπ‘‘ 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 4,5 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 0 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 The representation in vertex π‘₯𝑖 ∈ 𝑉(𝐺𝑃(𝑛,2)) follows the representation in vertex 𝑦𝑖 such that we have the cardinality of local adjacency resolving set is |𝐻| = |{𝑣𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7} βˆͺ{π‘£π‘›βˆ’2}| = 3𝑛+2 7 . Thus, the upper bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) ≀ 3𝑛+2 7 . Furthermore, we prove that the lower bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) β‰₯ 3𝑛+2 7 . Assume that π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) < 3𝑛+2 7 , we choose |𝐻| = 3𝑛+2 7 βˆ’ 1 such that we have the same representation for two adjacent vertices in 𝐺𝑃(𝑛,2) namely π‘Ÿ(𝑦𝑛|𝐻) β‰  π‘Ÿ(π‘¦π‘›βˆ’2|𝐻) =. {2,…,2}⏟ ( 3π‘›βˆ’5 7 ) . Thus, the local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3𝑛+2 7 , for 𝑛 ≑ 4 π‘šπ‘œπ‘‘ 7. ∎ Theorem 2. The local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3𝑛+6 7 , for 𝑛 ≑ 5 π‘šπ‘œπ‘‘ 7. On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi 12 Proof. The vertex set of 𝐺𝑃(𝑛,2) is 𝑉(𝐺𝑃(𝑛,2)) = {π‘₯𝑖,𝑦𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛}. We choose the local adjacency resolving set 𝐻 = {𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7}⋃{𝑦𝑛 βˆ’2} such that we have the vertex representation respect to 𝐻 as follows. π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 3 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 6 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(π‘¦π‘›βˆ’1|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑛|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2,1,2,2,…,2}, for 𝑖 ≑ 2 π‘šπ‘œπ‘‘ 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 4,5 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 0 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 The representation in vertex π‘₯𝑖 ∈ 𝑉(𝐺𝑃(𝑛,2)) follows the representation in vertex 𝑦𝑖 such that we have the cardinality of local adjacency resolving set is |𝐻| = |{𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7} βˆͺ{π‘¦π‘›βˆ’2}| = 3𝑛+6 7 . Thus, the upper bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) ≀ 3𝑛+6 7 . Furthermore, we prove that the lower bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) β‰₯ 3𝑛+6 7 . Assume that π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) < 3𝑛+6 7 , we choose |𝐻| = 3𝑛+6 7 βˆ’ 1 such that we have the same representation for two adjacent vertices in 𝐺𝑃(𝑛,2) namely π‘Ÿ(𝑦𝑛|𝐻) β‰  π‘Ÿ(π‘¦π‘›βˆ’2|𝐻) = {2,…,2}⏟ ( 3π‘›βˆ’5 7 ) . Thus, the local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2))= 3𝑛+6 7 , for 𝑛 ≑ 5 π‘šπ‘œπ‘‘ 7. ∎ Theorem 3. The local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3𝑛+3 7 , for 𝑛 ≑ 6 π‘šπ‘œπ‘‘ 7. Proof. The vertex set of 𝐺𝑃(𝑛,2) is 𝑉(𝐺𝑃(𝑛,2)) = {π‘₯𝑖,𝑦𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛}. We choose the local adjacency resolving set 𝐻 = {𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7}⋃{𝑦𝑛 βˆ’2} such that we have the vertex representation respect to 𝐻 as follows. π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 3 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,…,2}⏟ ( 3𝑛+2 7 ) , for 𝑖 ≑ 6 π‘šπ‘œπ‘‘ 7 π‘Ÿ(π‘¦π‘›βˆ’1|𝐻) = {2,2,…,2} On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi 13 3𝑛+2 7 π‘Ÿ(𝑦𝑛|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2,1,2,2,…,2}, for 𝑖 ≑ 2 π‘šπ‘œπ‘‘ 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 4,5 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 0 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 The representation in vertex π‘₯𝑖 ∈ 𝑉(𝐺𝑃(𝑛,2)) follows the representation in vertex 𝑦𝑖 such that we have the cardinality of local adjacency resolving set is |𝐻| = |{𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7} βˆͺ{π‘¦π‘›βˆ’2}| = 3𝑛+3 7 . Thus, the upper bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) ≀ 3𝑛+3 7 . Furthermore, we prove that the lower bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) β‰₯ 3𝑛+3 7 . Assume that π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) < 3𝑛+3 7 , we choose |𝐻| = 3𝑛+3 7 βˆ’ 1 such that we have the same representation for two adjacent vertices in 𝐺𝑃(𝑛,2) namely π‘Ÿ(𝑦𝑛|𝐻) β‰  π‘Ÿ(π‘¦π‘›βˆ’2|𝐻) = {2,…,2}⏟ ( 3π‘›βˆ’5 7 ) . Thus, the local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3𝑛+3 7 , for 𝑛 ≑ 6 π‘šπ‘œπ‘‘ 7. ∎ Theorem 4. The local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3𝑛 7 , for 𝑛 ≑ 0 π‘šπ‘œπ‘‘ 7. Proof. The vertex set of 𝐺𝑃(𝑛,2) is 𝑉(𝐺𝑃(𝑛,2)) = {π‘₯𝑖,𝑦𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛}. We choose the local adjacency resolving set 𝐻 = {𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7}⋃{𝑦𝑛 βˆ’2} such that we have the vertex representation respect to 𝐻 as follows. π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 3 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 6 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(π‘¦π‘›βˆ’1|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑛|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2,1,2,2,…,2}, for 𝑖 ≑ 2 π‘šπ‘œπ‘‘ 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 4,5 π‘šπ‘œπ‘‘ 7 On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi 14 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 0 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 The representation in vertex π‘₯𝑖 ∈ 𝑉(𝐺𝑃(𝑛,2)) follows the representation in vertex 𝑦𝑖 such that we have the cardinality of local adjacency resolving set is |𝐻| = |{𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7} βˆͺ{π‘¦π‘›βˆ’2}| = 3𝑛+2 7 . Thus, the upper bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) ≀ 3𝑛 7 . Furthermore, we prove that the lower bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) β‰₯ 3𝑛 7 . Assume that π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) < 3𝑛 7 , we choose |𝐻| = 3𝑛 7 βˆ’ 1 such that we have the same representation for two adjacent vertices in 𝐺𝑃(𝑛,2) namely π‘Ÿ(𝑦𝑛|𝐻) β‰  π‘Ÿ(π‘¦π‘›βˆ’2|𝐻) = {2,…,2}⏟ ( 3π‘›βˆ’5 7 ) . Thus, the local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2))= 3𝑛 7 , for 𝑛 ≑ 0 π‘šπ‘œπ‘‘ 7. ∎ Theorem 5. The local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3𝑛+4 7 , for 𝑛 ≑ 1 π‘šπ‘œπ‘‘ 7. Proof. The vertex set of 𝐺𝑃(𝑛,2) is 𝑉(𝐺𝑃(𝑛,2)) = {π‘₯𝑖,𝑦𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛}. We choose the local adjacency resolving set 𝐻 = {𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7}⋃{𝑦𝑛 βˆ’2} such that we have the vertex representation respect to 𝐻 as follows. π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 3 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 6 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(π‘¦π‘›βˆ’1|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑛|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2,1,2,2,…,2}, for 𝑖 ≑ 2 π‘šπ‘œπ‘‘ 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 4,5 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 π‘Ÿ(𝑦𝑖|𝐻 ) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 0 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 The representation in vertex π‘₯𝑖 ∈ 𝑉(𝐺𝑃(𝑛,2)) follows the representation in vertex 𝑦𝑖 such that we have the cardinality of local adjacency resolving set is |𝐻| = |{𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7} βˆͺ{π‘¦π‘›βˆ’2}| = 3𝑛+4 7 . Thus, the upper bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) ≀ 3𝑛+4 7 . Furthermore, we prove that the lower bound of local On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi 15 adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) β‰₯ 3𝑛+4 7 . Assume that π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) < 3𝑛+4 7 , we choose |𝐻| = 3𝑛 7 βˆ’ 1 such that we have the same representation for two adjacent vertices in 𝐺𝑃(𝑛,2) namely π‘Ÿ(𝑦𝑛|𝐻) β‰  π‘Ÿ(π‘¦π‘›βˆ’2|𝐻) = {2,…,2}⏟ ( 3π‘›βˆ’5 7 ) . Thus, the local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2))= 3𝑛+4 7 , for 𝑛 ≑ 1 π‘šπ‘œπ‘‘ 7. ∎ Theorem 6. The local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3𝑛+1 7 , for 𝑛 ≑ 2 π‘šπ‘œπ‘‘ 7. Proof. The vertex set of 𝐺𝑃(𝑛,2) is 𝑉(𝐺𝑃(𝑛,2)) = {π‘₯𝑖,𝑦𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛}. We choose the local adjacency resolving set 𝐻 = {𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7}⋃{𝑦𝑛 βˆ’2} such that we have the vertex representation respect to 𝐻 as follows. π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 3 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 6 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(π‘¦π‘›βˆ’1|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑛|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2,1,2,2,…,2}, for 𝑖 ≑ 2 π‘šπ‘œπ‘‘ 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 4,5 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 0 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 The representation in vertex π‘₯𝑖 ∈ 𝑉(𝐺𝑃(𝑛,2)) follows the representation in vertex 𝑦𝑖 such that we have the cardinality of local adjacency resolving set is |𝐻| = |{𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7} βˆͺ{π‘¦π‘›βˆ’2}| = 3𝑛+1 7 . Thus, the upper bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) ≀ 3𝑛+1 7 . Furthermore, we prove that the lower bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) β‰₯ 3𝑛+1 7 . Assume that π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) < 3𝑛+1 7 , we choose |𝐻| = 3𝑛+1 7 βˆ’ 1 such that we have the same representation for two adjacent vertices in 𝐺𝑃(𝑛,2) namely π‘Ÿ(𝑦𝑛|𝐻) β‰  π‘Ÿ(π‘¦π‘›βˆ’2|𝐻) = {2,…,2}⏟ ( 3π‘›βˆ’5 7 ) . Thus, the local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2))= 3𝑛+1 7 , for 𝑛 ≑ 2 π‘šπ‘œπ‘‘ 7. ∎ On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi 16 Theorem 7. The local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) = 3π‘›βˆ’2 7 , for 𝑛 ≑ 3 π‘šπ‘œπ‘‘ 7. Proof. The vertex set of 𝐺𝑃(𝑛,2) is 𝑉(𝐺𝑃(𝑛,2)) = {π‘₯𝑖,𝑦𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛}. We choose the local adjacency resolving set 𝐻 = {𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7}⋃{𝑦𝑛 βˆ’2} such that we have the vertex representation respect to 𝐻 as follows. π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 3 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(𝑣𝑖|𝐻) = {2,2,…,2}, for 𝑖 ≑ 6 π‘šπ‘œπ‘‘ 7 3𝑛+2 7 π‘Ÿ(π‘¦π‘›βˆ’1|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑛|𝐻) = {2,2,…,2} 3𝑛+2 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,…,2,1,2,2,…,2}, for 𝑖 ≑ 2 π‘šπ‘œπ‘‘ 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 4,5 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 π‘Ÿ(𝑦𝑖|𝐻) = {2,2,2,…,2,2,2,2,…,2,1,2,…,2,2,2,2,…,2,2,2}, for 𝑖 ≑ 0 π‘šπ‘œπ‘‘ 7 π‘–βˆ’3 7 π‘–βˆ’2 7 3π‘›βˆ’π‘–βˆ’3 7 3π‘›βˆ’π‘–βˆ’4 7 The representation in vertex π‘₯𝑖 ∈ 𝑉(𝐺𝑃(𝑛,2)) follows the representation in vertex 𝑦𝑖 such that we have the cardinality of local adjacency resolving set is |𝐻| = |{𝑦𝑖; 𝑖 ≑ 1 π‘šπ‘œπ‘‘ 7} βˆͺ{π‘¦π‘›βˆ’2}| = 3π‘›βˆ’2 7 . Thus, the upper bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) ≀ 3π‘›βˆ’2 7 . Furthermore, we prove that the lower bound of local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) β‰₯ 3π‘›βˆ’2 7 . Assume that π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2)) < 3π‘›βˆ’2 7 , we choose |𝐻| = 3π‘›βˆ’2 7 βˆ’ 1 such that we have the same representation for two adjacent vertices in 𝐺𝑃(𝑛,2) namely π‘Ÿ(𝑦𝑛|𝐻) β‰  π‘Ÿ(π‘¦π‘›βˆ’2|𝐻) = {2,…,2}⏟ ( 3π‘›βˆ’5 7 ) . Thus, the local adjacency metric dimension of 𝐺𝑃(𝑛,2) is π‘‘π‘–π‘šπ΄,𝑙(𝐺𝑃(𝑛,2))= 3π‘›βˆ’2 7 , for 𝑛 ≑ 3 π‘šπ‘œπ‘‘ 7. ∎ CONCLUSIONS We have discussed about the local adjacency metric dimension of generalized Petersen graph 𝐺𝑃(𝑛,π‘˜) for π‘˜ = 2. Accordingly, we have some problem for π‘˜ β‰₯ 3 as follows. Open Problem 1. Find the local adjacency metric dimension of generalized Petersen graph 𝐺𝑃(𝑛,π‘˜) for π‘˜ β‰₯ 3 ?. On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi 17 ACKNOWLEDGMENTS We gratefully acknowledge the support from IKIP PGRI Jember 2019 and CGANT- University of Jember of year 2019. REFERENCES [1] J. L. Gross, J. Yellen and P. Zhang, Handbook of graph Theory, Second Edition CRC Press Taylor and Francis Group, 2014. [2] G. Chartrand and L. Lesniak, Graphs and digraphs 3rd ed London: Chapman and Hall, 2000. [3] J. A. Rodriguez-Velazquez and H. Fernau, " On the (adjacency) metric dimension of corona and strong product graphs and their local variants", Combinatorial and Computational Results, Arxiv: 1309.2275.v1[math.CO]. [4] A. Y. Badri and Darmaji, ”Local adjacency metric dimension of sun graph and stacked book graph”, Journal of Physics: Conf. Series, vol. 974, No. 012069, pp. 01-05, 2018. [5] [6] Rinurwati, H. Suprajitno, and Slamin, ”On local adjacency metric dimension of some wheel related graphs with pendant points”, AIP Conference Proceedings, vol. 1867, No. 020065, pp. 01-06, 2017. Marsidi, M., Dafik, D., Agustin, I. H., & Alfarisi, R. (2016). On the local metric dimension of line graph of special graph. Cauchy, 4(3), 125-130.