Basis Existence of Internal n-Graph Space CAUCHY โ€“Jurnal Matematika Murni dan Aplikasi Volume 6(2) (2020), Pages 58-65 p-ISSN: 2086-0382; e-ISSN: 2477-3344 Submitted: November 16, 2019 Reviewed: April 03, 2020 Accepted: May 31, 2020 DOI: http://dx.doi.org/10.18860/ca.v6i2.8002 Basis Existence of Internal n-Graph Space Ahmad Lazwardi University of Muhammadiyah Banjarmasin Email: lazwardiahmad@gmail.com ABSTRACT Graph of real valued continuous function with special addition and multiplication has already proven that is isomorphic to real number system. Furthermore, the graph of continous real valued function forms a field. The aim of this research was to generalize such concept to its n-tuple Cartesian Product and to prove that interchange of basis still able to be executed. The result of this research is n-tuple Cartesian Product of graph function forms a vector space over โ„ and interchange of basis still able to be executed. Keywords: n-Graph Space; General Vector Space; Internal n-Graph Space INTRODUCTION By associating the special operation to a graph of continuous function, such graph can be claimed as a vector space. This follows from the fact that every graph of continuous real valued function has a bijection to its domain i.e. the real number system. Furthermore, they are homeomorphic. Graph of real valued continuous function has a unique characteristic. It has continuous shape of curve along real line โ„. More detail will be described as follows [1] Definition 1. Let real valued function ๐‘“: โ„ โ†’ โ„. The graph of f is defined as โ„๐‘“ = {(๐‘ฅ, ๐‘“(๐‘ฅ)): ๐‘ฅ โˆˆ โ„} (1) Continuity of f indicates that โ„๐‘“ topologically equivalent to โ„. Its described briefly as follows; Definition 2 [2]. For each ๐‘ˆ โŠ‚ โ„. Define the image of ๐‘ˆ over โ„๐‘“ as ๐‘ˆ ร— ๐‘“(๐‘ˆ) = {(๐‘ฅ, ๐‘“(๐‘ฅ)): ๐‘ฅ โˆˆ ๐‘ˆ} (2) define the associated topology for โ„๐‘“ as ๐œ๐‘“ = {๐‘ˆ ร— ๐‘“(๐‘ˆ): ๐‘ˆ ๐‘œ๐‘๐‘’๐‘›} (3) It can be shown trivially that such topology implies โ„๐‘“ and โ„ are homeomorphics . The fact that โ„๐‘“ and โ„ are homeomorphics describes that even though their graph geometrically has different shapes, but they still have similarity in views of topology[3]. It motivates us to explore more special properties of โ„๐‘“. Now let see it further. Definition 3. Let real valued function ๐‘“: โ„ โ†’ โ„. Define the addition for โ„๐‘“ as follow http://dx.doi.org/10.18860/ca.v6i2.8002 mailto:lazwardiahmad@gmail.com Basis Existence in Graph of Real Valued Continous Functions Ahmad Lazwardi 59 ๐‘ฅ๐‘“โจ๐‘ฆ๐‘“ = (๐‘ฅ + ๐‘ฆ, ๐‘“(๐‘ฅ + ๐‘ฆ)) for any ๐‘ฅ๐‘“, ๐‘ฆ๐‘“ โˆˆ โ„๐‘“ . Define the scalar multiplication as follow (๐›ผ)๐‘ฅ๐‘“ = ๐›ต๐‘“ (๐›ผ๐›ต โˆ’1 ๐‘“(๐‘ฅ, ๐‘“(๐‘ฅ))) = (๐›ผ๐‘ฅ, ๐‘“(๐›ผ๐‘ฅ)) For any ๐‘ฅ๐‘“ โˆˆ โ„๐‘“ and scalar ๏ก , and Tf is natural bijection generated by real valued function f such as ๐›ต๐‘“(๐‘ฅ) = (๐‘ฅ, ๐‘“(๐‘ฅ)). By associating โ„๐‘“ with those operations, โ„๐‘“ become real vector space. Moreover โ„๐‘“ and โ„ are isomorphics [4]. METHODS The method of this research is done by following method: first was to prove that โ„๐‘“ has dimension 1 and isomorphics to โ„. Next step was to analyize more general space i.e. n tuple Cartesian Product of โ„๐‘“ denoted by โ„๐‘“ ๐‘›. In generalization of โ„๐‘“ ๐‘› was to prove that such space is a vector space over โ„ and was able to change of bases. Finally, was to find out the briefly method to change of bases as well as in real vector spaces. RESULTS AND DISCUSSION It was proven previously that for each continuous function ๐‘“: โ„ โ†’ โ„, the space โ„๐‘“ generated by f forms a field. This fact becomes the basic to generalize the idea by constructing new n-tuple Cartesian Product of โ„๐‘“ which preserves vector space properties [5]. Before any further discussion, first define some necessary terms in order to help in generalization. We mean linear combination is ๐‘ง๐‘“ = (โˆ)๐‘ฅ๐‘“ + (๐›ฝ)๐‘ฆ๐‘“ for each ๐‘ง๐‘“ โˆˆ โ„๐‘“ and some scalars ๐›ผ, ๐›ฝ โˆˆ โ„ [6]. The set of linear combinations of ๐‘ฅ๐‘“, ๐‘ฆ๐‘“ is named as Span {๐‘ฅ๐‘“, ๐‘ฆ๐‘“ } [7]. The set ๐‘ˆ โŠ‚ โ„๐‘“ is said to be linearly independent if none of its members is able to expressed as linear combination of other members. Here is definition of basis: Definition 4. The set },...,,{ 21 n fff xxx is called basis of subspace ๐‘ˆ โŠ‚ โ„๐‘“ if },...,,{ 21 n fff xxx are linearly independent and Span },...,,{ 21 n fff xxx =U. Recall that, dimension of ๐‘ˆ is defined as base cardinality of ๐‘ˆ. Next theorem is an important result. Theorem 1. โ„๐‘“ has dimension 1. Proof: Chose 1๐‘“ โˆˆ โ„๐‘“. For each ๐‘ฅ๐‘“ โˆˆ โ„๐‘“, itโ€™s obvious that x๐‘“ = (๐‘ฅ, ๐‘“(๐‘ฅ)) = ๐›ต๐‘“(๐‘ฅ) = ๐›ต๐‘“(๐‘ฅ. 1) = (๐‘ฅ. 1, ๐‘“(๐‘ฅ. 1)). = (๐‘ฅ) ร— 1๐‘“ By last equation, we conclude that ๐‘†๐‘๐‘Ž๐‘›{1๐‘“} = โ„๐‘“. Furthermore, based on the above results, vector space theory of โ„๐‘“ can be developed: Basis Existence in Graph of Real Valued Continous Functions Ahmad Lazwardi 60 Definition 5. Let ๐‘† = {๐‘“1, ๐‘“2, โ€ฆ , ๐‘“๐‘›} be a finite collection of real valued continuous functions, define n-graph space as โ„๐‘“๐‘ ๐‘› = โˆ โ„๐‘“๐‘˜ ๐‘› ๐‘˜=1 = {๏ฟฝโƒ—๏ฟฝ: {1,2, โ€ฆ , ๐‘›} โ†’ โ‹ƒ โ„๐‘“๐‘˜: ๏ฟฝโƒ—๏ฟฝ(๐‘–) โˆˆ โ„๐‘“๐‘– ๐‘› ๐‘˜=1 }. (4) Definition 6. Let ๐‘† = {๐‘“1, ๐‘“2, โ€ฆ , ๐‘“๐‘›} be a finite collection of real valued continuous functions. Define addition on โ„๐‘“๐‘ ๐‘› as . ๏ฟฝโƒ—๏ฟฝโจ๏ฟฝโƒ—โƒ—โƒ—๏ฟฝ = (๏ฟฝโƒ—๏ฟฝ(1)โจ๏ฟฝโƒ—โƒ—โƒ—๏ฟฝ(1), ๏ฟฝโƒ—๏ฟฝ(2)โจ๏ฟฝโƒ—โƒ—โƒ—๏ฟฝ(2), . . . , ๏ฟฝโƒ—๏ฟฝ(๐‘›)โจ๏ฟฝโƒ—โƒ—โƒ—๏ฟฝ(๐‘›)) (5) and scalar multiplication as . (โˆ)๏ฟฝโƒ—๏ฟฝ = ((โˆ)๏ฟฝโƒ—๏ฟฝ(1), (โˆ)๏ฟฝโƒ—๏ฟฝ(2), . . . , (โˆ)๏ฟฝโƒ—๏ฟฝ(๐‘›)) (6) for each ๐›ผ โˆˆ โ„. Theorem 2. Let ๐‘† = {๐‘“1, ๐‘“2, โ€ฆ , ๐‘“๐‘›} be a finite collection of real valued continuous function. n-graph space โ„๐‘“๐‘ ๐‘› is a vector space over โ„ under operation โจ and scalar multiplication (โˆ)๏ฟฝโƒ—๏ฟฝ. In special case which ๐‘“1 = ๐‘“2 = ๐‘“3 = โ‹ฏ = ๐‘“๐‘›, graph space โ„๐‘“๐‘ ๐‘› is called internal n-graph space i.e. Cartesian Product n-tuple of โ„๐‘“ itself. One can write โ„๐‘“๐‘ ๐‘› = โ„๐‘“ ๐‘›. Euclidean Space โ„๐‘› is one of finest example of graph space which f is defined as identity mapping. One of the most important tools to analyze relation between two internal n-graph space is linear transformation[8], here we still able to define linear transformation as well as done on commonly vector spaces. Definition 7. Let two graph spaces โ„๐‘“ ๐‘š, โ„๐‘“ ๐‘›. Mapping ๐ฟ: โ„๐‘“ ๐‘š โ†’ โ„๐‘“ ๐‘› is linear transformation if the following properties hold ๐ฟ(๏ฟฝโƒ—๏ฟฝโจ๏ฟฝโƒ—โƒ—โƒ—๏ฟฝ) = ๐ฟ(๏ฟฝโƒ—๏ฟฝ)โจ๐ฟ(๏ฟฝโƒ—โƒ—โƒ—๏ฟฝ), โˆ€๏ฟฝโƒ—๏ฟฝ, ๏ฟฝโƒ—โƒ—โƒ—๏ฟฝ โˆˆ โ„๐‘“ ๐‘š ๐ฟ((โˆ)๏ฟฝโƒ—๏ฟฝ) = (โˆ)๐ฟ(๏ฟฝโƒ—๏ฟฝ), โˆ€โˆโˆˆ โ„ The set of all linear transformation from โ„๐‘“ ๐‘š to โ„๐‘“ ๐‘› is denoted as ๐ฟ๐‘–๐‘›(โ„๐‘“ ๐‘š, โ„๐‘“ ๐‘›) [7]. One of necessary example of linear transformation is linear mapping from โ„๐‘“ ๐‘š to its coordinate i.e. ๐‘ฃ๐‘–โƒ—โƒ—โƒ— โƒ—: โ„๐‘“ ๐‘š โ†’ โ„ by specific formula ๐‘ฃ๐‘–โƒ—โƒ—โƒ— โƒ—(๏ฟฝโƒ—๏ฟฝ) = ๏ฟฝโƒ—๏ฟฝ(๐‘–), ๐‘– = 1,2,3, โ€ฆ , ๐‘š. The term of linear transformation is very useful in constructing theory change bases in graph space[9]. On internal graph space โ„๐‘“ ๐‘š change of bases still able to be constructed. Definition 8. Let ๏ฟฝโƒ—๏ฟฝ1, ๏ฟฝโƒ—๏ฟฝ2, . . . , ๏ฟฝโƒ—๏ฟฝ๐‘˜ โˆˆ โ„๐‘“ ๐‘š are said to be linearly independent if for each ๏ฟฝโƒ—๏ฟฝ๐‘– โƒ—โƒ—โƒ— โƒ— canโ€™t be expressed as linear combination of some others. The term of linear combination refers to equation ๏ฟฝโƒ—๏ฟฝ = (โˆ1)๐‘ฃ1โƒ—โƒ—โƒ—โƒ—โƒ—โจ . . . โจ (โˆ๐‘˜)๐‘ฃ๐‘˜โƒ—โƒ—โƒ—โƒ—โƒ— (7) Another way to express coordinate transformation is by defining linear transformation which maps a vector to its scalars corresponding to the basis used to. Basis Existence in Graph of Real Valued Continous Functions Ahmad Lazwardi 61 Definition 9. Let V be a nontrivial vector space over field F. Let ๐‘† = {๐‘ 1โƒ—โƒ—โƒ—โƒ— , ๐‘ 2โƒ—โƒ—โƒ—โƒ— , ๐‘ 3โƒ—โƒ—โƒ—โƒ— , โ€ฆ , ๐‘ ๐‘šโƒ—โƒ— โƒ—โƒ—โƒ—} be a basis of V. Define coordinate transformation as โˆ…๐‘†: ๐‘‰ โ†’ ๐น ๐‘š such that for each ๏ฟฝโƒ—๏ฟฝ = ๐‘ฃ1๐‘ 1โƒ—โƒ—โƒ—โƒ— + ๐‘ฃ2๐‘ 2โƒ—โƒ—โƒ—โƒ— + โ‹ฏ + ๐‘ฃ๐‘š๐‘ ๐‘šโƒ—โƒ— โƒ—โƒ—โƒ—, the map โˆ…๐‘†(๏ฟฝโƒ—๏ฟฝ) = [๏ฟฝโƒ—๏ฟฝ]๐‘† = [ ๐‘ฃ1 ๐‘ฃ2 โ‹ฎ ๐‘ฃ๐‘š ] . Itโ€™s easy to check that coordinate transformation is an isomorphism [10]. The concept of coordinate mapping above is used to construct the concept of change of basis. First, we have to decide standard basis which lies on โ„๐‘“ ๐‘š. Standard basis of โ„๐‘“ ๐‘š is ๐‘ฃ๐‘–โƒ—โƒ—โƒ— โƒ— = (1๐‘“, 0๐‘“, 0๐‘“, 0๐‘“, . . . , 0๐‘“) ๐‘ฃ2โƒ—โƒ—โƒ—โƒ—โƒ— = (0๐‘“, 1๐‘“, 0๐‘“, 0๐‘“, . . . , 0๐‘“) ๐‘ฃ๐‘šโƒ—โƒ—โƒ—โƒ—โƒ—โƒ— = (0๐‘“, 0๐‘“, 0๐‘“, 0๐‘“, . . . , 1๐‘“) Now letโ€™s see how the change of basis works: For each ๏ฟฝโƒ—๏ฟฝ โˆˆ โ„๐‘“ ๐‘š. By previous definition, one can write ๏ฟฝโƒ—๏ฟฝ = (๏ฟฝโƒ—๏ฟฝ(1), ๏ฟฝโƒ—๏ฟฝ(2), . . . , ๏ฟฝโƒ—๏ฟฝ(๐‘š)) (8) which ๏ฟฝโƒ—๏ฟฝ(๐‘–) โˆˆ โ„๐‘“ for each i = 1,2, . . ., m. Therefore ๏ฟฝโƒ—๏ฟฝ = ๏ฟฝโƒ—๏ฟฝ(1)๏ฟฝโƒ—๏ฟฝ1โจ๏ฟฝโƒ—๏ฟฝ(2)๏ฟฝโƒ—๏ฟฝ2โจ . . . โจ๏ฟฝโƒ—๏ฟฝ(๐‘š)๏ฟฝโƒ—๏ฟฝ๐‘š for corresponding coordinate ๏ฟฝโƒ—๏ฟฝ(๐‘–) โˆˆ โ„๐‘“. This is how the above coordinate and corresponding scalars related, letโ€™s see it as follows: ๏ฟฝโƒ—๏ฟฝ(1). 1๐‘“ = ๏ฟฝโƒ—๏ฟฝ(1) = ๐›ต๐‘“(๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1))) = ๐›ต๐‘“(๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1). 1) = (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1). 1), ๐‘“(๏ฟฝโƒ—๏ฟฝ(1). 1)) = (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1). 1) . 1๐‘“ Hence ๏ฟฝโƒ—๏ฟฝ = (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1)) . ๐‘ฃ1โƒ—โƒ—โƒ—โƒ—โƒ—โจ (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(2)) . ๐‘ฃ2โƒ—โƒ—โƒ—โƒ—โƒ—โจ . . . โจ (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(๐‘š)) . ๐‘ฃ๐‘šโƒ—โƒ—โƒ—โƒ—โƒ—โƒ— (9) for some (๐›ต๐‘“๐‘˜ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1)) โˆˆ โ„. The last equation can be expressed in term of more visual vector addition as follows: ๏ฟฝโƒ—๏ฟฝ = (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1)) . ๐‘ฃ1โƒ—โƒ—โƒ—โƒ—โƒ—โจ. . . โจ (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(๐‘š)) . ๐‘ฃ๐‘šโƒ—โƒ—โƒ—โƒ—โƒ—โƒ— = (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1)) . [ 1๐‘“ 0๐‘“ โ‹ฎ 0๐‘“] โจ. . . โจ (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(๐‘š)) [ 0๐‘“ 0๐‘“ โ‹ฎ 1๐‘“] = [ 1๐‘“ 0๐‘“ 0๐‘“ โ‹ฎ 0๐‘“ โ€ฆ โ€ฆ 0๐‘“ โ€ฆ 0๐‘“ โ€ฆ โ€ฆ โ€ฆ 0๐‘“ โ‹ฎ 1๐‘“] [ ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1)) โ€ฆ โ€ฆ ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(๐‘š)) ] = ๐ผ๐‘“๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ) The above equation gives a consequence that โ„๐‘“ ๐‘š is isomorphic to โ„๐‘š. The next theorem will ensure that โ„๐‘“ ๐‘š has more than just standard basis. Teorema 3. If ๐‘† = {๐’”1, ๐’”2, . . . , ๐’”๐‘š} is basis for โ„ ๐‘š then ๐‘‡๐‘“(๐‘†) = {๐‘‡๐‘“(๐’”๐Ÿ), ๐‘‡๐‘“(๐’”2), . . . , ๐‘‡๐‘“(๐’”๐‘š)} forms a basis for โ„๐‘“ ๐‘š. Bukti: Basis Existence in Graph of Real Valued Continous Functions Ahmad Lazwardi 62 Suppose that ๏ฟฝโƒ—๏ฟฝ โˆˆ โ„๐‘“ ๐‘š. Letโ€™s see the following fact, another fine expression for vector in โ„๐‘“ ๐‘š is ๏ฟฝโƒ—๏ฟฝ = [ ๏ฟฝโƒ—๏ฟฝ(1) ๏ฟฝโƒ—๏ฟฝ(2) โ‹ฎ ๏ฟฝโƒ—๏ฟฝ(๐‘š) ] . Thus we have ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ) = [ ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1)) ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(2)) โ‹ฎ ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(๐‘š))] is actually lies in โ„๐‘š. Therefore ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ) = [ ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(1)) ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(2)) โ‹ฎ ๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ(๐‘š))] = (โˆ1) [ ๐‘ 11 ๐‘ 12 โ‹ฎ ๐‘ 1๐‘š ] + . . . +(โˆ๐‘š) [ ๐‘ ๐‘š1 ๐‘ ๐‘š2 โ‹ฎ ๐‘ ๐‘š๐‘š ] , by ๐’”๐‘– = [ ๐‘ ๐‘–1 ๐‘ ๐‘–2 โ‹ฎ ๐‘ ๐‘–๐‘š ] for each i. One can have ๏ฟฝโƒ—๏ฟฝ = ๐›ต๐‘“ (๐›ต๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ)) = ๐›ต๐‘“((๐›ผ1)๐’”1 + (๐›ผ2)๐’”2+ . . . +(๐›ผ๐‘š)๐’”๐‘š) = ((๐›ผ1)๐’”1 + (๐›ผ2)๐’”2+ . . . +(๐›ผ๐‘š)๐’”๐‘š, ๐‘“((๐›ผ1)๐’”1 + (๐›ผ2)๐’”2+ . . . +(๐›ผ๐‘š)๐’”๐‘š)) = (๐›ผ1)๐›ต๐‘“(๐’”1)โจ(๐›ผ2)๐›ต๐‘“(๐’”2)โจ . . . โจ(๐›ผ๐‘š)๐›ต๐‘“(๐’”๐‘š). In other words, {๐›ต๐‘“(๐’”1), ๐›ต๐‘“(๐’”2), . . . , ๐›ต๐‘“(๐’”๐‘š)} spans โ„๐‘“ ๐‘š. The rest is to prove that ๐›ต๐‘“(๐’”) is linearly independent. Suppose the statement is not true, then there exist ๐›ต๐‘“(๐’”) which become linear combination of other members. Letโ€™s assume that is ๐›ต๐‘“(๐’”๐’Š) then we have ๐›ตโˆ’1 (๐›ต๐‘“(๐’”๐‘–)) = ๐’”๐‘– = (๐›ผ1)๐’”1+ . . . +(๐›ผ๐‘–โˆ’1)๐’”๐‘–โˆ’1 + (๐›ผ๐‘–+1)๐’”๐‘–+1+ . . . + (๐›ผ๐‘š)๐’”๐‘š But since {๐’”๐Ÿ, ๐’”๐Ÿ, . . . , ๐’”๐’Ž} is linearly independent, then it should be a contradiction. The above theorem indirectly explains that the internal graph space โ„๐‘“ ๐‘š has infinitely many vectors that can form a basis for โ„๐‘“ ๐‘š. The next theorems will be discussing about how the basis related each other. Let ๐‘† = {๐‘ 1โƒ—โƒ—โƒ—โƒ— , ๐‘ 2โƒ—โƒ—โƒ—โƒ— , . . . , ๐‘ ๐‘šโƒ—โƒ— โƒ—โƒ—โƒ—} be a basis for โ„๐‘“ ๐‘š. Then for each ๏ฟฝโƒ—๏ฟฝ โˆˆ โ„๐‘“ ๐‘š, one can write ๏ฟฝโƒ—๏ฟฝ = (๐›ผ1 ๐‘ )๐‘ 1โƒ—โƒ—โƒ—โƒ— + (๐›ผ2 ๐‘ )๐‘ 2โƒ—โƒ—โƒ—โƒ— + . . . +(๐›ผ๐‘š ๐‘  )๐‘ ๐‘šโƒ—โƒ— โƒ—โƒ—โƒ— dengan (๐›ผ๐‘– ๐‘ ) โˆˆ โ„. (10) = (๐›ผ1 ๐‘ ) [ ๐‘ 1(1) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ— ๐‘ 1(2) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ— โ‹ฎ ๐‘ 1(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—] + (๐›ผ2 ๐‘ ) [ ๐‘ 2(1) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ—โƒ— ๐‘ 2(2) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ—โƒ— โ‹ฎ ๐‘ 2(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ—] +โ€ฆ+(๐›ผ๐‘š ๐‘  ) [ ๐‘ ๐‘š(1) โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— ๐‘ ๐‘š(2) โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โ‹ฎ ๐‘ ๐‘š(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— ] = [ ๐‘ 1(1) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ— ๐‘ 1(2) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ— โ‹ฎ ๐‘ 1(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— ๐‘ 2(1) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ—โƒ— ๐‘ 2(2) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ—โƒ— โ‹ฎ ๐‘ 2(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ— โ€ฆ ๐‘ ๐‘š(1) โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— ๐‘ ๐‘š(2) โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โ‹ฎ ๐‘ ๐‘š(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— ] [ (๐›ผ1 ๐‘ ) (๐›ผ2 ๐‘ ) โ‹ฎ (๐›ผ๐‘š ๐‘  ) ] =[๐‘€]๐‘†,๐‘“[๐›ผ]๐‘† by [๐‘€]๐‘†,๐‘“ is matrics which for each entry lies in โ„๐‘“ ๐‘š and [๐›ผ]๐‘† is real scalar vector. Then we have ๐‘‡๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ) = [ ๐‘‡๐‘“ โˆ’1(๐‘ 1(1) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ—) ๐‘‡๐‘“ โˆ’1(๐‘ 1(2) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ—) โ‹ฎ ๐‘‡๐‘“ โˆ’1(๐‘ 1(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—) ๐‘‡๐‘“ โˆ’1(๐‘ 2(1) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ—โƒ—) ๐‘‡๐‘“ โˆ’1(๐‘ 2(2) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ—โƒ—) โ‹ฎ ๐‘‡๐‘“ โˆ’1(๐‘ 2(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ—) โ€ฆ ๐‘‡๐‘“ โˆ’1(๐‘ ๐‘š(1) โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— ) ๐‘‡๐‘“ โˆ’1(๐‘ ๐‘š(1) โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— ) โ‹ฎ ๐‘‡๐‘“ โˆ’1(๐‘ ๐‘š(๐‘š) โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— โƒ—โƒ— )] [ (๐›ผ1 ๐‘ ) (๐›ผ2 ๐‘ ) โ‹ฎ (๐›ผ๐‘š ๐‘  ) ] Basis Existence in Graph of Real Valued Continous Functions Ahmad Lazwardi 63 Therefore, ๐‘‡๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ)=[๐‘‡๐‘“ โˆ’1(๐‘†)][๐›ผ]๐‘† (11) The above equation explains how the basis S in internal graph space โ„๐‘“ ๐‘š mapped to โ„๐‘š. It will make us easier to change basis from the old to the new one. Letโ€™s pay attention to the following discussion; Let ๐‘† = {๐‘ 1โƒ—โƒ—โƒ—โƒ— , ๐‘ 2โƒ—โƒ—โƒ—โƒ— , . . . , ๐‘ ๐‘šโƒ—โƒ— โƒ—โƒ—โƒ—} be a basis of โ„๐‘“ ๐‘š and ๐‘Š = {๐‘ค1โƒ—โƒ— โƒ—โƒ—โƒ—, ๐‘ค2โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— , . . . , ๐‘ค๐‘šโƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—} another basis. We want to change the old basis S into the new one W. We have ๏ฟฝโƒ—๏ฟฝ = [๐‘€]๐‘†,๐‘“[๐›ผ]๐‘† On the other hand ๏ฟฝโƒ—๏ฟฝ = [๐‘€]๐‘Š,๐‘“[๐›ผ]๐‘Š Therefore ๐‘‡๐‘“ โˆ’1(๏ฟฝโƒ—๏ฟฝ) =[๐‘‡๐‘“ โˆ’1(๐‘†)][๐›ผ]๐‘† )( 1 )( 1 vT fST f ๏ฒ ๏ฏ ๏€ญ๏€ญ๏ฆ =[๐›ผ]๐‘† There exists transition metrics ๏› ๏ )(),( 11 WTST ffM ๏€ญ๏€ญ such that the following works )( 1 )( 1 vT fWT f ๏ฒ ๏ฏ ๏€ญ๏€ญ๏ฆ = ๏› ๏ ๏› ๏SWTST ffM ๏ก)(),( 11 ๏€ญ๏€ญ = [๐›ผ]๐‘Š. Now we send it back through the map )( 1 )( 1 )( 11 vT fWTWT ff ๏ฒ ๏ฏ๏ฏ ๏€ญ๏€ญ ๏€ญ๏€ญ ๏ฆ๏ฆ = [๐‘‡๐‘“ โˆ’1(๐‘Š)][๐›ผ]๐‘Š. Hence ๏ฟฝโƒ—๏ฟฝ= [๐‘€]๐‘†,๐‘“[๐›ผ]๐‘† = [๐‘€]๐‘Š,๐‘“[๐›ผ]๐‘Š. Thatโ€™s how the basis change. For more understanding, letโ€™s see the example Let ๐‘“(๐‘ฅ) = ๐‘’๐‘ฅ. The corresponding isomorphism is ๐‘‡๐‘“(๐‘ฅ) = (๐‘ฅ, ๐‘’ ๐‘ฅ) for each ๐‘ฅ โˆˆ โ„. The graph is โ„๐‘“ = {๐‘Ž๐‘“ = (๐‘Ž, ๐‘’ ๐‘Ž): ๐‘Ž โˆˆ โ„}. By applying the method to find the corresponding addition, we have ๐‘Ž๐‘“โจ๐‘๐‘“ = (๐‘Ž + ๐‘, ๐‘’ ๐‘Ž+๐‘) , ๐‘Ž, ๐‘ โˆˆ โ„ (12) And the scalar multiplication (๐›ผ)(๐‘ฅ๐‘“) = (๐›ผ๐‘ฅ, ๐‘’ ๐›ผ๐‘ฅ), ๐‘ฅ โˆˆ โ„ (13) Now the internal graph space dimension 2 has the form โ„๐‘“ 2 = {( ๐‘ฅ๐‘“ ๐‘ฆ๐‘“ ) : ๐‘ฅ๐‘“, ๐‘ฆ๐‘“ โˆˆ โ„๐‘“} (14) Now let see how the basis change โ„๐‘“ 2. Choose a basis ๐‘† = {( (2, ๐‘’2) (0,1) ) , ( (0,1) (2, ๐‘’2) )} and ๐‘Š = {( (1, ๐‘’) (0,1) ) , ( (1, ๐‘’) (โˆ’1, ๐‘’โˆ’1) )}. Suppose ๏ฟฝโƒ—๏ฟฝ = ( (5, ๐‘’5) (2, ๐‘’2) ). It will be shown that ๏ฟฝโƒ—๏ฟฝ is linear combination of S. Letโ€™s pay attention to this ๏ฟฝโƒ—๏ฟฝ = (๐›ผ) ( (2, ๐‘’2) (0,1) ) โจ(๐›ฝ) ( (0,1) (2, ๐‘’2) ) Basis Existence in Graph of Real Valued Continous Functions Ahmad Lazwardi 64 =( (2๐›ผ, ๐‘’2๐›ผ) (0,1) ) โจ ( (0,1) (2๐›ฝ, ๐‘’2๐›ฝ) ) = ( (2๐›ผ, ๐‘’2๐›ผ) (2๐›ฝ, ๐‘’2๐›ฝ) ) =( (5, ๐‘’5) (2, ๐‘’2) ) hence 2๐›ผ = 5, 2๐›ฝ = 2, ๐‘’2๐›ผ = ๐‘’5, ๐‘’2๐›ฝ=๐‘’2. Those imply ๐›ผ = 5 2 and ๐›ฝ = 1. Therefore ๏ฟฝโƒ—๏ฟฝ = [ 2๐‘“ 0๐‘“ 0๐‘“ 2๐‘“ ] [ 5 2 1 ] =[๐‘€]๐‘†,๐‘“[๐›ผ]๐‘† On the other hand, ๏ฟฝโƒ—๏ฟฝ = (๐›ผ) ( (1, ๐‘’) (0,1) ) โจ(๐›ฝ) ( (1, ๐‘’) (โˆ’1, ๐‘’โˆ’1) ) =( (๐›ผ, ๐‘’๐›ผ) (0,1) ) โจ ( (๐›ฝ, ๐‘’๐›ฝ) (โˆ’๐›ฝ, ๐‘’โˆ’๐›ฝ) ) = ( (๐›ผ + ๐›ฝ, ๐‘’๐›ผ+๐›ฝ) (โˆ’๐›ฝ, ๐‘’โˆ’๐›ฝ) ) =( (5, ๐‘’5) (2, ๐‘’2) ) We have ๐›ผ + ๐›ฝ = 5, โˆ’๐›ฝ = 2, ๐‘’๐›ผ+๐›ฝ = ๐‘’5, ๐‘’โˆ’๐›ฝ=๐‘’2. Those imply ๐›ผ = 7 and ๐›ฝ = โˆ’2. Therefore ๏ฟฝโƒ—๏ฟฝ = [ 1๐‘“ 1๐‘“ 0๐‘“ โˆ’1๐‘“ ] [ 7 โˆ’2 ] =[๐‘€]๐‘Š,๐‘“[๐›ผ]๐‘Š. Its already shown how the vector ๏ฟฝโƒ—๏ฟฝ to be expressed as linear combination of S and W. To change basis from S to W, we must transfer all members of S to the โ„2 i.e. ๐‘‡๐‘“ โˆ’1(๐‘†) = {( 2 0 ) , ( 0 2 )} and ๐‘‡๐‘“ โˆ’1(๐‘Š) = {( 1 1 ) , ( 0 โˆ’1 )} . By elementary calculation we have ( 2 0 ) = 2 ( 1 1 ) + 2 ( 0 โˆ’1 ) ( 0 2 ) = 0 ( 1 1 ) โˆ’ 2 ( 0 โˆ’1 ) thus, the transition metrics is )( 1 )( 1 vT fWT f ๏ฒ ๏ฏ ๏€ญ๏€ญ๏ฆ =[ 2 0 2 โˆ’2 ] [ 5 2 1 ] =[ 7 โˆ’2 ]. Thatโ€™s the new coordinate. CONCLUSIONS For each real valued function f, the corresponding internal graph space forms a vector space over โ„. The concept of linear mapping and linear combinations still can be adapted from the graph space and still well defined. Basis Existence in Graph of Real Valued Continous Functions Ahmad Lazwardi 65 REFERENCES [1] J. Doboลก, โ€œOn the Set of Points od Discontinuity for Functions with Closed Graphs,โ€ vol. 110, no. 1, 1985. [2] A. V Arhangel, โ€œRelative Topological Properties and Relative Topological Spaces,โ€ vol. 8641, no. 95, 1996. [3] T. Banakh, K. Mine, and K. Sakai, โ€œClassifying homeomorphism groups of infinite graphs,โ€ Topol. Appl., vol. 156, no. 17, pp. 2845โ€“2869, 2009. [4] A. Lazwardi, โ€œTopologi Grafik Fungsi Real Kontinu,โ€ in Prosiding Seminar Nasional Pendidikan Matematika, 2017, no. 3185, p. 51. [5] W. A. Trybulec, โ€œBasis of Vector Space,โ€ vol. 2, no. 1, pp. 2โ€“4, 2003. [6] B. Hou and S. Gao, โ€œThe Structure of Some Linear Transformations,โ€ Linear Algebra Appl., vol. 437, no. 9, pp. 2110โ€“2116, 2012. [7] S. Roman, Advanced Lienar Algebra, 3th ed. United States: Springer, 2008. [8] Y. Zhang, H. Tam, and F. Guo, โ€œInvertible Linear Transformations and the Lie algebras,โ€ vol. 13, pp. 682โ€“702, 2008. [9] S. Waldron, โ€œFrames for Vector Spaces and Affine Spaces,โ€ Linear Algebra Appl., vol. 435, no. 1, pp. 77โ€“94, 2011. [10] A. Aleman, K. Perfekt, S. Richter, and C. Sundberg, โ€œLinear Graph Transformations on Spaces of Analytic,โ€ J. Funct. Anal., vol. 268, no. 9, pp. 2707โ€“2734, 2015.