
 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 82, 2020 

A publication of 

 
The Italian Association 

of Chemical Engineering 
Online at www.cetjournal.it 

Guest Editors: Bruno Fabiano, Valerio Cozzani, Genserik Reniers
Copyright © 2020, AIDIC Servizi S.r.l. 
ISBN 978-88-95608-80-8; ISSN 2283-9216 

Meta-learning for Safety Management 
Nicola Paltrinieria,*, Riccardo Patriarcab, Elena Stefanac, Francisco Brocald, 
Genserik Renierse 

aDepartment of Mechanical and Industrial Engineering, NTNU, Trondheim, Norway  
bDepartment of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy 
cDepartment of Mechanical and Industrial Engineering, University of Brescia, Italy  
dDepartment of Physics, Systems Engineering and Signal Theory, University of Alicante, Spain 
eFaculty of Applied Economics, University of Antwerp Operations Research Group, Belgium 
nicola.paltrinieri@ntnu.no 

The experience gathered from normal industrial operations allows us to associate its degrading conditions with 
the potential for an accident. Such association is the basis for the definition of the system risk and appropriate 
safety measures. If a skilled operator observes further degrading conditions, his/her mind quickly learns from 
this new experience, derives an updated risk level, and tunes the safety measures. Similarly, safety 
management techniques aim to construct a risk model while learning from past and new observations with the 
purpose to warn of an imminent accident. However, the model can be tested only in hindsight, after the 
occurrence (or the missed occurrence) of an accident. How can we generalise and model the risk analysis 
learning process? How can we optimise its configuration towards new observations? This study discusses 
these issues of meta-learning for safety management by considering the case study of a drive-off scenario 
involving an oil and gas drilling rig, for which a risk assessment approach based on machine learning is 
developed. The results indicate the way forward for a generalisation of risk analysis learning processes and 
their optimisation. 

1. Introduction 
Shifts in our assessment of risk are continuously imposed by emergence of new knowledge, reshaping the 
limits of our actions. This is particularly important in high-risk technical sectors, striving for enhanced system 
performance, but where accidents can affect many people. A classic definition of risk is given by Kaplan and 
Garrick (Kaplan and Garrick, 1981). It states that risk (ܴ) can be expressed by what can go wrong (scenario ݏ), what likelihood it will have (probability ), and how severe consequences will be (consequence ܿ): ܴ = ,ݏ)݂ , ܿ) (1) 

The continuous occurrence of major accidents resulting from the failure to learn from experience are 
reminders of the details that cannot be framed by Eq(1) (Paltrinieri et al., 2012). Numerous attempts have 
been made by analysts and scholars to capture the notion of risk in a more meaningful way. Aven (Aven, 
2012) provides a thorough review of risk definitions, while Villa et al. (Villa et al., 2016a, 2016b) show that 
differences in risk definition affect the approach adopted for its assessment and management. Aven and 
Krohn (Aven and Krohn, 2014) suggest including also the knowledge dimension in the definition of risk, as the 
accumulated knowledge is an intrinsic feature of the assessment. Instead, the standard ISO 31000 defines 
risk as the effect of uncertainty on objectives (ISO, 2018). This gives important insight on how we should treat 
risk analysis results and promotes continuous improvement of the analysis itself – we become aware of how 
uncertainty is an inescapable companion and that we should cope with it (De Marchi and Ravetz, 1999).  
Even if we can assess risk with all available knowledge, we would provide a risk picture that is “frozen” in time, 
while the system is changing around it. The conditions considered in time 0 may not be valid anymore in time 
n. Calibration and correction based on new evidence would possibly allow risk analysis to consider evolving 
conditions and reflect reality and its results. Such dynamic approach to risk management is theorized and 
reviewed by several previous works (Bubbico et al., 2020; Khan et al., 2016; Lee et al., 2019; Paltrinieri et al., 
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2014). However, Paltrinieri et al. (Paltrinieri et al., 2019) highlight a set of overall challenges that are still 
present within the field of risk analysis despite the most recent progress. In particular, they focus on cognition 
and emergence. They wonder how we can learn from relevant lessons to improve risk analysis. Unwanted 
events and experts can provide valuable insight. Capitalising such knowledge in a systematic way would 
prevent accident repetition. They wonder how we can prepare for what we do not know. This challenge refers 
to the need of addressing emerging (not known before) risks. This is fundamental in relation to new 
technologies on which there is relative lack of risk experience, or lack of risk awareness. 

1.1 Meta-learning 

In industrial sectors where the sense of risk is constantly present, such as oil and gas, experience gathered 
from operating a technical system allows skilled operators to associate the system conditions with a specific 
level of accident risk (Duan, 2018; Hailwood, 2016). For example, corrosion on a vessel may eventually lead 
to its catastrophic rupture and its presence would be associated with a relatively high risk. This experience 
allows assessing the risk whenever we find the same conditions of corrosion. Instead, if the conditions are 
only similar (other corrosion mechanisms) or new (mechanical fatigue), the operators’ mind will respectively 
derive an adequate risk level by quickly learning from this new experience. The system conditions are features 
that may be reported in a vector ܺ, the risk is the target variable ܴ, and the experience is the dataset ܦ of the 
operators’ observations. ܦ is the basis used by the operators’ mind to build a model ݂(ܺ) = ܴ. The field of 
Risk Analysis aims to provide an artificial risk model ఏ݂(ܺ). The model has a structure configured by a set of 
parameters ߠ = ሼ߶ଵ, … , ߶ሽ, which are defined (trained) on the historical observations collected in ܦ. An 
observation batch from ܦ can allow us to test the model and estimate its risk prediction performance ܴܲܲ൫ܴ, ݂(ܺ)൯, i.e. the capacity to warn of a potential accident. However, ܴܲܲ is unknown if the model is 
required to process system conditions ்ܺାଵ at a time ܶ + 1 that were not observed before. In fact, the model 
can be tested only in hindsight, after the occurrence (or the missed occurrence) of an accident. This translates 
the fundamental challenges of cognition and emergence as follows. Cognition: the first challenge addresses 
the risk analysis learning process (ߠ)ܮ and the expected predictive performance associated with a 
configuration ߠ for a given dataset (ߠ)ܮ  .ܦ = ,൫ܴܲܲ൫ܴܧ ݂(ܺ,  ൯ (2)ܦ൯ห(ߠ

Emergence: the second challenge addresses the configuration ߠ∗ for the best learning process (∗ߠ)ܮ on a 
distribution of datasets, including potentially unseen datasets at time ݐ = ܶ + ∗ߠ .1 = argmaxఏ ,൫ܴܲܲ൫ܴܧ ݂(ܺ, ௧൯ܦ൯ห(ߠ , ݐ = 1, … , ܶ + 1 (3) 

This study addresses these issues by considering the case study of a drive-off scenario involving an oil and 
gas drilling rig, for which a risk assessment approach based on machine learning is developed. Through the 
case-study, we discuss the risk analysis learning model and its optimisation towards new observations, in 
order to apprehend the emergence of unknown risks. 

2. Drive-off scenario involving an oil and gas drilling rig 

 

Figure 1: Position of a semi-submersible drilling unit above the wellhead 

In order to avoid potential damage during drilling operations for a new offshore Oil and gas well, a semi-
submersible drilling unit should maintain the position above the wellhead (Figure 1). This is particularly critical 
if the platform is located in shallow waters, where small changes of position lead to higher riser (pipe 
connecting the platform to the subsea drilling system) angles. Exceeding physical inclination limits may result 
in damages to wellhead, Blowout Preventer (BOP – sealing the well) or Lower Marine Riser Package (LMRP – 
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connecting riser and BOP) (Chen et al., 2008). Platform positioning is maintained in an autonomous way 
(without mooring system) through the action of a set of thrusters controlled by the Dynamic Positioning (DP) 
system. Input for the DP system is provided by the position reference system (Differential Global Positioning 
System – DGPS and Hydroacoustic Position Reference – HPR), environmental sensors, gyrocompass, radar, 
and inclinometer (Chen et al., 2008). A Dynamic Positioning Operator (DPO) located in the Marine Control 
Room (MCR) is responsible for constant monitoring of DP panels and screens and carrying out emergency 
procedures if needed (Giddings, 2013). Platform position may be lost due to several reasons. In this case 
study, it is assumed that the platform thrusters exercise propulsion towards a wrong direction, leading to a 
scenario of “drive-off”. If the rig moves to an offset position, specific alarms turn on and suggest the DPO to 
stop the drive-off scenario by deactivating the thrusters and initiate the manual Emergency Disconnect 
Sequence (EDS) for the disconnection of the riser from the BOP. If the manual EDS ultimately fails, the 
automatic EDS activates at the ultimate position limit allowing for safe disconnection (Chen et al., 2008). A 
number of works (Matteini, 2015; Paltrinieri et al., 2019, 2016) address the details of occurrence and 
development of drive-off scenarios. Relevant indicators are defined to assess the performance of safety 
barriers and related systems. Examples of these indicators are the following. 

• Thruster control failures in the last three months. 
• Thruster monitoring sensors failures in the last three months. 
• Simulator hours carried out by the DPO in the last three months. 
• Inadequate DPO communication events in the last three months. 
• Delays in DPO shifts in the last three months. 
• Percentage of time in the last three months with more than one operator monitoring. 

The simulations of their trends for a period of 30 years can be found in the literature (Paltrinieri et al., 2019). 
They are inspired to the typical bathtub curve for technical elements (Wang et al., 2002) and relevant expert 
judgment for the remaining elements. As shown by Bucelli et al. (Bucelli et al., 2017), indicator values 
(representing the system conditions ܺ) may be aggregated based on relative weights and hierarchical barrier 
models, in order to enable dynamic update of barrier failure probabilities. This can be used to update, in turn, 
occurrence frequencies of potential outcomes. Outcome frequencies are an expression of the scenario 
probability p mentioned in Eq(1) and, in turn, of the risk R. If we assume that the other factors are constant, 
this represents a simplified model ݂(ܺ) = ܴ. However, Matteini (Matteini, 2015) points out a certain complexity 
within the hierarchical barrier model, which may be due to a tangled structure and an unclear approach to 
assign relative weights to single model elements. For this reason, a machine learning approach bypassing the 
construction of such hierarchies and aggregation rules is suggested. 

3. Method 
Machine learning refers to techniques aiming to program computers to learn from experience (Samuel, 1959). 
It allows computational models to learn representations of data with certain levels of abstraction. A computer 
may be trained to assess risk for safety-critical industries such as oil and gas through machine learning 
techniques. A large amount of information in the form of the mentioned indicators may be used for training. 
Once the model has learned risk categorisation and created an artificial risk model ఏ݂(ܺ), it uses its 
knowledge to assess real-time risk from the state of the monitored system, e.g. an offshore oil and gas drilling 
rig. The machine learning technique used for this study is the Multiple Linear Regression (MLR) (Bottenberg 
and Ward, 1963), where the variables are the indicators. The study focuses on the prediction of risk increase 
given the indicator trends. Since the simulated wellhead damage frequency ݍ݁ݎܨ is an expression of the 
scenario probability , and, in turn, the risk ܴ, for constant scenario ݏ and consequence ܿ, we can state that: ݀ݐ݀ݍ݁ݎܨ ≈ ݐܴ݀݀  (4) 

For this reason, ݍ݁ݎܨ was transformed into its derivative with respect to time t, and labels indicating its 
increase or decrease were added within the database (Table 1). The simulated indicator values Ind were also 
transformed into their derivative with respect to time t, in order to define the inputs ܺ to the model ఏ݂(ܺ): ܺ = ݐ݀݀݊ܫ݀  (5) 

Two datasets were created: 
• training dataset with 2/3 of the ܺ and associated ܴ values (160), and 
• test dataset used to test the model ఏ݂, with about 1/3 of the ܺ and associated ܴ values (79). 
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A code in Python language was written for training and testing. The classifier tf.contrib.learn.LinearClassifier 
from the open-source library TensorFlow (Google LLC, 2018) was used for the model.  
 
Table 1: Definition of the output used as risk index. Adapted from (Paltrinieri et al., 2019) 

Original data Transformed data Output (R) ݍ݁ݎܨ = wellhead damage frequency 
value 

ݐ݀ݍ݁ݎܨ݀ ≥ 0 Risk increase ݀ݐ݀ݍ݁ݎܨ < 0 Risk decrease 

4. Results 
The main results given by the study is the creation of an MLR model ఏ݂(ܺ) predicting increase of wellhead 
damage risk given the indicator trends for scenario of a drilling rig drive-off. The model test has the purpose to 
estimate the prediction performance ܴܲܲ൫ܴ, ݂(ܺ)൯ based on a known test dataset. The model elaborates a 
risk increase probability value for each dataset record (Figure 2). 
 

 

Figure 2: Risk increase probability values for the test dataset 

A decision on the risk increase prediction is made by the model by means of a default probability threshold 
equal to 0.5; meaning that the model predicts risk increase for probability values higher than 0.5. Figure 3 
shows the results of the risk increase prediction tests. The following outcomes are considered: i) true positive 
(tp), as correct prediction of risk increase; ii) false positive (fp), as incorrect prediction of risk increase; iii) true 
negative (tn), as correct prediction of risk decrease; and iv) false negative (fn), as incorrect prediction of risk 
decrease. Only 4 cases are predicted as risk decrease while the risk is actually increasing. However, the 
model wrongly predicts 10 risk increases while the risk is decreasing. This is also reflected by the metrics 
considered. 

 

Figure 3: Test results: number of true positives, false positives, true negatives, false negatives, and related 
metrics (given a threshold=0.5) 

5. Discussion 
The results provide a model ఏ݂(ܺ) and an estimation of its risk prediction performance ܴܲܲ൫ܴ, ݂(ܺ)൯. 
However, the aspect of meta-learning is not directly addressed as long as the cognition and emergence 
challenges are out of the picture. To tackle the cognition challenge, the parameter ߠ is identified in the model 
decision threshold. Figure 4 shows a PR (precision recall) curve obtained by variating the threshold. A number 
of other configuration parameters affecting the expected predictive performance (Goodfellow et al., 2016) may 
be also considered, but they are out of the scope of this study. Precision and recall are an important measure 
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of the predictive performance and have intrinsic differences. The former shows the ratio of correct risk 
increase predictions over all the risk increase predictions by the model, while the latter the ratio of correct risk 
increase predictions over all the real risk increase events. In this case, the model predicts the increase or 
decrease of wellhead damage risk due to drive-off following normal drilling operations. For this reason, both 
risk increase and decrease are relatively frequent and none of them prevails on the other. Given the relatively 
low criticality of the prediction target, the model performance should be improved based on accuracy and 
precision. On the other hand, for unbalanced dataset, i.e. in case of predictions of rare events such as major 
accidents, recall assumes a primary role (Paltrinieri et al., 2019). To address the emergence challenge, we 
must ensure the optimisation of the learning process and enhance the predictive performance for unseen 
conditions. For this reason, the search for the highest F-measure may be integrated into the learning process. 
This method would allow defining the configuration ߠ∗ for which the performance in terms of either precision or 
recall is enhanced. The F-measure is defined as follows (Sasaki, 2007): ܨఉ = ଶߚ) + 1) ∙ ݊݅ݏ݅ܿ݁ݎܲ ∙ ଶߚ݈݈ܴܽܿ݁ ∙ ݊݅ݏ݅ܿ݁ݎܲ + ߚ is used to weight the variables: when ߚ (6) ݈݈ܴܽܿ݁ > 1, the F-measure is more recall-oriented. When ߚ < 1, it becomes 
more precision-oriented. When ߚ = 1, the F-measure represents the harmonic mean between precision and 
recall. Figure 4 shows F-measures for β equal to 0.5, 1, and 1.5. Considered that in this case study we search 
for model accuracy and precision, the most appropriate threshold is equal to 0.6, as it maximises both the 
former and a precision-oriented F-measure such as F1.5. 

 

Figure 4: PR (precision recall) curve variating the threshold (T) (AUC stands for area under the curve) and 
related accuracy and F-measures for ߚ equal to 0.5, 1, and 1.5 (highest values highlighted in yellow) 

6. Conclusions 
This contribution illustrates the preliminary results of a meta-learning study for a drilling rig safety 
management. A drive-off scenario is considered, and the increase of wellhead damage risk is predicted. An 
attempt to generalise and model the risk analysis learning process is made, but an actual formalisation is still 
missing. However, the decision threshold is identified as a configuration parameter to optimise. This would 
allow improving the model performance towards new observations. The search for the highest F-measure is 
suggested as an integration to the actual learning process. The F-measure should promote either precision or 
recall based on the event that is being predicted. The former should be considered for low-criticality events 
such as the risk increase considered in this study. An optimised threshold for the considered case study is 
obtained through this approach with the purpose of demonstrating its efficiency. Furthermore, future research 
efforts may be devoted at exploring the validity of the indicators currently used for the analysis, encompassing 
recent research grounded in resilience management and normal work operations (Patriarca et al., 2019, 
2018). These results are only a first step into the domain of meta-learning for safety management but indicate 
the way forward for a generalisation of risk analysis learning processes and their optimisation.  
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