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The use of Wireless Sensor Networks (WSNs) in support of Dynamic Risk Assessment regarding oil spills still 
lacks a proper integration. WSNs enable prompt responses to such emergencies through an appropriate 
inspection, thus avoiding possible larger disasters. This work proposes a methodology for the setup of a WSN 
as a Leak Detection System in which a Fusion Center collects sensors’ binary decisions and provides a more 
reliable decision about the presence/absence of a leak. The detection rules are based on statistical signal 
processing techniques, and the choice of the optimal thresholds is made through the optimization of three 
objective functions tailored to the Oil&Gas industry. Detection performances are assessed in terms of the 
Receiver Operating Characteristic (ROC) curve. The case study is the Goliat FPSO, a production platform 
located in the Barents Sea, and related requirements dictated by Norwegian authorities to prevent oil spills. 
The considered WSN monitors the subsea manifolds through passive acoustic sensors. 

1. Introduction 

Oil spills are known to cause a highly negative impact on the safety of offshore workers, the environment, and 
productivity. The early detection of a spill is crucial to limit its potential consequences. A Leak Detection 
System (LDS) is reliable if it can provide a high rate of correct detections ensuring a limited rate of false 
alarms, thus avoiding unnecessary production shutdowns and costly Remotely Operated Vehicles (ROV) 
inspections. Different technologies, among which the use of passive acoustic sensors, are nowadays available 
and are used to monitor the external underwater environment and the process conditions (Adegboye et al., 
2019; Baroudi et al., 2019). Passive acoustic sensors have shown a high level of accuracy enabling the 
possibility to localize the spill source. This can be done without the need to install the sensors near the leaking 
component (which is a limitation of many other LDSs). Also, this technology can detect all hydrocarbon fluids. 
Acoustic sensors are easy to install and are appropriate for retrofitting. These properties make this LDS 
among the most used. The importance of a reliable LDS creates the need for a framework that integrates it 
into the Dynamic Risk Assessment (DRA). This is possible as the use of a distributed Wireless Sensor 
Network (WSN) can provide real-time monitoring of the subsea environment increasing the level of knowledge 
on the system allowing a more accurate DRA (Paltrinieri et al., 2014, 2019a). So far, the application of WSNs 
in the Oil&Gas industry has only been introduced (Paltrinieri et al., 2019b). This work gives a methodology for 
the setup of passive acoustic sensors in a WSN used for monitoring subsea templates and discusses its 
performances. 

2. Signal Model 

The WSN aims at detecting possible oil spills, so the problem is formalized as a binary hypothesis testing with 
the null hypothesis ܪ corresponding to a non-spill scenario, and the alternative hypothesis ܪଵ corresponding 
to a spill scenario. For the generic ݇th sensor, the two following different signal models are assumed for each 
hypothesis: 
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൜ܪଵ:					ݕ = ߦ ∙ ,࢞ሺܨܣܣ ሻ்࢞ + ݕ					:ܪݓ = 																	ݓ 														 					⟹					 ൜ܪଵ: ,~ࣨሺ0ݕ ,࢞ଶሺܨܣܣ ሻ்࢞ ⋅ ௦ଶߪ + :ܪ௪ଶሻߪ ,~ࣨሺ0ݕ ௪ଶሻߪ  (1) 

where: 
݇  is the signal (sound pressure) received at the ݇th sensor whereݕ • = 1,2, … ,   ;ܭ
,ሺ0ࣨ~ߦ •  ;௦ଶሻ is a Gaussian random variable representing the emitted signal caused by the spillߪ	
,~ࣨሺ0ݓ • ௪ଶߪ ௪ଶሻ is Additive White Gaussian Noise having the same powerߪ	  for any sensor; 
,࢞ሺܨܣܣ •  ሻ is the Amplitude Attenuation Function (AAF) which only depends on the distance between the்࢞

position ࢞ (݇th sensor position) and ்࢞ (leak position). 
The AAF is treated deterministically and represents the loss of the acoustic intensity level and accounts for 
seawater absorption and geometrical spreading (Stojanovic, 2006): 10 logܨܣܣଶሺ࢞, ሻ்࢞ = ߙ− ∙ 10ିଷሺ‖࢞ − ‖்࢞ − ℓ୰ୣሻ − ݇sc ⋅ 10 log ቆ‖࢞ − ℓ୰ୣ‖்࢞ ቇ (2) 

From which, the AAF can be obtained: 

,࢞ሺܨܣܣ ሻ்࢞ = ඨ൬ ℓ୰ୣ‖࢞ − ൰sc‖்࢞ 10ቂ ഀభబరሺℓ౨ି‖࢞ೖି࢞‖ሻቃ (3) 

where ߙ is the seawater absorption coefficient in dB km⁄ ࢞‖ , −  ,and ℓ୰ୣ (reference length) are in meters ‖்࢞
and ݇sc is the spreading coefficient. The absorption coefficient ߙ is obtained using the Francois & Garrison 
equation (Francois and Garrison, 1982a, 1982b). The speed of sound (required by Francois & Garrison) is 
obtained using the updated Chen & Millero equation (Wong and Zhu, 1995).  

3. Wireless Sensor Network Model 

The modeled WSN is made of ܭ passive acoustic sensors monitoring the external environment (as shown in 
Figure 1). The ݇th sensor, with a given sampling frequency, senses the received signal amplitude ݕ and 
sends to a Fusion Center (FC) its binary local decision ݀	on whether the sensed amplitude is caused by a 
spill. The choice of local binary decision is due to the energy constraints imposed by the use of a WSN (Shoari 
et al., 2016), such constraint will also reduce operating costs as only one bit is transmitted when a spill is 
detected. Finally, the FC takes a global decision ܪ on the occurrence of the spill based on the received ݀’s. 
 

 

Figure 1: Wireless Sensor Network Model 

4. Detection Rules 

Each sensor performs an Energy Test, which is Uniformly Most Powerful for this application, where the signal 
energy ݕଶ is compared to a threshold ߣ to assess its decision (Ciuonzo and Salvo Rossi, 2017): ݀ = ቊ1, ଶݕ ≥ ,0ߣ ଶݕ <   (4)ߣ

As the statistics of the received signal is known, the Local Probability of Detection ( ௗܲ,) and Local Probability 
of False Alarm ( ܲ,) for the ݇th sensor can be defined as follows: 
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ௗܲ, = Pr൫ݕଶ ≥ ଵ൯ܪหߣ = 2࣫ ቌඨ ,࢞ଶሺܨܣܣ	ߣ ሻ்࢞ ⋅ ௦ଶߪ +  ௪ଶቍ (5)ߪ

ܲ, = Pr൫ݕଶ ≥ ൯ܪหߣ = 2࣫ ቌඨߣߪ௪ଶቍ (6) 

where ࣫ሺݔሻ is the complementary cumulative distribution function of the standard normal random variable: ࣫ሺݔሻ = නߨ12 expቆ− ଶ2ݐ ቇ݀ݐஶ
௫  (7) 

The proposed method assumes the Signal-to-Noise Ratio ்ܴܵܰ = ௦ଶߪ ⁄௪ଶߪ  at ℓ୰ୣ from the source to be known. 
The Counting Rule is used as Fusion Rule by the FC because of its simplicity which suits the constraint of low 
processing costs. This rule uses the local decisions ݀ as an input and has the following form: 

ܪ =
۔ۖەۖ
,ଵܪۓ ݀

ୀଵ ≥ Λ
,ܪ ݀

ୀଵ < Λ (8) 

This indicates that the FC counts the number of sensors detecting the spill and compares it to a threshold Λ. In 
case the sum is equal or higher than the threshold, the FC sends an alarm. 

5. Threshold Selection 

Three different optimality criteria based on the Receiver Operating Characteristic (ROC) curve will be 
analyzed (Liu, 2012): 

• Youden Index (ܬ): ߣ∗ = arg	max	ఒ ሻߣሺܬ = arg max	ఒ ൛ ௗܲሺߣሻ − ܲሺߣሻൟ (9) 

• Closest-to-(0,1) (ܴܧ): ߣ∗ = arg	min	ఒ ሻߣሺܴܧ = arg	min	ఒ ට൫1 − ௗܲሺߣሻ൯ଶ + ܲሺߣሻଶ (10) 

• Concordance Probability (ܼܥ): ߣ∗ = arg	max	ఒ ሻߣሺܼܥ = arg	max	ఒ ቄ ௗܲሺߣሻ ⋅ ቀ1 − ܲሺߣሻቁቅ (11) 

These definitions are applicable both for the sensors and the FC with the appropriate substitutions (ߣ is ߣ and Λ; ௗܲ is ௗܲ, and ܳௗ; ܲ is ܲ, and ܳ; ߣ∗ is ߣ∗  and Λ∗). The selection of the optimal threshold ߣ∗  for the ݇th 
sensor is carried out through a grid search where one optimal value is found for each one of the criteria. More 
specifically, the metrics in the optimality criteria are computed referring to average performances with respect 
to the hotspot positions ࢎ, where ݉ = 1,2,…  This is necessary as the Probabilities of Detection (both .ܯ,
local and global) depend on the leak position. The hotspots are those components of the subsea production 
system that, in case of failure, would be the source of a spill. Also, it is assumed that the selected hotspots 
have the same failure rate and their spills cause signals having the same power ߪ௦ଶ. Therefore: 

۔ە
ۓ ௗܲ, = ܯ1  ௗܲ,,ெ

ୀଵܲ, = ܲ,																		 					
optimize objective functionሳልልልልልልልልልልልልልልልልልልልልልልልሰ					 ∗ߣ  (12) 

where, for the ݇th sensor, ߣ∗  is the chosen local threshold (using one of the criteria), ௗܲ, and ܲ, are its 
average performances and ௗܲ,, is ௗܲ, when the leak source is the ݉th hotspot by using ܨܣܣሺ࢞,  .ሻࢎ
The choice of the optimal threshold at the FC follows the local threshold choice and uses the same procedure: 

۔ە
ௗܳۓ = ܯ1  ܳௗ,ெ

ୀଵܳ = ܳ																	 					
optimize objective functionሳልልልልልልልልልልልልልልልልልልልልልልልሰ					Λ∗ (13) 

where Λ∗ is the chosen global threshold.	ܳௗ = Pr൫ܪ = ଵ൯ and ܳܪଵหܪ = Pr൫ܪ =  ୭൯ are the values ofܪଵหܪ
Global Probability of Detection and Global Probability of False Alarm, where ݉ means that the ݉th hotspot is 
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modeled as the leak source, and the bar denotes the average probability. ܳௗ, and ܳ are obtained via Monte 
Carlo Simulation requiring the simulation of the local decisions using the previously chosen local thresholds. 

6. Case Study – Goliat FPSO 

The Goliat FPSO is an offshore platform located in the Norwegian Barents Sea equipped with a multi-template 
Subsea Production System. Each template can host up to four wellheads and the manifold. The latter is 
monitored by three passive acoustic sensors to detect the presence of an oil spill (Bjørnbom, 2011; Røsby, 
2011). For an overview of the subsea equipment, the reader could refer to the specific literature (Bai and Bai, 
2012). 
 

 

Figure 2: Scheme of Goliat’s subsea template: the grey elements are the structure and the Christmas Trees, 
the blue lines are the main streamlines, the green dots are the sensors, and the red dots are the hotspots 

20 hotspots (connections and valves) were recognized in the manifold. Hotspots and sensors are assumed to 
be at the same height. The following parameters are used for this case study: 

Table 1: Parameters used to simulate the spill’s sound emission and its Amplitude Attenuation Function 

Parameter  Value Note ்ܴܵܰ = ௦ଶߪ ⁄௪ଶߪ  13	dB  ℓ୰ୣ = 1 m 
Noise Variance ߪ௪ଶ  1 Normalized 
Reference Frequency 2.5	kHz (Eckert et al., 1993), used for AAF 
Temperature 3.8	℃ (Institute of Marine Research, 2020), used for AAF 
Salinity 3.5	% (Institute of Marine Research, 2020), used for AAF 
Depth 350	m (Bjørnbom, 2011), used for AAF 
pH 8 (Vetrov and Romankevich, 2004), used for AAF 
Spreading Coefficient ݇sc 1.5 (Stojanovic, 2006) 

7. Results 

The values of ܴܵܰ = ,࢞ଶሺܨܣܣ ሻࢎ ∙ ௦ଶߪ ⁄௪ଶߪ  averaged among all hotspots show a mean attenuation of 90.28	% and are the following: 

Table 2: Averaged Signal-to-Noise Ratio at the sensors 

Sensor 1  Sensor 2 Sensor 3 2.4	dB  3.4	dB 1.4	dB 
 
At sensor-level (Table 3 and Figure 3), the optimization of ܬ results in local thresholds with values distant from 
those obtained optimizing ܴܧ or ܼܥ which tend to be similar. When ܬ is used, in fact, the thresholds are 
oriented towards smaller values of ௗܲ, and ܲ,. The values of Area Under the Curve (AUC) of the averaged 
ROC curves among the three sensors have a standard deviation equal to 4 ∙ 10ିଷ, this justifies the similar 
average performances among the sensors when tuned using the same objective function. 

1 2

3
5 m
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Table 3: Local threshold selection’s results  

Sensor Value of Optimized Function Threshold ௗܲ, ܲ, 1 ܬ = 0.1896 1.6380 0.3902 0.2006 
ܴܧ  = 0.5886 0.7919 0.5451 0.3735 
ܼܥ  = ܬ 2 0.3586 0.5328 0.8427 0.3417 = 0.2064 1.7268 0.3952 0.1888 
ܴܧ  = 0.5785 0.8271 0.5496 0.3631 
ܼܥ  = ܬ 3 0.3456 0.5354 0.8896 0.3504 = 0.1923 1.5169 0.4104 0.2181 
ܴܧ  = 0.5845 0.7947 0.5497 0.3727 
ܼܥ  = 0.3450 0.8435 0.5378 0.3584 
 

 

Figure 3: Averaged local ROC curves displaying the optimal points according to the different applied criteria 

At FC-level, results were obtained with 10଼ Monte Carlo runs (Table 4 and Figure 4). The performance at a 
given threshold varies according to the objective function used for the sensors. When sensors are tuned using ܬ, the optimal global threshold is divided between the value 1 if ܴܧ and ܼܥ are optimized, and 2 if ܬ is 
optimized. When sensors are tuned using ܴܧ or ܼܥ, the optimal global threshold is always 2 using any 
optimization criterion. The highest value of AUC at the FC is obtained when sensors are tuned using ܬ. 
Table 4: Global threshold selection’s results  

Function used for Sensors  Value of Optimized Function Threshold ܳௗ ܳ 

Youden Index (ܬ) ܬ = 0.2546 2 0.3608 0.1062 
ܴܧ  = 0.5553; ܼܥ = 0.3774 1 0.7442 0.4928 
Closest-to-(0,1) (ܴܧ) ܬ = 0.2562; ܴܧ = 0.5334; ܼܥ = 0.3905 2 0.5652 0.3090 
Concordance Probability (ܼܥ) ܬ = 0.2598; ܴܧ = 0.5363; ܼܥ = 0.3899 2 0.5472 0.2875 
 

 

Figure 4: Averaged global ROC curves displaying the optimal points according to the different applied criteria 
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8. Conclusions 

It is clear how the choice of the objective function at sensor-level is fundamental to determine the 
performances at FC-level for a given global threshold. The case study showed how tuning the sensors using 
the Youden Index increases the global AUC and orients the performances towards lower values of false alarm 
rate of the LDS, which may be preferable to avoid shutdowns. The optimal global thresholds show a similar 
behavior on the ROC space if compared to the results obtained when computing the optimal local thresholds. 
However, the tendency of the Youden Index to generate thresholds having a lower probability of detection and 
false alarm with respect to those generated by the other two indexes is less evident at FC-level since only ܭ + 2 points can be placed on the ROC space. The three objective functions can also be adapted and 
corrected using coefficients to fit specific applications and requirements. The proposed methodology shows 
how important the number of sensors and their positioning can be and how the network performances heavily 
rely on the signal model. For this reason, more information regarding the statistical properties of the signal and 
other contributions that influence the AAF should be integrated if available. These factors can be signal 
perturbations, interferences, ambient noise, and oceanic phenomena (currents, tides, internal waves, etc.). 
This work is a step towards the integration of subsea monitoring using WSNs with Risk Assessment 
techniques necessary to localize the hotspots and to select the most appropriate objective function.  
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