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Solution crystallization operations have complex dynamics that are typically lumped into two competing 
processes namely nucleation and growth. Mathematical models can be used to describe these two processes 
and their effect on the crystal population when subject to variables like temperature, addition of anti-solvent, 
etc. To ensure that the crystals meet specific performance objectives, the models need to be solved and the 
control variables need to be optimized. This has largely been done until now using algorithms from dynamic 
programming or optimal control theory. Recently, however, it has been shown that learning frameworks like 
Reinforcement Learning can solve large optimization problems efficiently while offering distinct advantages. In 
this work, we explore the possibility of computing the optimal profiles of a semi-batch crystallizer to control the 
mean size and variance using four different deep RL algorithms. The performance on one of the tasks is 
evaluated experimentally on the anti-solvent crystallization of NaCl in a water-ethanol system.  

1. Introduction

Solution crystallization is employed in various industries to produce crystals with desired properties(Black, 
2019; Hartel, 2019; Vicum, Mazzotti and Iggland, 2019). The process of crystal growth from solution can be 
attributed to two competing mechanisms namely nucleation and growth. Either one of these mechanisms can 
be preferentially favored to produce crystals with interesting properties. This is typically done by altering the 
supersaturation of the solution by way of cooling or anti-solvent addition(Ghadipasha et al., 2018).  
When crystallization is employed to grow crystals, the target is usually to grow crystals that satisfy certain 
product objectives such as size, shape, purity, etc. The pioneers in the field of crystallization largely 
discovered optimal recipes for these objectives by trial and error. Eventually, mathematical models were used 
to describe the kinetics of crystallization and techniques like Pontryagin’s maximum principle were used to 
compute the optimal cooling and anti-solvent addition rates. The current approach to this problem is to use 
dynamic optimization to find the temperature and anti-solvent flow rate trajectories that produce crystals of a 
desired mean size and variance. This produces a stationary trajectory that can be implemented without any 
supervision. However, mathematical models are always imperfect and these stationary trajectories need some 
external control (feedback) to produce the desired product objectives. Model Predictive Controllers(Mesbah, 
2010), solve this problem, by solving the optimization problem at every sampling interval using the most recent 
measurements from the experiment. This solves the issue of model inaccuracy and produces more reliable 
product quality. But the cost of optimization at each sampling interval can be expensive and time consuming 
depending on the complexity of the model. While this bottleneck can be alleviated by solving the model offline, 
this can only be done for a discrete number of cases and developing a general control law using this approach 
will be inefficient and resource hungry. 
Here, we attempt to use reinforcement learning (RL) to learn the optimal response for all possible states in the 
model off-line. The RL framework is equipped to do this efficiently because it learns from past experience 
which greatly reduces the learning time. In addition, the use of non-linear function approximators, enables the 
generalization of learned experience. We describe a general RL framework that is model agnostic but we 
restrict our results to the Stochastic Modeling Framework (Baratti, Tronci and Romagnoli, 2017). Two possible 
scenarios are described. In the first scenario, we try to optimize only the mean size of the crystals. In the 
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second, we optimize both the mean size and variance of the crystals. We refer to the first task as MO (Mean-
Only) while we call the second task MV (Mean & Variance) in the rest of the paper. 

2. Stochastic Modeling Framework

In crystallization, the crystal size distribution can be controlled by altering the supersaturation of the solution. 
There are many techniques to do this such as evaporation, cooling, anti-solvent addition, etc. In non-
isothermal anti-solvent crystallization specifically, the addition of an anti-solvent and the temperature of the 
solution are simultaneously manipulated to control the supersaturation of the solution. The effect of these 
variables on the growth of crystals can be described by the stochastic modeling approach (Baratti, Tronci and 
Romagnoli, 2017). According to this approach, the variation of the crystal size distribution ψ is described by 
the Fokker Planck Equation (Eq 1).  ߲߰(ܮ, ݐ߲(ݐ = ܮ߲߲  ൜− ൤ܮݎ ൬1 − ൰ܭܮ  + ൨ܮܦ ,ܮ)߰ (ݐ + ܦ ܮ߲߲ ሾܮଶ߰(ܮ,  ሿൠ (1)(ݐ

with a log-normal initial condition and boundary conditions given by Eq (2-3). ߰(ܮ, 0) = ݌ݔ݁ ቊ− ሾln(ܮ) −  μ଴ሿ2ߪ଴ଶ ቋ /൫ߪ଴ߨ2√ܮ൯ (2) 

ܦ ቄ݃(ܮ) డడ௅ ሾ݃(ܮ)߰(ܮ, ሿቅ(ݐ = ℎ(ܮ)߰(ܮ,  at L = 0 and ∀t (3a)  (ݐ

,ܮ)߲߰ ܮ߲(ݐ = ܮ ݐܽ 0 →  (3b) ݐ∀ ݀݊ܽ ∞

The parameters in the equation r, K and D can be expressed as functions of the anti-solvent flow rate (q) and 
the temperature (T) (Ghadipasha et al., 2018).  

3. Reinforcement Learning

In standard reinforcement learning (Sutton and Barto, 1998), the optimization problem is set up to be solved 
by an agent who interacts with the environment by picking actions over a sequence of time-steps with the goal 
of maximizing a cumulative reward. The problem is framed as a Markov Decision Process with a state space, 
an action space, rewards and a stationary transition dynamics distribution with conditional density ݏ)݌௧ାଵ|ݏ௧, ܽ௧) following the Markov property ݏ)݌௧ାଵ|ݏ௧, ܽ௧) = ,ଵݏ|௧ାଵݏ)݌ ܽଵ, … , ,௧ݏ ܽ௧) (i.e. past history does not 
affect future dynamics). The agent samples actions in the environment by following a policy ݏ|ܽ)ߨ, ߠ where ,(ߠ ∈ ℝ௡ is a vector of n parameters, and generates a trajectory of states, actions and rewards. The rewards 
accumulated by the agent is measured by the return ݎ௧ఊ which is defined as the discounted sum of rewards

from time step t onwards ݎ௧ఊ =  ∑ ,௞ݏ)ݎ௞ି௧ߛ ܽ௞). Since the returns are not accessible until after a trajectory is
completed, value functions are used to predict the returns. The value function is defined as the expected total 
discounted reward (i.e. ܸగ = ,௧ݏ | ௧ఊݎ൫ܧ ,൯ ߨ ܳగ = ,௧ݏ ௧ఊ หݎ൫ܧ  ܽ௧,  The agent’s goal, now, in this setting, is to .((ߨ
obtain the policy that maximizes a performance objective such as the cumulative discounted reward, for 
instance ((ߨ)ܬ =  .((௧ݏ|ଵఊݎ)ܧ
There are three major types of approaches to solve the RL problem namely Q-learning, policy gradient and 
actor-critic. Since the state space and action space of the Fokker Planck Equation is continuous, Q-learning 
algorithms like DQN are inadequate because they can currently only solve problems with a discrete action 
space. Therefore, we restrict our focus to the policy gradient and actor-critic algorithms. Algorithms belonging 
to both these approaches have their own sets of advantages and disadvantages. It is unclear which algorithm 
would be most efficient at solving this task. In this work, we experiment with two on-policy algorithms A2C 
(Mnih et al., 2016)  & PPO (Schulman et al., 2017) in addition to two off-policy algorithms SAC (Haarnoja et 
al., 2018) & TD3 (Fujimoto, Van Hoof and Meger, 2018) to analyze their performance in terms of average 
returns and training time.  

4. Setup Of The Environment

As described before, the reinforcement learning setup requires an environment, an agent to pick actions, a 
critic to evaluate the actions and a rewarding scheme to guide the agent. In the section below, the 
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reinforcement learning setup for this problem will be described. This applies to all the algorithms we have 
tested in this study. 

State: The state of the system encapsulates information about the crystal size distribution. There are multiple 
ways to describe the state in a way that the Markov property is satisfied. The simplest case would contain the 
mean size of the crystals and the variance in the state definition. This has the advantage of being easy to 
interpret and also satisfies the Markov property. But in order to guide the agent towards the desired crystal 
size distribution, we also include the target mean size and target variance in our state definition. These targets 
can alternatively be included in the reward formulation, but we do it here in order to learn a general optimal 
control law. The range of mean sizes permitted by the model is between 120 microns and 165 microns while 
the range of the standard deviation is between 48 to 64 microns. The two cannot be chosen independently 
(Cogoni et al., 2014). At training time, we randomly sample the target mean size and target variance from a 
uniform distribution of possible values. The state values are normalized between -1 and 1 before they are 
passed to the actor and critic networks for training.  ܵ݁ݐܽݐ =  ሾ݊ܽ݁ܯ, ݐ݁݃ݎܽܶ ,݊ܽ݁ܯ ,݁ܿ݊ܽ݅ݎܸܽ ݐ݁݃ݎܽܶ  ሿ (4)݁ܿ݊ܽ݅ݎܸܽ

Action:  The actions that can influence the state are the temperature and the anti-solvent flow rates. Both 
these actions are constrained with the temperature having an upper and lower bound of 30°C and 10 °C 

respectively while the anti-solvent flow rate is bounded between 3 ݉ܮ ݉݅݊ൗ  and 0.7 ݉ܮ ݉݅݊ൗ . Similar to the

state definition, the action values are normalized between -1 and 1 before they are passed to the actor neural 
network for training.  

Reward: The reward signal is an important piece of the RL framework because it gives the RL agent an 
estimate of the quality of its actions. We only reward the agent (+1 for mean size and +0.1 for variance) when 
the state values are sufficiently close to the target values. This was arbitrarily set to be 0.5 microns for the 
mean size and 0.3 units for the standard deviation. For all other scenarios, the agent is not rewarded. 

Environment: The environment takes in the value of the current state and the actions executed by the agent 
in that state to generate the subsequent state. This is done by solving Equation 1 using a finite volume 
method. We use the FiPy library in python to perform this numerical approximation. The state values (mean 
and variance) are used to generate the corresponding log-normal distribution, and this is passed as the initial 
condition to equation 1. The FiPy code then solves the equation for one period of sampling time and returns 
the next state.  

Table 1- Algorithm to teach the agent to respond to disturbances. 

Algorithm 

1. Pick an initial start state (mean value and variance) from a uniform distribution.
2. Run the policy (i.e. execute the action selected by the agent in the environment)
3. Get the reward and the next state.
4. Introduce a disturbance with probability ߳.
5. Repeat steps 2-4 until the target state is reached.
6. Update the agent and the critic using the experience gained thus far.

In this section, we show the performance of the algorithms on the two tasks described above. In the MO task, 
the agent is given 30 timesteps to reach the desired mean size. Since the reward is +1 for every successful 
timestep, the agent can score a maximum of 30 on this task. Table 12 displays the average reward and 
learning time for the algorithms. Both the on-policy and the off-policy algorithms learn to solve this task with 
different degrees of accuracy. A common pattern among the policies learned by the algorithms is that they 
maximize the rewards for the intermediate values of target mean-sizes (125-160 microns) while they perform 
relatively poorly in the extremes (120-125 & 160-165 microns). In the case of the PPO, the relatively poor 
average reward can mostly be attributed to poor performance on the extreme target mean-sizes. 
The learning time of the algorithms, on the other hand, clearly distinguishes the on-policy algorithms from the 
off-policy ones. A2C & PPO take significantly longer to learn the optimal policy. But this problem is marginally 
offset by the fact that multiple environments can be run in parallel with on-policy algorithms. This is not the 
case with off-policy algorithms. Despite this, the off-policy algorithms still learn considerably faster. 
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Figure 1: The plot on the top and bottom shows the progress of the training reward in the MO and MV task 
respectively. The training time has been normalized for the sake of comparison. The true training times are 
provided in Tables 2 and 3. 

Figure 2 shows the performance of the algorithms on the MO task for a target mean size of 140 microns. All 
four algorithms manage to reach the target quickly but with slightly different optimal trajectories. This can be 
attributed to the presence of input multiplicities (Cogoni et al., 2014) in the model due to two competing inputs. 
This means that an asymptotic CSD, characterized by its mean and variance can be obtained using two sets 
of input values. The trajectories generated by the SAC algorithm was implemented experimentally and the 
results are shown in Figure 3.  

Table 2: Performance of the algorithms on the MO and MV tasks 

Algorithm  Average Reward –
MO task 

Time Steps to Learn
– MO task

Average Reward –
MV task 

Time Steps to Learn –
MV task 

A2C – On-policy 14.45 2.5M 1.8 4M 

PPO – On-policy 11.31 3.5M 2.3 3M 

SAC – Off-policy 17.56 0.333M 18.8 0.4M 

TD3 – Off-policy 14.56 0.2M 17.69 0.4M 

In the MV task, the agent again has 30 steps to maximize the rewards. It can score a maximum of +33 now 
with +1 per timestep for reaching the desired mean size and +0.1 per timestep for the target variance. These 
rewards were chosen by grid search method and other rewarding schemes could be equally successful.  

It is seen from Table 2 that the off-policy agents are more successful at this task than the on-policy agents. 
They reach a high average reward with fewer steps. The on-policy agents struggle to learn in the environment 
despite being given ample time (3-4M steps). Figure 4 shows the performance of the off-policy agents on the 
MV task for a target mean size of 140 microns. It is seen that both SAC and TD3 get close to the target 
variance. 
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Figure 2 Optimal Response to achieve a desired target size of 140 microns. 

Figure 3: Experiment to control the mean size of the crystals using the variable trajectories generated by SAC 
in Figure 2. 

5. Conclusion

This work shows that it is possible to develop a general control law for a crystallization model using RL agents. 
While this framework is more resource intensive than other frameworks during the training phase, it enables 
the user to train the model offline and minimize computation time during the run. The results of simulation 
show that both off-policy and on-policy agents can control the mean-size of the crystals while the off-policy 
agents can control both the mean-size and the variance. The profiles developed by the RL agent on the MO 
task was implemented experimentally and the results indicate that it works well in practice. 
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Figure 4: Optimal Response to achieve a desired target size of 140 microns and the lowest possible variance. 
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