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Ethylene cracking furnace is the key equipment in petrochemical industry. Coking within coils in radiation 
section mainly affects the life span of ethylene cracking furnace. During industrial production, engineers 
periodically measure the radiant coil surface temperature which reflects the degree of coking, in order to 
decide time for decoking. Nowadays, some devices can be used for the online measurement of radiant coil 
surface temperature. However, high cost and unacceptable error limit their practical applications. Ethylene 
cracking process is a well-developed process with a high degree of instrumentation and control, in which a 
huge amount of operational data has been collected. It also makes it possible to predict the radiant coil 
surface temperature through the correlation among process data, and further to identify the influence factors 
of coking during the operation, which would provide a reference to improve the performance of ethylene 
cracking furnace.  
In this work, an industrial ethylene cracking furnace is considered. The correlation between process variables 
and radiant coil surface temperatures are analysed according to the structural characteristics and the process 
information of ethylene cracking furnace, and the process variables with high correlation to the radiant coil 
surface temperatures are recognized. Based on Partial Least Squares (PLS), each group of radiant coil 
surface temperaturess was estimated by the obtained process variables with total error level below 1 %. 
Radiant coil surface temperature predicted by the regression model can be regarded as the indices of coking 
degree in the radiant coil, which can provide a reference for decoking plan. At the same time, the obtained 
regression model parameters can be used as a reference for the adjustment to reduce the rate of coking. 
Therefore, the process of coking within each radiant coil can be synchronized with others and the overall 
continuous operating time of ethylene cracking furnace can be increased. 

1. Introduction 
Ethylene is obtained by the steam cracking of hydrocarbon in the ethylene cracking furnace (Khor et al., 2014). 
This technology has been applied for about 70 y when the first commercial plant came into operation. Besides 
ethylene, there are also many other hydrocarbon products obtained in the cracking process, among which 
coke is the only solid component. Even though its amount is negligible in a short period, it can be deposited on 
the inner surface of the radiant coils (Cai et al., 2002), which will compromise the heat transfer efficiency of the 
radiant coils. In order to retain the same cracking temperature and conversion, the fuel flow rate needs to be 
further increased, or the flow rate of hydrocarbons needs to be reduced. As the cracking reaction continues, 
the coke layer is getting thicker and the coil surface temperature is increasing accordingly. The unit has to be 
shut down for coke removal (decoking) when the coil surface temperature reaches the limits of material. If 
decoking too early, it will result in shorter production cycle, therefore yields and profits will be affected. On the 
contrary, if decoking too late, coils inside the furnace could be broken, which could cause serious loss of 
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facility and personnel. It is of great importance to measure surface temperature of the radiant coil in real time. 
In industry, the temperature can be manually measured by operator, or obtained by in situ infrared detector. 
Manual measurement is more reliable, but not available in real time, while the data obtained by infrared 
detector is limited by the inside geometry of furnace and suffers from low resolution.  
Multivariate statistical process control (MSPC) method has widely applied in process industries. Huge 
amounts of data have been collected and stored in ethylene process, which provides a possibility to the 
application of statistical model. Although the surface temperature of the radiant coil is difficult to measure, it 
should be highly corrected with other process variables and can be somehow calculated based on its 
correlations with them. As a well developed multivariate statistical technique, Partial Least Square (PLS) has 
many applications in process monitoring and fault diagnosis area, such as estimation of the compounds 
concentration under nominal operating conditions (Taris et al., 2015), estimation of polymer quality parameters 
for a LDPE plant (Rumana et al., 2006) and its developed technique (Faisal et al., 2009). Tathagata (2005) 
has successfully predicted the silicon content in blast furnace hot metal by PLS. In the ethylene industrial 
process, few industrial applications of PLS have been reported.  
In this paper, operating data collected from a petrochemical plant are analysed and a PLS is developed for 
predicting radiant coil surface temperature, in order to provide a reference for decoking scheduling. 

2. Methodology 
PLS is a technique based on latent variables ܸܮ for relating two data matrices (Michel et al., 2005), a set of 
predicted variables ܻ ∈ ܴ× and a set of predictor variables ܺ ∈ ܴ×, by a linear multivariate model. There 
are three steps to develop the PLS model, i.e. training, cross-validation and testing steps. In the training steps, 
data are normalized to zero mean and unit standard deviation. For each column ݔ can be replaced by its 
scaled value ݔ௦ௗ as below: ݔ = ൫௫ିఓ(௫)൯ఙ(௫) 																																																																																																																																																																																													(1) 
where (ݔ)ߤ and (ݔ)ߪ are mean and standard deviation of X. 
The matrix X can be decomposed as follows: 

ܺ = ்ܶܲ + ܧ =ݐ் + ఈ(2)																																																																																																																																																																ܧ
ୀଵ  

Where	ܶ is a score matrix, 	ܲ is a loading matrix, α is the number of latent variables, ܧ is residual matrix, ݐ 
(the ݆௧  column of ܶ ) is score vector and ܲ  (the ݆௧  column of 	ܲ ) is loading vector. Similarly, ܻ  can be 
decomposed as follows: 

ܻ = ்ܷܳ + ܨ =ݑݍ்ఈ
ୀଵ +  (3)																																																																																																																																																														ܨ

where ܷ is a score matrix, ܳ is a loading matrix,  ܨ is a residual matrix, ݑ (the ݆௧ column of ܷ) is a score 
vector and ݍ  (the ݆௧  column of ܳ ) is a loading vector. The inner relationship between ݐ  and ݑ  can be 
obtained through a univariate regression as follows: ݑ = ܾݐ																																																																																																																																																																																																				(4) 
Where b୨ is the regression coefficient. To maximize the covariance between ܺ and ܻ, The optimal number of 
latent variables can be extracted by testing the models.  
In the cross-validation step, different PLS models with different number of latent variables are tested by 
validation data. The PLS model with the minimum average error rate ܵ gives the optimal number of latent 
variables, which is calculated as: 

ܵ = ට∑(ݕ − ௗ)ଶݕ ܰൗ(ݕ)ߤ 																																																																																																																																																																						(5) 
where ݕௗ is the prediction of model, ܰ is the testing data number and (ݕ)ߤ is the mean of ܻ. 
In the testing step, the average error rate with the optimal number of latent variables can be obtained by 
testing the PLS model with the optimal number of latent variables using testing data. 
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3. The data set 
The cracking furnace consists of convection section and radiation section. The convection section is mainly 
used for material preheating and heat recovery. In radiation section, the cracking reaction occurs in the 
preheated mixture of hydrocarbon and steam heated to about 800 °C. The heat required for the cracking 
reaction is from the external surface of the radiant coils by convective heat transfer. In the furnace, energy is 
translated from the furnace inside surface to the radiant coils by radiation heat transfer. Predicting variables 
are selected based on heat conservation of radiant coils inside and outside surfaces. 
In the current study, the operating data are collected from an ethylene cracking furnace with naphtha as raw 
material. There are six groups of radiation coils in the ethylene cracking furnace, and sixteen coils in each 
group. There are about 871,379 operating data sts from November 2015 to November 2016, among which 
206,597 are collected every minute and 5,802 are collected every hour, while only 70 manuals measured coil 
surface temperature data are available. There are 32 ܺ-type variables and 12 ܻ-type variables. The ܺ-type 
variables include total feed rate of naphtha, total feed rate of steam, naphtha and steam feed rate of six coil 
groups, feed temperature, feed pressure, coil outlet temperature, outlet pressure, furnace temperature on 
south and north, furnace pressure, furnace oxygen content and fuel gas flow rate. The ܻ-type variables 
include the south radiant coil surface temperature and the north radiant coil surface temperature of the six 
group coils. The ܺ -type variables are measured continuously, while the ܻ -type variables are measured 
intermittently, and coil surface temperatures at both sides of radiant coil are rarely measured at the same 
time.70 groups of coil surface temperatures of the north radiant coil and 70 groups of coil surface temperature 
of the south radiant coil are recorded. Because the data from November 2015 to February 2016 is more 
coherent and complete than other time period, the initial 10 groups of the north and south radiant coil surface 
temperature are used as validation set, the next 12 groups of the north radiant coil surface temperature and 9 
groups of the south radiant coil surface temperature are used as testing set and others are used as the 
training set. 

4. Modelling and analysis 
High dimensionality, collinearity and nonlinearity are involved in most chemical processes. When the predicted 
variable, radiant coil surface temperature, is within a relatively small range of variation from 980 to 1,100 °C, it 
is assumed that the non-linearity among variables can be ignored. PLS is a capable method on dealing with 
the process variables with high dimensionality and collinearity. In order to obtain accurate coil surface 
temperature prediction, PLS model is built based on the average coil surface temperature in each group 
radiant coil on both north and south sides. The error ܵ is calculated based on cross-validation method for 
different number of latent variables. The results of first coil group modelling in north side are displayed in 
Figure 1. As shown, modelling error decreases with the number of latent variables increasing. Model error 
value can be achieved less than 0.01 with 0.0090 when the number of variables is 5. Minimum value of cross-
validation ܵ can be reached when the number of latent variables is 4. High value of ܵ may be due to overfitting 
when the number of latent variables is over 6. 

 

Figure 1: The cross-validation results of first group radiant coil in north side 
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Figure 2: The coil surface temperatures of first group radiant coil in north side 

The optimal number of latent variables can be selected as 5. The cross-validation ܵ value is 0.0046 and the 
test ܵ value is 0.0054 under 5 latent variables. The measured and predicted surface temperatures of the first 
radiant coil group in north side are displayed in Figure 2 with 5 latent variables. A good agreement can be 
observed between measured and predicted coil surface temperatures in most data points.  
Figure 3 shows the cross-validation results of first group coils in south side.  
Optimal prediction is obtained when the model ܵ value is 0.0110 under 4 latent variables. Average error of 
PLS is 0.0097 which can be obtained by validation data and average error of PLS is 0.0094 which can be 
obtained by testing data. The measured and predicted data of first radiant coil group in south side are 
displayed in Figure 4 with 4 latent variables.  Although small deviation exists in the measured and predicted 
values, their trends are similar. 
Table 1 and Table 2 show the optimal number of latent variables and ܵ based on PLS model for radiant coils 
surface temperature in both of north and south side. All values of ܵ are within industrial acceptable range. 

 

Figure 3: The cross-validation results of first group radiant coil in south side 
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Figure 4: The coil surface temperatures of first group radiant coil in south side by measuring and predicting 

Table 1: The optimal ܸܮ number and ܵ of the first group of coils on north side 

 Coils 1 Coils 2 Coils 3 Coils 4 Coils 5 Coils 6 0.0118 0.0080 0.0103 0.0083 0.0077 0.0090 ܵ 3 6 4 5 6 5 ܸܮ 

Table 2: The optimal ܸܮ number and ܵ of the first group of coils on south side 

 Coils 1 Coils 2 Coils 3 Coils 4 Coils 5 Coils 6 0.0114 0.0100 0.0084 0.0108 0.0134 0.0110 ܵ 7 4 4 4 4 4 ܸܮ 
 
Figure 5 and Figure 6 show the predicted results for first group coils in both of north and south side, which are 
analysed by using operating data from November 2015 to February 2016 (133,000 samples). It can be seen 
from Figure 5 and Figure 6 that the coil surface temperatures generally increase monotonically. At the 
beginning, the increase is relatively fast, and gets relatively slow later. In the last stage, the furnace surface 
temperature of the north side is close to 1,100 °C, which indicates decoking operation should start.  

 

Figure 5: The predicted coil surface temperatures of the first group coils in north side 
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Figure 6: The predicted coil surface temperatures of the first group coils in south side 

A sudden drop can be observed in north coil surface temperatures of first group, while no drop in south side. 
The same results can be observed in other five coils groups. This surface temperature drop occurred on 
December 15, 2015, which has no manual measurement as reference due to the limitations of manual 
measurement. Thus, analysis is conducted on the historical operational data. At that time, obvious decreasing 
can be found in naphtha feed, fuel gas flow and coil outlet temperature, and obvious increasing can be found 
in the furnace oxygen content and carbon monoxide content. Although the temperature on the south side of 
the furnace and the temperature on the north side of the furnace are both reduced, the temperature reduction 
on the north side of the furnace is bigger. This situation may be caused by fuel nozzle malfunction on the north 
side of the furnace. 

5. Conclusions 
In industry, coil coking trend can be analysed by furnace coil surface temperature when furnace is under 
normal operating condition. High coil temperature is always accompanied with heavy coke deposition. The 
whole system needs to be shut down for decoking even only one group coils surface temperatures reach 
1,100 °C, which is a waste of resource. In this paper, a method for online coil surface temperature monitoring 
based on PLS method is proposed, which has a good performance. Operating parameters of each coil can be 
adjusted based on the estimation of coil surface temperature to make the coking degree synchronized across 
all coils, which can maximize each production cycle without risking process safety. If more detailed historical 
data of cracking process are collected, the prediction of PLS model can be further improved. 

References 

Ahmed F., Nazir S., Yeo Y.K, 2009, A recursive PLS-based soft sensor for prediction of the melt index during 
grade change operations in HDPE plant, Korean J. Chem. Eng., 26(1), 14-20. 

Bhattacharya T., 2005, Prediction of Silicon Content in Blast Furnace Hot Metal Using Partial Least Squares 
(PLS), ISIJ International, 45,1943-1945. 

Ca H.i, Krzywicki A., Oballa M. C., 2002, Coke formation in steam crackers for ethylene production, Chemical 
Engineering and Processing, 41, 199-214. 

Khor C.S., Lee, T.F., Nhlapo D, Lau K. K., 2014, Optimal Synthesis of Ethylene Production Process, Chemical 
Engineering Transactions, 39, 1585-1590, DOI: 10.3303/CET1439265. 

Sharmina R., Sundararaj U., Shah S., Griend L.V., Sun Y., 2006, Inferential sensors for estimation of polymer 
quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant, Chemical 
Engineering Science, 61, 6372-6384. 

Taris A., Grosso M., Zonfrilli F., Guida V, 2015, Quality Control of Industrial Detergents through Infra-Red 
Spectroscopy Measurements Coupled with Partial Least Square Regression, Chemical Engineering 
Transactions, 43, 1549-1554, DOI: 10.3303/CET1543259. 

Tenenhaus M., Vinzi V.S., Chatelin Y.M, Lauro C., 2005, PLS path modelling, Computational Statistics & Data 
Analysis, 48, 159-205. 

510




