
CHEMICAL ENGINEERING TRANSACTIONS 

VOL. 56, 2017 

A publication of 

The Italian Association 
of Chemical Engineering 
Online at www.aidic.it/cet 

Guest Editors: Jiří Jaromír Klemeš, Peng Yen Liew, Wai Shin Ho, Jeng Shiun Lim 
Copyright © 2017, AIDIC Servizi S.r.l., 

ISBN 978-88-95608-47-1; ISSN 2283-9216

Review: Control Schemes for Low Density 
Polyethylene Reactor 

Dinie Muhammad, Norashid Aziz*
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia,Seri Ampangan, 14300 Nibong Tebal, 
Seberang Perai Selatan, Penang, Malaysia. 
chnaziz@usm.my 

Low density polyethylene (LDPE) is one of the most common produced polymers in the world. LDPE is 
commonly produced using fee radical polymerisation process in high pressure environment. Polymerisation 
process pose significant challenges to the industrial community as the process is difficult to control with high 
nonlinearity behaviour and fast dynamic response. Control problems can also arise from LDPE grade 
switching and reactor’s fouling effect. The infrequent long sampling time of laboratory measurement and 
unreliable online instrument measurement can make the LPDE quality monitoring become more difficult. The 
heart of polymerisation process is the reactor. A good control of the reactor will exhibit smooth production of 
LDPE. In this study, a brief review of past and recent control schemes that had been developed for LDPE 
process is presented. This review focused on the control schemes implemented in tubular and autoclave 
reactor which covers type of control scheme, process model, process estimator, and control variables used. 
The availability of important industrial quality parameters such as Melt flow index and Gloss index is also 
addressed. This review highlights the importance of nonlinear control in polymerisation process and future 
works related to it. 

1. Introduction
Low density polyethylene (LDPE) is widely used today in a large number of applications including packaging, 
adhesives, coatings and films (Pladis et al., 2015). As a commodity polymer, LDPE is mass produced in 
continuous tubular reactor or autoclave reactor. Continuous polymerisation process is known to exhibit highly 
nonlinear dynamic behaviour and frequently operates in a wide operating region in order to produce polymers 
with properties desired by current market (Ben Amor et al., 2004). Over the years, significant efforts have 
been made to develop a proper understanding of polymerisation process and kinetic fundamentals. Current 
knowledge on polymer reaction engineering has spur the development of reliable and accurate mechanistic 
model and chemical aided design (CAD) software for industrial polymerisation reactors. In a way, this also 
prompts the development of control scheme for polymerisation reactors (Hosen et al., 2014). The knowledge 
of the polymerisation process can be a strong foundation to an accurate polymer process model. The 
profound knowledge of process operation in terms of the effect of operating variables on polymer properties 
can be used to design a control system in a much more straightforward strategy than would have been 
possible otherwise (Richards and Congalidis, 2006). The implementation of advanced process control in 
continuous polymerisation reactor has the potential to ensure good online control of polymer quality during the 
polymerisation stage which can lead to a significant improvement in polymer quality. (Jacob and Dhib, 2012). 
This study provides a brief review of control strategy implementations for LDPE polymerisation reactor 
process. Several polyethylene processes using fluidised bed reactor are also reviewed. This review will focus 
on the control scheme, process model, process estimator, and control variables implemented in each 
respective case study. The consideration for quality parameter control such as Melt flow index (MFI) and 
Gloss index are also addressed. 
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2. LDPE Production 
The basic material for polyethylene is the ethylene monomer. Ethylene is a colourless gas with a slightly sweet 
smell and is obtained by cracking (thermal decomposition) ethane at high temperatures in a cracker or steam 
furnace. Figure 1 shows the simplified industrial production of LDPE using autoclave reactor (left) and tubular 
reactor (right). Autoclave reactor is a stirred cylindrical reactor typically about 6.1 m long and 0.38 - 0.91 m in 
diameter. Tubular reactor is similar to a tube or long pipe which usually about 1.25 km long and  
2.5 - 7.6 cm in diameter. In general, both production unit have similarity in term of using high temperature and 
pressure condition. Before entering the main unit, ethylene gas mixture had to be compressed to a pressure 
around 3,000 bar. In order to initiate the polymerisation reaction, either unit operation use single or multiple 
injections to introduce the initiator into the mixture. The temperature control on both units are critical as 
polymerisation of ethylene is exothermic. In autoclave reactor, proprietary baffle designs divide the unit into 
discrete zones enabling better molecular reaction control. For tubular reactor, molecular properties of LDPE 
are controlled by maintaining the reactor temperature profile. Typical ethylene conversion by using autoclave 
reactor is about 22 % per reactor pass while for tubular reactor is about 35 % (Butler, 2010). After the polymer 
exit the units, separators are used to isolate the unreacted ethylene with LDPE. The unreacted ethylene will 
be recycled back to the process while the molten polymer is prepared to be mixed with additives and then 
pelletised. Standard production rates for autoclave reactors output capacities are 75 to 225 kt/y while for 
tubular reactors are 100 to 250 kt/y (Butler, 2010). 

         

Figure 1: Simplified production of LPDE using (a) autoclave reactor and (b) tubular reactor  (Butler, 2010) 

3. Control in polymerisation reactor 
Model predictive control is a type of model based controller that utilise explicit model to predict the process 
output, calculate control sequence by minimising objective function and implement receding strategy 
(Camacho and Alba, 2013). Based on Qin and Badgwell (2003) survey, Linear model predictive control 
(LMPC) has a wide acceptance in chemical process industries compared to its nonlinear counterpart, 
Nonlinear model predictive control (NMPC). In polymer manufacturing industries, NMPC is more preferred as 
LMPC would often deteriorate when they applied to process with strong nonlinearities (Seki et al., 2001). 
Polymerisation process also exhibit varying dead times and process gains for different polymer quality 
attributes with respect to reactor temperatures (Bindlish, 2015). In continuous polymerisation process, there 
are often polymer grade transitions to meet the market demand. Although process regulation at a single 
operation condition can be done by conventional linear controller, nonlinear process control is still needed to 
achieve good performance during grade transitions and different operating conditions. The key objective in 
controlling a continuous polymerisation reactor system is to maintain reactor stability in presence of any 
process upsets and during normal steady state operations and grade transition operations (Yoon et al., 2004). 
In general, commercial polymer is valued based on its final quality attributes such as melt flow index (MFI), 
gloss index, and impact resistances. However, in plant, these properties are hard to measure on-line and 
mostly have long measurement delay. In order to solve this problem, a two-tier control scheme for 
polymerisation reactor was proposed (Ogunnaike, 1994). The two-tier control scheme is similar to a cascade 
structure where a master Quality Controller (upper tier) will provide set point for the slave Composition 
Controller (lower tier). In the lower tier, process variables such as polymerisation temperature, reactor 
pressure, flow rate of monomer, initiators, chain transfer agents, and solvents are regulated to meet certain 
conditions based on the product recipe. Theoretically, if all these variables are tightly controlled, a consistent 
quality in polymer production can be achieved. The correlation between polymer properties and polymer 
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process variables are often nonlinear. The purpose of the upper tier controller is to control the product quality 
and serve as a corrective control for the lower tier. The quality controller is updated with on-line or lab 
measurements and estimates of polymer quality properties from inferential model. In principle, any variation in 
product quality can be corrected if such measurement is available during the polymerisation process. In term 
of controller execution time, the lower tier will act faster, typically 1 min, compared to the upper tier. In 
absence of on-line measurement or lab data, especially during transition period, the reliability and accuracy of 
the quality process model is very important. Naidoo et al. (2007) had highlighted a number of practical issues 
and solutions that have been adopted during executing nonlinear MPC for industrial polymerisation reactor. An 
excellent review on traditional and advanced control techniques for batch, semi batch, and continuous 
polymerisation reactors are available by (Richards and Congalidis, 2006). 

4. Control schemes in LDPE 
In LDPE case, there are only a handful number of researchers who are involved in its control development 
study. Singstad et al. (1992) developed and commissioned a two-level internal nonlinear decoupling based 
controller for the control of an industrial multi-zone LDPE autoclave reactor. In their study, product quality 
control was used in the upper supervisory level while reactor stabilisation control was performed at the lower 
level. They showed that their control strategy accomplished superior results in closed-loop performance 
compared to conventional multi loop PID controllers. Ham and Rhee (1996) applied adaptive pole placement 
controller based on recursive least squared method for a two-compartment LDPE autoclave reactor. In their 
findings, the controller had shown good performance in eliminating overshoot in the reactor temperature 
profile and stabilising the initiator flow rate profile compared to PID controllers. The authors did not consider 
the direct control of polymer product quality or final properties which is very important in the industry. Berber 
and Coşkun (1996) tested the performance of linear Quadratic Dynamic Matrix Control (QDMC) on industrial 
LDPE autoclave reactor. Process nonlinearity was taken into account into the process model by integrating 
the autoclave reactor ODE model from current state over the prediction horizon. They demonstrated that 
QDMC delivered superior result compared to multi loop PI control in reactor temperature set point tracking 
combined with ethylene feed temperature disturbance test. Anghelea and De Keyser (2001) exploited 
Extended Predictive Self Adaptive Control (EPSAC) MPC approach in controlling a LDPE tubular reactor 
model. In their study, the controller was tested on SISO and MIMO configuration with PI controller. For MIMO 
case, two control approach, Solidary and Selfish control were tested. Based on the test, EPSAC controller 
provide satisfactory results compared to PI controller. The Solidary and Selfish control approach for MIMO 
case also gave similar results. Ali et al. (2003) studied two type of control schemes for fluidised bed 
polyethylene reactor. The first control scheme utilised a single multivariable controller to handle all the 
controlled variables. The second scheme used two control loops, one is a fast-dynamic loop handled by multi 
loop PI controllers and another is a slow dynamic loop handled by a multivariable controller. From comparison 
tests on both schemes, the latter one was more favourable with faster settling time and less overshoot in 
some cases whether LMPC or NMPC is used. In head to head comparison between LMPC and NMPC, NMPC 
was reported to display better superior performance in achieving offset free response and robust to model 
mismatch error. Ben Amor et al. (2004) applied an industrial real-time optimisation software (ROMeo) with 
NMPC for a simulated polymer grade transition control in a polyethylene fluidised bed reactor. The NMPC 
algorithm was developed using orthogonal collocation and sequential quadratic programming (SQP) was used 
to solve the resulting nonlinear programming problem. Luenberger observer was designed to estimate the 
unmeasured states. In their research, the controller and observer part were developed inside ROMeo and the 
mathematical process model was developed using Matlab. Both software was connected together to complete 
the simulation. From the test, NMPC was managed to control the four grade transitions process despite 
significant model uncertainty. Yao et al. (2004) studied optimal control for LDPE tubular reactor. In their study, 
the optimal control objective is to determine the optimal jacket temperature as a function of reactor length that 
would maximise the final monomer conversion of an LDPE reactor. Maximum reactor temperature and the 
range of reactor jacket temperature were specified as inequality process constraints. Genetic algorithm 
technique was used to solve the optimal control problem. Based on the comparison study, the optimal process 
had presented significant improvement in the final monomer conversions up to 42.33 % by using 5 initiator 
injections. Naidoo et al. (2007) reported on industrial implementation of NMPC in LDPE tubular reactor. The 
optimisation part in NMPC was handled using SQP and Kalman Filter was used to estimate the process states 
online. The process model was developed using Bounded Derivative Network which is an improved empirical 
model based on artificial neural network technique (Turner and Guiver, 2005). The NMPC control scheme was 
implemented using the two-tier system which is a cascaded structure where the master Quality Controller 
providing set-points for the slave Composition Controller. The implementation of NMPC in industry had 
produced positive results in reducing product offset and increasing production capacity. Zavala and Biegler 
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(2009) had employed several optimisation-based strategies for LDPE tubular reactor control. The reactor was 
modelled based on a number of Differential and algebraic equations (DAE). In their work, fouling and defouling 
scenario was considered as disturbance in the process. They demonstrated that Tracking NMPC was able to 
stabilise the reactor temperature and maintaining the melt index and production rate despite the disturbance. 
The addition of economic function into the tracking NMPC had provided it with better control grasp of the 
process without sacrificing the production rate. Moving Horizon Estimator (MHE) was also tested with NMPC 
as output feedback controller for the process. During the test, MHE-NMPC was able to stabilise the process 
despite the fouling disturbances. Jacob and Dhib (2012) discussed the application of unscented Kalman Filter 
(UKF) in NMPC algorithm for multi-zone multi-feed autoclave reactor. The UKF algorithm is reported to have 
higher degree of accuracy, wide range of application and simpler implementation than Extended Kalman filter 
(EKF) (Romanenko and Castro, 2004). In their work, the closed loop performance of UKF based NMPC is 
compared with Kalman filter based LMPC in set point tracking and disturbance rejection test under noisy 
process measurement and model mismatch. In both tests, UKF-NMPC performance is better than KF-LMPC. 
The performance UKF-NMPC was reported to be more significant compared to LMPC and PID controllers in 
controlling single-zone LDPE autoclave reactors (Jacob and Dhib, 2011).  

Table 1: Summary of control schemes implementation in LDPE 

Researcher Reactor  
System 

Data 
Source 

Control  
Scheme 

Model  
(Process 
Model) 

Controller Controlled Variable (CV) 
Manipulated Variable (MV) 

Singstad et 
al., 1992 

Autoclave  Industry Two  
level 

ODE Multivariable based 
Nonlinear 
Decoupling  

CV: Product Quality; 
MV: reactor pressure; temperature 
profile; production rate; 

Ham and  
Rhee, 1996 

Autoclave  Journal Closed 
Loop 

ODE Adaptive pole 
placement 

CV: reactor temperature; 
MV: initiator flow rate; 

Berber and 
Coşkun, 

1996 

Autoclave  Industry Closed 
Loop 

ODE  
(Step 
Model) 

Linear QDMC CV: reactor temperature;  
MV: catalyst flow rate; zone 
monomer flow rate; 

Anghelea 
and  
De Keyser, 
2001 

Tubular Journal Closed 
Loop 

ODE  
(FPM) 

EPSAC CV: weight average degree of 
polymerisation; zone peak 
temperature;  
MV: solvent flow rate; initiator flow 
rate;  

Ali et al.,  
2003 

Fluidised  
Bed 

Journal Two  
level 

ODE  
(FPM) 

EKF-NMPC CV: reactor partial pressure; 
reactor temperature;  
MV: feed component flow rate; 
bleed flow rate; coolant inlet 
temperature; 

Ben Amor  
et al., 2004 

Fluidised 
bed 

Journal Two  
level 

ODE  
(FPM) 

Luenberger-NMPC  CV: Melt Index; Density; Reactor 
pressure; Production rate;  
MV: Nitrogen flow rate; Hydrogen 
flow rate; comonomer flow rate; 
catalyst flow rate; 

Yao et al.,  
2004 

Tubular Journal Closed 
Loop 

ODE Optimal Control Optimal reactor jacket temperature; 

Naidoo et 
al., 2007 

Tubular Industry Two  
level 

BDN KF-NMPC CV: Melt Index; Gloss Index; 
MV: Reactor temperature; CTA 
concentration; Initiator flow rate; 

Zavala and 
Biegler, 
2009 

Tubular Industry Two  
level 

DAE  
(FPM) 

Tracking NMPC;  
RTO-NMPC;  
MHE-NMPC; 

CV: Production rate; Melt Index; 
Reactor temperature profile; 
MV: Initiator flow rate; jacket inlet 
temperature; jacket inlet flow; side 
stream temperature; 

Jacob and 
Dhib, 2012 

Autoclave Industry Closed 
Loop 

ODE 
(FPM) 

UKF-NMPC CV: Reactor temperature profile; 
weight-averaged molecular weight;  
MV: initiator flow rate; reaction 
zone monomer feed flow rate; 
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The summary of the control schemes implementation is shown in Table 1. Based on the table, most of the 
researchers developed their reactor model based on mathematical model using ordinary differentials equation 
(ODE). The availability of much model (or also known as first principle model, FPM) will facilitate the NMPC 
development as such model can be used as its nonlinear process model. As for empirical modelling, only a 
single case was reported. The Bounded Derivative Network (BDN) is an analytical integral of neural network 
which has capability of incorporating process knowledge inside it. It worth to mentioned that the application of 
empirical modelling in polymerisation process is still viable as mentioned by Hosen et al. (2014). Empirical 
modelling has the advantage over FPM modelling when there is less fundamental understanding of the 
process. The popularity of model based controller (LMPC and NMPC) is profound in the survey. The wide 
application of MPC in research community and industry is due its general and intuitive design in solving the 
process control problem in time domain (Camacho and Alba, 2013). The survey also reveals that NMPC was 
given more attention than LMPC. This was expected since polymerisation reactor process typically suffers 
from high nonlinearity and dynamic behaviour. Such behaviours can occur due to uneven polymerisation, 
thermal runaway and during grade transition. In regards to polymerisation process predicament, the 
application of NMPC is more appropriate. It was noted that there were two control schemes that was 
occasionally used by the researchers. The closed loop type is more towards using a single multivariable 
controller to control all the parameters inside the process. Two level control scheme utilise dual layer of control 
where a supervisory (or upper) control loop which typically handle quality parameters and regulatory (or lower) 
control loop to control the basic parameters typically temperature, flow rate and pressure. Although both 
implementations had reported success in their respective studies, Ali et al. (2003) had reported that the latter 
one is more preferable in term of regulatory control performance and robustness. The application of state 
estimator in control scheme was reported to be essential in order to estimate unmeasurable polymer 
properties and improve controller robustness (Jacob and Dhib, 2012). The selection of controlled variables 
(CV) and manipulated variables (MV) are varies among researchers and mainly depend on the type of reactor 
used. Some researchers use tight operation control (typically temperature profile) in order to achieve desired 
final polymer properties. Others use the quality controller which can control directly the final end-use polymer 
properties via reliable correlation of certain polymer parameter e.g. weight average molecular weight (WAMW) 
(Jacob and Dhib, 2012). Based on Shenoy and Saini (1986) study, polymer WAMW had shown a good 
correlation with industrial final end-use polymer properties such as melt flow index (MFI). Application of soft 
sensors to estimate MFI had also produced good results in estimating the quality parameter real time using 
industrial data (Farsang et al., 2015).  

5. Conclusions 
A brief review on control schemes application in LDPE polymerisation reactor was conducted. The review had 
shown that application of advanced process control especially model predictive control was well accepted. 
This primarily due to the nonlinearity and dynamic behaviour of polymerisation reactor. Implementation of 
NMPC in industry has been reported to produce significant results in increasing plant capacity, reducing off 
spec product during grade transition and stabilising the process during steady state operation (Naidoo et al., 
2007). Most of the reactor models involved in the LPDE polymerisation process are developed based on 
mechanistic model. This open for model development study using hybrid or black box modelling technique 
such as Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). This also 
brings to the development study of NMPC based on empirical model rather than in first principle model (FPM) 
as practiced by many before in the respective area. Two tier control scheme appears to be more promising to 
be implemented in the polymerisation reactor compared to the single multivariable control system. The 
important matter is the end-use polymer properties must be properly determined using any techniques, for 
example, state estimator to ensure the final product quality. The incorporation of this knowledge to the 
controller would be greatly valuable. 
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