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In this work, a wastewater treatment network (WWTN) consisting of a system of ponds is modelled rigorously, 
taking into account dynamic mass balances for the main groups of bacteria, together with different types of 
organic load, algae biomass, nutrients, etc. 
To obtain the optimal configuration, we had first formulated a superstructure embedding these rigorous 
models as a mixed integer non-linear programming (MINLP) problem, with the objective to synthesise and 
design the WWTN that minimises the total annual costs, subject to environmental regulations. Then, a global 
sensitivity analysis (GSA) is performed on this kinetic dynamic model for the obtained optimal configuration of 
three stabilisation ponds (two aerobic ponds in series followed by a facultative one) to determine the most 
influential parameters of the model considering the whole range of parameters variation, as well as parameter 
ranking. GSA is implemented using Sobol’s method, a variance based technique. The technique is 
implemented within gPROMS platform, a differential algebraic equation oriented environment where stochastic 
simulations are performed. Temporal profiles for the first order, total order and interactional sensitivity indices 
are obtained for the main differential and algebraic state variables. 
Numerical results provide useful information about the complex relationships between technological, economic 
and environmental variables of the processes in the WWTN design optimisation. 

1. Introduction

In a previous work, a WWTN embedding rigorous models of different types of stabilisation ponds was 
developed with synthesis and design purposes by Ochoa et al. (2016a). The model was formulated as a 
MINLP problem to establish optimal configuration system and pond dimensions necessary to conform to 
environmental discharge regulations. In addition, different scenarios of inlet concentration of organic load were 
explored to take into account process uncertainty leading to the conclusion that the model was highly 
influenced by initial organic load. 
In this paper, another type of uncertainty is considered, related to time-invariant model parameters such as 
kinetic parameters, whose uncertainty results from measurement errors or the impossibility of modelling 
exactly the physical behaviour of a system. The values of state variable can be greatly influenced by this type 
of uncertainty. For this reason, it is important to identify the parameters to which model state variables are 
most sensitive, which is achieved in general by a sensitivity analysis (SA). Techniques for sensitivity analysis 
can be classified into local and global. Local techniques are based on Taylor series expansion, requiring 
linearity and additivity. Global sensitivity analysis (GSA) aims to quantify the relative importance of input 
variables or factors in determining the value of an output variable. GSA method should be used when the 
model is nonlinear and various input variables are affected by uncertainties of different orders of magnitude, 
because they take into account the influence of the whole range of variation and the form of the probability 
density function in the input. GSA method computes the effect of factor xi while all others xj, j≠i, are varied as 
well. Temporal profiles of the influence of factors and input variables are obtained when dynamic models are 
analysed, leading to a great insight on the sources of uncertainty during the time horizon (Saltelli et al., 2008). 
The wastewater stabilisation pond network model and the GSA methodology were implemented in an 
equation oriented environment with a differential algebraic equation solver in gPROMS (PSEnterprise, 2014). 
The implemented GSA strategy is variance-based (Sobol’, 1993) and allows the determination and 
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classification of model parameters, according to their sensitivity indices. Temporal profiles of first order effect 
sensitivity indices, total sensitivity indices and those due to interactions with other model parameters have 
been calculated for parameters in a wastewater stabilisation pond system model. Numerical results show that 
the higher computational cost of global sensitivity analysis is thoroughly justified, where not only first order 
effects due to each parameter can be captured, but also due to interaction with other model parameters.  

2. Methodology

2.1 Wastewater stabilisation pond model 
A differential algebraic equation system represents three stabilisation ponds in series for biological wastewater 
treatment. Differential equations include dynamic mass balance for the prevailing groups of bacteria: 
heterotrophic, autotrophic, fermenting, acetotrophic sulphate reducing and acetotrophic methanogenic 
bacteria; algae biomass, the different sources of organic matter, main nutrients involved in the process and 
methane emissions. Whereas algebraic equations describe pond interconnections, forcing functions and 
reaction rates of the processes. Kinetic expressions of the reaction rates and nominal value of stoichiometric 
coefficients were taken from Sah et al. (2011). 

Pond mass balances ୢୢ୲ = Q୧୬,୧ − Q୭୳୲,୧ + Q୰ୟ୧୬,୧ − Qୣ୴ୟ୮,୧			 (1) ୢେ,ౠ,ౣୢ୲ = େ,,ౠ·୕,ିେ౫౪,,ౠ,ౣ·୕౫౪, + r୧,୨,୫ − ୩ౣ ൫େ,ౠ,ౣିେ,ౠ,ౣశభ൯∆୦ ,ౣ − C୧,୨,୫ · ୢ,ౣୢ୲  m = 1 (2a) ୢେ,ౠ,మୢ୲ = r୧,୨,୫ + ୩ౣ	൫େ,ౠ,ౣషభିେ,ౠ,ౣ൯∆୦ ,ౣ − C୧,୨,୫ · ୢ,ౣୢ୲ 	m = 2 (2b) 

Generation and consumption  r୧,୨,୫ =ν୨,୩ · ρ୩,୧,୫୩  (3) 

Qin,i, Qout,i, Qrain,i and Qevap,i stand for volumetric flow (m3/d). Cin,i,j,k and Cout,i,j,k, are the concentrations of 
component j related to pond i at layer m; Vi,m is the pond volume i of the layer m (m3) and ri,j,m is the reaction 
term obtained by the sum of the stoichiometric coefficients with ρk,i,m as the process reaction rates that take 
place within the pond i and layer m. Note that only facultative type pond has two layers. 
Configuration of the system was a result of the optimisation, where pond type was classified by the processes 
that occur within the lagoons into anaerobic, facultative and aerobic. Binary variables, ztype,i, were associated 
to the different types of processes, through big M constraints: Eq(4), and to different bounds of pond 
dimensions in order to define the pond type. Eq(5) ensured that there exists a pond of any type. ρ୩,୧ − z୲୷୮ୣ,୧ · M ≤ 0			 k ∈ type, type= anaer, fac, aer (4) 

z୲୷୮ୣ,୧୲୷୮ୣ = 1	 (5) 

Where anaer, fac and aer represent the sets of anaerobic, facultative and aerobic processes, respectively.  
The optimisation of pond stabilisation systems consists of minimising the total cost subject to environmental 
discharge regulations. The total cost is the sum of capital and operating costs, considering cost of land, 
construction, lining and maintenance of the system. Medri et al. (2007) proposed linear expressions for each 
type of cost: land, construction, revetment and maintenance. The objective function for minimising the total 
cost system is then described by Eq(6). 

min	C୲ =	C୪,୧ + Cୡ,୧ + C୰,୧ + C୫,୧୬
୧ 	 (6) 

Where Ct is the total cost of the system (U$S) and n is the number of ponds. 
The model is formulated as a MINLP problem implemented in GAMS (Rosenthal, 2016) and solved by 
DICOPT, a solver based on the extensions of the outer-approximation algorithm for the equality relaxation 
strategy. More details of the model and solution strategy can be found in Ochoa et al. (2016a). 
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2.2 Global sensitivity analysis technique 
Sobol’s method is used to compute sensitivity indices. This method is based on variance decomposition, using 
Monte-Carlo simulation methods (Sobol' I., 2001; Saltelli and Tarantola, 2002).  
Given a function y=f(x,t), where y is a differential or algebraic state variable (e.g. heterotrophic bacteria 
concentration), x is a vector of k input parameters and t is the independent variable in differential equations, 
e.g., time; when all uncertain parameters xi vary under its probability density function, the uncertainty in y(x,t) 
can be quantified by its unconditional variance V(y,t). It can be decomposed as the sum of the variance of a 
conditional expected value and the expected value of a conditional variance, conditioning with respect to both 
xi and x-i. V(y, t) = V൫E(y|x୧, t)൯ + E൫V(y|x୧, t)൯ (7) V(y, t) = V൫E(y|xି୧, t)൯ + E൫V(y|xି୧, t)൯ (8) 

V and E correspond to variance and expected value operators, respectively. In Eq(7), V(y,t)i=V(E(y│xi,t)) 
computes the variance (over all possible realizations of parameter xi) of the conditional expected value of the 
state variable y under all parameters variation, except xi. It represents the expected reduction in the state 
variable variance that could be obtained if xi could be known or fixed. V(y,t)i is the first-order effect associated 
to parameter xi. The residual effect, E(y,t)i=E(V(y| xi,t)), is the expected value (over all realizations of 
parameter xi.) of the conditional variance of the state variable y when all parameters except xi change. It 
represents the average state variable variance if xi could be known or fixed. 
The same can be stated for Eq(8), by replacing xi for “all parameters except xi” (xi). Thus, the term 
V(y,t)i

TOT=E(V(y| x-i,t)) computes the average state variable variance if all parameters except xi could be known 
or fixed. If equations (7) and (8) are normalised, the first-order sensitivity index, S(y,t)i and the total sensitivity 
index S(y,t)i

TOT are defined as: S(y, t)୧ = ൫(୷|୶,୲)൯(୷,୲) = (୷,୲)(୷,୲)   (9) 

S(y, t)୧ = ൫(୷|୶ష,୲)൯(୷,୲) = (୷,୲)ో(୷,୲) (10) 

To calculate sensitivity indices it is necessary to compute the unconditional and conditional variances of each 
state variable, involving the calculation of multiple integrals. However, Sobol’ proposes a methodology to 
compute the variances considering only evaluations of functions (y=f(x,t)), as defined by Eqs (11), (12) and 
(13) (Sobol’ and Shukhman, 2007).  ଵଶ∑ ൫y୨ − y୨ ൯ଶ →୨ୀଵ 	V(y)  (11) 

ଵ∑ y୨ · ቀyେ୨ − y୨ ቁ୨ୀଵ → 	V(y, t)୧								i = 1. . k (12) 

ଵଶ∑ ቀy୨ − yୈ୨ ቁଶ୨ୀଵ → V(y, t)୧				 		i = 1. . k (13) 

A, B, Ci and Di, are matrices of dimension (N x k), N the sample size used for the Monte Carlo estimate and k 
the number of uncertain model parameters. Each column of both A and B matrices is a sample from the 
distribution function of the relative parameter. Each row is an input sample, for which a model output y can be 
evaluated. A is considered the ‘sample’ matrix and B the ‘re-sample’ matrix. Ci is the matrix where all 
parameters except xi are re-sampled, whereas Di is the matrix where only xi is re-sampled. yA, yB, yCi and yDi 
are vectors of N model outputs values obtained when model variables are evaluated in matrices A, B, Ci and 
Di, respectively. Thus, the total number of model evaluation is N(k+2). 
First order (S(y,t)i) and total effect (S(y,t)i

TOT) indices measure the effect of the variation of the parameters on 
the model state variables. First sensitivity indices provide the reduction on the unconditional variance of the 
state variable that can be obtained if xi is fixed at its true value. On the other hand, total sensitivity indices take 
into account the interactions among parameters, providing information on the non-additive part of the model.  
The interactional sensitivity index is defined by the difference between the total sensitivity index and the first 
order sensitivity index.  S୧୧୬୲ = S୧ − S୧ (14) 

A more extended explanation of the method can be found in Ochoa et al. (2016b). 
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Uncertain 
Parameter 

Description Unit 
Nominal 
Value 

Standard 
Deviation

θ Temperature coefficient 1.070 0.1338 
km Mass transfer coefficient between layers in facultative pond 0.022 0.0027 

KNHa 
Saturation/Inhibition coefficient of ammonium and ammonia
nitrogen,CNH, for autotrophic bacteria, Ca 

gN/m3 0.200 0.0250 

inxs Fraction of nitrogen in slowly biodegradable particulate COD, Cs gN/gCOD 0.040 0.0050 

KNHh 
Saturation/Inhibition coefficient of ammonium and ammonia
nitrogen,CNH, for heterotrophic bacteria, Ch 

gN/m3 0.050 0.0063 

insf 
Fraction of nitrogen in fermentable, readily biodegradable soluble
COD, Cf 

gN/gCOD 0.030 0.0038 

ba Decay rate of autotrophic bacteria, Ca d-1 0.015 0.0019 
bfb Decay rate of fermenting bacteria, Cfb d-1 0.020 0.0025 

basrb Decay rate of acetotrophic sulphate reducing bacteria, Casrb d-1 0.012 0.0015 
bamb Decay rate of acetotrophic methanogenic bacteria, Camb d-1 0.008 0.0010 

3. Numerical results

With the model presented in the previous section, a GSA analysis is performed. To generate the sample 
matrices N=1000 scenarios were considered. Time horizon was set to the operating time (12 days). 
As can be seen in Figure 1 to 4, for ammonium and ammonia nitrogen (CNH) and nitrate and nitrite nitrogen 
(CNO) total sensitivity indices profiles, it is evident that the temperature coefficient θ is the most influential 
parameter within the three ponds for almost the entire operating time. This behaviour is repeated for the 19 
differential variables studied, not only due to first order effect, but also through interactional effects between 
the temperature coefficients with the other parameters. Therefore, focusing efforts on fixing this parameter to 
its true value would lead to the greatest reduction in the unconditional variance of the output. 
Another relevant parameter is the mass transfer coefficient between layers, km. It only contributes to the 
variance output in the upper and lower layer of the facultative pond. For the nitrate and nitrite nitrogen 
concentration, CNO,3,2, it explains up to 93% of the total variance, affecting almost the entire operating time 
(Figure 4b). In the case of CNH,3,2, km accounts up to the 20% of the total variance with a greater influence at 
the end of the time horizon, as it can be seen in Figure 2b. It also contributes to the total variance of dissolved 
oxygen, CO,3,2, and sulphate sulphur, CSO4,3,2, concentration of the lower layer of the facultative pond. And to a 
lesser extent, it influences the fermentation products, CSA,3,2, and inert soluble COD concentration, CI,3,2.  

        (a)        (b) 

Figure 1: Total sensitivity indices profiles for ammonium and ammonia nitrogen concentration in (a) the first 
aerobic pond (CNH,1,1) and (b) the second aerobic pond (CNH,2,1). 
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Table 1: Uncertain parameters of the model



        (a)        (b) 

Figure 2: Total sensitivity indices profile for ammonium and ammonia nitrogen concentration in the facultative 
pond: (a) the upper layer (CNH,3,1) and (b) lower layer(CNH,3,2). 

        (a)        (b) 

Figure 3: Total sensitivity indices profiles for nitrate and nitrite nitrogen concentration in (a) the first aerobic 
pond (CNO,1,1) and (b) the second aerobic pond (CNO,2,1). 

        (a)        (b) 
Figure 4: Total sensitivity indices profile for nitrate and nitrite nitrogen concentration in the facultative pond: (a) 
the upper layer (CNO,3,1) and (b) lower layer(CNO,3,2). 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

S
iT

O
T

C
N

H
,3

,1

Time (d)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

S
iT

O
T

C
N

H
,3

,2

Time (d)

θ km inxs insf KNHh KNHa ba bfb basrb bamb

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

S
iT

O
T

C
N

O
,1

,1

Time (d)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

S
iT

O
T

C
N

O
,2

,1

Time (d)

θ km inxs insf KNHh KNHa ba bfb basrb bamb

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

S
iT

O
T

C
N

O
,3

,1

Time (d)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

S
iT

O
T

C
N

O
,3

,2

Time (d)

θ km inxs insf KNHh KNHa ba bfb basrb bamb

191



Saturation/Inhibition coefficient of CNH for Ca, KNHha, accounts for 65% and 95% of the total variance of CNH at 
the beginning of the process in the second aerobic pond and in the upper layer of the facultative pond, 
respectively (Figure 1b and Figure 2a). This fact is in concordance with the high growth rate of the autotrophic 
bacteria at that point of the time horizon (Ca,2,1 and Ca,3,1). This parameter also contributes to the total variance 
of nitrate and nitrite nitrogen of the second aerobic pond, CNO,2,1, (Figure 3b) through its first order and 
interactional effect, and to the total variance of nitrate and dissolved oxygen in the second aerobic pond and in 
the upper layer of the last pond (CO,2,1 and CO,3,1) only by its interactional effects. The influence is again 
appreciated at the beginning of the operating time. 
Finally, the variance output is comprised of two more parameter: the Saturation/Inhibition coefficient of CNH for 
Ch, KNHh, and the fraction of nitrogen in Cs, inxs, and. The contribution of both parameters is low; the former 
affects the fermentation products (CSA,2,1 and CSA,3,1), fermentable, readily biodegradable soluble COD (CF,2,1 
and CF,3,1) and dissolved oxygen (CO,1,1) concentration profiles. Whereas, the latter only influences the nitrate 
and nitrite nitrogen variance output less than 18% along all operating days, as it can be appreciated in Figure 
3b and Figure 4a. 

4. Conclusions

A proper knowledge of the influence of the model parameters on the state variables has allowed their 
classification and provides useful information for parameter estimation. GSA allows determining which 
parameters are the most influential through their effects due to interactions with other parameters and due to 
first order effects along the entire time horizon. The temperature coefficient θ is the parameter that has the 
strongest first order influence during the time horizon in the wastewater stabilisation pond system model, 
which indicates the need of its proper determination. It is important to estimate the most accurate values of 
other parameters like km and KNHha in order to avoid their first order effects that explain 100% of the variance 
during some intervals within the time horizon of some variables output. Such information is crucial for 
identifying the set of these three parameters that need to be determined more precisely, as stated in the 
results section, and allows the identification of the set of parameters which has no contribution to the total 
output variance. 
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