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For efficient inherently safe design, awareness of all available options at the appropriate decision-making 
moment is key. Simulations offer both timely availability and large screening possibilities. Therefore computer-
aided product design gained in popularity during the recent years and models of various physico-chemical 
properties were developed. Yet, predictions of safety related data are still limited. Hence, thermal stability 
derived from Differential Scanning Calorimetry (DSC) is analysed and simulated with two molecular-based 
modelling approaches: Group Contribution Method (GCM) and Quantitative Structure-Property Relationships 
(QSPR). Predictive models are developed and evaluated over fitting and predictive abilities for five properties 
extracted from the DSC curves.  

1. Introduction 

Any step of an industrial chemical process can potentially involve thermal risks, as most reactions carried out 
are exothermic, chemicals are often thermally unstable, and operating conditions set to favour high conversion 
and throughput. In spite of efficient risk assessment methods and implementation of risk mitigation measures, 
accidents are still occurring. Rather than reducing the risks, a more efficient strategy would be to reduce the 
hazards: an inherently safer process would present fewer hazards and fewer weak points. To come closer to 
inherent safety, four basic principles are to be applied (Kletz 2003; CCPS 2009):   

• minimize the quantities of hazardous materials handled;  
• substitute a hazardous compound for a less hazardous one;  
• moderate the potential effects of residual risks;  
• simplify the system and avoid additional equipment or features. 

These principles offer great potential for safety enhancement, and should be iteratively implemented at 
various stages of process development. Their impact is optimal when influencing initial choices regarding the 
selection and development of the process reactions and equipment (CCPS 2009). Moreover, at early design 
stages, the flexibility is still high and the costs of change low, whereas modifications brought later would incur 
higher financial costs.  
On the other hand, at the preliminary development stages, only limited knowledge and information are 
available on the final characteristics the process would have and of the chemicals that would be involved. In 
this context, it is highly valuable to be able to assess beforehand the chemical and physical properties that 
offer insight in order to make the appropriate developments, and to allow for the conceptual design to be 
partially performed in silico. 
Bringing thermal risk assessment earlier in the design timeline would grant for inherently safer alternatives to 
be considered at the most appropriate timing. A rigorous thermal risk assessment is part of any chemical 
process design. Among others characterizations, it requires answering crucial questions regarding the 
chemical thermal decomposition, if any, at which temperature would it occur, how much heat would be 
released and at which rate. This information is gathered either from own data, literature, expertise, or 
experiments. In particular, Differential Scanning Calorimetry (DSC) allows to identify and quantify thermal 
decompositions characteristics such as potential energy release, triggering temperature, and could serve for 
thermokinetic data (Sanchirico, 2014). Therefore, DSC experiments will serve here as the basis for these 
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thermal stability predictions. Fundamental characteristics of the thermal trail will be examined apart and for 
each of them predictive models will be produced. The curves will then be simulated from the assembled 
estimated characteristics in order to obtain an overview of the thermal behaviour.  
For predictive models to be applicable at the early development stages, when little information is available and 
definitive, they should rely on minimal information. So, independently from other considerations concerning the 
operations, the thermal stability of the compounds will be estimated only from their molecular structures. For 
this purpose two main methods are widely used: Group Contribution Methods (GCM) and Quantitative 
Structure-Property Relationship (QSPR). The main difference originates in the way the molecules are defined 
within these frameworks. For QSPR methods, the molecule is an entity characterized by its constitution and 
theoretical descriptors derived from its geometry, topology, electronic structure and quantic properties. On the 
other hand, GCM consider the molecule as the assembly of its constitutional functional groups. Each one 
contributes to all properties of the molecule, and its contribution is constant if it is comprised in a different 
structure and depending on its frequency. There are a quantity of group contributions frameworks which define 
the groups in different manners; in this case, the Marrero-Gani GC+ framework is applied: it consists in Group 
Contribution enriched with connectivity indices (CI) (Hukkerikar et al. 2012).  
In the process safety domain, there have been, in the recent years, efforts to develop predictive models for 
reactivity hazards and thermal decomposition of various chemicals based on either of these approaches. In 
particular, DSC derived parameters, and mostly the onset temperature and the decomposition enthalpy have 
been the focus of several QSPR models (Saraf et al. 2003; Klos et al. 2008; Lu et al. 2011).  They are fewer 
GCM-based models developed for the precisely the same properties (Keshavarz et al. 2009; Lazzús 2012), 
nonetheless, there were several applications to different thermal properties such as temperature of significant 
mass losses (Mallakpour et al. 2014) or heat capacities (Pilar et al. 2015). Interestingly, when considering 
DSC derived parameters, all studies mentioned above focus on particular sets of chemicals with common 
substructures: i.e. nitroaromatic compounds (Saraf et al. 2003; Keshavarz et al. 2009), aromatic derivatives of 
carbamic acid (Klos et al. 2008), organic peroxides (Lu et al. 2011) or ionic liquids (Lazzús 2012). The 
development of models with broader application ranges is rather challenging: a trade-off between the 
accuracy and the application domain is probably the underlying reason. 

2. Modelling process 

2.1 Data pre-treatment  
A collection of more than 400 DSC experiments of miscellaneous compounds constitutes the initial database 
for this modeling study. The experiments were performed on a Mettler Toledo DSC1 apparatus, in gold-plated 
crucibles, closed under inert atmospheres and scanned between 0° and 400°C with a temperature increase of 
4°C/min.   
The obtained thermograms were subjected to identical treatment using AKTS software (AKTS 2000), namely 
baseline corrections and fitting by Gaussian like equations to abstract the thermal trail to four characteristics: 
peak amplitude (A [W/mol]), position of the maximum (Tmax [°C]), peak width (σ [°C] and a factor of 
asymmetry (AS [-]) to describe if the peak shows either tailing or fronting shapes. Finally, the partial area that 
represents the reaction enthalpy (∆Hr [J/mol]) is also considered independently.  
 
2.2 Molecular Structure Descriptions 
For the generations of the QSPR descriptors, 2D molecular representations were treated with Codessa Pro 
software (Codessa Pro 2002) to optimize 3D geometries and perform the numerical descriptors calculations.  
Over a thousand descriptors of their constitution, geometry, topology, and electronic, quantum chemical and 
thermodynamic properties are generated. A first selection eliminates the descriptors with the lowest variances 
or with missing values resulting in a working set of approximately 350 descriptors per structure. 
Similarly, the 2D molecular structures are also treated with ICAS software (ICAS 2014) to generate Marrero-
Gani groups and connectivity indices. To represent all the dataset molecules, 217 groups were necessary. 
 
2.3 Models 
Independently of the molecular based method used, the model construction phase can also be adapted from 
several statistical techniques with varying degrees of complexity. Multi-linear regressions (MLR) are the 
simplest and most used method, which consists in determining the coefficients for a selection of parameters to 
fit the observed property. The models are built as MLR following the stepwise regression method. This feature 
selective method screens among the structural descriptors/groups to find the combination with the highest 
correlation to the modelled properties by performing a statistical F-test and evaluating the corresponding p-
value. The parameters that do not enhance the models are excluded. 
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It is also important to note that within this study, the dataset is sub-divided before the modeling phase. K-
nearest neighbor (k-NN) algorithm is used for classifying the data in four clusters defined by their structural 
data space. As molecular structures are defined in two different manners, the clustering results are different, 

and therefore the entire model construction process is performed twice.  

Figure 1: Summarized modelling process 

To summarize, figure 1 shows a schematic representation of the modeling process: 5 DSC properties are 
extracted from all thermograms and molecular structures are described by QSPR and GCM methods (hence 
the doubled step); by clustering, the dataset is divided in four subsets (A to D); finally, the models are 
developed for within clusters. 

3. Applications examples 

Considering that two modeling methods are applied, four clusters created and five properties studied, overall, 
there are 40 models developed. Among them, 10 are exposed here and summarized in Table 1 to illustrate 
the obtained results. These models were built for clusters of similar size and distribution, and are thus 
comparable and allow a parallel discussion. They are characterized by the number of structural descriptors or 
groups they rely on (#parameters in Table 1), the correlation coefficients of the obtained predictions to the 
observations respectively in the training R2 and in the validation set Rcv

2,  and the average absolute relative 
deviations ARD expressed in percentage of the observed value.  
 
Table 1: Comparative summary of obtained GCM and QSPR models 

Method Property #parameters R2 Rcv
2 ARDTr % ARDVal % 

GCM 

∆Hr 18 1 0.91 0 58 
A 18 1 0.81 0 170 
Tmax 18 1 0.92 0 25 
σ 18 1 0.87 0 28 
AS 18 0.99 0.99 19 51 

QSPR 

∆Hr 10 0.93 0.87 83 68 
A 7 0.83 0.76 49 76 
Tmax 14 0.97 0.69 5 56 
σ 11 0.93 0.84 35 40 
AS 9 0.90 0.83 54 64 

 

The subsets serving for the construction of the above models comprised common observations including 
lauroyl peroxide, sucrose, and chloro-2-ethynylbenzene. After estimating the 5 DSC properties with both GCM 
and QSPR methods, the thermograms of these three compounds were simulated and are shown in Figure 2. 
This figure shows a comparison of the thermograms obtained from simulations with the corresponding 
experimental measurements. During the experimental phase, some measurements were replicated, deviations 
were noted and quantified, and therefore on Figure 2, “tolerance zones” also delimited which represents the 
most probable DSC curve measured with a ± 5% tolerated error relative to the measured data. 
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Figure 1: Simulated thermograms with GCM method (full line) and QSPR method (dashed line) in comparison 
with experimental measurement (diamonds) and “experimental error zone” (shadowed area) – from left to 
right: lauroyl peroxide, sucrose, and 1-Chloro-2-ethynylbenzene 

In order to better illustrate the results, the calculation details for the estimations of the enthalpy of 
decomposition of Lauryol peroxide ([CH3(CH2)10CO]2O2) with both methods are presented in Table 2. As 
mentioned above, the models are linear regressions built as 

ܲ = ∑ ߙ ∙ ݔ + ߚ     (1) 

i.e. for any compound j, belonging to cluster k, its predicted property P is the sum of all its structural 
descriptors or group frequency xij multiplied by their corresponding coefficients αi, plus an eventual intercept 
βo. Table 2 summaries all relevant groups and descriptors necessary to simulate the enthalpy of 
decomposition of lauryol peroxide. For comparison, the measured enthalpy is ∆HrLP =-322.9 kJ/mol, and the 
average relative deviations of both simulations are also shown in the table.  

Table 2: Detailed calculations for decomposition enthalpy of lauryol peroxide 

GCM 
i αi xi Gi Definition
1 -11.8 18 CH2  Count of CH2 in molecule 

2 128 2 CH2COO  Count of CH2COO in molecule 

3 32.0 46 H  Count of H in molecule 

4 48.6 4 O  Count of O in molecule 

5 23.8 24 C  Count of C in molecule 

6 -112 18.8 0X  Kier and Hall Connectivity Index 

βo 0    Y -Intercept 

Result    ∆HrLP =-323 kJ/mol 
ARD %    0% 
QSPR 

i αi xi Di Definition
1 -441 0.97 NSB,r  Relative number of single bonds 

2 -53.9 11 MNOFCmax  Max atomic force constant 

3 6.65 0.66 RNCS  Relative Negative Charged Surface Area (MOPAC PC) 

4 20.3 0.14 RPCS  Relative Positive Charged Surface Area (Zefirov PC) 

5 342 -2.2 MNOABMO  Max antibonding contribution of one Molecular Orbital 

6 1209 0.075 FPSA3  Fractional atomic charge weighted Partial Positive Surface Area 
(MOPAC PC) 

βo 1412    Y -Intercept 

Result    ∆HrLP =-283 kJ/mol 
ARD %     12.4 % 
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4. Discussion 

From the 23 observations of the subset studied to develop GCM models, 18 serve to adjust the models while 
5 are taken out for the validation. All models developed following GCM achieve correlations with R2≥ 0.99 and 
besides the asymmetry model, all of them present good accuracy with practically null average relative 
deviations. The predictive power is not as high as the fitting capability, as the deviations are higher for the 
validation than the training set, and are probably symptomatic of overfitting. Indeed, when the models are 
excessively adjusted to the training set, they lose capability of predicting out-of-the-set data. In this case, while 
the overall tendency is retrieved with good Rcv

2 the accuracy is diminished (high deviations). Though the 
amplitude model shows very high average deviations for the validation set, in reality it is only due to one 
outlier that when removed leaves the corrected ARDval=66% instead of ARDval=170%. It is noteworthy that the 
group-contribution models involve certain combinations from an ensemble of 26 groups, mostly 1st order 
groups and connectivity indices. However, not all of them are relevant for the modeling of molecules as an 
average of 11 groups describe each molecule. The lauryol peroxide example shows that in that case only 6 
groups are necessary to describe its enthalpy for instance. The estimation of ∆HrLP with the GCM model is 
extremely accurate as the ARD is practically null. 
Concerning the QSPR models, a slightly larger dataset is used comprising 33 observations. Overall, these 
models are weaker than the previous ones: lower correlations coefficients for both training and validation sets, 
and consequently higher deviations. Both fitting and predictions are limited compared to GCM. The main 
reason could be a higher sensitivity of QSPR models to over-parametrization. When varying the p-value, the 
criteria for the inclusion/exclusion of parameters to the models, even minimal variations lead to models with 
twice as many parameters, presenting high correlations coefficients and null deviations for the training set, but 
unable to depict the tendency of the validation set, let alone be accurate. For instance, among the potential 
QSPR models for σ, no models with 13 to 25 parameters were found. There were either regressions 
combining up to 12 parameters with similar efficiency to the model in Table 1, or over-fitting models with 26 
parameters or more presenting very high fittings and poor predictive power. Therefore, despite the high 
deviations shown in Table 1, these models were selected as the best compromise between efficiency and 
over-parametrization.  
Figure 1 exhibits the graphical comparison of the reconstructed thermograms. The overall appearance shows 
adequate fittings. Accordingly to the discussion above, GCM present ideal simulations for the three 
observations shown on Figure 1 and overcome the results of QSPR. Except for the sucrose amplitude that is 
underestimated, QSPR simulations are correct though, and the DSC reconstructions fall in the “tolerance 
zone”.   
Finally, Table 2 details the calculations of the enthalpy for a particular compound. It is remarkable that most 
parameters included in the GCM model are rather simple and can be directly extracted from visual inspection 
of the molecular structure. The only exception is 0χ, the molecular valence connectivity index (Hall & Kier 
1986) that is not trivial and needs to be calculated. Interestingly, 0χ, known to be extremely correlated to the 
molecular surface area - to the extent it is assimilated as an accurate measurement (Karcher & Devillers 
1990)- participates in the GCM model while the QSPR model is built mostly with electrostatic and charge-
related descriptors which are surface area dependent. On the other hand, the QSPR descriptors selected for 
modelling ∆Hr, and similarly for all modelled properties are more complex and require computational work. 
That said, once a QSPR descriptors generating software is available for developing such models, the 
generation of the same descriptors for an extra molecule is not a disputed point. It is more an exportability 
limitation as the descriptors generation becomes an unavoidable step requiring detailed information on the 
theoretical assumptions and models for the descriptors calculations. Hence, the overall procedure applicability 
depends on the availability of the descriptors calculation method and theoretical assumptions. 

5. Conclusions 

We put forward a method relying on molecular-based approaches to predict thermal stability of a set of 
thermally reactive miscellaneous chemicals. The efficiency of the models are disparate, nonetheless we 
overcome to major limitations: in both cases DSC thermograms were recreated from estimated key properties 
instead of a classical standard two-value characterization of DSC information; moreover, the initial dataset 
includes structurally diverse chemicals rather than compounds with pre-selected structure similarity. The main 
objective here is not to state whether GCM or QSPR are more appropriate for DSC simulations, yet for the 
considered set of observations, GCM models prevailed on all comparative criteria.  
These results highlight how molecular based modeling can be applied to properties crucial for thermal risk 
assessment and this could benefit to inherently safer design. Indeed the predictions offer several advantages 
that are required to apply inherent safety in the best conditions: an alternative in the absence of practically 
feasible experiments; a possibility of large screening within limited time and resources, which allows to 
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determine the best candidate for eventual substitution; if no substitutions are defined, at least the hazards 
related with the considered chemical are foreseen; and most of all they rely on minimal information and are 
thus readily available.  
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