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Odor emissions from wastewater treatment facilities have paid attention during the last decade. These 
emissions usually are treated as stationary emissions or variable based on emission factors. This general 
approach does not include biological activity to explain the influence of process variations such as organic 
load or inorganic hydrogen sulfide promoters with odorants emissions. The present research presents a 
mechanistic model which includes biology influence on hydrogen sulfide air release. 

1. Introduction 

Regulations on odor emissions from different industrial activities have been taken attention during the past 
years due to numerous citizen’s complaints, establishing preventive actions and thresholds limits (Capelli et 
al., 2014). On this framework, the daily dynamic behavior of the odor emissions from several industrial 
facilities, e.g. livestock farming, were outlined pointing the necessity of include them on dispersion models to 
carry out accurate odor impact studies (Schauberger et al., 2013). However, the dynamic on the odor 
emissions from wastewater treatment plants (WWTP) have been barely considered due to the lack of 
mathematical models focus on the emissions of odor precursors (Giuliani et al., 2014). 
United States Environmental Protection Agency (USEPA) recommends the use of WATER9 software for 
regulatory propose to estimate air emissions of individual constituents during the collection, storage, treatment 
and disposal (Meri et al., 2012). Despite the fact that, there are several different air emission models focus on 
WWTP, Toxchem+, Baste and Cinci, none of them consider the dynamic evolution of the odorant compounds, 
because the model is based on algebraic equations instead of ordinary differential equations (ODE) (Carrera-
Chapela et al., 2014). 
Information about the emissions characteristics is crucial because they are used as key inputs for air quality 
models, which need reliable data in order to obtain accurate predictions. The major nuisance odor emissions 
sources on WWTP facilities are located on the sludge treatment process, being composed by dozens of 
different substances, such as VOCs, VOCSs, VFA, H2S, NH3, etc. (Capelli et al., 2011). From this set of 
typical odorants present on WWTP emissions, hydrogen sulfide is the dominant compound when the source 
has anoxic/anaerobic conditions. Therefore, this compound has been used as odor trace marker because of 
its good correlation between dynamic olfactometry and chemical analysis on these sources (Wang et al., 
2014). The release of these volatile compounds to the atmosphere takes usually place on quiescent surface 
process, such as settling-thickening units, because the liquid-gas mass transfer is promoted on these units in 
agreement with its high surface area and turbulence gas phase by wind action since they are usually open 
(Capelli et al., 2014). These odorant substances are contained in the water phase but their formation and/or 
consumption could also be affected by the microorganisms contained into the biological sludge blanket (Li et 
al., 2014). The impact of the biological activity on the odorant formation has not been studied. 
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In the literature, there is a variety of odor impact studies applied to WWTP, where lower quality emissions data 
has been used, which demonstrates the lack of concern on this topic (Gostelow et al., 2004). This paper aims 
to present a dynamic emission model focus on hydrogen sulfide formation and its gas release in a sludge 
thickener. The final goal is to count with an objective tool to estimate the odorant emissions that takes into 
account the variations of operational conditions, biological activity and mass transfer release. 

2. Methodology 

2.1 Mathematical model 
The developed model is based on the following assumptions: (1) Horizontal homogeneity (2) The molecular 
diffusion on vertical axis is neglected (3) The gas bubbles achieves immediately the liquid surface (4) No 
biomass decay (5) Atmospheric partial pressure of released gases neglected (6) Gas solubilized in the influent 
(7) Hydrogen sulfide is the only odorant (indicator) on the emission (8) Sinusoidal ambient daily temperature 
oscillation. 
The model structure is based on the formulation developed by Takacs et al. (1991) to represent the sludge 
gradient over the vertical axis with a discretization of the individual mass balance Eq. (1) by "n tank series" 
approximation, neglecting the term of diffusion (DC▽ 2C), but in our research in order to consider the biological 
activity the reaction term (Sc) is included. డడ௧ + ܥߘሬԦݑ = ܥଶߘܦ + ܵ  (1)

Inside the thickener, particulate matter, soluble matter and gas compounds coexist. Particulate matter consists 
on organic compounds, such as complex substrates and biomass, and also an inorganic fraction which 
contains recalcitrant compounds and other inert. The relationship between the concentration of solids and the 
settling velocity responds to an empirical double hyperbolic function on the first quadrant, which represents the 
variation of the settling velocity due to high solids concentration (Takacs et al., 1991). 

௦ܸ = ܸ(݁ି(ି) − ݁ି(ି))  (2)

where, Vs is the settling velocity, Vo is the maximum settling velocity, rh and rp parameter characteristic of 
solids settling behavior, Xmin is the minimum feasible solids concentration that permits settling and Xi solids 
concentration. The function of the settling velocity allows to define the settling down-flux between layers (Js,i), 
which only applies to particulate-solid compounds. Thus, the mass balance for each layer will be, 
 

● Surface layer (i=1): ℎ ⋅ 	݀ ଵܺ	݀ݐ = ௩ݍ ⋅ 	ܺଶ − ௩ݍ 	 ⋅ ଵܺ − ௦,ଵܬ + ܵ	( పܺሬሬሬԦ) 	 ⋅ ℎ	 
● Layer up-flow zone (2 ≤ i ≤ m-1): ℎ ⋅ 	݀ ܺ	݀ݐ = ௩ݍ 	 ⋅ ܺାଵ − ௩ݍ 	 ⋅ ܺ + ௦,ିଵܬ − ௦,ܬ + ܵ	( పܺሬሬሬԦ) 	 ⋅ ℎ	 
● Feed layer (i=m): ℎ ⋅ 	݀ܺ	݀ݐ = ܳܣ ܺ − ௩ݍ 	 ⋅ ܺ − ௨ݍ 	 ⋅ ܺ + ௦,ିଵܬ − ௦,ܬ + ܵ	(ܺሬሬሬሬሬԦ) 	 ⋅ ℎ	 
● Layer down-flow zone (m+1≤ i ≤ n-1): ℎ ⋅ 	݀ ܺ	݀ݐ = ௨ݍ 	 ⋅ ܺିଵ − ௨ݍ 	 ⋅ ܺ + ௦,ିଵܬ − ௦,ܬ + ܵ	( పܺሬሬሬԦ) 	 ⋅ ℎ	 
● Bottom layer (i=n): ℎ ⋅ 	݀ܺ	݀ݐ = ௨ݍ 	 ⋅ ܺିଵ − ௨ݍ 	 ⋅ ܺ + ௦,ିଵܬ + ܵ	( పܺሬሬሬԦ) 	 ⋅ ℎ	 

 
Where h is the layer height, Xj

f feed concentration for variable j, A layer area, qov up-flow volumetric flux, qun  

down-flow volumetric flux and Js,i settling flux on layer i and ܵ 	( పܺሬሬሬԦ)	the reaction term for the biomass set పܺሬሬሬԦ 
(Takacs et al., 1991). Similar mass balances for the soluble compounds can be obtained neglecting the 
settling flux terms. 

2.2 Anaerobic biological model 
The applied anaerobic digestion model is an extension of the AM2 model developed by Bernard et al. (2001) 
including the hydrolysis and sulfate reducing stages, in order to predict hydrogen sulfide formation and gas 
release (Carrera-Chapela et al., 2016). Ambient daily temperature (T(t)) usually changes following a bounded 
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sinusoidal function between a maximum (Tmax) and minimum (Tmin) as in Eq. (3), where the oscillation period 
(P) trends to increase seasonally from winter to summer because of more sun hours in middle latitudes. ܶ(ݐ) = ܣ ⋅ ܲ)ݏܿ ⋅ (ݐ + (3) ܦ

ܣ = ܶ௫ − ܶ2  
(4)

	ܦ = 	 ܶ + (5) ܣ

Ambient temperature variation could affect the reaction kinetics since the microorganisms increase their 
specific growth rate. In order to evaluate the effect between the specific growth rate and system temperature, 
CTM1 model for the specific growth rate for each species was included (Donoso-Bravo et al., 2009). 
The liquid-gas transfer flux (J) can be expressed by the two film layer theory, where the global mass transfer 
(K) coefficient depends on individual liquid (kl) and gas (kg) coefficients Eq. (8) (Meri et al., 2012). 
ܬ  = ݇ ⋅ ܥ) − (∗ܥ = ݇ ⋅ ܥ) − ∗) (6)ܥ

ܬ = ܭ ⋅ ܥ) − ܪܴܶܥ ) (7)

ܭ1 = 1݇	 +  ݇ܪܴܶ
(8)

 
where, Cl and Cg are the concentrations of the component in liquid and gas phase, Cl

* and Cg
* are the 

concentrations of the component in liquid and gas phase in the equilibrium, and H is the Henry’s Law 
constant. Individual mass coefficient was estimated through empirical expressions as regulatory steady-state 
emission models include (USEPA, 1997). The empirical expressions used by WATER9 are based on previous 
research proposed by Springer (1984). Even these expressions trend to overestimate the emission rate, they 
are more accurate than other used by different steady-state models, as TOXCHEM (Meri et al., 2012). 

2.3 Optimization of model parameters 
Prior the parameter identification a global sensitivity analysis (GSA) was carried out in order to rank model 
settling parameters that are practical identifiable with the experimental data obtained. This variance-based 
sensitivity analysis was conducted throw SALib module in Python programming language (Herman, 2016).  
Model calibration was carried out using real data obtained from an urban wastewater treatment plant. More 
details about the model development, sensitivity analysis and parameter identification can be found in 
Carrera-Chapela et al. (2016). The optimization procedure started with the calibration of the settling 
parameters from Takacs et al. (1991) as a reference model to describe solids profiles over time using least 
squares cost function. The settling parameters are included in the dynamic biological model and then the 
calibration was focused on hydrogen sulfide stoichiometry biological parameters. 

2.4 On-site sampling and analytical methodology 
The samples were collected with a graduated stick from the primary settler of a wastewater treatment plant at 
10 different equally spaced depths. Sampling time was spaced on five different field campaigns, representing 
the dynamic operational behavior along 43 days. Hydrogen sulfide and pH were analyzed on-field with a 
portable electrode, while total and soluble COD, sulfate and alkalinity were measured according to standard 
methods for wastewater treatment samples (Eaton et al., 1998). 

3. Results 

3.1  Sensitivity Analysis and parameter estimation 
Takacs et al. (1991) model presents five parameters which are related with the settling velocity; however, only 
the minimum concentration that allows particle to achieve enough weight to settle (Xmin) is practical 
identifiable. This unique parameter requires 80% of the total model output variance, thus, the other 
parameters were fixed according to the values presented in Takacs et al. (1991).  
The optimal value obtained for Xmin with its 95% confidence interval is (1.094 ± 235)݃ · ݉ିଷ. The confidence 
interval was obtained through Jacobian finite difference approximation under the optimum following the Eq. 
(9): 
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	݁ݏ = ௦ௗ√ே = ௗ()·ௗ()ே 							 ; 					ܿ݅ଽହ%: (݉ ± 1.96 ·  (9)   (݁ݏ

Where sd is the standard deviation of the true population, J is the Jacobian matrix of the cost function 
evaluated at the optimum, m is the sample mean population value obtained during the optimization, se is the 
standard error of the sample population, N is the total measured experimental data and ci95% is the 95% 
confidence interval. The solids profiles presented in Figure 1 are in agree with previous Takacs model using 
the same settling velocity parameters, although a deviation on the feed layer is observed where the biological 
model slightly underestimates the concentration. 
 

 

Figure 1: Solids profile concentration (g·m-3) over time for the primary settler using: (a) Takacs et al. (1991) 
and (b) biological model. Dashed line (-·-) corresponds to model simulation and white circles (ο) experimental 
data at 10 different depth points. 

 

Figure 2: Sulfate (a) and hydrogen sulfide (b) water phase profiles concentration over time for the primary 
settler. Continuous line (-) corresponds to model simulation and white circles (ο) experimental data at 10 
different depth points. 

3.2 Importance of biology on thickener behavior and odorant emissions 
Biological activity plays an important role during organic overloads and when occurs an increase of the sludge 
blanket as a consequence of low storage capacity after settling units. This situation is not a rare episode on 
industrial facilities, because if any biosolids centrifuge fails, there will be a demand on sludge storage and 
usually settling tanks deals with this issue. 
The model performance was compared against water phase measurements and the gas release (Figure 3) 
was estimated through global mass coefficient from reported USEPA algorithm application to sludge settling 
units. Before that, visual inspection suggests that sulfate concentration profiles (Figure 2a) are better 
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described than sulfide profiles (Figure 2b), but a deeper statistical analysis based on the residual error reflects 
that both variables follow a quasi-normal density distribution. In the case of sulfate with a mean bias ci95% of 
23 ± 16 g·m-3, meaning that experimental data are contained with a 95% of confidence inside the interval. On 
the other hand, hydrogen sulfide error density distribution presents a mean bias ci95% of 23 ± 32 g·m-3 showing 
also a small average overestimation, but visual inspection reveals that the model tends to overestimate 
hydrogen sulfide at the bottom, while in the other layers underestimation is observed.  
 
3.3  Emission comparison using conventional approach and simulation scenarios  
The gas emissions of hydrogen sulfide were compared to the application of published emissions factors (EF) 
obtained from measurements on primary settling tank (Jeon et al., 2009). Figure 3a shows an agreement 
between the dynamics emissions and the values estimated by using EF. The benefit of using dynamic 
modeling is observed when dynamic evolution on substrate concentrations appears (Figure 2a), which reflects 
the dynamics on the hydrogen sulfide emissions (Figure 3a) whereas when using EF; however, this does not 
affect to hydrogen sulfide emissions. 

 

Figure 3: (a) Hydrogen sulfide air emissions flow rate from proposed dynamic model (ロ) and EF-based model 

(♢). (b) Simulation of the emission flow rates using white noise on model input variables compared proposed 
dynamic model (-.-) and EF-based model (-). 

Based on the on field mean and variance measurements it was defined as white nose each model input and 
run a 1,000 hours simulation in order to rank those process variables which affect more on hydrogen sulfide 
emissions (Figure 3b). In this case, the temperature reflects more influence on the hydrogen sulfide air 
emission dynamic behavior as the sinusoidal function corresponds to daily temperature oscillations between 
15-10 ºC. This performance is also present on EF but the wave amplitude is considerably lower than the 
proposed dynamic model, leading to overestimation depending on water temperature. 

4. Conclusions 

This paper describes a mechanistic biological model to reflect dynamic hydrogen sulfide air emissions 
changes due to variations in process environment. Dynamic model results were compared against both water 
phase measurements and EF-based air emissions estimations. As the major conclusion, this research aims to 
highlight the need of applying a dynamic mechanistic model to reflect operational changes influence on air 
emissions which later on are used as inputs on air dispersion modelling and air quality regulations. 
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