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This paper focuses on finding minimal complexities of decision trees representing rules defined for features 
and functionalities of online learning community. Because simultaneously minimizing all complexities is not 
always possible and this matches pattern of multiobjective optimization, Pareto optimal point is introduced for 
describing complexity distributions for selecting decision tree most suitable for system requirements. Unlike 
typical multiobjective optimization whose feasible space can be explicitly represented, feasible space for 
complexities of decision trees can only be implicitly reflected by relationships of subtables and associated 
objective functions due to the great number of possible trees. This paper provides a means of finding Pareto 
optimal points in implicit feasible space determined by objective functions defined for describing decision tree 
complexities by using graph and associated algorithm. The experimental results show that proposed algorithm 
yields valid results for finding Pareto optimal points. 

1. Introduction 

As smart phones, tablets and various types of digital mobile devices prevail in daily life, the internet expands 
through Wi-Fi, 4G and other mobile telecommunications standards compatible with mobile devices. Our daily 
lives are dramatically changed in several aspects such as learning as mobile devices flourished in past few 
years. With the help of new technologies, learning evolves from traditional blackboard and chalks to interactive 
online activities through the platforms like online learning communities. As far as mobile web can stretch, 
learning can occur at anytime, anywhere and with anybody by using online learning communities. Online 
learning communities now provide a convenient means for common people to interact with professional 
experts, teachers, technicians and other people of advanced knowledge and skills of some expertise. For 
learning itself, online learning communities promote not only knowledge learning but also idea sharing. 
However, an efficient solution of online learning community for providing multifarious functionalities is difficult 
to be implemented. For example. massive information presented in online learning communities involved with 
a great number of users is quite costly and difficult to classify under the considerations of what topics of users 
like and other features shared by certain users in online learning communities.  
As an efficient and viable means for implementing automatic decision making under the sophisticated cases, 
decision trees are widely adapted in multifarious fields as digital image processing (Elsalamony, 2014; Grana 
et al., 2012), biomedicine (Czajkowski et al. 2014), firm power capacity scheduling (Moutis and Hatziargyriou, 
2014), stock analysis (Bast et al, 2015), earnings management (Chen et al., 2015), etc. These successful 
applications imply decision tree is a highly-efficient solution for implementing functionalities of online learning 
communities, e.g., information categorization. The focuses are how to construct decision trees, and more 
important which decision tree is most feasible for online learning communities. The most properties of decision 
trees need to be taken into account are time and spacial complexities of trees which determine efficiencies of 
functionalities depending on trees. Because minimization of both time and spacial complexities is always not 
attainable, this introduces concept of Pareto set which actually enumerates all Pareto optimal solutions for 
some objective constrains (Erfania and Utyuzhnikov, 2011; Ghosh and Chakraborty, 2014). Although there are 
multiple algorithms developed for finding Pareto set theoretically, a few targets decision trees (Chikalov, 2013; 
Hussain, 2014). 
This paper presents an algorithm for determining Pareto set of time and spacial complexities of decision trees 
derived from decision table bearing the features of online learning communities. The time and spacial 
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complexities of decision tree are defined and employed as objective functions of multiobjective optimization 
whose desired solutions form Pareto set. The details of algorithm are visually described by UML activity 
diagrams (Rumbaugh et al., 2010). The algorithm essentially depends on adapting data structure of graph for 
preserving decision table splitting whose splitting information is employed for generating Pareto set in turn. 
Some experimental data is adapted for illustrating visual result of Pareto optimal points found in objective 
space. However, algorithm avoids constructions of decision trees corresponding to Pareto points. 
The rest of paper is organized as following. Section 2 provides a brief review about Pareto set and decision 
tree. Section 3 defines decision tree complexities and mathematical model for generating Pareto optimal 
points for a given decision table. Section 4 describes algorithms implementing models discussed in Section 3 
in details. Section 5 introduces three experimental results for showing validity of proposed algorithm and 
Section 6 draws the conclusion. 

2. Related works 

Constructions of decision trees based on given decision tables are constantly evolving. There are plenty of 
means for constructing decision trees with respect to terminal vertices and height of the tree. Different 
strategies are employed for decision tree constructions of different kinds of decision tables, e.g., single-valued 
decision tables (Amin et al., 2013;Chikalov, 2013; Hussain, 2014; Luo et al, 2015) and multi-valued tables 
(Azad et al., 2013; Azad and Moshkov, 2014). Construction algorithms roughly match some design pattern like 
dynamic programming (Azad and Moshkov, 2014), incremental algorithm (Luo et al, 2015) and greedy 
algorithm (Amin et al., 2013; Azad et al., 2013), etc. Normally, almost all of proposed algorithms attempt to 
construct decision trees of minimal height and minimal left number which are referred as time and spacial 
complexities. Commonly, such attempts end with compromise of optimizing only one complexity because 
minimization of two is not always possible. This essentially resembles the case of multiobjective optimization 
in which several objective functions need to be minimized, but the ideal case of minimizing all objective 
functions simultaneously is not possible. Hence, suboptimal solutions which minimize objective functions in 
some degree are derived as Pareto set. There are greatly number and types of Pareto set generation 
algorithms depending on actual problem patterns, e.g., utility function method (Zeng et al., 2012), global 
criterion method (Rao, 2009), nonsmooth convex objective function method (Attouch et al., 2015), 
lexicographic method (Pulido et al., 2014), goal programming method (Rao, 2009), goal attainment method 
(Rao, 2009), etc. 
Formally, k  constrains of multiobjective optimization are formalized as functions gଵ, gଶ, … , g୩ , there are n 
objective functions Fଵ, Fଶ, … , F୬  and their values form objective space ࣴ ⊆ Թ୬ . Vectors compatible with F୧ 
where i ൌ 1,2, … , n form decision space ࣞ ⊆ Թ୫ and the set of vectors in ࣞ satisfying g୨ where j ൌ 1,2, … , k is 
called feasible space and denoted by ࣞ∗ ⊆ ࣞ. Hence, there is a map ࣠:Թ୬ → Թ୫ from ࣞ∗ to a subset ࣴ∗ ⊆ 	ࣴ, 
i.e., image of ࣞ∗ under ࣠. For a given vector ঘ ∈ ࣞ∗, the definition of multiobjective optimization is given as 
minঘ∈ࣞ∗ ࣠ሺঘሻ ൌ minঘ∈ࣞ∗൫Fଵሺঘሻ, Fଶሺঘሻ, … , F୬ሺঘሻ൯ where ঘ∗ ∈ ࣞ∗  is Pareto optimal for minঘ∈ࣞ∗ ࣠ሺঘሻ  iff ∄ঘᇱ  such 
that F୧ሺঘᇱሻ ൑ F୧ሺঘ∗ሻ for i ൌ 1,2, … , n and ∃j, 1 ൑ j ൑ n, F୨ሺঘᇱሻ ൏ F୨ሺঘ∗ሻ. Minimum of F୧ in ࣴ is denoted by F୧

∗, a 
common assumption of minঘ∈ࣞ∗ ࣠ሺঘሻ  is that there is no ঘᇱ ∈ ࣞ∗  satisfying ൫Fଵሺঘᇱሻ, Fଶሺঘᇱሻ, … , F୬ሺঘᇱሻ൯ ൌ
ሺFଵ

∗, Fଶ
∗, … , F୬∗ , ሻ. To understand how Pareto set is related with decision trees, relative definitions of decision tree 

have to be introduced.  
A decision tree is a concise representation of decision table. A decision table T is a two dimensional table of 
condition attributes ሼfଵ, fଶ, … , f୫ሽ ൌ EሺTሻ  which graphically are column headers of T . Row of index i  in T 
contains an array of values as ሼc୧ଵ, c୧ଶ, … , c୧୫ሽ corresponding to EሺTሻ and these values lead to a decision value 
d୧ . Values of n  rows in T  form a set ൛ሼcଵଵ, cଵଶ, … , cଵ୫ሽ, ሼcଶଵ, cଶଶ, … , cଶ୫ሽ… ሼc୬ଵ, c୬ଶ, … , c୬୫ሽൟ ൌ CሺTሻ  and the 
matched n decisions form a set ሼdଵ, dଶ, … , d୬ሽ ൌ DሺTሻ (|DሺTሻ| ൌ n when d୧ ് d୨ , i ് j; |DሺTሻ| ൑ n, otherwise). 
Generally, a decision table T has the following structure. 

T ൌ ൦

fଵ		 … f୫		 d		
cଵଵ … cଵ୫ dଵ
⋮		 ⋱			 ⋮		 ⋮	

c୬ଵ ⋯ c୬୫ d୬

൪   (1) 

For any d୩ ∈ DሺTሻ , k ൌ 1,2…n , there is a ሼc୩ଵ, c୩ଶ … c୩୫ሽ ൌ r୩ ∈ CሺTሻ . For two r୩భ, r୩మ ∈ CሺTሻ  and kଵ ് kଶ , 
inequalities c୩భଵ ് c୩మଵ, c୩భଶ ് c୩మଶ … c୩భ୫ ് c୩మ୫ hold for r୩భ, r୩మ . For a given subset of EሺTሻ, i.e., f୧భ , f୧మ, … , f୧౪ 
and their values aଵ, aଶ, … , a୲, a subtable Θ can be constructed from T. Θ has same condition attributes as T, but 
its rows is selectively chosen from T , i.e., EሺΘሻ ൌ EሺTሻ  and for any r୨ ൌ ൛c୨ଵ, c୨ଶ … c୨୫ൟ ∈ CሺΘሻ  where j ൌ
1,2… |CሺΘሻ|, c୨୧భ ൌ aଵ, c୨୧మ ൌ aଶ … c୨୧౪ ൌ a୲ hold. Θ is also denoted by T൫f୧భ, aଵ൯൫f୧మ, aଶ൯… ൫f୧౪ , a୲൯.  
Based on mentioned definitions, time and spacial complexities can be defined and mathematical formulae for 
modeling generation of Pareto optimal point can finally be given in following sections. 
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3. Decision tree complexities and generating pareto set 

This section comprises two subsections: the first focuses on definitions of time and spacial complexities of 
decision trees; the second illustrates how Pareto optimal points are derived with respect to objective functions 
involving decision tree complexities. 

3.1 Time and Spatial Complexities of Decision Trees 
For any vertex v of a decision tree Γ generated based on a given decision table T, v denotes one condition 
attribute from EሺTሻ, i.e., v ∈ EሺTሻ. The edge connecting just two vertices is marked by condition values from 
CሺTሻ. Notice, any f୧ ∈ EሺTሻ where i ൌ 1, … , |EሺTሻ| can be root vertex of Γ under the assumption c୨୧ ∈ r୨ ∈ CሺTሻ 
where j ൌ 1,… , |DሺTሻ| is processed despite of order of fଵ, fଶ, … , f|୉ሺ୘ሻ| , and ending vertex of Γ can only be 
decision values from DሺTሻ. A path of t steps from root vertex f୧  to arbitrary v ∈ EሺTሻ ∪ DሺTሻ begins from f୧ , 
passing vertices f୧భ, f୧మ , … , f୧౪  through their connected edges marked by values aଵ, aଶ, … , a୲  and ends at v . 
According the vertices and values associated with t -step path, a subtable Tሺvሻ  can be constructed as 
following. 

Tሺvሻ ൌ ቊ
T																																																														v ൌ f୧
T൫f୧భ, aଵ൯൫f୧మ, aଶ൯… ൫f୧౪ , a୲൯				v ് f୧

   (2) 

For an arbitrary row r୩ ∈ CሺTሻ , k ൌ 1,2… |CሺTሻ| , r୩  is determined by some decision value d୩ ∈ DሺTሻ . In a 
decision tree Γ୘ሺୢౡሻ built on Tሺd୩ሻ, there is a path presents r୩, the length of r୩, ℓሺr୩ሻ, is defined by the sum of 
values marked on edges of path from root of Tሺd୩ሻ to d୩. If r୩ ൌ ሼc୩ଵ, c୩ଶ … c୩୫ሽ, then ℓሺr୩ሻ ൑ ∑ c୩୨

୫
୨ୀଵ . For a 

decision tree Γ୘ሺ୴ሻ  built on Tሺvሻ , the total length of Tሺvሻ  is defined as ࣦ൫Γ୘ሺ୴ሻ൯ ൌ ∑ ℓሺr୩ሻ
୬
୩ୀଵ . The time 

complexity of Γ୘ሺ୴ሻ is defined as followings. ࣢ഥ൫Γ୘ሺ୴ሻ൯ ൌ ࣦ൫Γ୘ሺ୴ሻ൯ ࣨ൫Tሺvሻ൯ൗ  where ࣨ൫Tሺvሻ൯ denotes the number 
of rows in T represented in Tሺvሻ. Spacial complexity of Γ୘ሺ୴ሻ is defined as terminal vertices of Γ୘ሺ୴ሻ, ࣮൫Γ୘ሺ୴ሻ൯. 

3.2 Pareto set generation 
All condition values associated with f୧ ∈ EሺTሻ in CሺTሻ is denoted by CሺT, f୧ሻ, i.e., all values in column f୧ of T. All 
decision trees generated based on T form a set ॎሺTሻ, and  β ൌ min୻∈ॎሺ୘ሻ ࣦሺΓ୘ሻ, α ൌ min୻∈ॎሺ୘ሻ ࣮ሺΓ୘ሻ, R୫ୟ୶ ൌ
max୰ౡ ∑ c୩୨

|୉ሺ୘ሻ|
୨ୀଵ , then ࣦ࣬,୘ ൌ ሼβ, β ൅ 1… |CሺTሻ| ⋅ R୫ୟ୶ሽ, ࣮࣬,୘ ൌ ሼα, α ൅ 1… |CሺTሻ|ሽ respectively denote ranges of 

ࣦ and ࣮. Map ࣡୘: ࣦ → ࣮ and ࣠୘: ࣮ → ࣦ are defined as followings. 

࣡୘ሺlሻ ൌ ቄmin
୻
࣮ሺT, Γሻ ∈ ࣮࣬,୘|Γ ∈ ॎሺTሻ	and	ࣦሺT, Γሻ ൑ lቅ࣠୘ሺtሻ ൌ ቄmin

୻
ࣦሺT, Γሻ ∈ ࣦ࣬,୘ |Γ ∈ ॎሺTሻ	and	࣮ሺT, Γሻ ൑ tቅ 

Where l ∈ ࣦ࣬,୘ and t ∈ ࣮࣬,୘. Let data structure graph be employed to represent relationships between T and 
its subtables, then the nodes of graph are subtables Tሺvሻ ൌ T୴, edges emitting from a node associated with 
f୧ ∈ EሺT୴ሻ are marked by pairs of values ൫f୧, a୨൯  where a୨ ∈ CሺT, f୧ሻ and pointing to nodes T୴൫f୧, a୨൯ . Hence, 
edges in the graph are directed and connect two tables of parent and child relationship. The graph is thus 
directed acyclic graph (DAG). For a node T୴ 	∈ DAG, it has two possible types determined by number of 
decision values. 
When |DሺT୴ሻ| ൌ 1 for all rows r୩ ∈ CሺT୴ሻ, r୩ share a common decision value and T୴ is leaf node of DAG of 
࣠୘౬ሺ1ሻ ൌ 0. 
When |DሺT୴ሻ| ൐ 1, r୩ ∈ CሺT୴ሻ can be categories based on their different decision values. Starting from node 
T୴, for any f୧ ∈ EሺT୴ሻ and aଵ, aଶ, … , a|େሺ୘౬,୤౟ሻ| ∈ CሺT୴, f୧ሻ, there are |CሺT୴, f୧ሻ| edges marked by ሺf୧, aଵሻ, ሺf୧, aଶሻ, …, 
൫f୧, a|େሺ୘౬,୤౟ሻ|൯  and leading to nodes T୴ሺf୧, aଵሻ , T୴ሺf୧, aଶሻ ,…, T୴൫f୧, a|େሺ୘౬,୤౟ሻ|൯ . For each T୴ሺf୧, a୧ሻ , there is a 
corresponding ࣮࣬,୘౬ሺ୤౟,ୟ౟ሻ . For f୧ ∈ EሺT୴ሻ, an ordered set of all possible compositions of ࣮ ቀΓ୘౬൫୤౟,ୟౠ൯ቁ where 
j ൌ 1, … , |CሺT୴, f୧ሻ| is defined as followings. 
Ը࣮,୘౬,୤౟ ൌ ൛খ୧ ∗ খ, খ୧ାଵ ∗ খ,… , খ|େሺ୘౬ሻ| ∗ খൟ 
Where খ ൌ ሾ1 … 1ሿ, ∗ denotes inner product and খ୩ ∗ খ ൏ খ୩ାଵ ∗ খ where k ൌ i, i ൅ 1,… , |CሺT୴ሻ|. খ୧ is defined 
as followings. 

খ୧ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ min୻భ∈ॎ൫୘౬ሺ୤౟,ୟభሻ൯ ࣮൫Γ୘౬ሺ୤౟,ୟభሻ൯

min୻మ∈ॎ൫୘౬ሺ୤౟,ୟమሻ൯ ࣮൫Γ୘౬ሺ୤౟,ୟమሻ൯
⋮

min
୻౪∈ॎ൬୘౬ቀ୤౟,ୟหి൫౐౬,౜౟൯หቁ൰

࣮ ൬Γ
୘౬ቀ୤౟,ୟหి൫౐౬,౜౟൯หቁ

൰
ے
ۑ
ۑ
ۑ
ۑ
ې

  and খ୨ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ࣮൫Γ୘౬ሺ୤౟,ୟభሻ൯

࣮൫Γ୘౬ሺ୤౟,ୟమሻ൯
⋮

࣮ ൬Γ
୘౬ቀ୤౟,ୟหి൫౐౬,౜౟൯หቁ

൰
ے
ۑ
ۑ
ۑ
ۑ
ې

   (3) 

For খ୨ ് খ୧ , i ൅ 1 ൑ j ൑ |CሺT୴ሻ| , Γଵ ∈ ॎ൫T୴ሺf୧, aଵሻ൯ , Γଶ ∈ ॎ൫T୴ሺf୧, aଶሻ൯ , … , Γ୲ ∈ ॎ൫T୴ሺf୧, a୲ሻ൯ , খ୨  is defined as 
follwoings. For T୴൫f୧, a୨൯ where i ൌ 1,… , |EሺTሻ|, value of ࣠୘౬൫୤౟,ୟౠ൯ can be derived. For খ୩ ∗ খ ∈ Ը࣮,୘౬,୤౟, objective 
function ୘࣠౬

୤౟  associated with complexities of decision trees generated around f୧ ∈ EሺT୴ሻ  is defined as 
followings. 
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்࣠
ೡ

௙೔൫Ը࣮, ೡ்,௙೔൯ ൌ min
খೖ∗খ∈Ը࣮,೅ೡ,೑೔

෍࣠
ೡ்൫௙೔,௔ೕ൯൫খ௞ሺ݆ሻ൯

௧

௝ୀଵ

൅	 |Cሺ ௩ܶሻ|																																																																																																									ሺ4ሻ 

Where খ୩ሺjሻ denotes the jth component of vector খ୩. According to ୘࣠౬
୤౟ ሺখ୩ሻ, objective function ࣠୘౬൫Ը࣮,୘౬൯ of 

EሺT୴ሻ  for describing complexities of subtable T୴  is given as followings where 
Ը࣮,୘౬ ൌ ቄԸ࣮,୘౬,୤౟భ

, Ը࣮,୘౬,୤౟మ
, … , Ը࣮,୘౬,୤౟౪

ቅ. 

࣠
ೡ்
൫Ը࣮, ೡ்൯ ൌ ቊ்࣠

ೡ

௙೔ ቤ min
Ը࣮,೅ೡ,೑೔

∈Ը࣮,೅ೡ

்࣠
ೡ

௙೔൫Ը࣮, ೡ்,௙೔൯ቋ																																																																																																																																ሺ5ሻ 

Generally, if T୴ is terminal node of graph, then ࣠୘౬ሺ1ሻ ൌ 0 and Pareto optimal point is ቀ1, ࣠୘౬ሺ1ሻቁ; if T୴ is not a 
terminal node, we first compute ୘࣠౬

୤౟ ൫Ը࣮,୘౬,୤౟൯ for each f୧ ∈ EሺT୴ሻ, then choose the minimal value as ࣠୘౬൫Ը࣮,୘౬൯ 
and Pareto optimal point is ቀԸ࣮,୘౬

ିଵ , ࣠୘౬൫Ը࣮,୘౬൯ቁ where Ը࣮,୘౬
ିଵ  is objective function for retrieving খ୩ ∗ খ ∈ Ը࣮,୘౬,୤౟ 

which yields ࣠୘౬ . For multiobjective optimization of decision tree complexities, objective space is a two-
dimensional space whose objective functions are Ը࣮,୘౬

ିଵ  and ࣠୘౬൫Ը࣮,୘౬൯  which graphically are two axis of 
space. 

4. Algorithms for generating pareto points 

This section describes the procedure of generating Pareto optimal points in details. The general scheme 
consists of two subroutines, i.e., Subroutine 1: generate a directed acyclic graph starting from ܶ   and 
proceeding downward until degenerate subtables, and Subroutine 2: compute ்࣠   starting from degenerate  
subtables in graph and proceeding upward until ܶ . Subsections 4.2 to 4.3 respectively describe the two 
phases of generating Pareto optimal points. 

4.1 Generating DAG based on decision table 
This section describes the procedure of generating Pareto optimal points in details. The general scheme is 
sketched in subsection 4.1. Subsections 4.2 to 4.3 respectively describes the two phases of generating Pareto 
optimal points. 
 

 

Figure 1: General scheme of proposed algorithm. 

4.2 Generating DAG based on decision table 
As depicted in Figure 2 left, Subroutine 1 attempts to split a given decision table T in a recursive manner. After 
adding T to DAG, it tries to find an table Tᇱ  not split yet from DAG and insert subtables of Tᇱ൫f୧, a୨൯ where 
f୧ ∈ EሺTᇱሻ and a୨ ∈ CሺT, f୧ሻ as nodes to DAG. Node Tᇱ and all Tᇱ൫f୧, a୨൯ are connected by directed edges starting 
from Tᇱ and ending at Tᇱ൫f୧, a୨൯. Edges are marked by corresponding condition values ൫f୧, a୨൯. Node insertion 
only occurs when subtable is not found in DAG and if there is an edge connecting Tᇱ and existing Tᇱ൫f୧, a୨൯, the 
mark of edge will be added by ൫f୧, a୨൯  rather than adding a new edge. This node insertion and edge 
modification or addition continues until there is no tables found in DAG which are not split. 

4.3 Subroutine 2 generating pareto points 
Subroutine 2 provides core functionality for generating Pareto points based on mathematical descriptions 
made in Section 3. The strategy is starting generating from terminal nodes of DAG whose Pareto points are of 
form ሺ1,0ሻ, then moving upward to subtables Tᇱ containing only terminal nodes providing values for ࣠୘ᇲ

୤౟  and 
compute ࣠୘ᇲ  by adding the smallest ࣠୘ᇲ

୤౟  with |CሺTᇱሻ| . Before T  is reached, it continues to find the next 
subtables Tᇱ  whose subtables have completed their Pareto point computation. For T , each Pareto point 
attached with f୧ ∈ EሺTሻ is considered as an optimal Pareto point as output of proposed algorithm. The details 
are illustrated in Figure 2 right. 
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Subroutine 1

Try to find an unsplit table from DAG

[un unsplit table is available ] [else]

DAG

decision table T

Mark T as unsplit, initialize a directed acyclic
graph(DAG) and add T as a vertex to DAG

Set the available table as T ’

[else] [an unvisited  fi is available ]

Try to find an unvisited condition attribute f i∈E(T ’)

Mark T ’ as split

[an unvisited δ is available ] [else]

Try to find an unvisited value δ From C(T ’, fi)

[no identical vertex is found] [else]

Check whether there is a vertex in DAG 
whose subtable is identical with T ’(fi, δ)

Check whether vertex T ’ and T ’(fi, δ) is 
connected by a directed edge

[no edge is found] [else]

Add T ’(fi, δ) to DAG as a vertex

Add a directed edge starting at T ’
and pointing to T ’(fi, δ) to DAG, 

and mark the edge by (f i, δ)

Add (f i, δ) to the 
mark of the found 

edge

Subroutine 2
DAG

Initialize |D(T)| vertex collections S1, S2, …, S|D(T)|

Categorize each vertex T ’∈DAG based 
on   |D(T ’)| and add T ’ to S|D(T ’)|

Notice S|D(T)|

contains only T

Attach (R = 1,F(R) = 0) to each vertex in S1 and set S1 to Si

Find Si+1 after Si based on the order S1, S2, …, S|D(T)|

[Si+1 is available ] [else]

[T ’ is not available ] [else]

Try to find an unvisited vertex T ’∈Si+1

Try to find an unvisited condition attribute fi∈E(T ’) 

[fi is available] [else]

Follow the edges emitting from T ’ and marked by (fi, δj) where 
δj∈C(T ’, fi) to retrieve (R(fi, δj),F (fi, δj)) from ending vertex in Si

Compute Rfi = ΣjR(fi, δj) and Ffi = ΣjF(fi, δj)+|C(T ’)|

Check whether T ’ is T

[T ’ ≠ T] [else]

Find the smallest Ffi, if multiple Ffi
share the minimum, then find the 

smallest Rf i,and set Ffi to FT ’, set Rfi to 
RT ’, finally attach (RT ’, FT ’) to vertex T ’

Attach all (Rfi, Ffi) for 
fi∈E(T ) to vertex T

Pareto points

return all (Rf i, Ffi) attached to vertex T for fi∈E(T ) as Pareto points

 

Figure 2: Subroutine 1 and Subroutine 2. 

5. Experimental results 

This section introduces experimental results of adapting proposed algorithm for decision tables designed for a 
virtual online learning community. These decision tables define some functionalities of online learning 
community as rules of categorizing posts based on topics, rules of identifying user of high influence, etc. A 
typical table has about 6 condition attributes and 50 rows. Pareto points are rendered as dots in a two 
dimensional space of axes leaf vertex number and ࣠୤౟. Three typical results are show in Figure 3  

6. Conclusions 

This paper proposes mathematical model and corresponding algorithms for generating Pareto optimal points 
of decision tree complexities for given decision tables. Unlike traditional multiobjective optimization whose 
feasible space is explicitly described in some means as mathematical formulae, the feasible space of decision 
tree complexities is implicitly related to underlying decision tables. The implicit feasible space is revealed by 
employing graph to preserve relationships of subtables. Relationships are represented as nodes and directed 
edges in graph which lead to minimization of objective functions defined based on concepts of complexities. 
The validity of proposed algorithm is shown by generating Pareto optimal points of decision tables made for a 
virtual online learning community. 

 

Figure 3: Pareto Set for Table 1 of Virtual Online Learning Community. 
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