
 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 43, 2015 

A publication of 

The Italian Association 
of Chemical Engineering 
Online at www.aidic.it/cet 

Chief Editors: Sauro Pierucci, Jiří J. Klemeš 
Copyright © 2015, AIDIC Servizi S.r.l., 
ISBN 978-88-95608-34-1; ISSN 2283-9216                                                                               

 

Global Solution Approaches for Biomass to Commodity 
Chemicals (BTCC) Investment Planning Problem 

Ismail Fahmi, Selen Cremaschi* 

Department of Chemical Engineering, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74114, USA 
selen-cremaschi@utulsa.edu 

Incorporating biomass, a potential feedstock for chemical process industry, to our existing system will require 
significant investments on biomass conversion technologies. A recent model, a mixed integer nonlinear 
program (MINLP), addresses this investment planning problem. However, it has been observed that it 
becomes intractable quickly with the increase in the number of technologies. This paper investigates 
specialized solution approaches by exploiting the MINLP structure. Replacing bilinear terms with linearly 
segmented tight relaxations and nonlinear terms with linearly segmented under and upper estimators, solving 
the resulting MIP, and initializing DICOPT at the MIP solution solves the original MINLP efficiently. 

1. Introduction 

Biomass has great potential as chemical process industry (CPI) feedstock because it is abundant, locally 
available, and renewable (Peres et al., 2013). Incorporating this relatively new feedstock to our existing CPI 
will require significant amounts of investments: (1) for increasing the efficiency of the technologies that can be 
used to convert biomass to commodity chemicals, and hence make them cost competitive to support the CPI 
system, and (2) for expanding the production capacities of these technologies to meet the current and future 
market demands. As such there is great opportunity for investigating how these investments will impact the 
evolution of the biomass-to-commodity-chemicals (BTCC) system.  
Recently, a new representation and the corresponding model is introduced to study the investment planning 
problem for incorporating biomass as a CPI feedstock (Fahmi et al., 2014). The investment planning problem 
involves a series of yes/no decisions for investing in a technology at a particular time, and associated with 
these decisions is the amount of investment. The resulting model is a non-convex mixed integer nonlinear 
program (MINLP). Fahmi et al. (2014) considered a small case study, the evolution of ethylene and propylene 
production from biomass (corn grain and corn stover) and naphtha for a planning horizon of 50 years. They 
assumed that ethylene can be produced through three different technologies: biomass fermentation, biomass 
gasification, and naphtha cracking, and propylene can be produced through two different technologies: 
naphtha cracking, and metathesis reaction of ethylene and butenes. The resulting MINLP, which had 11,502 
constraints and 7051 variables, was implemented in GAMS V23.6.2, and solved using BARON V9.0.6 with a 
Dual Intel E5405 2.0 GHz processor and 8 GB RAM memory, and it took about 44 CPU hours to solve to a 
relative gap of 5 %. Although the MINLP was shown to be able to capture the effects of raw material costs, the 
capacity expansion costs, the maximum annual budget, the demand increase, the inflation rate, and the 
extraction coefficient of non-renewable materials on the optimum production plan and total cost, it is 
computationally expensive to solve and becomes intractable quickly as the number of technologies increase. 
This paper develops and tests specialized solution algorithms that exploit the structure of the BTCC 
investment planning model. The source of computational complexity in the BTCC investment planning model 
are nonconvex nonlinear constraints and bilinear terms. Two different approaches are used to convexify the 
bilinear terms: linearly segmented tight relaxations and radix-based relaxations. The nonlinear terms are 
replaced with linearly segmented under and upper estimators. Once these terms are relaxed, the solution of 
the resulting MIP is used as the initialization to solve the original MINLP with two local solvers, DICOPT and 
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SBB. We used ethylene production from naphtha and biomass as the case study and compared the 
performance of both approaches in terms of overall solution time and the quality of the solution.  

2. The BTCC investment planning model 

Given a number of biomass and fossil-based feedstock processing technologies and their characteristics, and 
the initial commodity-chemicals-production-system market conditions, the MINLP determines the amount and 
schedule of investments (both R&D and production capacity expansions) for each technology to yield the 
minimum cost over the planning horizon. The initial commodity-chemicals-production-system market 
conditions are defined by initial raw material costs (CRv,0) of biomass and fossil based feedstocks, the current 
and future forecasted demands for the products, the current capacities (CXe,0) and total R&D expenditure 
(CRDe,0), and current costs of capacity expansions (CCe,0) of technologies that use fossil-based feedstocks 
and biomass. For each technology e, the relationship between its future cost and its capacity and R&D 
investments are defined via a two-factor learning curve (Kouvaritakis et al., 2000). These factors are learning-
by-doing elasticity (αe) and learning-by-searching elasticity (βe), which describe how the expansion cost 
changes with changes in the total installed production capacity and R&D expenditure, respectively. The BTCC 
investment planning model is given in Figure 1. Details of the BTCC investment planning model can be found 
in Fahmi et al. (2014). 

3. Structure of the BTCC investment planning model  

Most terms in the constraints of the BTCC investment planning model are linear (Figure 1). The nonlinear 
equations are the objective function, the two-factor learning curve that defines how the technology expansion 
costs change with changes in the capacity expansions and R&D expenditures (Figure 1, Technology Costs 
constraint), and the constraint that limits the production to technologies that has reached a certain maturity 
level (Figure 1, Capacity Constraints).  
The objective function has two nonlinear terms, one in calculation of the expansion cost and other in the 
calculation of the raw material costs. We can linearize the objective function by separating the nonlinear terms 
as shown in Eq(1). This transformation adds two equality constraints, Eq(1b) and Eq(1c), which contain 
bilinear terms to the MINLP. 
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Following a similar logic, the Technology Cost constraint can be replaced with the constraint set given in 
Eq(2). This separation operation yields one linear equality constraint (Eq(2a)), and exposes three equality 
constraints, one with a bilinear term (Eq(2b)), and the other two with nonlinear terms (Eq(2c) and Eq(2d)).  
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The Capacity Constraint (Figure 1) includes another bilinear term and is reformulated as shown in Eq(3): 

tete BLTermP ,, 4≤                                             et,∀  (3a) 

tetete CXYBLTerm ,,3,,4 ⋅=                   et,∀  (3b) 

With these modifications, it is observed that the BTCC investment planning problem has two groups of 
nonlinear terms (NLterm1e,t and NLterm2e,t) and four groups of bilinear terms (BLterm1e,t, BLterm2e,t, 
BLterm3e,t, and BLterm4e,t). Because the values of learning elasticities, αe and βe, are negative, the nonlinear 
terms monotonically decrease with zero asymptotic value and the resulting curve is concave up. Both 
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nonlinear terms contribute to the non-convexity of the model as they are in equality constraints. The other 
computational complexity arises due to the bilinear terms of the problem. 

 

Figure 1: The MINLP of the BTCC investment planning problem 
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4. Linear relaxations for the bilinear and nonlinear terms 

Two different approaches are used for obtaining linear relaxations of the bilinear terms: (1) linearly segmented 
tight relaxations (Misener et al., 2011), and (2) radix-based relaxations (Kolodziej et al., 2013). For the bilinear 
equation z =x.y where x,y∈R, xL ≤ x ≤xU, and yL ≤ y ≤ yU, the linearly segmented tight relaxation approach uses 
Np number of partitions in one variable, say x, and introduces concave and convex linear constraints above 
and below the original surface, z, in each partition, np, whose length is equal to a. A binary variable takes the 
value of one if partition np is selected, and is equal to zero otherwise. A continuous switch variable,  Δynp, is 
used to incorporate the term (y-yL) if partition np is selected in the concave and convex envelope. The main 
principle behind radix-based relaxations is to approximate the bilinear constraint by representing one of the 
variables as a discrete value on a specified radix (commonly set to 10) to an arbitrary precision, defined with a 
range of 0 ×10p to 9×10P.  
To remove all nonlinearities from the original MINLP, the nonlinear terms defined in Section 3 should also be 
relaxed. These nonlinear terms are monotonically decreasing functions with zero asymptotes, and we propose 
using linearly segmented under and upper estimators for replacing these constraints. Here, the basic idea is to 
build supporting tangent lines at every breakpoint of each segment as an under estimator, and a straight line 
connecting the bounds and the function evaluation at the bounds as an upper estimator. 

Let )(xfy = with UL xxx ≤≤ be a monotonically decreasing function with zero asymptote, the formulation for 

the linearly segmented under estimator is given by Eq(5). 
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where Np is the total number of segments. The upper estimator for the function can then be defined via Eq(6). 
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Once the bilinear terms are relaxed using one of the approaches and the nonlinear terms are replaced with 
under and upper estimators as discussed, the resulting formulation becomes a mixed integer linear program 
(MIP). We use the solution of this MIP as initialization for the original MINLP, and solve it using local solvers. 
The local solvers considered in this study are DICOPT and SBB. The solution obtained by the defined 
approach is compared to the solution of the original MINLP obtained by BARON to assess its quality. 

5. Results and Discussion 

5.1 Test problem 

The evolution of ethylene production from biomass (corn grain + corn stover) and naphtha in all US market for 
a planning horizon of 50 y is used as the test problem. In this simplified commodity chemical production 
system, biomass can be converted to ethanol via fermentation, which is followed by catalytic dehydration 
yielding ethylene. Alternatively, biomass may first be gasified to syngas, which is then converted to ethanol via 
catalytic conversion. Naphtha is cracked to yield ethylene. The details of this test problem can be found in 
Cremaschi (2011). The equations that contain the bilinear and nonlinear terms are modelled using the 
equations given in Section 3. The resulting MINLP, implemented in GAMS V23.6.2, has 5,952 constraints and 
4,301 decision variables. It is solved globally using BARON with relative optimality gap 0.1 %. The solution is 
30,927.0 billion US dollars, and it was obtained in 497.57 CPU seconds on a computer with Windows 7 
Professional 64-bit operating system, Dual Intel E5405 2.0 GHz processors, and 8 GB RAM memory. The 
local solver DICOPT yields a solution of 30,924.8 billion US dollars in 1.84 CPU seconds when initialized at 
Ye,s,t = 1, CXe,t = 30, Xe,t = 1, RDe,t = 1, CRDe,t = 1, CCe,t = 1, Pe,t = 10, CRv∈VR,t = 1, and Rv,t = 100. 
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5.2 Results with linearly segmented tight relaxations of bilinear terms (LSTRBT) 

In this section, the results presented are obtained by first solving the MIP using CPLEX to a relative optimality 
gap of 0.1 %, and then using this solution as the initialization for DICOPT and SBB. The number of variables 
and constraints of the MIP are 4,301+1,950Np and 13,152+1,350Np, respectively. The maximum number of 
segments considered in this study is 15. Three performance metrics measures the quality of the solutions: (1) 
the percentage difference between the MIP objective function value and the MINLP objective function value 
obtained using the MIP solution initialization, (2) the comparison of the obtained objective function value to the 
BARON solution, and (3) the overall computational time necessary to obtain these solutions. 
Figure 2 shows plots of the performance metrics with increasing number of segments when DICOPT and SBB 
are used as the local solvers for the MINLP. Figure 2(a) shows how the percentage difference between MIP 
solution and the corresponding MINLP solution changes with the number of segments. This percentage 
difference is calculated as (MIP-MINLP)*100/MIP. Figure 2(a) reveals that for both solvers the difference 
decreases slightly with the increase in number of segments with a decreasing gradient. The plot also suggests 
that increasing the number of segments beyond five does not impact the difference significantly.  
Figure 2(b) plots the normalized objective function values (Total Cost) versus the number of segments. Here, 
the normalized total cost is calculated by dividing the total cost obtained by the proposed approach by the 
objective of the original MINLP solution by DICOPT (30,924.8 billion US dollars). The lower and upper bounds 
of the objective function obtained by BARON are also shown in Figure 2(a). The plot suggests that the solution 
obtained by the proposed approach are not sensitive to the number of segments, and they are relatively close 
to the solution obtained by DICOPT and within the bounds of the BARON solution.  
The computational cost in CPU seconds is plotted against the number of segments in Figure 2(c). The solution 
time for the original MINLP with BARON is included as the dashed line for reference. When DICOPT is used 
as the local solver, the proposed approach is faster than BARON with a similar solution quality up to 11 
segments. For SBB, the corresponding number of segments is nine. 

 
(a)                                                                                         (b) 

 
(c) 

Figure 2: The change in (a) difference between MIP and MINLP solutions, (b) normalized cost, and (c) 
computational cost obtained with LSTRBT and linear under and upper estimators for nonlinear terms 
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5.3 Results with radix-based relaxations of bilinear terms 

The idea in this approach is to generate the MIP that contains the radix-based relaxed bilinear terms, and 
linearly segmented under and upper estimators of the nonlinear terms. The solution of this MIP will be used as 
the initialization for the local solvers. Table 1 lists the range of power (for Radix 10) used for each variable that 
is discretized for each bilinear term of the BTCC investment planning problem. The resulting number of 
constraints and variables for the ethylene production case study are 58,252+250Np and 86,301+500Np, 
respectively. Even with a single segment for obtaining the linear upper and under estimators for the nonlinear 
terms, the CPLEX did not yield a solution after 48 h due to the large number of constraints and variables. 
These results suggest that radix-based relaxation approach is not appropriate for this problem. 

Table 1:  Power range for the discretized variables of the bilinear terms  

Bilinear term  Variable p P 
BLTerm1e,t Xe,t -3 0 
BLTerm2e,t Rv,t -3 2 
BLTerm3e,t NLTerm2e,t -3 2 
BLTerm4e,t CXe,t -3 0 

6. Conclusions 

This paper investigated efficient solution approaches for the BTCC investment planning problem. The two 
sources of nonconvexities, bilinear terms and nonlinear equality constraints, are relaxed using different 
approaches. Linearly segmented tight relaxation and radix-based relaxation approaches are considered for 
bilinear terms, and linearly segmented under and upper estimators are proposed to replace the nonlinear 
terms. The MIP solutions obtained with different number of segments are used as initializations for solving the 
original MINLP with DICOPT and SBB, local solvers. The results recommend replacing the bilinear terms with 
linearly segmented tight relaxations and the nonlinear terms with linearly segmented under and upper 
estimators with fewer than five segments, solving the resulting MIP to a 0.1 % gap, using DICOPT as the local 
solver. 
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