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Bromelain is the denomination chosen to the group of endoproteases obtained from pineapple and from most 
of plants belonging to Bromeliaceae family. These enzymes have being widely studied in researches across 
the world due its physiological activity and biotechnological potential. While Brazil still cultivating over 60,000 
hectares of pineapple, there is a optimistic trend that aim bromelain's recovery from agriculture residues (stalk 
and leaves) and fruit processing residues (stem and bark) leading to a fully integrated process which 
aggregate value to vegetal residues. Our previous studies applied Aqueous Two-Phases Systems and 
Fractional Precipitation to purify bromelain and achieve purification factor and yield of 11.80 and 87.36, 
respectively. However, such studies were designed and analysed using Design Of Experiments (DOEs), 
which lead to an optimal condition but cannot predict with accuracy the complex phenomena of partitioning 
using ATPS. This work is part of an initiative that aims establish a protocol to calculate more accurate 
partitioning data through the use of Artificial Neural Networks (ANNs) over a dataset that has being improved 
continuously. The ANN will determine the relationship between five input parameters (temperature, PEG's 
molar mass, concentration of PEG, concentration of ammonium sulphate and dilution factor of sample) with 
three output parameters (protein partition coefficient, Activity partition coefficient and purification factor). The 
method applied a feed-forward neural network trained with Levenberg-Marquardt algorithm and the Bayesian 
regularization over the normalized experimental data. The network generated proved the reliability of the 
method which combined datasets from different DOEs and obtained regression coefficient (~.99) and error 
(MSE ~0.02) satisfactory for such amount of data used so far.  

1. Introduction 

The group of thiol-endopeptidases known as Bromelain can be extracted from any plant belonging to the 
Bromeliaceae family (Heinicke and Gortner, 1957) and originally was used as a folk medicine by the aboriginal 
inhabitants of Central and South America to treats several sicknesses (Taussig and Batkin, 1988). These 
enzymes had proven therapeutic applications as an anti-inflammatory drug (Salas et al., 2008), in the 
treatment of allergic disease (Secor Jr et al., 2005), carcinopreventive agent (Harrach et al., 1994), 
antithrombotic and fibrinolytic activities (Maurer, 2001).  
Unlike most enzymes, bromelain is stable and highly active in both acid and alkaline solutions (which expand 
its range of possible applications) and holds its proteolytic activity even at 60°C, when most enzymes 
denatures (Bhattacharya and Bhattacharyya, 2009). 
Their purification has being studied for extensively in the last decade: While Harrach et al. (1995) applied Fast 
Protein Liquid Chromatography as a way to Isolate and characterise the enzymes, Rabelo et al. (2004) 

                                

 
 

 

 
   

                                                  
DOI: 10.3303/CET1543237 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this article as: Coelho D.F., Silva C.A., Machado C.S., Silveira E.C., Tambourgi E.B., 2015, Use of artificial neural networks to 
predict aqueous two-phases system optimal conditions on bromelain’s purification, Chemical Engineering Transactions, 43, 1417-1422   
DOI: 10.3303/CET1543237

1417



decided to study the use of Aqueous Two-Phase Systems, which has a higher throughput capacity than 
chromatography techniques, to purify the same enzymes. Over the years, researchers have investigated the 
use of alternatives bulk recovery techniques, such as expanded bed absorption (Silveira et al., 2009) and 
Fractional Precipitation (Martins et al., 2014) but the use of ATPS if by far the most employed: Reverse 
micelles (Umesh Hebbar et al., 2008) , High-speed counter-current chromatography (Yin et al., 2011), 
combining it with fractional precipitation (Coelho et al., 2012) and endless variety of salts and polymers, such 
as PEG/potassium phosphate (Ferreira et al., 2014) and PEO–PPO–PEO block polymers (Rabelo et al., 
2004). 
While the researchers seem to have tried to exhaust the possible combinations of components and modes 
when using ATPS, they all lack in use a fast and reliable method to determine the best operational conditions. 
At this moment, there is no method to determine such characteristics with no use of a time-consuming and 
laborious experimental method. ATPS’s characterisations rely on empirical determination of purification 
parameters for every single modification in the systems under study. One might use statistic methods (such as 
Design of Experiments) to reduce experimental work but it still lacks in handle trade-off problems as a 
purification process. 
What if we could use a cluster of randomly distributed data obtained to optimize specific parameters in a much 
broader purpose? That is exactly the purpose of this initiative: to combine all data generated through decades 
of research in a database that can be constantly improved. 

2. Materials and Methods 

2.1 ATPS Data acquisition 

All experimental data was acquired in projects realized previously, in which we used Design of Experiments 
and Response Surface Methodology to optimize the parameters or determine a specific operational condition. 
At this study we restricted the data to those a limited number of variables and in a specific range. The chosen 
input variables and the correspondents ranges are presented in the Table 1. Those variables were selected 
from studies in which their effects in the purification were evaluated. The ones presented here showed higher 
impact during experiments.  

Table 1: Input variables used in the neural model and their range 

Input variables Description Range 
Temperature (°C) Operational Temperature 5 - 25 
MMPEG PEG Molecular Mass 2,000 – 4,000 – 6,000 
(m/m,%) (NH4)2SO4 Concentration of Ammonium Sulphate 7 a 20 
(m/m,%) PEG PEG Concentration 9 a 30 
Dilution (%) Dilution Factor 25 - 50 - 75 

2.2 Mathematical definition of Output Variables 

As output variables, we chose the protein partition coefficient (ܭ) and the enzymatic partition coefficient (ܭ), 
as described in the table 2. Coelho et al. (2013) describes in details the equationing for the chosen output 
variables.  

Table 2: Output variables used in the neural model and their range. 

Output variables Description Minimum Maximum 
KP Protein Partition Coefficient 0 100 
KA Enzymatic partition Coefficient 0 100 
PF Purification Factor 0 98.75 
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2.3 Results and Discussion 

As no mathematical model can predict the complex nature of aqueous two-phase systems in enough 
accuracy, we decided to evaluate the application of Artificial Neural Networks (ANN’s) in the modelling and 
prediction of partitioning parameters. 
Basically, an artificial neural network is a system composed of hundreds of units; artificial neurons (AN) or 
processing elements (PE), which are connected with coefficients (weights) constituting the neural structure 
and is arranged in layers as can be seen in the figure 1 (Chrislb, 2005). 

 

Figure 1: Diagram of an artificial neuron 

When a set of input and output data is used to stimulated a “learning” network, such data is used to adjust 
each neuron’s “weights” through successive changes in its values so that the network implement and execute 
the desired functions (Brumatti, 2005) and apply the “knowledge” gained from past experiences to new 
problems or conditions. 
This study used the Levenberg-Marquardt optimization as the training algorithm but it was used Bayesian 
regularization in order to improve generalization and avoid overfit. This gain is a consequence of the smaller 
weights calculated by the algorithm, which make the network respond smoother (Foresee and Hagan, 1997). 
As mentioned, the neural model used either a backpropagation network or a feedforward network coupled with 
Levenberg-Marquardt and Bayesian regularization optimization algorithms, all available in the Neural Network 
toolbox from MATLAB ® Software (The MathWorks Inc., 2013). All variables were normalized between 0 and 
0.9. 
As activation functions, were tested hyperbolic tangent function, sigmoid function and a linear function. The 
neural networks were set and trained combining the different neural models and activation functions (besides 
the number of neurons) in order to determine which topology converged faster. To estimate the deviation 
between the ANN’s results and the experimental data, we used the Mean Squared Error (MSE) and the 
regression coefficient (R), which are the most common parameters used on its analysis (Beale et al.). The 
neural network would be considered fit to the experimental data when MSE tend to zero and R to 1. 
Among the results (Table 3) obtained from the topology optimization for the neural network, the best 
configuration is the T3, which used 30 neurons and no intermediary layers. We compared values of R, MSE 
and also the convergence time, being the last one the main factor that made T3 better than T7. These results 
were obtained during the initial step of this research project and hence used a dataset with only 120 
experiments and such variance obtained is expected. Although Aqueous Two-Phases Systems has been used 
for decades, there is no such thing as a model that can precisely predict any property from those systems with 
no experimental data. This creates an even harder task to find an appropriated approach to study it. 
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Table 3: Neural Networks training results using KP, KA and PF as output variables 

T (Nrn,Lyr) R MSE KP KA PF Inter. 
Function

Inter.  
Function 2 

Output 
Function 

T1 (10,1) 0.8862 0.14369 0.88394 0.91154 0.67951 Tansig Purelin Purelin 

T2 (20,1) 0.9514 0.06371 0.95463 0.95836 0.87268 Tansig Purelin Purelin 

T3 (30,1) 0.9846 0.02045 0.99418 0.98574 0.92548 Tansig Purelin Purelin 

T4 (30,2) 0.6465 0.40178 0.63385 0.66119 0.49902 Tansig Purelin Purelin 

T5 (30,2) 0.9807 0.02573 0.99149 0.98097 0.91795 Logsig Purelin Purelin 

T6 (40,2) 0.9858 0.01901 0.99351 0.98713 0.93540 Tansig Purelin Purelin 

T7 (50,2) 0.9854 0.01953 0.99307 0.98720 0.93223 Tansig Purelin Purelin 

T8 (5,2) 0.7577 0.28486 0.75959 0.76642 0.54001 Tansig Purelin Purelin 

T9 (10,2) 0.8814 0.14927 0.88072 0.90113 0.70156 Tansig Purelin Purelin 

T10 (20,2) 0.9688 0.04160 0.98592 0.97862 0.80179 Tansig Purelin Purelin 

T11 (30,3) 0.9840 0.02118 0.99243 0.98553 0.92806 Tansig Purelin Purelin 

T12 (30,4) No Convergence 
Tansig: Hyperbolic Tangent, Purelin: Linear, Logsig: Sigmoidal, Nrn: Neurons, Lyr: Layers 
 
In this set of simulations we tried to test an even bigger number of combinations between the number of 
neurons, number of intermediary layers and even the activation functions but most of them couldn’t even 
converge. Thus, the topology with 30 neurons and using a hyperbolic function as activation function provided 
the best results. 
 

 

Figure 2: Convergence (A) and Regression (B) for the best topology obtained (T3, Table 3) 

Figure 2 presents the fitting parameters results obtained for T3 topology, which was the one that returned the 
best results. Figure 3 presents the regression data using the topology T3 for the output variables (K, K and P). It is noticeable that data represents well the experimental data but we still expect to be able to improve the 
model in at least 5 %. Positive results are mainly due Bayesian regularization, which improve the 
generalization capability of the model even in a reasonable high operational range (Fileti et al., 2010). 
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Figure 3: Output Test with T3 Topology output Neural Network for KA, KP and PF respectively 

However, the study still lacks in explain why we couldn’t decrease MSE and the variation observed in figure 2 
and at this point the network just proved that was able to correlate data from several experiments and show 
we can improve the network and use it to obtain a better understanding of the process. 

3. Conclusions 

The network generated proved the reliability of the method by modelling combined data from different 
experimental designs and obtaining reasonable regression coefficient (~.99) and error (MSE ~0.02). 
At this stage the neural network was able to model and predict with certain precision the data handled. 
However, it is necessary to improve the robustness by increasing the number of input in the database used to 
train the network. When complete, the neural model will be able to predict operational points, analyze 
influence of different factors and select conditions in which a trade-off is present. 
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