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Until now, reactive residue curve maps (RRCM) are computed for a liquid phase where either only kinetically 
controlled reactions, or only chemical equilibrium reactions, take place. We try to model a liquid phase where 
both kinds of reactions may occur. Using two new transformed composition vectors and the temperature as 
unknown variables, we provide an alternate formulation for calculating RRCM. The main benefit is a unified 
and extended framework where one can easily add or remove one or more reactions, and obtain the dynamic 
model to be integrated. The computational cost of the suggested approach may be less than the previous 
ones. 

1. Introduction 

During the last decades, professor Michael F. Doherty and his colleagues provide the main advances, both in 
the formulation of the differential algebraic equations (DAE) modelling the (reactive) Rayleigh distillation, and 
in the algorithms for solving them. First, (Doherty and Perkins, 1978) modify the original equations of the 
simple distillation by replacing the time independent variable, ݐ, by a dimensionless variable, 	߬, when 
integrating the partial mass balances under the constraints of thermodynamic equilibria. The resulting dynamic 
model for calculating a RCM no longer includes the energy balance: in the non-reactive case, it is proved that 
the residue curve map does not depend on the heating policy. 
A dynamic model for RRCM calculation appears in (Barbosa and Doherty, 1988). The DAE, and the graphical 
representation obtained from its numerical integration, prove to be efficient for providing a “deeper 
understanding of distillation phenomena” and “the tools for the design and synthesis of reactive distillation 
columns”. This dynamic model is restricted to one chemical equilibrium reaction. (Venimadhavan et al., 1994) 
build a DAE modelling a diphasic system with one kinetically controlled chemical reaction in the liquid phase. 
The Damköhler number, “a dimensionless ratio of a characteristic liquid residence time to the characteristic 
reaction time” is introduced and the influence of this parameter on the RRCM profiles is discussed. 
More general frameworks for simulating several chemical reactions are published later. (Ung and Doherty, 
1995a, 1995b) introduce a “new set of composition variables” reducing the dimensionality of the RRCM when 
a vapor-liquid equilibrium with multiple chemical equilibrium reactions is considered. For such a case, they 
define a new independent variable ߬, and write a DAE using the new set of composition variables. Compared 
with the non-reactive case, the significance of the independent variable ߬ changes, and the new composition 
variables play the role of the molar fractions, but the differential equations look the same. (Venimadhavan et 
al., 1999) generalize to multiple reactions the model for a single kinetically controlled reaction. Once again, a 
Damköhler number is defined and allows parametric studies of the RRCM. 
Apart from the Doherty papers, some extra publications are worth analyzing. (Almeida-Rivera and Grievink, 
2004) summarize the dynamic model for multiple chemical equilibrium reactions as it is commonly adopted 
since (Ung and Doherty, 1995a). Under the chemical equilibrium assumption, (Sanchez-Daza et al., 2006) 
introduce an alternate formulation based on the element concept, an element being an atom, a molecule or a 
fragment of molecule. This element approach leads to RRCM where the vertices are associated to elements. 
It allows the representation on ternary diagrams of reactive systems with more than three species. (Alloula et 
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al., 2013) apply an index reduction technique to an initial DAE in order to provide a DAE more suitable for 
numerical integration. 
From the previous papers, it appears that adequate formulations for modelling either multiple kinetically 
controlled reactions, or multiple chemical equilibrium reactions exist. However, a formulation for handling both 
kinds of reactions is missing. In order to build such a framework, part 2 collects the three main DAE models 
(non-reactive case and two reactive cases). Even if those models can be retrieved in the previously cited 
papers, a common notation is established for further comparison with the suggested approach. In part 3, this 
paper introduces an alternate formulation which can be substituted to any of the three usual formulations and, 
furthermore, can model reactive systems with both kinds of reactions. Part 4 lists the expected benefits of 
such a new formulation from the points of view of modelling and numerical integration. 

2. Usual formulations for calculating residue curve maps 

2.1 Non-reactive residue curve maps 
Throughout this paper, we consider that two phases exist, there is no vapour retention and no chemical 
reactions in the vapour phase. The vapour phase is considered to be ideal. Heat and pressure policy remain 
free. Table 1 gives a list of all the symbols appearing in the forthcoming model. According to the previous 
assumptions, and following the given notations, a mathematical model of the non-reactive Rayleigh distillation 
may be written as: 

۔ۖۖەۖۖ
ۓ ∀݅ ∈ ሼ1, … , ܰሽ; ௜ݔ ∙ ௟ܷᇩᇪᇫ∙ = −ܸ ∙ ,ܶ)௜ℎ௟ݕ ܲ, (ݔ ∙ ௟ܷᇩᇭᇭᇭᇪᇭᇭᇭᇫ∙ = ܳ − ܸ ∙ ,ܶ)ܪ ܲ, ݅∀(ݕ ∈ ሼ1, … ,ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ∑௜ݔ ௜ே௜ୀଵݔ = 1∑ ௜ே௜ୀଵݕ = 1

   (1) 

This model consists of ܰ partial mass balances, 1 energy balance, ܰ thermodynamic equilibria, and 2 
definitions of molar fractions. Derivatives are with respect to the independent variable ݐ. The unknown vector 
can be defined as ( ௟ܷ, ܶ, ,ݔ ,ݕ ܸ)ᇱ. ܳ and ܲ remain user-defined variables. The overall mass balance ௟ܷሶ = −ܸ 
can be deduced from ∑ ௜ே௜ୀଵݔ = 1 by adding all the partial mass balances. Then, combining the overall mass 
balance with each partial mass balance, one obtains the following differential equations: ∀݅ ∈ ሼ1, … , ܰሽ; ௎೗௏ ∙ ∙௜ݔ = ௜ݔ −  ௜   (2)ݕ
These equations suggest the introduction of a dimensionless variable 	߬, satisfying: ݀߬ = ௏௎೗  (3)   ݐ݀

From this variable change one obtains the differential algebraic system usually integrated for producing a 
RCM: 

۔ۖەۖ
ۓ ∀݅ ∈ ሼ1,… , ܰ − 1ሽ; ௗ௫೔ௗఛ = ௜ݔ − ݅∀௜ݕ ∈ ሼ1, … ,ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ∑௜ݔ ௜ே௜ୀଵݔ = 1∑ ௜ே௜ୀଵݕ = 1    (4) 

In (4) the unknown vector can be defined as (ܶ, ,ݔ  ᇱ. From the initial equation system, ௟ܷ and ܸ have been(ݕ
eliminated, and two equations –one partial mass balance and the energy balance- have been dropped. 

2.2 Kinetically controlled reactions only 
For ܴ kinetically controlled reactions only, a reactive Rayleigh distillation model may be written as: 

ەۖۖ
۔ۖ
ۓۖ ∀݅ ∈ ሼ1, … , ܰሽ; ௜ݔ ∙ ௟ܷᇩᇪᇫ∙ = ∑ ቀߥ௜,௝Δ௝(ܶ, ܲ, ቁ(ݔ − ܸ ∙ ,ܶ)௜ோ௝ୀଵℎ௟ݕ ܲ, (ݔ ∙ ௟ܷᇩᇭᇭᇭᇪᇭᇭᇭᇫ∙ = ܳ − ܸ ∙ ,ܶ)ܪ ܲ, (ݕ − ∑ ቀܳݎ௝(ܶ, ܲ) ∙ Δ௝(ܶ, ܲ, ݅∀ቁோ௝ୀଵ(ݔ ∈ ሼ1, … , ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ∑௜ݔ ௜ே௜ୀଵݔ = 1∑ ௜ே௜ୀଵݕ = 1

   (5) 

Applying the same variable change and elimination process as in the non-reactive case, one obtains a 
reduced differential algebraic system modelling the reactive Rayleigh distillation: 
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۔ۖەۖ
݅∀ۓ ∈ ሼ1, … ,ܰ − 1ሽ; ௗ௫೔ௗఛ = ௜ݔ − ௜ݕ + ௎೗௏ ∙ ∑ ൫ߥ௜,௝ − ൫∑ ௞,௝ே௞ୀଵߥ ൯ ∙ ௜൯ݔ ∙ ,ܶ)݆ߜ ܲ, ݅∀ோ௝ୀଵ(ݔ ∈ ሼ1, … ,ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ∑௜ݔ ௜ே௜ୀଵݔ = 1∑ ௜ே௜ୀଵݕ = 1    (6) 

Assuming that some heating policy can maintain the ratio ௎೗௏  to its initial value ௎೗(଴)௏(଴) , and evaluating one of the 

forward reaction rate constants (݇ଵ for example) at a reference temperature ௥ܶ௘௙௘௥௘௡௖௘ (Venimadhavan et al., 
1999), the kinetically controlled residue curve map is computed from: 

۔ۖەۖ
݅∀ۓ ∈ ሼ1, … ,ܰ − 1ሽ; ௗ௫೔ௗఛ = ௜ݔ − ௜ݕ + ௔ܦ ∙ ∑ ൫ߥ௜,௝ − ൫∑ ௞,௝ே௞ୀଵߥ ൯ ∙ ௜൯ݔ ∙ோ௝ୀଵ ఋ௝(்,௉,௫)௞భ(்ೝ೐೑೐ೝ೐೙೎೐)∀݅ ∈ ሼ1, … , ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ∑௜ݔ ௜ே௜ୀଵݔ = 1∑ ௜ே௜ୀଵݕ = 1    (7) 

In the multiple kinetically controlled reaction case, the Damköhler number can be defined as ܦ௔ =ቀ௎೗(଴)௏(଴) ቁ ൬ ଵ௞భ(்ೝ೐೑೐ೝ೐೙೎೐)൰ൗ , ratio of a characteristic residence time ௎೗(଴)௏(଴)  to a characteristic reaction time ଵ௞భ(்ೝ೐೑೐ೝ೐೙೎೐). 
The RRCM depends on ܦ௔, that is to say on the conditions offered to the chemical reactions. When ܦ௔ goes to 0, the dynamic model (7) goes to the non-reactive model (4). When ܦ௔ goes to +∞, all the reactions can be 
viewed as a chemical equilibrium reaction. 

2.3 Chemical equilibrium reactions only 
For ܴ chemical equilibrium reactions only, a reactive Rayleigh distillation model may be written as: 

ەۖۖۖ
۔ۖ
ۓۖۖ ∀݅ ∈ ሼ1, … , ܰሽ; ௜ݔ ∙ ௟ܷᇩᇪᇫ∙ = ∑ ቀߥ௜,௝ߦሶ௝(ܶ, ܲ, ቁ(ݔ − ܸ ∙ ,ܶ)௜ோ௝ୀଵℎ௟ݕ ܲ, (ݔ ∙ ௟ܷᇩᇭᇭᇭᇪᇭᇭᇭᇫ∙ = ܳ − ܸ ∙ ,ܶ)ܪ ܲ, (ݕ − ∑ ቀܳݎ௝(ܶ, ܲ) ∙ ,ܶ)ሶ௝ߦ ܲ, ݅∀ቁோ௝ୀଵ(ݔ ∈ ሼ1, … , ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ݆∀௜ݔ ∈ ሼ1,… , ܴሽ; ,ܶ)௖௝ܭ ܲ) = ∏ ܽ௜(ܶ, ܲ, ∑ఔ೔,ೕே௜ୀଵ(ݔ ௜ே௜ୀଵݔ = 1∑ ௜ே௜ୀଵݕ = 1

   (8) 

ଵሶߦ , ଶሶߦ , … , ோሶߦ  no longer have an explicit expression. They become additional variables. (8) is saturated thanks to ܴ chemical equilibrium equations. (Ung and Doherty, 1995a) details how ߦଵሶ , ଶሶߦ , … , ோሶߦ  are eliminated, and how 
new variables ଵܺ, ܺଶ, … , ܺேିோ  are defined in terms of (ߥ௜,௝) and ݔଵ, ,ଶݔ … , ,ே. New variables ଵܻݔ ଶܻ, … , ேܻିோ are 
also defined in terms of (ߥ௜,௝) and ݕଵ, ,ଶݕ … , ∑ ே. These “transformed composition variables” satisfyݕ ௜ܺேିோ௜ୀଵ = 1,  ∑ ௜ܻேିோ௜ୀଵ = 1, and ܰ − ܴ − 1 partial mass balances: ∀݅ ∈ ሼ1, … , ܰ − ܴ − 1ሽ; f(ν) ∙ ௎೗௏ ∙ ሶܺ௜ = ௜ܺ − ௜ܻ   (9) 

where f(ν) depends only on stoichiometric coefficients. 

(9) suggests the introduction of the dimensionless variable 	߬, satisfying: ݀߬ = ௏௎೗∙୤(஝)  (10)              ݐ݀

As mentionned in (Ung and Doherty, 1995b), the differential equation “has exactly the same functional form as 
the simple distillation equation for non-reacting mixtures in terms of mole fractions”: 

ەۖۖۖ
۔ۖ
ۓۖۖ ∀݅ ∈ ሼ1, … , ܰ − ܴ − 1ሽ; ௗ௑೔ௗఛ = ௜ܺ − ௜ܻ∀݅ ∈ ሼ1, … ,ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ݆∀௜ݔ ∈ ሼ1, … , ܴሽ; ,ܶ)௖௝ܭ ܲ) = ∏ ܽ௜(ܶ, ܲ, ݅∀ఔ೔,ೕே௜ୀଵ(ݔ ∈ ሼ1, … , ܰ − ܴሽ; ௜ܺ = ,ߥ)௜ߙ ݅∀(ݔ ∈ ሼ1, … , ܰ − ܴሽ; ௜ܻ = ,ߥ)௜ߚ ∑(ݕ ௜ܺேିோ௜ୀଵ = 	ݎ݋	1 ∑ ௜ே௜ୀଵݔ = 1∑ ௜ܻேିோ௜ୀଵ = 	ݎ݋	1 ∑ ௜ே௜ୀଵݕ = 1

               (11) 
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3. Alternate formulation for calculating residue curve maps 

Assuming that a mixture contains ܰ components, a DAE modelling the non-reactive Rayleigh distillation may 
consist of ܰ partial mass balances, 1 energy balance, ܰ thermodynamic equilibria, and 2 molar fraction 
definitions. In the reactive case, ߦଵሶ , ଶሶߦ , … , ோሶߦ  modify the partial mass balances, and ܴ additional equations, 
either algebraic (chemical equilibrium reaction), or differential (kinetically controlled reaction) are added. (12) 
is a generic DAE modelling a system with both kinetically controlled and chemical equilibrium reactions: 

ەۖۖۖ
۔ۖ
ۓۖۖ ∀݅ ∈ ሼ1, … , ܰሽ; ௜ݔ ∙ ௟ܷᇩᇪᇫ∙ = ∑ ቀߥ௜,௝ߦሶ௝(ܶ, ܲ, ቁ(ݔ − ܸ ∙ ,ܶ)௜ோ௝ୀଵℎ௟ݕ ܲ, (ݔ ∙ ௟ܷᇩᇭᇭᇭᇪᇭᇭᇭᇫ∙ = ܳ − ܸ ∙ ,ܶ)ܪ ܲ, (ݕ − ∑ ቀܳݎ௝(ܶ, ܲ) ∙ ,ܶ)ሶ௝ߦ ܲ, ݅∀ቁோ௝ୀଵ(ݔ ∈ ሼ1, … , ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ݆∀௜ݔ ∈ ሼ1, … , ܴሽ; ,ܶ)௖௝ܭ ܲ) = ∏ ܽ௜(ܶ, ܲ, ఔ೔,ೕ(ݔ ,ܶ)ሶ௝ߦ				ݎ݋					 ܲ, (ݔ = Δ௝(ܶ, ܲ, ∑ே௜ୀଵ(ݔ ௜ே௜ୀଵݔ = 1∑ ௜ே௜ୀଵݕ = 1

               (12) 

The alternate formulation for calculating a RRCM from (12) is based on the elimination of ߦଵሶ , ଶሶߦ , … , ோሶߦ . The 
elimination process is very similar to the one detailed in (Ung and Doherty, 1995a). However, here we write 
the set of partial mass balances using ݊, the numbers of moles of each species in the liquid, instead of using 
the liquid molar fractions ݔ. Adopting a vectorial notation, the ܰ partial mass balances may be written: ሶ݊ = .ߥ ሶߦ − ܸ.  (13)               ݕ
We start by isolating ܴ partial mass balances, for example the last ܴ ones.  ∙݊ = .ߥ ሶߦ − ܸ.  (14)               ݕ
In (14), ݊ stands for the last ܴ lines of the ݊ vector, ݕ stands for the last ܴ lines of the ݕ vector, and ߥ is the ܴܴݔ submatrix built from the last ܴ lines of the ܴܰݔ stoichiometric matrix	ߥ. Provided that ߥ is not singular: ߦሶ = .ଵିߥ ቀ ∙݊ + ܸ.  ቁ               (15)ݕ
Using a notation analoguous to the previous one, the first ܰ − ܴ partial mass balances may be written: ∙݊ = .ߥ ሶߦ − ܸ.  (16)               ݕ
or, after replacing ߦሶ by its value from (15): ∙݊ = .ߥ .ଵିߥ ቀ ∙݊ + ܸ. ቁݕ − ܸ.  (17)               ݕ
In (17) variables can be grouped in the following way: ݊ − .ߥ .ଵିߥ ݊ᇩᇭᇭᇭᇪᇭᇭᇭᇫ∙ = −ܸ. ݕ) − .ߥ .ଵିߥ  (18)               (ݕ
These partial mass balances may be viewed as the generalization to the reactive case of the partial mass 
balances in the non-reactive case. With the following definition: ൝ࣨ = ݊ − .ߥ .ଵିߥ ݊ࣳ = ݕ − .ߥ .ଵିߥ ݕ                (19) 

the first ܰ − ܴ partial mass balances take the form: ∙ࣨ = −ܸ.ࣳ               (20) 
If we generalize the definition (19) of ࣨ and ࣳ with: ቊࣨ = ݊ࣳ = ݕ                (21) 

we obtain two new transformed composition vectors, ࣨ and ࣳ, which are in bijective correspondence with ݊ 
and ݕ. There is not such a bijective correspondence for the usual “transformed composition variables” ܺ and ܻ 
from (Ung and Doherty, 1995b). Using ࣨ and ࣳ, and taking into account the fact that ܰ + 1 variables ௟ܷ, ݔଵ, … , ,ே, are replaced by ܰ variables ଵࣨݔ … , ேࣨ, (12) becomes: 

ەۖۖۖ
۔ۖ
ۓۖۖ ∀݅ ∈ ሼ1, … , ܰ − ܴሽ;ࣨ௜∙ = −ܸ.ࣳ௜ℎ௟(ܶ, ܲ, (ݔ ∙ ௟ܷᇩᇭᇭᇭᇪᇭᇭᇭᇫ∙ = ܳ − ܸ ∙ ,ܶ)ܪ ܲ, (ݕ − ∑ ൬ܳݎ௝(ܶ, ܲ) ∙ ቂିߥଵ. ቀ ∙݊ + ܸ. ݅∀ቁቃ௝൰ோ௝ୀଵݕ ∈ ሼ1, … , ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ݆∀௜ݔ ∈ ሼ1, … , ܴሽ; ,ܶ)௖௝ܭ ܲ) = ∏ ܽ௜(ܶ, ܲ, ఔ೔,ೕே௜ୀଵ(ݔ 			ݎ݋				 ቂିߥଵ. ቀ ∙݊ + ܸ. ቁቃ௝ݕ = Δ௝(ܶ, ܲ, ∑(ݔ ௜ே௜ୀଵݕ = 1

               (22) 
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Finally, defining	߬ from ݀߬ = ܸ.  and assuming that some heat policy can make the vapour flowrate ܸ vary in ,ݐ݀
the same rate as the liquid retention ௟ܷ = ∑ ௜ࣨே௜ୀଵ , lead to the DAE to be integrated for generating the RRCM: 

ەۖۖ
۔ۖ
ۓۖ ∀݅ ∈ ሼ1, … , ܰ − ܴሽ; ௗࣨ೔ௗఛ = −ࣳ௜∀݅ ∈ ሼ1, … , ܰሽ; ௜ݕ = ,ܶ)௜ܭ ܲ, (ݔ ∙ ௜ݔ
∀݆ ∈ ሼ1, … , ܴሽ; ൞ ,ܶ)௖௝ܭ ܲ) = ∏ ܽ௜(ܶ, ܲ, .ଵିߥቂݎ݋ఔ೔,ೕே௜ୀଵ(ݔ ቀௗ௡ௗఛ + ቁቃ௝ݕ = ௔ܦ ∙ ௞ೕ௞భ(்ೝ೐೑೐ೝ೐೙೎೐) ∙ ൬∏ ܽ௜ିఔ೔,ೕோ෨௜ୀଵ − ଵ௄௖ೕ ∏ ܽ௜ఔ೔,ೕே௜ୀோ෨ାଵ ൰∑ ௜ே௜ୀଵݕ = 1

               (23) 

The heat policy assumption removes one degree of freedom in the physical system and makes it possible to 
drop one of the equation -the energy balance- from (22). In (23), there are only 2ܰ + 1 unknown variables. ݔ 
and ݕ appear in several equations, but (19) and (21) give the bijective correspondence between ݊ and ࣨ, and 
between ݕ and ࣳ. Consequently, (23) may be solved with respect to ܶ, ࣨ and ࣳ. 

4. Expected benefits 

4.1 Single modelling framework 
This alternate formulation unifies and extends the three usual ones. A generic DAE (23) consists of ܰ − ܴ 
partial mass balances written in terms of new transformed composition variables, ܰ thermodynamic equilibria, 
and 1 definition for the vapour molar fractions. Each chemical equilibrium reaction adds 1 algebraic constraint. 
Each kinetically controlled reaction adds 1 differential equation. Instead of providing a DAE whose size may 
be 2ܰ + 1 or 4ܰ − 2ܴ + 1, the suggested approach always leads to fixed size (2ܰ + 1) system. Instead of 
defining either the molar fractions or the “transformed composition variables” as dependent variables, the 
suggested approach always integrates the new transformed composition variables ࣨ and ࣳ. Instead of using 
different definitions for the independent variable ߬, the suggested approach always uses the same definition: ݀߬ = ܸ.  .ݐ݀
The alternate formulation is more versatile than the usual ones. According to (23) an arbitrary number of 
kinetically controlled chemical reactions and/or chemical equilibrium reactions can be modelled within a single 
framework. 

4.2 Reduced computational effort 
Finally, the numerical integration based on this alternate formulation may be less costly. With the usual 
formulation, in the chemical equilibrium case, 2(ܰ − ܴ) definitions of the “transformed composition variables” 
are integrated by a DAE solver as algebraic equations, or may be part of a non linear equation system 
defining ܻ in terms of ܺ. Whatever integration method is selected, the computation time in the usual approach 
should be greater than the one obtained with the new formulation. Here ܶ, ࣨ and ࣳ are the only integrated 
variables; the reactive liquid composition ܺ is only used after numerical integration, for producing graphical 
representations. 

5. Conclusions 

After reviewing the different DAE models used for generating RCM and RRCM, we introduce an alternate 
formulation. Within this new modelling framework, the number of equations (2ܰ + 1) depends only on the 
number of components, and the unknown variables are always the temperature ܶ and a set of new 
transformed composition variables ࣨ and ࣳ. From a generic DAE, one can easily build a specific DAE in 
order to model a liquid phase with an arbitrary number of chemical equilibrium reactions and/or kinetically 
controlled reactions. When simulating this resulting DAE, we take the view that the new approach will prove to 
be not only versatile, but also cost-effective due to its reduced computational complexity. 
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Nomenclature 

Symbol name Meaning Unit ܰ Number of components  ܴ Number of chemical reactions  ෨ܴ  Number of reactants  ݐ Time, independent integration variable ݏ  ߬ Dimensionless independent integration variable  ௟ܷ Liquid retention ݈݉݋ ܸ Vapour flow rate ݈݉݋. .ܬ ଵ ܳ Heating powerି݈݋݉.ܬ Molar vapour enthalpy ܪ ଵି݈݋݉.ܬ ℎ Molar liquid enthalpy ݉ݐܽ Pressure ܲ ܭ ௜ Vapour molar fraction of component ݅  ௜ܺ Transformed composition variable in the liquid phase (Ung and Doherty, 1995b)  ௜ܻ Transformed composition variable in the vapor phase (Ung and Doherty, 1995b)  ௜ࣨ New transformed composition variable in the liquid phase  ௜ࣳ New transformed composition variable in the vapor phase  ܶ Temperatureݕ  ݅ ௜ Liquid molar fraction of componentݔ ଵିݏ ௝ݎܳ ݈݋݉ ݆	 ௝ Extent of reactionߦ  ݆ ௜,௝ Stoichiometric coefficient for component ݅ in reactionߥ  ݅ ௜ Thermodynamic equilibrium constant for componentܭ ଵିݏ  Heat of reaction 	݆ ି݈݋݉.ܬଵ ܽ௜ Activity of component ݅  ܭ ௝ܿ Chemical equilibrium constant of reaction ݆  ௝݇ Reaction rate constant of reaction ݆ ିݏଵ ܦ௔ Damköhler number  ݆ߜ ௝݇ ቌෑܽ௜ିఔ೔,ೕோ෨
௜ୀଵ − ܭ1 ௝ܿ ෑ ܽ௜ఔ೔,ೕே

௜ୀோ෨ାଵ ቍ ିݏଵ Δ௝ ݆ߜ ∙ ௟ܷ ݈݉݋.  ଵିݏ
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