268 D O I: 1 0. 15 82 6/ ch im te ch .2 01 6. 3. 4. 01 7 УД К 69 1. 17 5. 66 4 N. A. Korshunova, R. F. Tukhvatullina, O. S. El'tsov LTD «STC-Immuno Analisys» Blukhera st., 43, Ekaterinburg, 620137, Russia E-mail: o.s.eltsov@urfu.ru The study of the curing of the polyurethane coating by method of IR spectroscopy The results of the study of the curing process of polyurethane compositions with participation of two different catalysts by the method of IR spectroscopy are given. The time dependences of curing of polyurethane coatings from con- centrations of catalysts were determined, on the basis of which the most effec- tive catalyst was selected. Key words: polyurethane, polyol, isocyanate, chemical curing, IR spectroscopy. Received: 04.10.2016; accepted: 11.10.2016; published: 30.12.2016. Н. А. Коршунова, Р. Ф. Тухватулина, О. С. Ельцов ООО «ИТП Иммуноанализ» 620137, ул. Блюхера, 43, Екатеринбург, Россия E-mail: o.s.eltsov@urfu.ru Изучение отверждения полиуретановых покрытий методом ИК-спектроскопии Приведены результаты исследования процесса отверждения полиуре- тановых композиций с участием двух различных катализаторов методом ИК-спектроскопии. Определены временные зависимости отверждения поли- уретанового покрытия от концентраций катализаторов, по которым выбран наиболее эффективный катализатор. Ключевые слова: полиуретан; полиол; изоционат; химическое отверждение; ИК-спек- троскопия. Поступило: 04.10.2016; принято: 11.10.2016; опубликовано: 30.12.2016. © Korshunova N. A., Tukhvatullina R. F., El'tsov O. S., 2016 Korshunova N. A., Tukhvatullina R. F., El'tsov O. S. Chimica Techno Acta. 2016. Vol. 3, No. 4. P. 268–277. ISSN 2409-5613 One of the most common plas- tic materials today is polyurethane. The widespread use of this polymer is due to the wide scope and high rates of physical- mechanical properties as strength, wear resistance, resistance to swelling in vari- ous oils and solvents and ozone- and ra- diation resistance and others [1, 2]. The combination of high elasticity with wide range of hardness defines the excellent operational properties of the products based on them. The polymer is 269 able to withstand heavy loads, less subject to aging than other substances. It is resist- ant to temperature extremes, sunlight, salts, solvents on organic base. Therefore, the establishment of the protective anti-corrosion polyurethane coatings, used in large industrial objects (bridges, overpasses, etc.) is an actual task today. The obtaining of the polyurethane oc- curs by the reaction of di- and polyfunc- tional isocyanates with di- and polyfunc- tional alcohols: Since the curing time of the compo- sition is sufficiently large, there is a need for its acceleration, while maintaining the properties of the very protective coating. In many experiments thermal processing is used for acceleration of curing of polyu- rethane, which is difficult to implement in a coating outdoor environments [3–5]. In this case it seems more profitable variant of use of a catalyst which initially is added to the reaction mixture, accelerating the process of chemical curing of the coating. One of the most common catalytic sys- tems is the combination of organometal- lic compounds and tertiary amines. Often this combination is due to the synergistic effect of these compounds. The purpose of work is the determina- tion of the influence of the concentration of tertiary amine as a catalyst on the rate of binding process of the components in the reaction for producing the polyure- thane at room temperature by the method of IR spectroscopy. Materials and methods of study Spectra of prepared samples were re- corded on a IR-Fourier spectrometer Bruker Alpha prefix diffusive reflection. As starting components for the prepa- ration of the samples were taken:* Aliphatic polyisocyanate on the basis of isocyanurate hexamethylenediisocy- anate (Desmodur N3390 of firm Bayer) 90  % Solution in n-butyl acetate with a mass content of isocyanate groups of 19.6 % was represented in the sale: PhO O OH n m k OOBu Therefore, the establishment of the protective anti-corrosion polyurethane coatings, used in large industrial objects (bridges, overpasses, etc.) is an actual task today. The obtaining of the polyurethane occurs by the reaction of di- and polyfunctional isocyanates with di- and polyfunctional alcohols: O N R 1 N O OH R 2 OH O N R 1 N O OH R 2 OH ...+ + + + ... O N H R 1 N H O O R 2 O O N H R 1 N H O O R 2 O ... Since the curing time of the composition is sufficiently large, there is a need for its acceleration, while maintaining the properties of the very protective coating. In many experiments thermal processing is used for acceleration of curing of polyurethane, which is difficult to implement in a coating outdoor environments [3–5]. In this case it seems more profitable variant of use of a catalyst which initially is added to the reaction mixture, accelerating the process of chemical curing of the coating. One of the most common catalytic systems is the combination of organometallic compounds and tertiary amines. Often this combination is due to the synergistic effect of these compounds. The purpose of work is the determination of the influence of the concentration of tertiary amine as a catalyst on the rate of binding process of the components in the reaction for producing the polyurethane at room temperature by the method of IR spectroscopy. Materials and methods of study. Spectra of prepared samples were recorded on a IR-Fourier spectrometer Bruker Alpha prefix diffusive reflection. As starting components for the preparation of the samples were taken:* NN N O O O OCN OCN NCO the hydroxyl-bearing polyacrylate (Se- talux DA 160X) with a mass content of hydroxyl groups of 1.6 % in the sale form. Represented as 60 % solution in xylene: As organometallic catalyst was used 1 % solution of dilaurate dibutylamine in butyl acetate, the tertiary amines are vari- able amounts of triethanolamine and di- azobicycloundezen. PhO O OH n m k OOBu Therefore, the establishment of the protective anti-corrosion polyurethane coatings, used in large industrial objects (bridges, overpasses, etc.) is an actual task today. The obtaining of the polyurethane occurs by the reaction of di- and polyfunctional isocyanates with di- and polyfunctional alcohols: O N R 1 N O OH R 2 OH O N R 1 N O OH R 2 OH ...+ + + + ... O N H R 1 N H O O R 2 O O N H R 1 N H O O R 2 O ... Since the curing time of the composition is sufficiently large, there is a need for its acceleration, while maintaining the properties of the very protective coating. In many experiments thermal processing is used for acceleration of curing of polyurethane, which is difficult to implement in a coating outdoor environments [3–5]. In this case it seems more profitable variant of use of a catalyst which initially is added to the reaction mixture, accelerating the process of chemical curing of the coating. One of the most common catalytic systems is the combination of organometallic compounds and tertiary amines. Often this combination is due to the synergistic effect of these compounds. The purpose of work is the determination of the influence of the concentration of tertiary amine as a catalyst on the rate of binding process of the components in the reaction for producing the polyurethane at room temperature by the method of IR spectroscopy. Materials and methods of study. Spectra of prepared samples were recorded on a IR-Fourier spectrometer Bruker Alpha prefix diffusive reflection. As starting components for the preparation of the samples were taken:* Aliphatic polyisocyanate on the basis of isocyanurate hexamethylenediisocyanate (Desmodur N3390 of firm Bayer) 90 % Solution in n-butyl acetate with a mass content of isocyanate groups of 19.6 % was represented in the sale: NN N O O O OCN OCN NCO the hydroxyl-bearing polyacrylate (Setalux DA 160X) with a mass content of hydroxyl groups of 1.6 % in the sale form. Represented as 60 % solution in xylene: PhO O OH n m k OOBu Therefore, the establishment of the protective anti-corrosion polyurethane coatings, used in large industrial objects (bridges, overpasses, etc.) is an actual task today. The obtaining of the polyurethane occurs by the reaction of di- and polyfunctional isocyanates with di- and polyfunctional alcohols: O N R 1 N O OH R 2 OH O N R 1 N O OH R 2 OH ...+ + + + ... O N H R 1 N H O O R 2 O O N H R 1 N H O O R 2 O ... Since the curing time of the composition is sufficiently large, there is a need for its acceleration, while maintaining the properties of the very protective coating. In many experiments thermal processing is used for acceleration of curing of polyurethane, which is difficult to implement in a coating outdoor environments [3–5]. In this case it seems more profitable variant of use of a catalyst which initially is added to the reaction mixture, accelerating the process of chemical curing of the coating. One of the most common catalytic systems is the combination of organometallic compounds and tertiary amines. Often this combination is due to the synergistic effect of these compounds. The purpose of work is the determination of the influence of the concentration of tertiary amine as a catalyst on the rate of binding process of the components in the reaction for producing the polyurethane at room temperature by the method of IR spectroscopy. Materials and methods of study. Spectra of prepared samples were recorded on a IR-Fourier spectrometer Bruker Alpha prefix diffusive reflection. As starting components for the preparation of the samples were taken:* NN N O O O OCN OCN NCO 270 The experimental part In advance 12 metal dies of a given size of 25.5×4,5×6,0 mm had been prepared. The sizes of dies were determined by measuring of the geometric parameters of the set of elements of the sample prepara- tion for the recording of spectra of diffuse reflection. Metal dies on one side were mirror polished. Half the polished side was covered with the prepared sample us- ing a special device enabling the thickness of the polyurethane coatings of 0.01–0.03 mm, the other half surface was used as a standard of comparison. The ratio was calculated by the fol- lowing formula (calculated to anhydrous polyol): P P M b M c B A 1 3 = ⋅ ⋅ where PA is the number of polyol, g; PB is the number of isocyanate derivatives, g; M1 is the molecular weight of isocya- nate groups 42.e.m.; M3 is the molecular weight of the hydroxyl groups 17.e.m.; b is the content of hydroxyl groups in the polyol, 1,6 %; с is the content of isocyano groups in the isocyanate, 19,6 %. The founding ratio of isocyanate deriv- atives was to poliol by mass is 30,63:100. Given the content of solvents the mass ra- tio used 20,47:100. The experiment was conducted in 4 parallel: without catalyst of tertiary amine, with content of catalyst of tertiary amine, 0.50 %, 0.75 %, 1.00 % of the mass of the mixture. Isocyanate and polyol were mixed in a specific ratio, were added 1 % by mass of the mixture dilaurate dibu- tylamine 1 % solution in butyl acetate and the variable number of catalyst of tertiary amine was poured. So 4 parallels were got, where as the catalyst there was used triethanolamine, and 4 parallels, where the catalyst was diazobicycloundecen. The reaction mixture was prepared by stirring for 10 minutes at room temperature. IR spectra were recorded with the fre- quency of once per day for 25 days. Addi- tional treatment except correction of base line was not carried out. Results and discussion The assessment of chemical bonding of the components was based on changes in the concentration of isocyanate, which is determined by the intensity of the ab- sorption band of the isocyanate group at 2291 cm–1 [6]. The process of formation of polyurethane was considered complete when the absorption band is not visible in the spectrum (Fig. 1). In Fig. 2 and 3 show graphs of the content of the absorption band of NCO-groups in time are shown. As can be seen in the graphs, the speed of curing increases with increasing con- centration of catalyst. Isocyanate groups Sn O OO O N OH OH OH N N As organometallic catalyst was used 1 % solution of dilaurate dibutylamine in butyl acetate, the tertiary amines are variable amounts of triethanolamine and diazobicycloundezen. The experimental part In advance 12 metal dies of a given size of 25.5×4,5×6,0 mm had been prepared. The sizes of dies were determined by measuring of the geometric parameters of the set of elements of the sample preparation for the recording of spectra of diffuse reflection. Metal dies on one side were mirror polished. Half the polished side was covered with the prepared sample using a special device enabling the thickness of the polyurethane coatings of 0.01–0.03 mm, the other half surface was used as a standard of comparison. The ratio was calculated by the following formula (calculated to anhydrous polyol): where PA is the number of polyol, g; PB is the number of isocyanate derivatives, g; M1 is the molecular weight of isocyanate groups 42.e.m.; M3 is the molecular weight of the hydroxyl groups 17.e.m.; b is the content of hydroxyl groups in the polyol, 1,6%; с is the content of isocyano groups in the isocyanate, 19,6%. The founding ratio of isocyanate derivatives was to poliol by mass is 30,63:100. Given the content of solvents the mass ratio used 20,47:100. The experiment was conducted in 4 parallel: without catalyst of tertiary amine, with content of catalyst of tertiary amine, 0.50 %, 0.75 %, 1.00 % of the mass of the mixture. Isocyanate and polyol were mixed in a specific ratio, were added 1 % by mass of the mixture dilaurate dibutylamine 1 % solution in butyl acetate and the variable number of catalyst of tertiary amine was poured. So 4 parallels were got, where as the catalyst there was used 271 are extremely reactive and rapidly inter- act with substances that contain hydroxyl and amino groups. This interaction of isocyanate groups and hydroxyl or amino groups of agents of chain growth leads to the formation of a larger number of ure- thane linkages. Therefore, the time for chemical curing of the reaction mixture of the polymer requires less at higher con- tent of the catalyst. It should be noted that the physical curing is observed within hours after applying of the sample, where- as chemical curing was leaking much longer. Physical curing was evaluated by leaving of the nail strip on the sample of polyurethane Fig. 1. Comparison of the IR spectra of the sample containing no triethanolamine at the beginning and end of the experience Fig. 2. Dependence of the intensity of the absorption bands from the time in the sample containing various concentrations of triethanolamine: № 1 – 0 %; № 2 – 0,5 %; № 3 – 0,75 %; № 4 – 1 % triethanolamine, and 4 parallels, where the catalyst was diazobicycloundecen. The reaction mixture was prepared by stirring for 10 minutes at room temperature. IR spectra were recorded with the frequency of once per day for 25 days. Additional treatment except correction of base line was not carried out. Results and discussion The assessment of chemical bonding of the components was based on changes in the concentration of isocyanate, which is determined by the intensity of the absorption band of the isocyanate group at 2291 cm–1 [6]. The process of formation of polyurethane was considered complete when the absorption band is not visible in the spectrum (Fig. 1). In Fig. 2 and 3 show graphs of the content of the absorption band of NCO-groups in time are shown. 500100015002000250030003500 Wavenumber cm-1 0. 0 0. 2 0. 4 0. 6 0. 8 1. 0 1. 2 1. 4 A bs or b an ce U n its Fig. 1. Comparison of the IR spectra of the sample containing no triethanolamine at the beginning and end of the experience 272 In the resulting study the chemical curing of the polymer composition was observed faster when used as a catalyst triethanolamine. It should be noted also that the triethanolamine is cheaper than diazobicycloundecen, which explains its wide spread in industrial production. The obtained experimental data can be used to optimize the technology of applying of polyurethane protective coatings and will predict the time to complete bonding of the components of the reaction mixture to achieve optimal physical-mechanical indicators. * The authors thank the Head of R@D Division Prof. Kozhevnikov D. N of JSC SIH VMP for scientific and innovative work. for the objects of study and their in- terest in scientific research activity of stu- dents, hit UrFU. In Russian Одним из самых распространен- ных полимерных материалов совре- менности является полиуретан. Ши- рокое применение данного полимера обусловлено широкой областью при- менения и высокими показателями та- ких физико-механических свойств как прочность, износостойкость, устойчи- вость к набуханию в различных маслах и растворителях, а также озоно- и ра- диационностойкость и другие [1, 2]. Сочетание высокой эластичности с широким диапазоном твердости опре- деляет превосходные эксплуатацион- ные свойства изделий на их основе. Полимер способен выдерживать боль- шие нагрузки, меньше подвергается старению, чем другие вещества. Он устойчив к температурным перепадам, солнечным лучам, соли, растворите- лям на органической основе. Поэтому создание защитных ан- тикоррозионных полиуретановых покрытий, используемых в крупнога- баритных промышленных объектах Fig. 3. Dependence of intensity of absorption bands from time in the sample containing different concentrations of diazobicycloundecen: № 1 – 0 %; № 2 – 0,5 %; № 3 – 0,75 %; № 4 – 1 % 273 (мосты, эстакады и т. д.) является акту- альной задачей на сегодняшний день. Получение полиуретана происхо- дит по реакции ди- и полифункцио- нальных изоцианатов с ди- и полифун- кциональными спиртами: Поскольку время отверждения композиции достаточно большое, воз- никла необходимость его ускорения при сохранении свойств самого защит- ного покрытия. Во многих опытах для ускорения отверждения полиуретана используется термическая обработка, которую трудно осуществить в усло- виях нанесения покрытий вне поме- щений [3–5]. В данном случае пред- ставляется более выгодным вариант использования катализатора, который изначально добавляется в реакцион- ную смесь, ускоряя процесс химиче- ского отверждения покрытия. Одной из распространенных каталитических систем является сочетание органоме- таллических соединений с третичны- ми аминами. Причем зачастую такая комбинация обусловлена синергетиче- ским эффектом этих соединений. Цель работы: определение влияния концентрации третичного амина как катализатора на скорость процесса связывания компонентов в реакции получения полиуретана при комнат- ной температуре методом ИК-спек- троскопии. Материал и методы исследования Спектры подготовленных образцов были записаны на ИК-Фурье спектро- метре Bruker Alpha, приставка диффу- зионного отражения. В качестве исходных компонентов для подготовки образцов были взяты*: – алифатический полиизоционат на основе изоцианурата гексаметилен- диизоционата (Desmodur N3390 ком- пании Bayer). В продаже представлен как 90 % раствор в н-бутилацетате с массовым содержанием изоционатных групп 19,6 %: PhO O OH n m k OOBu Therefore, the establishment of the protective anti-corrosion polyurethane coatings, used in large industrial objects (bridges, overpasses, etc.) is an actual task today. The obtaining of the polyurethane occurs by the reaction of di- and polyfunctional isocyanates with di- and polyfunctional alcohols: O N R 1 N O OH R 2 OH O N R 1 N O OH R 2 OH ...+ + + + ... O N H R 1 N H O O R 2 O O N H R 1 N H O O R 2 O ... Since the curing time of the composition is sufficiently large, there is a need for its acceleration, while maintaining the properties of the very protective coating. In many experiments thermal processing is used for acceleration of curing of polyurethane, which is difficult to implement in a coating outdoor environments [3–5]. In this case it seems more profitable variant of use of a catalyst which initially is added to the reaction mixture, accelerating the process of chemical curing of the coating. One of the most common catalytic systems is the combination of organometallic compounds and tertiary amines. Often this combination is due to the synergistic effect of these compounds. The purpose of work is the determination of the influence of the concentration of tertiary amine as a catalyst on the rate of binding process of the components in the reaction for producing the polyurethane at room temperature by the method of IR spectroscopy. Materials and methods of study. Spectra of prepared samples were recorded on a IR-Fourier spectrometer Bruker Alpha prefix diffusive reflection. As starting components for the preparation of the samples were taken:* NN N O O O OCN OCN NCO – гидроксилсодержащий полиа- крилат (Setalux DA 160X) с массовым содержанием в продажной форме ги- дроксильных групп 1,6 %. В продаже представлен как 60 % раствор в ксилоле: PhO O OH n m k OOBu Therefore, the establishment of the protective anti-corrosion polyurethane coatings, used in large industrial objects (bridges, overpasses, etc.) is an actual task today. The obtaining of the polyurethane occurs by the reaction of di- and polyfunctional isocyanates with di- and polyfunctional alcohols: O N R 1 N O OH R 2 OH O N R 1 N O OH R 2 OH ...+ + + + ... O N H R 1 N H O O R 2 O O N H R 1 N H O O R 2 O ... Since the curing time of the composition is sufficiently large, there is a need for its acceleration, while maintaining the properties of the very protective coating. In many experiments thermal processing is used for acceleration of curing of polyurethane, which is difficult to implement in a coating outdoor environments [3–5]. In this case it seems more profitable variant of use of a catalyst which initially is added to the reaction mixture, accelerating the process of chemical curing of the coating. One of the most common catalytic systems is the combination of organometallic compounds and tertiary amines. Often this combination is due to the synergistic effect of these compounds. The purpose of work is the determination of the influence of the concentration of tertiary amine as a catalyst on the rate of binding process of the components in the reaction for producing the polyurethane at room temperature by the method of IR spectroscopy. Materials and methods of study. Spectra of prepared samples were recorded on a IR-Fourier spectrometer Bruker Alpha prefix diffusive reflection. As starting components for the preparation of the samples were taken:* NN N O O O OCN OCN NCO – в качестве органометаллическо- го катализатора был использован 1 % раствор дилаурат дибутилолова в бу- тилацетате, третичные амины – варьи- руемые количества триэтаноламина и диазобициклоундецена: PhO O OH n m k OOBu Therefore, the establishment of the protective anti-corrosion polyurethane coatings, used in large industrial objects (bridges, overpasses, etc.) is an actual task today. The obtaining of the polyurethane occurs by the reaction of di- and polyfunctional isocyanates with di- and polyfunctional alcohols: O N R 1 N O OH R 2 OH O N R 1 N O OH R 2 OH ...+ + + + ... O N H R 1 N H O O R 2 O O N H R 1 N H O O R 2 O ... Since the curing time of the composition is sufficiently large, there is a need for its acceleration, while maintaining the properties of the very protective coating. In many experiments thermal processing is used for acceleration of curing of polyurethane, which is difficult to implement in a coating outdoor environments [3–5]. In this case it seems more profitable variant of use of a catalyst which initially is added to the reaction mixture, accelerating the process of chemical curing of the coating. One of the most common catalytic systems is the combination of organometallic compounds and tertiary amines. Often this combination is due to the synergistic effect of these compounds. The purpose of work is the determination of the influence of the concentration of tertiary amine as a catalyst on the rate of binding process of the components in the reaction for producing the polyurethane at room temperature by the method of IR spectroscopy. Materials and methods of study. Spectra of prepared samples were recorded on a IR-Fourier spectrometer Bruker Alpha prefix diffusive reflection. As starting components for the preparation of the samples were taken:* Aliphatic polyisocyanate on the basis of isocyanurate hexamethylenediisocyanate (Desmodur N3390 of firm Bayer) 90 % Solution in n-butyl acetate with a mass content of isocyanate groups of 19.6 % was represented in the sale: NN N O O O OCN OCN NCO the hydroxyl-bearing polyacrylate (Setalux DA 160X) with a mass content of hydroxyl groups of 1.6 % in the sale form. Represented as 60 % solution in xylene: 274 Экспериментальная часть Предварительно были подготовле- ны 12 металлических плашек заданно- го размера 25,5×4,5×6,0 мм. Размеры плашек были определены путем из- мерения геометрических параметров набора элементов пробоподготовки для записи спектров диффузного от- ражения. Металлические плашки с одной стороны были зеркально отпо- лированы. Половина полированной стороны была покрыта подготовлен- ным образцом с помощью специаль- ного устройства, обеспечивающего толщину полиуретанового покрытия 0,01–0,03 мм, другая половина повер- хности использовалась в качестве эта- лона сравнения. Соотношение компонентов рассчи- тывали по следующей формуле (в пе- ресчете для безводного полиола): P P M M cA 1 3 Б б= ⋅ ⋅ где РА – количество полиола, г; РБ – ко- личество изоционата, г; М1 – молеку- лярная масса изоционатных групп, 42 а.е.м.; М3 – молекулярная масса ги- дроксильных групп, 17 а.е.м.; б – содер- жание гидроксильных групп в полио- ле, 1,6 %; с – содержание изоционатных групп в изоционате, 19,6 %. Найденное соотношение изоцио- ната к полиолу по массе составляет 30,63:100. Учитывая содержание рас- творителей, использовали массовое соотношение 20,47:100. Эксперимент проводился в четырех параллелях: без катализатора третич- ного амина, с содержанием катализа- тора третичного амина 0,50 %, 0,75  %, 1,00 % от массы смеси. Смешивали в определенном соотношении изоци- онат и полиол, добавляли 1 % от мас- сы смеси дилаурата дибутилолова 1 % раствор в бутилацетате и приливали варьируемое количество катализато- ра третичного амина. Таким образом получили четыре параллели, где в ка- честве катализатора использовали триэтаноламин, и четыре параллели, где катализатор диазобициклоунде- цен. Реакционную смесь готовили пе- ремешиванием в течение 10 минут при комнатной температуре. ИК-спектры записывались с пе- риодичностью раз в сутки в течение 25 дней. Дополнительной обработки, кроме коррекции базовой линии, не проводилось. Sn O OO O N OH OH OH N N As organometallic catalyst was used 1 % solution of dilaurate dibutylamine in butyl acetate, the tertiary amines are variable amounts of triethanolamine and diazobicycloundezen. The experimental part In advance 12 metal dies of a given size of 25.5×4,5×6,0 mm had been prepared. The sizes of dies were determined by measuring of the geometric parameters of the set of elements of the sample preparation for the recording of spectra of diffuse reflection. Metal dies on one side were mirror polished. Half the polished side was covered with the prepared sample using a special device enabling the thickness of the polyurethane coatings of 0.01–0.03 mm, the other half surface was used as a standard of comparison. The ratio was calculated by the following formula (calculated to anhydrous polyol): where PA is the number of polyol, g; PB is the number of isocyanate derivatives, g; M1 is the molecular weight of isocyanate groups 42.e.m.; M3 is the molecular weight of the hydroxyl groups 17.e.m.; b is the content of hydroxyl groups in the polyol, 1,6%; с is the content of isocyano groups in the isocyanate, 19,6%. The founding ratio of isocyanate derivatives was to poliol by mass is 30,63:100. Given the content of solvents the mass ratio used 20,47:100. The experiment was conducted in 4 parallel: without catalyst of tertiary amine, with content of catalyst of tertiary amine, 0.50 %, 0.75 %, 1.00 % of the mass of the mixture. Isocyanate and polyol were mixed in a specific ratio, were added 1 % by mass of the mixture dilaurate dibutylamine 1 % solution in butyl acetate and the variable number of catalyst of tertiary amine was poured. So 4 parallels were got, where as the catalyst there was used 275 Результаты и обсуждение Оценка химического связывания компонентов проводилась на осно- вании изменения концентрации изо- цианата, которая определялась по интенсивности полосы поглощения изоцианатной группы при 2291 см–1 [6]. Процесс образования полиуретана считался законченным, когда данная полоса поглощения не просматрива- лась на спектре (рис. 1). На рис. 2, 3 представлены графики изменения со- держания полосы поглощения NCO- группы во времени. Как видно на графиках, скорость химического отверждения увеличи- вается при повышении концентрации Рис. 1. Сравнение ИК-спектров образца, не содержащий триэтаноламин, в начале и в конце опыта Рис. 2. Зависимость интенсивности полосы поглощения от времени в образце, содержащем различные концентрации триэтаноламина: № 1 – 0 %; № 2 – 0,5 %; № 3 – 0,75 %; № 4 – 1 % 276 катализатора. Изоцианатные группы крайне реакционноспособны и бы- стро взаимодействуют с веществами, которые содержат гидроксильные и аминогруппы. Это взаимодействие изоцианатных групп и гидроксильных или аминогрупп агентов роста цепи приводит к образованию большего чи- сла уретановых связей. Следовательно, время на химическое отверждение ре- акционной смеси полимера требуется меньше при большем содержании со- ответствующего катализатора. Стоит отметить, что физическое отвержде- ние наблюдается через сутки после нанесения образца, тогда как химиче- ское протекало намного дольше. Фи- зическое отверждение оценивали по оставляемой ногтем полосе на образце полиуретана. В полученном исследовании хими- ческое отверждение полимерной ком- позиции наблюдалось быстрее при ис- пользовании в качестве катализатора триэтаноламина. Стоит отметить так- же, что триэтаноламин стоит дешевле, чем диазобициклоундецен, что объ- ясняет его широкую распространен- ность в промышленном производстве. Полученные экспериментальные данные могут быть использованы для оптимизации технологии нанесения полиуретановых защитных покры- тий и позволят прогнозировать вре- мя полного связывания компонентов реакционной смеси для достижения оптимальных физико-механических показателей. * Авторы благодарят руководство ЗАО НПХ ВМП в лице вице-президен- та по научно-инновационной работе д. х. н. Д. Н. Кожевникова за предостав- ленные объекты исследования и про- явленный интерес к научно-исследова- тельской активности студентов ХТИ УрФУ. Рис. 3. Зависимость интенсивности полосы поглощения от времени в образце, содержащем различные концентрации диазобициклоундецена: № 1 – 0 %; № 2 – 0,5 %; № 3 – 0,75 %; № 4 – 1 % 277 Bibliography 1. Wright P., Cumming A. Polyurethane elastomers. Per. from English. under the edi- torship of doctor. chem. Sciences N. P. Apukhtina. L., «Chemistry». 1973. 304 p. 2. Lipatov Yu. S., Kercha Yu. Yu., Sergeeva L. M. Structure and properties of polyure- thane. «Naukova Dumka». Kiev, 1970. P. 37–52. 3. Melent’ev S. V., Malinovskaya T. D., Volokitin O. G. The Investigation of the polyure- thane bindering composite fuel coating by the method of IR spectroscopy. The Collec- tion of materials of the X International conference of students and young scientists «prospects of fundamental Sciences». Tomsk, 2013. P. 388–390. 4. Lipatova T. E., Bakalo L. A. Progress in the chemistry of polyurethanes. Kiev: Sciences. Dumka, 1972. P. 195–213. 5. Todosiichuk T. T., Kosyanchuk L. F., Antonenko O. I., Yashchenko L. N., Menieres G. Ya., Getmanchuk I. P., Gorbatenko A. N. Optimization of polyurethane curing optically- transparent compositions. Journal of physical chemistry. 2012;2(20121):49–52. 6. Dechant I., Dance R. Infrared spectroscopy of polymers. M.: Chemistry. 1976. 459 p. Cite this article as (как цитировать эту статью): Korshunova N. A. Tukhvatullina R. F., El’tsov O. S. The study of the curing of the poly- urethane coating by method of IR spectroscopy. Chimica Techno Acta. 2016;3(4): 268–277.