Two mutually complementary synthetic approaches towards 3-substituted 3,4-disubstituted and 1-(2-pyridyl)-substituted isoquinolines 150 I. L. Nikonov1,2, D. S. Kopchuk1,2, A. F. Khasanov1,2, A. P. Krinochkin1,2, E. S. Starnovskaya1, Ya. K. Shtaiz1, M. I Savchuk1, O. S. Tanya1, G. V. Zyryanov1,2, V. L. Rusinov1,2, O. N. Chupakhin1,2 1Ural Federal University, 19 Mira St., Ekaterinburg 620002, Russian Federation 2I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, 22 Kovalevskaya St. / 20 Akademicheskaya St., Ekaterinburg 620990, Russian Federation E-mail: dkopchuk@mail.ru Two mutually complementary synthetic approaches towards 3‑substituted 3,4‑disubstituted and 1‑(2‑pyridyl)‑substituted isoquinolines Two mutually complementary synthetic approaches towards 3- and 3,4-disub- stituted 1-(2-pyridyl) isoquinolines were studied. The aryne-based method was successfully used for the obtaining of the corresponding the 3-cyano-1-(2-pyri- dyl)isoquinolines in one step / pot reaction, while it is unacceptable for the obtaining of other 1-(2-pyridyl)isoquinolines. The enamine-based approach was successfully applied for the synthesis of other 1-(2-pyridyl)isoquinolines, while it was unacceptable for the obtaining of 3-cyano-1-(2-pyridyl)isoquinolines. Keywords: 1,2,4-triazines; arynes; enamines; isoqunolines; aza-Diels-Alder reaction; domino- transfrormation. Received: 08.09.2018. Accepted: 19.10.2018. Published: 31.10.2018. © Nikonov I. L., Kopchuk D. S., Khasanov A. F., Krinochkin A. P., Starnovskaya E. S., Shtaiz Ya. K., Savchuk M. I, Tanya O. S., Zyryanov G. V., Rusinov V. L., Chupakhin O. N., 2018 D O I: 1 0. 15 82 6/ ch im te ch .2 01 8. 5. 3. 04 Results and Discussion Aryne intermediates, generated in situ, are currently attracting more and more attention from the point of  view of  their use in  organic synthesis, since practically useful products of various pur- poses can be obtained [1–3]. Recently, we have demonstrated the possibilities of their successful use in reactions with substituted 1,2,4-triazines for obtaining both the ex- pected aza-Diels-Alder reaction products, namely the corresponding isoquinolines, and the domino transformations, for ex- ample, 10-(1H- 1,2,3-triazol-1-yl) pyrido [1,2-a] indoles. The direction of the reac- tion depends on the nature of the 1,2,4-tri- azines (or aryns) introduced into the com- position of the substituents [4]. This article analyzes the two synthetic approaches we have developed for the syn- thesis of 1- (2-pyridyl) isoquinolines with different substituents in the C3 and C4 po- sitions, which are of interest, in particular, as ligands for transition metal cations [5], as well as from the point of view of creat- ing OLED [6]. Nikonov I. L., Kopchuk D. S., Khasanov A. F., Krinochkin A. P., Starnovskaya E. S., Shtaiz Ya. K., Savchuk M. I, Tanya O. S., Zyryanov G. V., Rusinov V. L., Chupakhin O. N. Chimica Techno Acta. 2018. Vol. 5, No. 3. P. 150–152. ISSN 2409–5613 151 Thus, the reaction of  3-(2-pyridyl)  -1,2,4-triazines 1a, having an aromatic substituent or a hydrogen atom at the C5 position, with aryne results in  the cor- responding pyrido [1,2-a] indoles 2 [7] (scheme 1), while the synthesis of target 1-(2-pyridyl) isoquinolines 3a in  this way is impossible. To solve this problem, we developed an alternative synthetic approach, which was based on  the use of 3-(2-pyridyl)-1,2,4-triazines 1 as start- ing compounds. The approach involves the preparation of 5,6,7,8-tetrahydroiso- quinolines 4a as  a  result of  the reaction of aza-Diels-Alder (Boger) with enamine followed by oxidative aromatization of the isoquinoline system [8]. 1-Morpholinocy- clohexene was used as a dienophile for the first stage. Subsequent aromatization using DDQ as an oxidizing agent made it possible to successfully synthesize isoquinolines 3a. It should be noted that in the reaction of  3-(2-pyridyl)-1,2,4-triazine-5-carbo- nitriles 1b with arynes, the corresponding isoquinolines 3b were also obtained as main products, whereas the products of domino transformation were the minor products (the yield is not more than 3 %) [9]. We also investigated the possibility of obtaining isoquinolines 3b as a result of two-stage synthesis through the prepa- ration of tetrahydroisoquinolines 4b. The first step was performed by the same pro- cedure as in the case of synthesis 4a, and afforded the compound 4b. However, sub- sequent aromatization of tetrahydrocya- noisoquinoline under various conditions, such as  boiling in  o-xylene or  4-chloro- toluene with oxidants, such as  DDQ or chloranil, as well as prolonged boiling in  the same high-boiling solvents in  the pre sence of Pd / C did not lead to the forma- tion of the desired isoquinolines 3b. In all cases the initial tetrahydroisoquinoline 4b was isolated. Thus, the application of this method is not acceptable for the obtaining the target 3-cyanoisoquinolines 3b. Thus, it was demonstrated that two mu- tually complementary synthetic metho- dologies can be used to synthesize 3-aryl, 3,4-diaryl-, as well as 3-cyano-1-(2-pyri- dyl)isoquinolines. Thus, in the case of R = CN (Scheme 1), the synthesis using aryne intermediates makes it possible to efficient- ly obtain the corresponding isoquinolines 3b, while the method based of the prepa- ration tetrahydroisoquinolines 4b does not allow this because of the impossibility of subsequent aromatization by using the common methods. At the same time, in the Scheme 1. Reagents and conditions: i) Anthranilic acid, isoamylnitrile, toluene — 1,4-dioxane (4: 1), boiling, 1.5 h; ii) 1-morpholinocyclohexene, without solvent, 200 °C, 4 h; iii) DDQ, o-xylene, 143 °C, 10 h N N NAr R N N Ar R N N Ar R N R = H, Ph R = CN R = H, Ph R = CN i ii iii N N N N Ar R R = H, Ph i Ar = Ph, Tol, 4-BrC6H4 1a,b 2 3a,b 4a,b (a) R = H, Ph (b) R = CN 152 case of R = H or Ar, the opposite situation is observed: the synthesis of isoquinolines 3a is possible with the use of a two-step pathway by using the corresponding enam- ine, and in the case of using aryl interme- diates, the reaction leads mainly to rear- rangement products 2. Experimental NMR 1H and 13C spectra were recorded on the spectrometer “Bruker-Avance-400” (400 MHz), internal standard is SiMe4. The melting points were measured on the “Boetius” device. Mass spectra (type of ionization is electrospray) were recorded on the device of series “MicrOTOF-Q II” of “Bruker Daltonics” (Bremen, Germany). Elemental analyses were performed on CHN analyzer PE 2400, series II by Perkin Elmer. Acknowledgements This work was supported by the Russian Science Foundation (Reference # 18-13-00365). References 1. Yoshida S, Hosoya  T.  The Renaissance and Bright Future of  Synthetic Aryne Chemistry. Chem Lett. 2015;44(11):1450–60. DOI: 10.1246 / cl.150839. 2. Wu D, Ge H, Liu SH, Yin J. Arynes in the synthesis of polycyclic aromatic hydrocar- bons. RSC Advances. 2013;3(45):22727–38. DOI:10.1039 / C3RA43804J. 3. Miyabe H. Synthesis of Oxygen Heterocycles via Aromatic C-O Bond Formation Using Arynes. Molecules. 2015;20(7):12558. 4. Kopchuk DS, Nikonov IL, Khasanov AF, Giri K, Santra S, Kovalev IS, et al. Studies on the interactions of 5-R-3-(2-pyridyl)-1,2,4-triazines with arynes: inverse demand aza-Diels — Alder reaction versus aryne-mediated domino process. Org Biomol Chem. 2018;16(28):5119–35. DOI: 10.1039 / C8OB00847G. 5. Mikata Y, Yamanaka A, Yamashita A, Yano S. Isoquinoline-Based TQEN Family as TPEN-Derived Fluorescent Zinc Sensors. Inorganic Chemistry. 2008;47(16):7295– 301. DOI: 10.1021 / ic8002614. 6. Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phos- phorescence and Application to Organic Light-Emitting Diode. J Am Chem Soc. 2003;125(42):12971–9. DOI: 10.1021 / ja034732d. 7. Nikonov IL, Kopchuk DS, Kovalev IS, Zyryanov GV, Khasanov AF, Slepukhin PA, et al. Benzyne-mediated rearrangement of  3-(2-pyridyl)-1,2,4-triazines into 10-(1H- 1,2,3-triazol-1-yl)pyrido[1,2-a]indoles. Tetrahedron Lett. 2013;54(48):6427–9. DOI: https://doi.org / 10.1016 / j.tetlet.2013.09.042. 8. Kopchuk DS, Kovalev IS, Khasanov AF, Zyryanov GV, Slepukhin PA, Rusinov VL, et al. A rational protocol for the synthesis of 1-(2-pyridyl)isoquinolines. Mendeleev Commun. 2013;23(3):142–4. DOI: 10.1016 / j.mencom.2013.05.007. 9. Kopchuk DS, Nikonov IL, Zyryanov GV, Kovalev IS, Rusinov VL, Chupakhin ON. Preparation of 3-Cyano-1-(2-Pyridyl)Isoquinolines by Using Aryne Intermediates. Chem Heterocycl Compd. 2014;50(6):907–10. DOI: 10.1007 / s10593-014-1545-9.