Technology for the industrial production of K3 series vitamins based on menadione 81 D O I: 1 0. 15 82 6/ ch im te ch .2 02 0. 7. 2. 05 Aleksey S. Antipov, Vasily A. Nizov, Anna Yu. Antipova Chimica Techno Acta. 2020. Vol. 7, no. 2. P. 81–86. ISSN 2409–5613 Aleksey S. Antipova, Vasily A. Nizovb, Anna Yu. Antipovaab aLLC “Novokhrom”, 462353, 51 Industrial St., Novotroitsk, Orenburg region, Russia bUral Federal University named after the first President of Russia B. N. Yeltsin, 620002, 19 Mira St., Yekaterinburg, Russia e-mail: lexrus91@bk.ru Technology for the industrial production of K3 series vitamins based on menadione An improved technology for the industrial production of K3 series vitamins based on menadion is reported. The procedure involves the Cr(VI) — promoted oxidation of the corresponding methyl-naphtahelenes with the following purifi- cation by precipitation/recrystallization. The best results were obtained under the process temperature between 20–40 °C, solution pH after dilution of MNB in a range of 5.5–5.7, and MNB content in initial solution of 25–30%. Keywords: Vitamin K3; methyl-naphalenes; Cr(VI) — compounds; menadione; industrial scale Received: 15.04.2020. Accepted: 27.06.2020. Published: 30.06.2020. © Aleksey S. Antipov, Vasily A. Nizov, Anna Yu. Antipova, 2020 Introduction For the  industrial production of vitamins of the K family, the most acces- sible and important precursor is 2-methyl- naphthalene-1,4-dione, (menadione) [1]. In some sources, menadione is called vita- min K3 [2], although derivatives 1,4-naph- thoquinone are not natural chemicals and therefore cannot be qualified as vitamins. Menadione can be considered as  pro- vitamin due to  the  possibility of  its me- tabolism in the human body into vitamins K2, menaquinones, [3] containing vari- ous alkyl fragments at the position of C3 of the naphthalene-1,4-dione. According to the literature, the simplest and most cost-effective industrial meth- od for producing menadione in the form of sodium bisulfite (MSB) or nicotinamide bisulfite (MNB) is the Cr(VI) compounds- mediated oxidation reaction of  2-meth- ylnaphthalene-containing raw materi- als in an acidic medium with the release of menadione as an intermediate product [4], and the  subsequent crystallization of the MSB from water or the precipitation of  nicotinamide MNB from the  mother liquor. Since 2012, a domestic technology implemented according to this principle has been developed at  the  Novochrom LLC enterprise (Novotroitsk, Orenburg Region). The main problem of this technol- ogy is associated with a strict restriction on the content of impurity components in fi- nal consumer products, such as K3 series vitamins. For example, EU Regulation No. 1831/2003 limits the  chromium content in sodium menadione bisulfite to 45 mg/ kg, and in  the  menadione nicotinamide bisulfite 142 mg/kg. Even trace amounts 82 of 2-methylnaphthalene, 1-methylnaphtha- lene, indole(s) are also excluded. In connection with the above, the ini- tial stages of industrial production of K3 series vitamins are burdened with a  sig- nificant accumulation of substandard and intermediate products, as  well as  high costs for their recycling. Namely, the level of such important technical and economic indicator, as  the  volume of  substandard MNB with a chromium content from 300 to 2500 mg/kg in an amount of more than 30 tons for 2016 makes the industrial pro- duction of  K3 series vitamins to  be not competitive in the global MSB market [5]. The aim of this work was to develop a meth- odology for the processing of menadione nicotinamide bisulfite on an industrial scale. Experimental part Research Methodology Industrial grade MNB with a  chro- mium content of  2250 mg/kg was used for research. Sulfuric acid, sodium car- bonate, butanol-1 of technical grade were purchased from commercial sources. Analytical researches were carried out ac- cording to the methods certified by Novo- chrom Ltd. Investigations of the method of pro- cessing MNB by carrying out the reac- tions of direct and reverse synthesis 50 g of MNB was re-pulped in 125 ml of  water containing 12 ml of  butanol-1. Sodium carbonate was slowly, in  small portions, added to the resulting suspen- sion to  achieve a  stable pH of  5.5–5.7. The reaction volume was maintained until the  MNB was completely dissolved, fol- lowed by  filtration to  remove insoluble particles. After the filtration the obtained solution was acidified with 65% sulfuric till the pH of 2.0–2.2. The precipitated MNB was filtered, washed and air-dried. Investigation of the influence of the pH on the fractionation size of the impurities The influence of the pH of the medium on the fractionation size of chromium-con- taining impurities was checked similarly to the first method, except that before fil- tering the pH of the solution was reduced to 4.5 with the following addition of 5 g of diatomite to improve filtration. Investigation of  the  cyclic method of MNB processing To  study the  cyclic processing pro- cess, 50 g of MNB was re-pulped in 125 ml of water containing 12 ml of butanol-1. Sodium carbonate was slowly, in small por- tions, added to  the  resulting suspension to reach a stable pH value in a range of 5.5– 5.7. The reaction volume was maintained until the MNB was completely dissolved. The pH of the solution was reduced to 4.4– 4.6 by the addition of 65% sulfuric acid. After that the 5 g of diatomite was added, and the  insoluble particles were filtered out. The filtered solution was acidified with 65% sulfuric acid till the  pH of  2.0–2.2, and the resulted solution was stirred for 15 minutes. After the filtration the precipi- tate was washed and dried. The next cycle was carried out similarly to the first one, except using a filtrate after the separation of the MNB instead of water. At the end of  the  third cycle, all the  washings and the  filtrate were collected together and made alkaline with sodium bicarbonate to reach a pH of >10, followed by filtra- tion and washing of the precipitated me- nadione. Investigation of the influence of wa- ter amount on the  chromium content in the recycled MNB The study of the effect of the amount of water on the fractionation of chromium 83 was carried out according to the methodol- ogy of the first cycle of the cyclic process, except that the amount of water was 50, 80, 100 and 130 ml. Results and discussion The technology for producing K3 vi- tamins consist of  three separate stages: synthesis of  menadione with Cr(VI) compounds, isohydric crystallization [6] of  MSB, and the  precipitation of  MNB by  reaction of  the  mother liquor with nicotinamide in  an  acidic media. Based on the classical positions of fractionation of impurity components in the isohydric crystallization mode [6], we refined the de- pendence of the solubility of MSB in wa- ter in  the  operating temperature range and compiled a nomogram for assessing the  possible effects of  purification from chromium during crystallization [7]. We have previously shown that the use of  additives of  water-soluble aluminum salts [8] leads to  a  decrease in  the  chro- mium content during the synthesis of MSB, while using liquid extraction with bu- tanol-1 leads to  the  production of  high- quality MNB [9]. The  return of  substandard MNB to the scope of implementation is expected to be achieved through the sequential pro- cesses presented in schemes 1–3. The dissociation of MNB into the start- ing reagents under the action of alkaline reagents, in particular sodium carbonate in  the  pH range of  5.5–5.7 (Scheme 1), makes it possible to efficiently obtain a so- lution of MSB and nicotinamide, as well as  impurities, which are highly soluble in  water. A  further decrease of  the  pH of the medium to 4.4–4.6 leads to the pre- cipitation of chromium-containing impu- rities, the removal of some of which from the solution was made by the filtration, and Scheme 1. Decomposition of MNB into the starting reagents Scheme 2. Synthesis of MNB Scheme 3. Dissociation of MSB to menadione 2 O O SO3H CH3 N NH2 O Na2CO3 O O SO3Na CH32 2 N NH2 O H2O CO2 O O SO3Na CH32 2 N NH2 O H2SO4 2 O O SO3H CH3 N NH2 O Na2SO4 O O SO3Na CH3 OH- O- O S O O O O O CH3 SO3 2– 84 this step was followed by the direct synthe- sis of MNB. This allows to obtain a product with a chromium content of less than 142 mg/kg. Processing the mother liquor after the separation of MNB with alkaline rea- gents allows additional extraction of MSB menadione and its return to  the  stage of  the  synthesis of  MNB. The  cleavage of  MSB to  menadione was carried out by the action of alkaline reagents at a pH of more than 11. It should be noted that earlier it was shown that in the pH range from 6 to 10 the equilibrium is shifted to- wards the formation of MSB [10]. From the data collected it follows that the sequential reverse reaction of the cleav- age of MNB into initial products at a pH of  5.5–5.7 with filtration of  undissolved particles, followed by  a  direct synthesis reaction, leads only to  a  slight decrease in the chromium content in the final prod- uct. In the course of studies, it was found that when alkaline reagents, in particular sodium carbonate and sodium bicarbonate, are added to the suspension of the initial MNB to adjust a pH to 5.5–5.7 all MNB decomposes into the  starting products. When the  solution is  acidified with sul- furic acid to adjust a pH of less than 5.0 a fine precipitate is formed. The precipi- tation of  MNB usually begins at  the  pH of  the  solution of  less than 4.2. Studies, carried out with a high dilution of the so- lution to prevent the deposition of MNB, showed that the precipitation of the impu- rities continues until the pH of the solution is  reduced till 2.9–3.0, and with further acidification no precipitation is observed. Also, the color of the solution changes from dark brown at pH 5.6 to light yellow at pH 2.5, after filtering the precipitate of impuri- ties. To avoid precipitation of MNB at pH less than 4.2, the precipitation of impuri- ties was carried out in a range of pH range of 4.4–4.6. From the  results of  cyclic processing it follows that it is not possible to obtain MNB using the filtrate from the previous stage with a low chromium content while maintaining the regime of the first cycle. Apparently, an increase in the salt content of the solution leads to a different distri- bution of the impurity between the aque- ous and organic phases. This is confirmed by  the  fact that dilution of  the  solution of  the  second cycle after the  filtration of the insoluble residue leads to cloudiness of the solution and precipitation of the im- purities. From the  results of  a  study of  the  effect of  the  amount of  water on the chromium content in the final MNB it follows that an increase in the amount of water leads to a decrease in the chro- Fig. 1. Chromatogram of the processed MNB 85 mium content in  the  final product due to a more complete deposition of chromi- um-containing impurities from the solu- tion upon decreasing pH. Additional ex- traction of  menadione from the  mother liquor is  achieved by  changing the  pH of the medium above 10.0 by adding so- dium carbonate. Chromatographic studies of the result- ing MNB (Fig. 1) to demonstrate the ab- sence of 2-methylnaphthalene and other organic impurities in  it, which confirms the effectiveness of the described purifica- tion method. Conclusions In  conclusion, a  technical solution is developed for the processing of mena- dione nicotinamide bisulfite with a high content of chromium and organic impu- rities, as  well as  for one with an  expired shelf life to produce a high quality menadi- one with low chromium content. The best results were obtained at the temperature of the reaction mixture of 20–40 °C, the pH after dilution in  a  range of  5.5–5.7, and the initial MNB content of 25–30%. This technical solution is  also applicable well for the accumulated previously substand- ard commercial products, and it finalizes the cycle of the improvement of the exist- ing industrial production of K3 series vi- tamins based on menadione. References 1. Weber F., Rüttimann A. Vitamin K. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 2012. 38. pp. 211–31. 2. Scott GK, Atsriku C, Kaminker P, Held J, Gibson B, Baldwin MA, Benz CC. Vitamin K3 (menadione) — induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation. Molecular Pharmacology. 2005;68:606–15. 3. Belikov VG. Farmatsevticheskaya khimiya. Chast’ 2. Spetsial’naya farmatsevtiches- kaya khimiya. Pyatigorsk. 1996. pp. 152–5. Russian. 4. Antipov AS, Nizov VA. Sintez menadiona (2-metil-1,  — naftokhinona) s ispol’zovaniyem soyedineniy Cr6+. Bashkirskiy khimicheskiy zhurnal. 2019;26(2):100–5. Russian. 5. Antipov AS, Nizov VA. Analiz vozmozhnostey polucheniya menadiona s naimen’shim soderzhaniyem primesey khroma. Bashkirskiy khimicheskiy zhurnal. 2018;25(1):27– 32. Russian. 6. Stepin BD, Gorshteyn IG, Blyum GZ, Kurdyumov GM, Ogloblina IP. Metody po- lucheniya osobo chistykh neorganicheskikh veshchestv. Leningrad: Khimiya; 1969. 480 p. Russian. 7. Antipov AS, Nizov VA. Fraktsionirovaniye khroma v protsesse izogidricheskoy kristallizatsii menadiona natriya bisul’fita (2-metil-1,4-diokso-1,2,3,4-tetragidro- 2-naftalinsul’fonat natriya). Bashkirskiy khimicheskiy zhurnal. 2018:25(4):11–5. Russian. 8. Antipov AS, Nizov VA, Gvozdev AV, Antipova AYu, inventors; Federal Institute of the Industrial Property, assignee. Sposob polucheniya vitaminov serii K3. Russian Federation patent RU 2696493. 2018. Russian. 86 9. Antipov AS, Nizov VA, Gvozdev AV, Antipova AYu, inventors; Federal Institute of the Industrial Property, assignee. Sposob polucheniya vitaminov serii K3. Russian Federation patent RU 2696776. 2018. Russian. 10. Bicker M, Bierstedt A, Amouzegar K, Mahdavi B, Stamant G, assignee. Recovery of vitamin K3 from mother liquor. European patent WO2010121638. 2010.