New monomers for (bi)pyridine-containing polymers 209 New monomers for (bi)pyridine-containing polymers A. P. Krinochkinab, M. I. Savchuka, E. S. Starnovskayaab, Y. K. Shtaitza, D. S. Kopchuk ab, I. L. Nikonovab, I. S. Kovalev a, G. V. Zyryanov ab*, V. L. Rusinov ab, O. N. Chupakhinab a Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira st., Ekaterinburg, 620002, Russian Federation b I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy/Akademicheskaya st., Ekaterinburg, 620990, Russian Federation *email: g.v.zyrianov@urfu.ru Abstract. Convenient methods for the synthesis of three monomers based on func- tionalized (bi)pyridines with using “1,2,4-triaizine” methodology have been developed. Keywords: monomers; 1,2,4-triazines; (bi)pyridines; inverse demand Diels-Alder reaction Received: 09.09.2020. Accepted: 20.12.2020. Published:30.12.2020. © Krinochkin A. P., Savchuk M. I., Starnovskaya E. S., Shtaitz Y. K., Kopchuk D. S., Nikonov I. L., Kovalev I. S., Zyryanov G. V., Rusinov V. L., Chupakhin O. N., 2020 D O I: 1 0. 15 82 6/ ch im te ch .2 02 0. 7. 4. 13 Krinochkin A. P., Savchuk M. I., Starnovskaya E. S., Shtaitz Y. K., Kopchuk D. S., Nikonov I. L., Kovalev I. S., Zyryanov G. V., Rusinov V. L., Chupakhin O. N. Chimica Techno Acta. 2020. Vol. 7, no. 4. P. 209–214. ISSN 2409–5613 Introduction (2,2′-Bi)pyridine containing pol- ymers are of interest from the point of view of creating OLED [1, 2] for redox catalytic reactions [3], as  electrolyte membrane fuel cell application [4] or anode materi- als components [5]. In this regard, the de- velopment of  convenient methods for the synthesis of compounds with the (poly) pyridine fragment and suitable for using as monomers, is an actual purpose. In this article we propose the convenient methods for the synthesis of three potential mono- mers of the (bi)pyridine series. Experimental part 1H NMR spectra were recorded on a  Bruker Avance-400 spectrom- eter (400  MHz), the  internal standard was SiMe4. Mass-spectra (ionization type — electrospray) were recorded on a  MicrOTOF-Q II instrument from Bruker Daltonics (Bremen, Germany). Elemental analysis was performed on a Perkin Elmer PE 2400 II CHN analyzer. The  starting 4-bromophenylhydrazone 2 was obtained according to the described method [11]. General procedure for the  synthesis of 1,2,4-triazines 3 Hydrazone 2 (605  mg, 2.5 mmol) was solved in  ethanol (30 ml) and solu- tion of the corresponding carbaldehyde 1 (2.5 mmol) in ethanol (25 ml) was added. The  resulting mixture was kept at  room temperature for 12 h. The precipitate was filtered off, washed with ethanol and dried. Then the obtained intermediate was sus- pended in acetic acid (30 ml) and mixture was heated to  reflux two times. Solvent was removed under reduced pressure. 210 Ethanol (30 ml) was added to the residue; the resulting crystals of 3 were filtered off, washed with ethanol and dried. The crude triazines were used directly in the next step without additional purification. 6-(4-Bromophenyl)-3-(5-bromopyri- din-2-yl)-1,2,4-triazine (3a). Yield 630 mg (1.60 mmol, 64%). NMR 1H (DMSO-d6, δ, ppm): 7.75–7.79 (m, 2H, C6H4Br), 8.23 (dd, 1H, 3J 8.4 Hz, 4J 2.4 Hz, H-4(py)), 8.25–8.29 (m, 2H, C6H4Br), 8.49 (d, 1H, 3J 8.4 Hz, H-5(py)), 8.89 (d, 1H, 4J 2.4 Hz, H-6(py)), 9.52 (s, 1H, H-5). ESI–MS, m/z: 390.92 (M+H)+. 6-Bromo-2-(6-(4-bromophenyl)- 1,2,4-triazin-3-yl)quinoline (3b). Yield 800  mg (1.80 mmol, 72%). NMR 1H (DMSO-d6, δ, ppm): 7.77–7.83 (m, 2H, C6H4Br), 7.92 (dd, 1H, 3J 8.0 Hz, 4J 2.0 Hz, H-7(qui)), 8.15–8.20 (m, 2H, H-5,8(qui)), 8.30–8.35 (m, 2H, C6H4Br), 8.56 and 8.70 (both d, 1H, 3J 8.4 Hz, H-3 and H-4 (qui)), 9.61 (s, 1H, H-5). ESI–MS, m/z: 440.94 (M+H)+. 3-(4-Bromophenyl)-6-(thiophen- 2-yl)-1,2,4-triazine (7). A  mixture of  349  mg (1.7 mmol) of  2-bromo- 1-(thiophen-2-yl)ethanone 5, 732 mg (3.4 mmol) of hydrazide 6 and 25 mL of DMF was heated at 120 °C under argon for 10 h. The solvent was distilled off under reduced pressure, the  residue was treated with ethanol, and the  precipitate was filtered off. The crude triazine was used directly in the next step without addition purifica- tion. Yield 343 mg (1.08 mmol, 63%). NMR 1H (DMSO-d6, δ, ppm): 7.27 (dd, 1H, 3J 5.2 Hz, 3.8 Hz, H-4(thio)), 7.70–7.76 (m, 2H, C6H4Br), 7.27 (dd, 1H, 3J 5.2 Hz, 4J 0.8 Hz, H-5 (thio)), 8.10 (dd, 1H, 3J 3.8 Hz, 4J 0.8 Hz, H-3(thio)), 8.37–8.42 (m, 2H, C6H4Br), 9.43 (s, 1H, H-5). A general procedure for the synthesis of (bi)pyridines 4 and 8 The mixture of corresponding 1,2,4-tri- azine 3 or 7 (0.8 mmol) and 1-morpholi- nocyclo-pentene (0.64 ml, 4.0 mmol) was stirred at 200 °C for 2 h under argon at- mosphere. Then, the  additional portion of  1-morpholinocyclopentene (0.32 ml, 2.0 mmol) was added and the  resulting mixture was stirred for additional 1  h at the same conditions. The reaction mass was cooled to room temperature. The prod- ucts were purified by flash chromatography (DCM as eluent) and then by recrystalliza- tion (ethanol). 4-(4-Bromophenyl)-1-(5-bromopyri- din-2-yl)-6,7-dihydro-5H-cyclopenta[c] pyridine (4a). Yield 270 mg (0.63 mmol, 78%). NMR 1H (DMSO-d6, δ, ppm): 2.08 (m, 2H, CH2-6), 3.04 (t, 2H, 3J 7.6 Hz, CH2-7), 3.46 (t, 2H, 3J 7.6 Hz, CH2-5), 7.48–7.54 (m, 2H, C6H4Br), 7.64–7.70 (m, 2H, C6H4Br), 8.11 (dd, 1H, 3J 8.4 Hz, 4J 1.6 Hz, H-4′), 8.30 (d, 1H, 3J 8.4 Hz, H-5′), 8.47 (s, 1H, H-3), 8.75 (d, 1H, 4J 1.6 Hz, H-6′). ESI–MS, m/z: 428.96 (M+H)+. Found, %: C 53.19, H 3.39, N 6.40. C19H14Br2N2. Cal- culated, %: C 53.05, H 3.28, N 6.51. 6-Bromo-2-(4-(4-bromophenyl)- 6,7-dihydro-5H-cyclopenta[c]pyridin- 1-yl)quinoline (4b). Yield 290 mg (0.60 mmol, 75%). NMR 1H (DMSO-d6, δ, ppm): 2.14 (m, 2H, CH2-6), 3.08 (t, 2H, 3J 7.6 Hz, CH2-7), 3.69 (t, 2H, 3J 7.6 Hz, CH2- 5), 7.51–7.57 (m, 2H, C6H4Br), 7.66–7.71 (m, 2H, C6H4Br), 7.86 (dd, 1H, 3J 8.8 Hz, 4J 1.6 Hz, H-7(qui)), 8.02 (d, 1H, 3J 8.8 Hz, H-8(qui)), (d, 1H, 4J 1.6 Hz, H-5(qui)), 8.40 and 8.56 (both d, 1H, 3J 8.8 Hz, H-3 and H-4 (qui)), 8.54 (s, 1H, H-3). ESI–MS, m/z: 478.98 (M+H)+. Found, %: C 57.41, H 3.22, N 8.67. C23H16Br2N2. Calculated, %: C 57.53, H 3.36, N 8.53. 211 1-(4-Bromophenyl)-4-(thiophen- 2-yl)-6,7-dihydro-5H-c yclopenta[c] pyridine (8). Yield 228  mg (0.64 mmol, 80%). NMR 1H (DMSO-d6, δ, ppm): 2.14 (m, 2H, CH2-6), 3.15 (t, 2H, 3J 7.6 Hz, CH2- 7), 3.20 (t, 2H, 3J 7.6 Hz, CH2-5), 7.16 (dd, 1H, 3J 5.2 Hz, 3.8 Hz, H-4(thio)), 7.33 (dd, 1H, 3J 3.8 Hz, 4J 0.8 Hz, H-3(thio)), 7.41 (dd, 1H, 3J 5.2 Hz, 4J 0.8 Hz, H-5(thio)), 7.57–7.62 (m, 2H, C6H4Br), 7.65–7.70 (m, 2H, C6H4Br), 8.73 (s, 1H, H-3). ESI–MS, m/z: 356.01 (M+H)+. Found, %: C 60.53, H 3.81, N 4.07. C18H14BrNS. Calculated, %: C 60.68, H 3.96, N 3.93. 1-(4-Bromophenyl)-4-(5-bromothio- phen-2-yl)-6,7-dihydro-5H-cyclopenta[c] pyridine (9). Pyridine 8 (307  mg, 0.86 mmol) was dissolved in DMF (30 mL). N- Bromosuccinimide (184  mg, 1.0 mmol) was added and the  resulting mixture was stirred for 8  h at  50 ºC. Then water (100  mL) was added to  the  mixture and precipitate formed was filtered off. The ana- lytical sample was obtained by recrystalli- zation (ethanol). Yield 329 mg (0.76 mmol, 88%). NMR 1H (CDCl3, δ, ppm): 2.19 (m, 2H, CH2-6), 3.17 (t, 2H, 3J 7.6 Hz, CH2- 7), 3.20 (t, 2H, 3J 7.6 Hz, CH2-5), 7.10 and 7.13 (d, 1H, 3J 3.8 Hz, H-3 and H-4 (thio)), 7.61–7.65 (m, 2H, C6H4Br), 7.67–7.71 (m, 2H, C6H4Br), 8.69 (s, 1H, H-3). ESI–MS, m/z: 433.92 (M+H)+. Found, %: C 49.53, H 3.14, N 3.39. C18H13Br2NS. Calculated, %: C 49.68, H 3.01, N 3.22. Results and discussion The “1,2,4-triazine” methodology has been used for the preparation of the target compounds [7–9]. In particular, we used the  modified synthetic route previously used for preparation of the luminophores of 2,2’-bipyridine [10] and 2-(2-pyridyl) quinoluine series [11]. Namely, heterocy- clization [6] of the corresponding commer- cially available aldehydes 1a,b and hydra- zone of 4’-bromoisonitrosoacetophenone 2 [11] allowed to obtain the 1,2,4-triazine precursors 3, which are also of  interest as  monomers (Scheme  1). The  further solvent-free inverse demand Diels-Alder reaction with 1-morpholinocyclopentene [12] allowed to synthesize compounds 4 of  2,2’-bipyridine and 2-(2-pyridyl)qui- noluine series. We have also suggested an  approach for obtaining the  monomer of  mono- pyridine series. In this case we also used the “1,2,4-triazine” methodology. Namely, Br N N OH NH2 N O Br N O Br N N N N Br N N N N Br Br Br N N Br N N Br Br Br 1a 1b 2 3a 3b 4a 4b i i ii ii Scheme 1. Reagents and conditions: i) 12 h, r.t. / EtOH, then AcOH, 118 °C, 5 min; ii) 1-morpholinocyclopentene, 200 °C, neat, 3 h. 212 the  condensation of  2-bromoacetylthio- phene 5 with two equivalents of hydrazide of 4-bromobenzoic acid 6 allowed to ob- tain the triazine precursor 7 (Scheme 2). This heterocyclization has been known for a long time [13]. In this case reaction was realized during heating in DMF with no sodium acetate [14, 15]. The  further solvent-free inverse demand Diels-Alder reaction [12] with 1-morpholinocyclo- pentene allowed to obtain the condendes pyridine 8. For preparation of monomer 9 we used the bromination of thiophene ring of compound 8 at position C5 by N- bromosuccinimide in DMF. This reaction is a well-known effective method [16, 17]. For the full conversion of compound 8 to 9 it is necessary the heating reaction mass at 50 °C. The structure of compounds 4 and 9 was confirmed by data of NMR 1Н, mass-spec- trometry and elemental analysis. The char- acteristics of compounds 4 correlate with ones for the previously published similar compounds [10, 11]. For compound 9 there are the signals of protons of thiophene ring as two doublets, protons of cyclopentene fragment, protons of 4-bromophenyl moi- ety, as well as proton of 6,7-dihydro-5H- cyclopenta[c]pyridine as singlet. Conclusions In conclusion, we have reported herein effective synthetic protocols for the prep- aration of  functionalized (bi)pyridines as  potential monomers for the  further synthesis of (bi)pyridines-based polymers for different applications. Acknowledgements This work was supported by  the  Russian Foundation for Basic Research (Grant #19-53-55002) and Grants Council of  the  President of  the  Russian Federation (no. NSh-2700.2020.3). References 1. Li ZR, editor. Organic Light-Emitting Materials and Devices. Boca Raton: CRC Press, 2015. 813 p. 2. Wang C, Kilitziraki M, MacBride JAH, Bryce MR., Horsburgh LE, Sheridan AK, Monkman AP, Samuel IDW. Tuning the  optoelectronic properties of  pyridine- containing polymers for light-emitting devices. Adv Mater. 2000;12:217–22. doi:10.1002/(SICI)1521–4095(200002)12:3<217::AID-ADMA217>3.0.CO;2-Y O NH N Br S Br N Br S N N N Br S S O Br Br H2N 5 6 7 8 9 i ii iii Scheme 2. Reagents and conditions: i) DMF, 120 °C, 10 h; ii) 1-morpholinocyclopentene, 200 °C, neat, 3 h; iii) NBS, 50 °C, 8 h. 213 3. Sato Y, Kagotani M, Yamamoto T, Souma Y. Novel Effective Poly(2,2′-Bipyridine- 5,5′-Diyl)-CuCl2 Catalyst for Synthesis of Dimethyl Carbonate (DMC) by Oxidative Carbonylation of Methanol. Appl Catal A-Gen. 1999;185:219–26. doi:10.1016/S0926-860X(99)00175–1 4. Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe E-W, Ramanathan LS, Yu S, Den- icewicz BC. Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applicationsx. Fuel cells. 2005;5:287–95. doi:10.1002/fuce.200400067 5. Yang L, Mihali V-A, Brandell D, Strømme M, Sjödin M. Conjugated Pyridine-Based Polymers Characterized as Conductivity Carrying Components in Anode Materials. J Phys Chem C. 2014;118:25956–63. doi:10.1021/jp509606c 6. Kozhevnikov VN, Kozhevnikov DN, Shabunina OV, Rusinov VL, Chupakhin ON. An efficient route to 5-(hetero)aryl-2,4′- and 2,2′-bipyridines through readily avail- able 3-pyridyl-1,2,4-triazines. Tetrahedron Lett. 2005;46:1791–3. doi:10.1016/j.tetlet.2005.01.135 7. Pabst GR, Sauer J. A new and simple ‘LEGO’ system for the synthesis of 2,6-oli- gopyridines. Tetrahedron Lett. 1998;39:6687–90. doi:10.1016/S0040-4039(98)01437–3 8. Rykowski A, Branowska D, Kielak J. A novel one-pot synthesis of annulated 2,2′-bi- pyridine ligands by inverse electron demand Diels — Alder reaction of  5,5′-bi- 1,2,4-triazines. Tetrahedron Lett. 2000;41:3657–9. doi:10.1016/S0040-4039(00)00436–6 9. Kozhevnikov VN, Shabunina OV, Kopchuk DS, Ustinova MM, König B, Kozhevnikov DN. Facile synthesis of 6-aryl-3-pyridyl-1,2,4-triazines as a key step toward highly fluorescent 5-substituted bipyridines and their Zn(II) and Ru(II) complexes. Tetra- hedron. 2008;64:8963–73. doi:10.1016/j.tet.2008.06.040 10. Starnovskaya ES, Kopchuk DS, Khasanov AF, Tanya OS, Santra S, Giri K, Rahman M, Kovalev IS, Zyryanov GV, Majeed A, Charushin VN. Synthesis and photophysics of new unsymmetrically substituted 5,5′-diaryl-2,2′-bypiridine-based “push-pull” fluorophores. Dyes Pigm. 2019;162:324–30. doi:10.1016/j.dyepig.2018.10.040 11. Kopchuk DS, Chepchugov NV, Starnovskaya ES, Khasanov AF, Krinochkin AP, Santra S, Zyryanov GV, Das P, Majee A, Rusinov VL, Charushin VN. Synthesis and optical properties of new 2-(5-arylpyridine-2-yl)-6-(het)arylquinoline-based “push- pull” fluorophores. Dyes Pigm. 2019;167:151–6. doi 10.1016/j.dyepig.2019.04.029 12. Kozhevnikov VN, Ustinova MM, Slepukhin PA, Santoro A, Bruce DW, Kozhevnikov DN. From 1,2,4-triazines towards substituted pyridines and their cyclometallated Pt complexes. Tetrahedron Lett. 2008;49:4096–8. doi:10.1016/j.tetlet.2008.04.138 214 13. Saraswathi TV, Srinivasan VR. A novel synthesis of 1,2,4-triazines. Tetrahedron Lett. 1971;12:2315–6. doi:10.1016/S0040-4039(01)96849–2 14. Saraswathi TV, Srinivasan VR. Syntheses and spectral characteristics of 6-mono-, 3,6-di and 3,5,6-trisubstituted-1,2,4-triazines. Tetrahedron. 1977;33:1043–51. doi:10.1016/0040–4020(77)80223–8 15. Shtaitz YaK, Savchuk MI, Kopchuk DS, Taniya OS, Santra S, Zyryanov GV, Suvorova AI, Rusinov VL, Chupakhin ON. Efficient Synthesis of Methyl 6-(6-Aryl-1,2,4-tria- zin-3-yl)pyridine-2-carboxylates. Russ J Org Chem. 2020;56:548–51. doi:10.1134/S1070428020030306 16. Khan MS, Al-Mandhary MRA, Al-Suti MK. Feeder N, Nahar S, Koehler A, Friend RH, Wilson PJ, Raithby PR. Synthesis, characterisation and electronic properties of a series of platinum(II) poly-ynes containing novel thienyl-pyridine linker groups. Dalton Trans. 2002;12:2441–8. doi:10.1039/B201073A 17. Hu B, Fu S-J, Xu F, Tao T, Zhu H-Y, Cao K-S, Huang W, You X-Z. Linear heterocyclic aromatic fluorescence compounds having various donor-acceptor spacers prepared by the combination of carbon-carbon bond and carbon-nitrogen bond cross-coupling reactions. J Org Chem. 2011;76:4444–56. doi:10.1021/jo200065d