Reducing of industrial atmospheric emissions using electrocyclone 169 Reducing of industrial atmospheric emissions using electrocyclone Anatolii Titova*, John Shrimptonb, Cheng Shaoc, Zhuohan Lic a Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia b University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom c Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, China *email: a.g.titov@urfu.ru Abstract. The article is focused on capturing process-related dust at industrial enterprises (in chemical, metallurgical and energy industries). An electrocyclone can be recommended for the purification of gases emitted into the atmosphere from particulates, such as sodium percarbonate (efficiency 97.5% — 99.9%), iron-vanadium concentrate (98.0% — 99.9%), fly ash (99.0% — 99.9%). However, the fumes from copper-smelting furnaces cannot be purified with high efficiency (less than 50–60%) because of their properties. Using electrocyclone will reduce the amount of aerosol emissions, and in some cases, let the emission reach the values set by standards. Keywords: gas purification; electrocyclone; cyclone; electrostatic precipitator Received: 16.10.2020. Accepted: 07.12.2020. Published:30.12.2020. © Anatolii Titov, John Shrimpton, Cheng Shao, Zhuohan Li, 2020 D O I: 1 0. 15 82 6/ ch im te ch .2 02 0. 7. 4. 05 Anatolii Titov, John Shrimpton, Cheng Shao, Zhuohan Li Chimica Techno Acta. 2020. Vol. 7, no. 4. P. 169–172. ISSN 2409–5613 Introduction The concept of sustainable devel- opment of the industry includes an impor- tant part of the responsibility for the envi- ronment, in particular, the commitment to  the  preservation of  clean air and wa- ter, narrowing down the amount of waste to the minimum. The Urals is an industri- ally developed region of the Russian Fed- eration. More than 1,500 enterprises rep- resenting the mining, metallurgical, energy and other industries are found in the Urals. This neighbourhood cannot but affect the  environment [1]. The  Urals is  one of Russia’s leading regions in terms of en- vironmental pollution [2]. It is quite an ur- gent objective now to reduce the amount of emissions, in particular, air emissions [3]. Any type of gas-cleaning equipment has an area of optimum use. Cyclones are high-performance but are ineffective for trapping micron particles [4]. Electrofilters are effective for particles PM2.5 but are high costly [5, 6]. Many researchers have attempted to combine two or even three types of  gas cleaning devices in  a  single unit to improve the performance of its op- eration [7, 8]. Electrocyclone is a combined dust collector that combines the centrifugal and electrostatic effects for aerosol clean- ing [9]. 170 Experimental Materials, which are the products and industrial wastes of  Russia’s Volga and Ural regions, were chosen: 1. Sodium percarbonate from the  first and second stages of the purification of exhaust gases of the spray dryer at JSC “Percarbonate”, Chuvash Republic. 2. The iron-vanadium concentrate dust released during ore an- nealing at JSC “Kachkanarskiy Mining and Processing Plant”, Sverdlovsk region. 3. Sublimates of the blister smelting furnaces of the copper smelting shop of JSC “Sred- neuralsk Copper Plant”, Sverdlovsk region. 4. The ash from the combustion of Ekibas- tuz coal at Reftinskaya TPP, Sverdlovsk re- gion. The characteristics of the substances are reported in Table 1. The  main tool of  the  experimental equipment was a laboratory vertical elec- trocyclone. The  diagram of  it is  shown in  Fig.  1. An  electrocyclone consists of a body 1, snails with an inlet 2, the cen- tral tube 3, a corona system 4, an exhaust pipe 5 and a hopper 6. Results and discussion Figs. 2–4 shows results of experiments. It is shown, that without an electric field, the degree of gas purification from parti- cles with a size less than 50 microns de- Table 1 Characteristics of the materials under research № Material True density, k/gm3 Specific electric resistance, Ohm·m Particle diameter, μm d10 d50 d90 1 Sodium percarbonate 2144 <104 10 35 67 2 Iron-vanadium concentrate 5100 103 16 73 90 3 Sublimates of furnaces 4600 107 2.5 6 15 4 Fly ash 2200 >108 15 32 64 Fig. 1. Electrocyclone (model ECV) 171 creases with a  decrease in  diameter; for micron particles it is virtually zero. When the voltage reaches 17 kV, the purification rate is higher than 90% for fine particles (less than 50 microns) in each case. Capturing the fumes of copper-smelt- ing furnaces electrocyclone yielded unsat- isfactory results (no diagram). The degree of purification in the experiments at a volt- age of  17  kV was 50–60%, and no more than 50% without voltage. Conclusions Studies have been held to  capture the  dispersed industrial materials. It is  shown that an  electrocyclone can be used like existing gas treatment units. For 0 20 40 60 80 100 η (E ff ic ie nc y) , % Particle size, μm U=17 kV, W=11.6 m/s U=17 kV, W=14.9 m/s U=17 kV, W=17.7 m/s U=17 kV, W=21.1 m/s U=17 kV, W=23.6 m/s U=0 kV, W=11.6 m/s U=0 kV, W=14.9 m/s U=0 kV, W=17.7 m/s U=0 kV, W=21.1 m/s U=0 kV, W=23.6 m/s Fig. 2. Fractional efficiency (sodium percarbonate) 0 20 40 60 80 100 η (E ff ic ie nc y) , % Particle size, μm U=17 kV, W=11.6 m/s U=17 kV, W=14.9 m/s U=17 kV, W=17.7 m/s U=17 kV, W=21.1 m/s U=17 kV, W=23.6 m/s U=0 kV, W=23.6 m/s U=0 kV, W=21.1 m/s U=0 kV, W=17.7 m/s U=0 kV, W=14.9 m/s U=0 kV, W=11.6 m/s Fig. 3. Fractional efficiency (iron-vanadium concentrate) 0 20 40 60 80 100 η (E ff ic ie nc y) , % Particle size, μm U=17 kV, W=11.6 m/s U=17 kV, W=14.9 m/s U=17 kV, W=17.7 m/s U=17 kV, W=21.1 m/s U=17 kV, W=23.6 m/s U=0 kV, W=11.6 m/s U=0 kV, W=14.9 m/s U=0 kV, W=17.7 m/s U=0 kV, W=21.1 m/s U=0 kV, W=23.6 m/s Fig. 4. Fractional efficiency (fly ash) 172 example, in catching sodium percarbon- ate, the  efficiency reached 97.5–99.9%. The  iron-vanadium concentrate collec- tion efficiency was up to 98–99.9%. The ash of  TPP can be caught with an  efficiency up to 99.9%. The optimum operating flow rate of aerosol at the inlet to electrocyclone lies in the range 15–17 m/s. In capturing the fumes of the copper-smelting furnac- es some satisfactory data were received (the efficiency does not exceed 50–60%). This can be explained by the high disper- sion and adhesion. The  factors have led to the termination of electrical purification. In general, the electrocyclone can reduce aerosol emissions from industrial plants in- to the atmosphere by a few digits to several tens of times. In each case, before choosing an electrocyclone as a gas treatment unit, individual characteristics of the material should be evaluated. References 1. Bréchignac F, Desmet G. Equidosimetry: Ecological Standardization and Equido- simetry for Radioecology and Environmental Ecology. Springer Science & Business Media; 2005. 436 p. 2. Linkov I, Wilson R. Air Pollution in the Ural Mountains: Environmental, Health and Policy Aspects. Springer Science & Business Media; 2012. 455 p. 3. Gafurova S. Ecological problems of trans-Ural zone come out to the forefront [Internet]. 2011- [updated 2011.02.17; cited 2020.10.12] http://www.bashinform.ru/eng/341343/. 4. Ng SY, Priestman GH, Allen RWK. Investigation of  Flooding, Re-Entrainment and Grade Efficiency in Axial Flow Cyclones. Chemical Engineering Research and Design. 2006;84:884–94. doi:10.1205/cherd05063 5. Sudrajad A, Yusof AF. Review of Electrostatic Precipitator Device for Reduce of Diesel Engine Particulate Matter. Energy Procedia. 2015;68:370–80. doi:10.1016/j.egypro.2015.03.268 6. Ait Said H, Nouri H, Zebboudj Y. Effect of air flow on corona discharge in wire-to- plate electrostatic precipitator. Journal of Electrostatics. 2015;73:19–25. doi:10.1016/j.elstat.2014.10.004 7. Krames J, Büttner H, Ebert F. Particle separation in a wet operated cyclone. Journal of Aerosol Science. 1993;24:S591–2. doi:10.1016/0021–8502(93)90388-P 8. Di Natale F, Carotenuto C, D’Addio L, Jaworek A, Krupa A, Szudyga M et al. Capture of fine and ultrafine particles in a wet electrostatic scrubber. Journal of Environmental Chemical Engineering. 2015;3:349–56. doi:10.1016/j.jece.2014.11.007 9. Titov AG, Shrimpton J. 3D Modeling of Electrocyclones with Various Flow Swirling Devices. Chemical and Petroleum Engineering. 2020;55:876–83. doi:10.1007/s10556-020-00707-w