() CUBO A Mathematical Journal Vol.17, No¯ 03, (01–14). October 2015 Right General Fractional Monotone Approximation George A. Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A., ganastss@memphis.edu ABSTRACT Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously dif- ferentiable function on [a, b], and let L be a linear right general fractional differential operator such that L (f) is non-negative over a critical closed subinterval J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn) is non-negative over J, furthermore f is approximated uniformly by Qn over [a, b] . The degree of this constrained approximation is given by an inequality using the first modulus of continuity of f(p). We finish we applications of the main right fractional monotone approximation theorem for different g. RESUMEN Aqúı introducimos una derivada fraccional derecha general al estilo de Caputo con respecto a una base de funciones absolutamente continuas estrictamente crecientes g. Damos varios ejemplos de dichas derivadas fraccionales derechas para diferentes g. Sea f una función p-veces continuamente diferenciable en [a, b], y sea L un operador diferencial fraccional derecho general tal que L(f) es no-negativo en un subintervalo cerrado cŕıtico J de [a, b]. Podemos encontrar una sucesión de polinomios L (Qn) de grado menor o igual a n tal que L (Qn) es no-negativo en J, más aún f es aproximada uniformemente por Qn en [a, b] . El grado de esta aproximación restringida es dada por una desigualdad usando el primer módulo de continuidad de f(p). Concluimos con aplicaciones del teorema principal de aproximación monótona fraccional derecha para diferentes g. Keywords and Phrases: Right Fractional Monotone Approximation, general right fractional derivative, linear general right fractional differential operator, modulus of continuity. 2010 AMS Mathematics Subject Classification: 26A33, 41A10, 41A17, 41A25, 41A29. 2 George A. Anastassiou CUBO 17, 3 (2015) 1 Introduction and Preparation The topic of monotone approximation started in [11] has become a major trend in approximation theory. A typical problem in this subject is: given a positive integer k, approximate a given function whose kth derivative is ≥ 0 by polynomials having this property. In [4] the authors replaced the kth derivative with a linear ordinary differential operator of order k. Furthermore in [1], the author generalized the result of [4] for linear right fractional differential operators. To describe the motivating result here we need Definition 1. ([5]) Let α > 0 and ⌈α⌉ = m, (⌈·⌉ ceiling of the number). Consider f ∈ Cm ([−1, 1]). We define the right Caputo fractional derivative of f of order α as follows: ( Dα1−f ) (x) = (−1) m Γ (m − α) ∫1 x (t − x) m−α−1 f(m) (t) dt, (1) for any x ∈ [−1, 1], where Γ is the gamma function Γ (ν) = ∫ ∞ 0 e−ttν−1dt, ν > 0. We set D01−f (x) = f (x) , (2) Dm1−f (x) = (−1) m f(m) (x) , ∀ x ∈ [−1, 1] . (3) In [1] we proved Theorem 1.1. Let h, k, p be integers, h is even, 0 ≤ h ≤ k ≤ p and let f be a real function, f(p) continuous in [−1, 1] with modulus of continuity ω1 ( f(p), δ ) , δ > 0, there. Let αj (x), j = h, h + 1, ..., k be real functions, defined and bounded on [−1, 1] and assume for x ∈ [−1, 0] that αh (x) is either ≥ some number α > 0 or ≤ some number β < 0. Let the real numbers α0 = 0 < α1 < 1 < α2 < 2 < ... < αp < p. Here D αj 1− f stands for the right Caputo fractional derivative of f of order αj anchored at 1. Consider the linear right fractional differential operator L := k∑ j=h αj (x) [ D αj 1− ] (4) and suppose, throughout [−1, 0] , L (f) ≥ 0. (5) Then, for any n ∈ N, there exists a real polynomial Qn (x) of degree ≤ n such that L (Qn) ≥ 0 throughout [−1, 0] , (6) and max −1≤x≤1 |f (x) − Qn (x)| ≤ Cn k−pω1 ( f(p), 1 n ) , (7) where C is independent of n or f. CUBO 17, 3 (2015) Right General Fractional Monotone Approximation 3 Notice above that the monotonicity property is only true on [−1, 0], see (5), (6). However the approximation property (7) it is true over the whole interval [−1, 1] . In this article we extend Theorem 1.1 to much more general linear right fractional differential operators. We use here the following right generalised fractional integral. Definition 2. (see also [8, p. 99]) The right generalised fractional integral of a function f with respect to given function g is defined as follows: Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous functions) and is strictly increasing, f ∈ L ∞ ([a, b]). We set ( Iαb−;gf ) (x) = 1 Γ (α) ∫b x (g (t) − g (x)) α−1 g′ (t) f (t) dt, x ≤ b, (8) clearly ( Iαb−;gf ) (b) = 0. When g is the identity function id, we get that Iαb−;id = I α b−, the ordinary right Riemann- Liouville fractional integral, where ( Iαb−f ) (x) = 1 Γ (α) ∫b x (t − x) α−1 f (t) dt, x ≤ b, (9) ( Iαb−f ) (b) = 0. When g (x) = ln x on [a, b], 0 < a < b < ∞, we get Definition 3. ([8, p. 110]) Let 0 < a < b < ∞, α > 0. The right Hadamard fractional integral of order α is given by ( Jαb−f ) (x) = 1 Γ (α) ∫b x ( ln y x )α−1 f (y) y dy, x ≤ b, (10) where f ∈ L ∞ ([a, b]) . We mention Definition 4. The right fractional exponential integral is defined as follows: Let a, b ∈ R, a < b, α > 0, f ∈ L ∞ ([a, b]). We set ( Iαb−;exf ) (x) = 1 Γ (α) ∫b x ( et − ex )α−1 etf (t) dt, x ≤ b. (11) Definition 5. Let a, b ∈ R, a < b, α > 0, f ∈ L ∞ ([a, b]), A > 1. We introduce the right fractional integral ( Iαb−;Axf ) (x) = ln A Γ (α) ∫b x ( At − Ax )α−1 Atf (t) dt, x ≤ b. (12) 4 George A. Anastassiou CUBO 17, 3 (2015) We also give Definition 6. Let α, σ > 0, 0 ≤ a < b < ∞, f ∈ L ∞ ([a, b]). We set ( Kαb−;xσf ) (x) = 1 Γ (α) ∫b x (tσ − xσ) α−1 f (t) σtσ−1dt, x ≤ b. (13) We introduce the following general right fractional derivative. Definition 7. Let α > 0 and ⌈α⌉ = m, (⌈·⌉ ceiling of the number). Consider f ∈ ACm ([a, b]) (space of functions f with f(m−1) ∈ AC ([a, b])). We define the right general fractional derivative of f of order α as follows ( Dαb−;gf ) (x) = (−1) m Γ (m − α) ∫b x (g (t) − g (x)) m−α−1 g′ (t) f(m) (t) dt, (14) for any x ∈ [a, b], where Γ is the gamma function. We set Dmb−;gf (x) = (−1) m f(m) (x) , (15) D0b−;gf (x) = f (x) , ∀ x ∈ [a, b] . (16) When g = id, then Dαb−f = D α b−;idf is the right Caputo fractional derivative. So we have the specific general right fractional derivatives. Definition 8. Dαb−;ln xf (x) = (−1) m Γ (m − α) ∫b x ( ln y x )m−α−1 f(m) (y) y dy, 0 < a ≤ x ≤ b, (17) Dαb−;exf (x) = (−1) m Γ (m − α) ∫b x ( et − ex )m−α−1 etf(m) (t) dt, a ≤ x ≤ b, (18) and Dαb−;Axf (x) = (−1) m ln A Γ (m − α) ∫b x ( At − Ax )m−α−1 Atf(m) (t) dt, a ≤ x ≤ b, (19) ( Dαb−;xσf ) (x) = (−1) m Γ (m − α) ∫b x (tσ − xσ) m−α−1 σtσ−1f(m) (t) dt, 0 ≤ a ≤ x ≤ b. (20) We mention Theorem 1.2. (Trigub, [12], [13]) Let g ∈ Cp ([−1, 1]), p ∈ N. Then there exists real polynomial qn (x) of degree ≤ n, x ∈ [−1, 1], such that max −1≤x≤1 ∣ ∣ ∣ g(j) (x) − q(j)n (x) ∣ ∣ ∣ ≤ Rpn j−pω1 ( g(p), 1 n ) , (21) j = 0, 1, ..., p, where Rp is independent of n or g. CUBO 17, 3 (2015) Right General Fractional Monotone Approximation 5 In [2], based on Theorem 1.2 we proved the following useful here result Theorem 1.3. Let f ∈ Cp ([a, b]), p ∈ N. Then there exist real polynomials Q∗n (x) of degree ≤ n ∈ N, x ∈ [a, b], such that max a≤x≤b ∣ ∣ ∣ f(j) (x) − Q∗(j)n (x) ∣ ∣ ∣ ≤ Rp ( b − a 2n )p−j ω1 ( f(p), b − a 2n ) , (22) j = 0, 1, ..., p, where Rp is independent of n or g. Remark 1.4. Here g ∈ AC ([a, b]) (absolutely continuous functions), g is increasing over [a, b], α > 0. Let g (a) = c, g (b) = d. We want to calculate I = ∫b a (g (t) − g (a)) α−1 g′ (t) dt. (23) Consider the function f (y) = (y − g (a)) α−1 = (y − c) α−1 , ∀ y ∈ [c, d] . (24) We have that f (y) ≥ 0, it may be +∞ when y = c and 0 < α < 1, but f is measurable on [c, d]. By [9], Royden, p. 107, exercise 13 d, we get that (f ◦ g) (t) g′ (t) = (g (t) − g (a)) α−1 g′ (t) (25) is measurable on [a, b], and I = ∫d c (y − c) α−1 dy = (d − c) α α (26) (notice that (y − c) α−1 is Riemann integrable). That is I = (g (b) − g (a)) α α . (27) Similarly it holds ∫b x (g (t) − g (x)) α−1 g′ (t) dt = (g (b) − g (x)) α α , ∀ x ∈ [a, b] . (28) Finally we will use Theorem 1.5. Let α > 0, N ∋ m = ⌈α⌉, and f ∈ Cm ([a, b]). Then ( Dαb−;gf ) (x) is continuous in x ∈ [a, b], −∞ < a < b < ∞. Proof. By [3], Apostol, p. 78, we get that g−1 exists and it is strictly increasing on [g (a) , g (b)]. Since g is continuous on [a, b], it implies that g−1 is continuous on [g (a) , g (b)]. Hence f(m) ◦ g−1 is a continuous function on [g (a) , g (b)] . 6 George A. Anastassiou CUBO 17, 3 (2015) If α = m ∈ N, then the claim is trivial. We treat the case of 0 < α < m. It holds that ( Dαb−;gf ) (x) = (−1) m Γ (m − α) ∫b x (g (t) − g (x)) m−α−1 g′ (t) f(m) (t) dt = (−1) m Γ (m − α) ∫b x (g (t) − g (x)) m−α−1 g′ (t) ( f(m) ◦ g−1 ) (g (t)) dt = (29) (−1) m Γ (m − α) ∫g(b) g(x) (z − g (x)) m−α−1 ( f(m) ◦ g−1 ) (z) dz. An explanation follows. The function G (z) = (z − g (x)) m−α−1 ( f(m) ◦ g−1 ) (z) is integrable on [g (x) , g (b)], and by assumption g is absolutely continuous : [a, b] → [g (a) , g (b)]. Since g is monotone (strictly increasing here) the function (g (t) − g (x)) m−α−1 g′ (t) ( f(m) ◦ g−1 ) (g (t)) is integrable on [x, b] (see [7]). Furthermore it holds (see also [7]), (−1) m Γ (m − α) ∫g(b) g(x) (z − g (x)) m−α−1 ( f(m) ◦ g−1 ) (z) dz = (−1) m Γ (m − α) ∫b x (g (t) − g (x)) m−α−1 g′ (t) ( f(m) ◦ g−1 ) (g (t)) dt (30) = ( Dαb−;gf ) (x) , ∀ x ∈ [a, b] . And we can write ( Dαb−;gf ) (x) = (−1) m Γ (m − α) ∫g(b) g(x) (z − g (x)) m−α−1 ( f(m) ◦ g−1 ) (z) dz, ( Dαb−;gf ) (y) = (−1) m Γ (m − α) ∫g(b) g(y) (z − g (y)) m−α−1 ( f(m) ◦ g−1 ) (z) dz. (31) Here a ≤ y ≤ x ≤ b, and g (a) ≤ g (y) ≤ g (x) ≤ g (b), and 0 ≤ g (b) − g (x) ≤ g (b) − g (y) . Let λ = z − g (x), then z = g (x) + λ. Thus ( Dαb−;gf ) (x) = (−1) m Γ (m − α) ∫g(b)−g(x) 0 λm−α−1 ( f(m) ◦ g−1 ) (g (x) + λ) dλ. (32) Clearly, see that g (x) ≤ z ≤ g (b), and 0 ≤ λ ≤ g (b) − g (x) . CUBO 17, 3 (2015) Right General Fractional Monotone Approximation 7 Similarly ( Dαb−;gf ) (y) = (−1) m Γ (m − α) ∫g(b)−g(y) 0 λm−α−1 ( f(m) ◦ g−1 ) (g (y) + λ) dλ. (33) Hence it holds ( Dαb−;gf ) (y) − ( Dαb−;gf ) (x) = (−1) m Γ (m − α) · [∫g(b)−g(x) 0 λm−α−1 (( f(m) ◦ g−1 ) (g (y) + λ) − ( f(m) ◦ g−1 ) (g (x) + λ) ) dλ+ ∫g(b)−g(y) g(b)−g(x) λm−α−1 ( f(m) ◦ g−1 ) (g (y) + λ) dλ ] . (34) Thus we obtain ∣ ∣ ( Dαb−;gf ) (y) − ( Dαb−;gf ) (x) ∣ ∣ ≤ 1 Γ (m − α) · [ (g (b) − g (x)) m−α m − α ω1 ( f(m) ◦ g−1, |g (y) − g (x)| ) + (35) ∥ ∥f(m) ◦ g−1 ∥ ∥ ∞,[g(a),g(b)] m − α ( (g (b) − g (y)) m−α − (g (b) − g (x)) m−α ) ] =: (ξ) . As y → x, then g (y) → g (x) (since g ∈ AC ([a, b])). So that (ξ) → 0. As a result ( Dαb−;gf ) (y) → ( Dαb−;gf ) (x) , (36) proving that ( Dαb−;gf ) (x) is continuous in x ∈ [a, b] . 2 Main Result We present Theorem 2.1. Here we assume that g (b) − g (a) > 1. Let h, k, p be integers, h is even, 0 ≤ h ≤ k ≤ p and let f ∈ Cp ([a, b]), a < b, with modulus of continuity ω1 ( f(p), δ ) , 0 < δ ≤ b − a. Let αj (x), j = h, h + 1, ..., k be real functions, defined and bounded on [a, b] and assume for x ∈ [ a, g−1 (g (b) − 1) ] that αh (x) is either ≥ some number α ∗ > 0, or ≤ some number β∗ < 0. Let the real numbers α0 = 0 < α1 ≤ 1 < α2 ≤ 2 < ... < αp ≤ p. Consider the linear right general fractional differential operator L = k∑ j=h αj (x) [ D αj b−;g ] , (37) and suppose, throughout [ a, g−1 (g (b) − 1) ] , L (f) ≥ 0. (38) 8 George A. Anastassiou CUBO 17, 3 (2015) Then, for any n ∈ N, there exists a real polynomial Qn (x) of degree ≤ n such that L (Qn) ≥ 0 throughout [ a, g−1 (g (b) − 1) ] , (39) and max x∈[a,b] |f (x) − Qn (x)| ≤ Cn k−pω1 ( f(p), b − a 2n ) , (40) where C is independent of n or f. Proof. of Theorem 2.1. Here h, k, p ∈ Z+, 0 ≤ h ≤ k ≤ p. Let αj > 0, j = 1, ..., p, such that 0 < α1 ≤ 1 < α2 ≤ 2 < α3 ≤ 3... < ... < αp ≤ p. That is ⌈αj⌉ = j, j = 1, ..., p. Let Q∗n (x) be as in Theorem 1.3. We have that ( D αj b−;gf ) (x) = (−1) j Γ (j − αj) ∫b x (g (t) − g (x)) j−αj−1 g′ (t) f(j) (t) dt, (41) and ( D αj b−;g Q∗n ) (x) = (−1) j Γ (j − αj) ∫b x (g (t) − g (x)) j−αj−1 g′ (t) Q∗n (j) (t) dt, (42) j = 1, ..., p. Also it holds ( D j b−;g f ) (x) = (−1) j f(j) (x) , ( D j b−;g Q∗n ) (x) = (−1) j Q∗(j)n (x) , j = 1, ..., p. (43) By [10], we get that there exists g′ a.e., and g′ is measurable and non-negative. We notice that ∣ ∣ ∣ ( D αj b−;g f ) (x) − D αj b−;g Q∗n (x) ∣ ∣ ∣ = 1 Γ (j − αj) ∣ ∣ ∣ ∣ ∣ ∫b x (g (x) − g (t)) j−αj−1 g′ (t) ( f(j) (t) − Q∗(j)n (t) ) dt ∣ ∣ ∣ ∣ ∣ ≤ 1 Γ (j − αj) ∫b x (g (x) − g (t)) j−αj−1 g′ (t) ∣ ∣ ∣ f(j) (t) − Q∗(j)n (t) ∣ ∣ ∣ dt (22) ≤ 1 Γ (j − αj) (∫b x (g (x) − g (t)) j−αj−1 g′ (t) dt ) Rp ( b − a 2n )p−j ω1 ( f(p), b − a 2n ) (28) = (g (b) − g (x)) j−αj Γ (j − αj + 1) Rp ( b − a 2n )p−j ω1 ( f(p), b − a 2n ) ≤ (g (b) − g (a)) j−αj Γ (j − αj + 1) Rp ( b − a 2n )p−j ω1 ( f(p), b − a 2n ) . (44) CUBO 17, 3 (2015) Right General Fractional Monotone Approximation 9 Hence ∀ x ∈ [a, b], it holds ∣ ∣ ∣ ( D αj b−;g f ) (x) − D αj b−;g Q∗n (x) ∣ ∣ ∣ ≤ (g (b) − g (a)) j−αj Γ (j − αj + 1) Rp ( b − a 2n )p−j ω1 ( f(p), b − a 2n ) , (45) and max x∈[a,b] ∣ ∣ ∣ D αj b−;g f (x) − D αj b−;g Q∗n (x) ∣ ∣ ∣ ≤ (g (b) − g (a)) j−αj Γ (j − αj + 1) Rp ( b − a 2n )p−j ω1 ( f(p), b − a 2n ) , (46) j = 0, 1, ..., p. Above we set D0b−;gf (x) = f (x), D 0 b−;gQ ∗ n (x) = Q ∗ n (x), ∀ x ∈ [a, b], and α0 = 0, i.e. ⌈α0⌉ = 0. Put sj = sup a≤x≤b ∣ ∣α−1h (x) αj (x) ∣ ∣ , j = h, ..., k, (47) and ηn = Rpω1 ( f(p), b − a 2n )   k∑ j=h sj (g (b) − g (a)) j−αj Γ (j − αj + 1) ( b − a 2n )p−j   . (48) I. Suppose, throughout [ a, g−1 (g (b) − 1) ] , αh (x) ≥ α ∗ > 0. Let Qn (x), x ∈ [a, b], be a real polynomial of degree ≤ n, according to Theorem 1.3 and (46), so that max x∈[a,b] ∣ ∣ ∣ D αj b−;g ( f (x) + ηn (h!) −1 xh ) − ( D αj b−;g Qn ) (x) ∣ ∣ ∣ ≤ (49) (g (b) − g (a)) j−αj Γ (j − αj + 1) Rp ( b − a 2n )p−j ω1 ( f(p), b − a 2n ) , j = 0, 1, ..., p. In particular (j = 0) holds max x∈[a,b] ∣ ∣ ∣ ( f (x) + ηn (h!) −1 xh ) − Qn (x) ∣ ∣ ∣ ≤ Rp ( b − a 2n )p ω1 ( f(p), b − a 2n ) , (50) and max x∈[a,b] |f (x) − Qn (x)| ≤ ηn (h!) −1 (max (|a| , |b|)) h + Rp ( b − a 2n )p ω1 ( f(p), b − a 2n ) = ηn (h!) −1 max ( |a| h , |b| h ) + Rp ( b − a 2n )p ω1 ( f(p), b − a 2n ) = (51) Rpω1 ( f(p), b − a 2n )   k∑ j=h sj (g (b) − g (a)) j−αj Γ (j − αj + 1) ( b − a 2n )p−j  (h!) −1 max ( |a| h , |b| h ) 10 George A. Anastassiou CUBO 17, 3 (2015) +Rp ( b − a 2n )p ω1 ( f(p), b − a 2n ) ≤ Rpω1 ( f(p), b − a 2n ) nk−p·     k∑ j=h sj (g (b) − g (a)) j−αj Γ (j − αj + 1) ( b − a 2 )p−j  (h!) −1 max ( |a| h , |b| h ) + ( b − a 2 )p   . (52) We have found that max x∈[a,b] |f (x) − Qn (x)| ≤ Rp [( b − a 2 )p + (h!) −1 max ( |a| h , |b| h ) ·   k∑ j=h sj (g (b) − g (a)) j−αj Γ (j − αj + 1) ( b − a 2 )p−j    nk−pω1 ( f(p), b − a 2n ) , (53) proving (40). Notice for j = h + 1, ..., k, that ( D αj b−;g xh ) = (−1) j Γ (j − αj) ∫b x (g (t) − g (x)) j−αj−1 g′ (t) ( th )(j) dt = 0. (54) Here L = k∑ j=h αj (x) [ D αj b−;g ] , and suppose, throughout [ a, g−1 (g (b) − 1) ] , Lf ≥ 0. So over a ≤ x ≤ g−1 (g (b) − 1), we get α−1h (x) L (Qn (x)) (54) = α−1h (x) L (f (x)) + ηn h! ( D αh b−;g ( xh ) ) + k∑ j=h α−1h (x) αj (x) [ D αj b−;g Qn (x) − D αj b−;g f (x) − ηn h! D αj b−;g xh ] (49) ≥ (55) ηn h! ( D αh b−;g ( xh ) ) −   k∑ j=h sj (g (b) − g (a)) j−αj Γ (j − αj + 1) ( b − a 2n )p−j  Rpω1 ( f(p), b − a 2n ) (56) (48) = ηn h! ( D αh b−;g ( xh ) ) − ηn = ηn ( D αh b−;g ( xh ) h! − 1 ) = (57) ηn ( 1 Γ (h − αh) h! ∫b x (g (t) − g (x)) h−αh−1 g′ (t) ( th )(h) dt − 1 ) = ηn ( h! h!Γ (h − αh) ∫b x (g (t) − g (x)) h−αh−1 g′ (t) dt − 1 ) (28) = CUBO 17, 3 (2015) Right General Fractional Monotone Approximation 11 ηn ( (g (b) − g (x)) h−αh Γ (h − αh + 1) − 1 ) = (58) ηn ( (g (b) − g (x)) h−αh − Γ (h − αh + 1) Γ (h − αh + 1) ) ≥ ηn ( 1 − Γ (h − αh + 1) Γ (h − αh + 1) ) ≥ 0. (59) Clearly here g (b) − g (x) ≥ 1. Hence L (Qn (x)) ≥ 0, for x ∈ [ a, g−1 (g (b) − 1) ] . (60) A further explanation follows: We know Γ (1) = 1, Γ (2) = 1, and Γ is convex and positive on (0, ∞). Here 0 ≤ h − αh < 1 and 1 ≤ h − αh + 1 < 2. Thus Γ (h − αh + 1) ≤ 1 and 1 − Γ (h − αh + 1) ≥ 0. (61) II. Suppose, throughout [ a, g−1 (g (b) − 1) ] , αh (x) ≤ β ∗ < 0. Let Qn (x), x ∈ [a, b] be a real polynomial of degree ≤ n, according to Theorem 1.3 and (46), so that max x∈[a,b] ∣ ∣ ∣ D αj b−;g ( f (x) − ηn (h!) −1 xh ) − ( D αj b−;g Qn ) (x) ∣ ∣ ∣ ≤ (62) (g (b) − g (a)) j−αj Γ (j − αj + 1) Rp ( b − a 2n )p−j ω1 ( f(p), b − a 2n ) , j = 0, 1, ..., p. In particular (j = 0) holds max x∈[a,b] ∣ ∣ ∣ ( f (x) − ηn (h!) −1 xh ) − Qn (x) ∣ ∣ ∣ ≤ Rp ( b − a 2n )p ω1 ( f(p), b − a 2n ) , (63) and max x∈[a,b] |f (x) − Qn (x)| ≤ ηn (h!) −1 (max (|a| , |b|)) h + Rp ( b − a 2n )p ω1 ( f(p), b − a 2n ) = ηn (h!) −1 max ( |a| h , |b| h ) + Rp ( b − a 2n )p ω1 ( f(p), b − a 2n ) , (64) etc. We find again that max x∈[a,b] |f (x) − Qn (x)| ≤ Rp [( b − a 2 )p + (h!) −1 max ( |a| h , |b| h ) · 12 George A. Anastassiou CUBO 17, 3 (2015)   k∑ j=h sj (g (b) − g (a)) j−αj Γ (j − αj + 1) ( b − a 2 )p−j    nk−pω1 ( f(p), b − a 2n ) , (65) reproving (40). Here again L = k∑ j=h αj (x) [ D αj b−;g ] , and suppose, throughout [ a, g−1 (g (b) − 1) ] , Lf ≥ 0. So over a ≤ x ≤ g−1 (g (b) − 1), we get α−1h (x) L (Qn (x)) (54) = α−1h (x) L (f (x)) − ηn h! ( D αh b−;g ( xh ) ) + k∑ j=h α−1h (x) αj (x) [ D αj b−;g Qn (x) − D αj b−;g f (x) + ηn h! D αj b−;g xh ] (62) ≤ (66) − ηn h! ( D αh b−;g ( xh ) ) +   k∑ j=h sj (g (b) − g (a)) j−αj Γ (j − αj + 1) ( b − a 2n )p−j  Rpω1 ( f(p), b − a 2n ) (67) (48) = − ηn h! ( D αh b−;g ( xh ) ) + ηn = ηn ( 1 − D αh b−;g ( xh ) h! ) = (68) ηn ( 1 − 1 Γ (h − αh) h! ∫b x (g (t) − g (x)) h−αh−1 g′ (t) ( th )(h) dt ) = ηn ( 1 − h! h!Γ (h − αh) ∫b x (g (t) − g (x)) h−αh−1 g′ (t) dt ) (28) = ηn ( 1 − (g (b) − g (x)) h−αh Γ (h − αh + 1) ) = (69) ηn ( Γ (h − αh + 1) − (g (b) − g (x)) h−αh Γ (h − αh + 1) ) (61) ≤ ηn ( 1 − (g (b) − g (x)) h−αh Γ (h − αh + 1) ) ≤ 0. (70) Hence again L (Qn (x)) ≥ 0, ∀ x ∈ [ a, g−1 (g (b) − 1) ] . The case of αh = h is trivially concluded from the above. The proof of the theorem is now over. We make CUBO 17, 3 (2015) Right General Fractional Monotone Approximation 13 Remark 2.2. By Theorem 1.5 we have that D αj b−;g f are continuous functions, j = 0, 1, ..., p. Sup- pose that αh (x) , ..., αk (x) are continuous functions on [a, b], and L (f) ≥ 0 on [ a, g−1 (g (b) − 1) ] is replaced by L (f) > 0 on [ a, g−1 (g (b) − 1) ] . Disregard the assumption made in the main theorem on αh (x). For n ∈ N, let Qn (x) be the Q ∗ n (x) of Theorem 1.3, and f as in Theorem 1.3 (same as in Theorem 2.1). Then Qn (x) converges to f (x) at the Jackson rate 1 np+1 ([6], p. 18, Theorem VIII) and at the same time, since L (Qn) converges uniformly to L (f) on [a, b], L (Qn) > 0 on [ a, g−1 (g (b) − 1) ] for all n sufficiently large. 3 Applications (to Theorem 2.1) 1) When g (x) = ln x on [a, b], 0 < a < b < ∞. Here we would assume that b > ae, αh (x) restriction true on [ a, b e ] , and Lf = k∑ j=h αj (x) [ D αj b−;ln x f ] ≥ 0, (72) throughout [ a, b e ] . Then L (Qn) ≥ 0 on [ a, b e ] . 2) When g (x) = ex on [a, b], a < b < ∞. Here we assume that b > ln (1 + ea), αh (x) restriction true on [ a, ln ( eb − 1 )] , and Lf = k∑ j=h αj (x) [ D αj b−;ex f ] ≥ 0, (73) throughout [ a, ln ( eb − 1 )] . Then L (Qn) ≥ 0 on [ a, ln ( eb − 1 )] . 3) When, A > 1, g (x) = Ax on [a, b], a < b < ∞. Here we assume that b > logA (1 + A a), αh (x) restriction true on [ a, logA ( Ab − 1 )] , and Lf = k∑ j=h αj (x) [ D αj b−;Ax f ] ≥ 0, (74) throughout [ a, logA ( Ab − 1 )] . Then L (Qn) ≥ 0 on [ a, logA ( Ab − 1 )] . 4) When σ > 0, g (x) = xσ, 0 ≤ a < b < ∞. Here we assume that b > (1 + aσ) 1 σ , αh (x) restriction true on [ a, (bσ − 1) 1 σ ] , and Lf = k∑ j=h αj (x) [ D αj b−;xσ f ] ≥ 0 (75) 14 George A. Anastassiou CUBO 17, 3 (2015) throughout [ a, (bσ − 1) 1 σ ] . Then L (Qn) ≥ 0 on [ a, (bσ − 1) 1 σ ] . Received: April 2015. Accepted: July 2015. References [1] G.A. Anastassiou, Right Fractional Monotone Approximation, J. Applied Functional Analysis, Vol. 10, No.’s 1-2 (2015), 117-124. [2] G.A. Anastassiou, Left gereral fractional monotone approximation theory, submitted, 2015. [3] T. Apostol, Mathematical Analysis, Addison-Wesley Publ. Co., Reading, Massachusetts, 1969. [4] G.A. Anastassiou, O Shisha, Monotone approximation with linear differential operators, J. Approx. Theory 44 (1985), 391-393. [5] A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic Journal of Theoretical Physics, Vol. 3, No. 12 (2006), 81-95. [6] D. Jackson, The Theory of Approximation, Amer. Math. Soc. Colloq., Vol. XI, New York, 1930. [7] Rong-Qing Jia, Chapter 3. Absolutely Continous Functions, https:// www.ualberta.ca/˜rjia/Math418/Notes/Chap.3.pdf [8] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differ- ential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, New York, NY, USA, 2006. [9] H.L. Royden, Real Analysis, second edition, Macmillan Publishing Co., Inc., New York, 1968. [10] Anton R. Schep, Differentiation of Monotone Functions, people. math.sc.edu/schep/diffmonotone.pdf. [11] O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667-671. [12] S.A. Teljakovskii, Two theorems on the approximation of functions by algebraic polynomials, Mat. Sb. 70 (112) (1966), 252-265 [Russian]; Amer. Math. Soc. Trans. 77 (2) (1968), 163-178. [13] R.M. Trigub, Approximation of functions by polynomials with integer coeficients, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 261-280 [Russian]. Introduction and Preparation Main Result Applications (to Theorem 2.1)