CUBO A Mathematical Journal Vol.15, No¯ 03, (09–18). October 2013 Approximating a solution of an equilibrium problem by Viscosity iteration involving a nonexpansive semigroup Binayak S. Choudhury & Subhajit Kundu Bengal Engineering and Science University, Shibpur Department of Mathematics, P.O.: B. Garden, Shibpur, Howrah - 711103, West Bengal, India. binayak12@yahoo.co.in, subhajit.math@gmail.com ABSTRACT In this paper we have defined a new iteration in order to solve an equilibrium problem in Hilbert spaces. The iteration we have introduced is a viscosity type iteration and involves a semigroup of nonexpansive operators. We have established that depending on some control conditions, our iteration strongly converges to a solution of the equilibrium problem. RESUMEN En este art́ıculo hemos definido una iteración nueva para resolver un problema de equi- librio en espacios de Hilbert. La iteración que introducimos es de tipo viscoso e involucra un semigrupo de operadores no expansivos. Hemos establecido que dependiendo de las condiciones de control, nuestra iteración converge fuertemente a una solución de un problema de equilibrio. Keywords and Phrases: Equilibrium problem, Nonexpansive semigroup, Viscosity iteration, Fixed point, Weak convergence, Hilbert space. 2010 AMS Mathematics Subject Classification: 46C05, 47H10, 91B50. 10 Binayak S. Choudhury & Subhajit Kundu CUBO 15, 3 (2013) 1 Introduction and Mathematical Preliminaries The equilibrium problem we consider in this paper is formulated in the framework of real Hilbert spaces. This problem is a generalization of several problems in physics, optimization and eco- nomics. References [3, 9] give a good account of this feature. There are several iterative methods for obtaining solutions of this equilibrium problem in Hilbert spaces and also in the more general settings of Banach spaces [19, 10, 22]. A particular category of these iterations is viscosity itera- tion which was first developed by Moudafi [15] to obtain fixed points of nonexpansive mappings. Viscosity iterations have been used for solving equilibrium problems in works noted in [20, 16]. Semigroup of nonexpansive operators have been considered in the context of constructing fixed point iteration in Banach and Hilbert spaces [8, 21, 1, 6, 5, 13, 7, 11, 12, 17]. The purpose of this paper is to use nonexpansive semigroups in a viscosity iteration scheme in order to construct a two step iteration for approximating a solution of an equilibrium problem in real Hilbert spaces. Pre- cisely, we have shown that under suitable choices of the control conditions, our iteration strongly converges to solution of the equilibrium problem. Let H be a Hilbert space and C be a nonempty closed convex subset of H. A mapping T : C → C is said to be a nonexpansive mapping if for all x, y ∈ C ‖Tx − Ty‖ ≤ ‖x − y‖. (1.1) A mapping f : C→ C is said to be a θ contraction if for each x, y ∈ C, ‖fx − fy‖ ≤ θ‖x − y‖ when 0 < θ < 1. (1.2) For any x ∈ H, the metric projection PC from H into C is defined as PCx = {z ∈ C : ‖z − x‖ = inf y∈C ‖y − x‖}. (1.3) Obviously, ‖x − PCx‖ ≤ ‖x − y‖. It is well known that PC is a firmly nonexpansive mapping from H onto C, that is, ‖PCx − PCy‖ 2 ≤ 〈PCx − PCy, x − y〉 for all x, y ∈ H. PC is also nonexpansive mapping from H onto C. The set of fixed point of an operator T from H to H is denoted by Fix(T), that is, Fix(T)={x ∈ H : Tx = x}. A family S = (T(s)) s≥ 0 is a nonexpansive semigroup on H if it satisfies the following conditions: (A1) T(0)x = x for all x ∈ H, (A2) T(s + t) = T(s)T(t) for all s, t ≥ 0, (A3) ‖T(s)x − T(s)y‖ ≤ ‖x − y‖ for all x, y ∈ H and s ≥ 0, (A4) for all x ∈ H, s → T(s)x is continuous. A sequence {xn} of elements of a Banach space X is said to converge weakly to an element x ∈ X if f(xk) → f(x) as k → ∞ for all f ∈ X ′ where f is a continuous linear functional from X to R or C where R is the set of real numbers and C is the set of complex number, and X′ is the dual of X. A sequence {xn} is said to have a weak limit point l if there exists a subsequence {xnk} of {xn} which converges weakly to l. CUBO 15, 3 (2013) Approximating a solution of an equilibrium problem . . . 11 We denote wω(xn) as the set of all weak limit point of {xn} and ws(xn) as the set of all strong limit point of {xn} . We denote the set of fixed point of T(s) by Fix(T(s)). The set of all common fixed points of S is denoted by Fix(S). So Fix(S)= ∩s≥0Fix(T(s)) . Baillon proved the following nonlinear ergodic theorem: Theorem 1.1. [1] If T is a nonexpansive mapping from C into itself such that Fix(T) 6= φ and x ∈ C, then 1 n n−1∑ k=0 Tkx converges weakly to a fixed point of T. Later Baillon and Brezis proved the following theorem for semigroup of nonexpansive operator: Theorem 1.2. [2] If S = (T(s)) s≥ 0 is a nonexpansive semigroup on C, then { 1 t ∫t 0 T(s)xtds}t>0, t ∈ (0, 1), s ∈ R+, where R+ is the set of positive real numbers, converges weakly to a common fixed point of S. Let F : C×C→ R be a bifunction where R is the set of real numbers. The equilibrium problem is to find some x ∈ C such that F(x, y) ≥ 0, for all y ∈ C . (1.4) The set of solutions of (1.4) is denoted by EP(F), that is, EP(F) = {x ∈ C : F(x, y) ≥ 0 for all y ∈ C}. In the equilibrium problem for the bifunction F from C×C→R , we assume that F satisfies following conditions: (C1) F(x, x) = 0 for all x ∈ C, (C2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0, (C3) for each x, y, z ∈ C, lim t→0+ F(tz + (1 − t)x, y) ≤ F(x, y), (C4) for each x ∈ C, y → F(x, y) is convex and lower semicontinuous. Lemma 1.1. [9] Let C be a nonempty closed convex subset of H and let F be a bifunction from C×C into R satisfying conditions (C1)- (C4). Then for any r > 0 and x ∈ H there exists z ∈ C such that F(z, y) + 1 r 〈y − z, z − x〉 ≥ 0 for all y ∈ C. Further, if Trx = {z ∈ C : F(z, y) + 1 r 〈y − z, z − x〉 ≥ 0 for all y ∈ C} then the following hold: (1) Tr is single valued, (2) Tr is firmly nonexpansive, that is, for any x, y ∈ H ‖Trx − Try‖ 2 ≤ 〈Trx − Try, x − y〉, (3) Fix(Tr) = EP(F), (4) EP(F) is closed and convex. Lemma 1.2. [4] Let C be a nonempty closed convex subset of a real Hilbert space H. Given z ∈ H and x ∈ C, the inequality 〈x − z, y − x〉 ≥ 0, for all y ∈ C holds if and only if x = PCz, where PC denotes the metric projection from H onto C. Lemma 1.3. [14] Let {an},{bn} and {cn} be three nonnegative real sequences satisfying an+1 ≤ (1 − λn)an + bn + cn, n ≥ n0, where n0 is some nonnegative integer, λn ∈ [0,1] , ∞∑ n=1 λn=∞ , bn=o(λn) , and ∞∑ n=1 cn < ∞. 12 Binayak S. Choudhury & Subhajit Kundu CUBO 15, 3 (2013) Then an → 0 as n → ∞. Lemma 1.4. [18] Let C be a nonempty bounded closed convex subset of a Hilbert space H and let (T(s)) s≥ 0 be a nonexpansive semigroup on C. Then for every h ≥ 0, lim t→∞ sup x∈C ‖1 t ∫t 0 T(s)xds − T(h) 1 t ∫t 0 T(s)xds‖= 0. Lemma 1.5. [4] Let X be a uniformly convex Banach space, C be a nonempty closed convex subset of X and T : C → X be a nonexpansive mapping. Then, the mapping (I − T) is demiclosed on C, that is, if {xn} is weakly convergent to x and {(I − T)xn} is strongly convergent to y, then (I − T)x = y. Lemma 1.6. [8] Let us suppose (C1)-(C4) hold. Let x, y ∈ H, r1, r2 > 0. Then ‖Tr2y − Tr1x‖ ≤ ‖y − x‖ + | r2−r1 r2 |‖Tr2y − y‖. Lemma 1.7. [23] Let {sn} be a sequence of nonnegative real numbers satisfying sn+1 ≤ (1 − γn)sn + σn + δn, for all n ≥ 0, where {γn} is a sequence in (0,1) and {σn}, {δn} are sequences of real numbers such that (a) lim n→∞ γn = 0 and ∞∑ n=0 γn = ∞, (b) lim sup n→∞ σn γn ≤ 0, (c) δn ≥ 0 and ∞∑ n=1 δn < ∞. Then {sn} converges to zero. The following lemma is a well known result of functional analysis. Lemma 1.8. Let X be a reflexive Banach space. Then every bounded sequence in X has a weakly convergent subsequence. 2 Main Result Theorem 2.1. Let S = (T(s)) s≥ 0 be a nonexpansive semigroup on a real Hilbert space H. Let f : H → H be a θ-contraction, with 0 < θ < 1. Let F : H × H → R be a mapping satisfying hypothesis (C1)-(C4). Assume that Fix(S) ∩ EP(F) 6= φ. Let x0 ∈ H, {zn} ⊂ H and {xn} ⊂ H be the sequences generated by    xn+1 = βnxn + (1 − βn) 1 sn ∫sn 0 T(s)ynds, yn = αnf(xn) + (1 − αn)zn, F(zn, y) + 1 rn 〈y − zn, zn − xn〉 ≥ 0, for all y ∈ H where {αn}, {βn}, {sn} and {rn} satisfy the following conditions. CUBO 15, 3 (2013) Approximating a solution of an equilibrium problem . . . 13 (i) αn ∈ [0, 1], lim n→∞ αn= 0, ∞∑ n=1 αn = ∞ and ∞∑ n=1 |αn − αn−1| < ∞, (ii) lim n→∞ sn = ∞ and lim n→∞ | sn − sn−1| sn 1 αn = 0, (iii) lim inf n→∞ rn > 0, ∞∑ n=0 |rn+1 − rn| < ∞, (iv) 0 < βn ≤ d < 1, lim n→∞ βn = 0, ∞∑ n=0 | βn+1 − βn| < ∞. Then {xn} converges strongly to a point p ∈ Fix(S) ∩ EP(F). Proof. Here PFix(S)∩ EP(F) f is a mapping of H into Fix(S) ∩ EP(F) ⊂ H such that ‖PFix(S)∩ EP(F)f(x) − PFix(S)∩ EP(F)f(y)‖ ≤ ‖f(x) − f(y)‖ ≤ θ‖x − y‖. Therefore PFix(S)∩ EP(F)f is a contractive mapping and hence, by Banach’s contraction principle, there exists a unique element p ∈ Fix(S) ∩ EP(F) such that p = PFix(S)∩ EP(F)f(p). Now, for this p ∈ Fix(S) ∩ EP(F), n ≥ 0, we have, ‖ xn+1 − p ‖ = ‖ βnxn + (1 − βn) 1 sn ∫sn 0 T(s)ynds − p ‖ = ‖ βnxn + (1 − βn) 1 sn ∫sn 0 T(s)ynds − 1 sn ∫sn 0 T(s)p ds ‖ = ‖ βn(xn − p) + (1 − βn) 1 sn ∫sn 0 (T(s)yn − T(s)p)ds ‖ ≤ βn‖ xn − p ‖ + (1 − βn)‖ yn − p ‖. Now, ‖ yn − p ‖ = ‖ αnf(xn) + (1 − αn)zn − p ‖ ≤ αn‖f(xn) − f(p)‖ + αn‖f(p) − p‖ + (1 − αn)‖ zn − p ‖. Since by Lemma 1.1 we have zn = Trnxn, p = Trnp it follows that for all n ≥ 0, ‖ zn − p ‖ = ‖Trnxn − Trnp‖ ≤ ‖ xn − p ‖. Therefore, for all n ≥ 0, ‖ yn − p ‖ ≤ αnθ‖ xn − p ‖ + αn‖ f(p) − p ‖ + (1 − αn)‖ xn − p ‖ = {1 − αn(1 − θ)}‖ xn − p ‖ + αn(1 − θ) ‖ f(p)−p ‖ 1−θ . Therefore, for all n ≥ 0, ‖ yn − p ‖ ≤ max { ‖ xn − p ‖, ‖ f(p)−p ‖ 1−θ }. Therefore, for all n ≥ 0, {yn} is bounded. So { zn } and {f(xn)} are also bounded. Hence for all n ≥ 0, ‖ xn+1 − p ‖ ≤ max { ‖ xn − p ‖, ‖ f(p)−p ‖ 1−θ }. Proceeding in the same way we get for all n ≥ 0, ‖ xn+1 − p ‖ ≤ max { ‖ x0 − p ‖, ‖ f(p)−p ‖ 1−θ }. Therefore, { xn } is bounded. Again, for all n ≥ 0, we have, xn+1 = βnxn + (1 − βn)un where un= 1 sn ∫sn 0 T(s)ynds. Again, for all n ≥ 0, ‖un − p‖ = ‖ 1 sn ∫sn 0 T(s)ynds − 1 sn ∫sn 0 T(s)p ds‖ ≤ ‖yn − p‖ ≤max{ ‖ xn − p ‖, ‖ f(p)−p ‖ 1−θ }. So {un} is also bounded. 14 Binayak S. Choudhury & Subhajit Kundu CUBO 15, 3 (2013) Now, for all n ≥ 0, xn+1 − xn =βnxn + (1 − βn)un − βn−1xn−1 − (1 − βn−1)un−1. Therefore, for all n ≥ 0, ‖xn+1 − xn‖ =‖(1 − βn)(un − un−1) − (βn − βn−1)un−1 + βn(xn − xn−1) + (βn − βn−1)xn−1‖ ≤ (1 − βn)‖un − un−1‖ + |βn − βn−1|{ ‖ un−1 ‖ + ‖ xn−1 ‖ } + βn‖ xn − xn−1 ‖. (2.1) Now, for all n ≥ 0, ‖ un − un−1 ‖ =‖ 1 sn ∫sn 0 T(s)ynds − 1 sn−1 ∫sn−1 0 T(s)yn−1ds ‖ =‖ 1 sn ∫sn 0 (T(s)yn − T(s)yn−1)ds + ( 1 sn − 1 sn−1 ) ∫sn−1 0 T(s)yn−1ds + 1 sn ∫sn sn−1 T(s)yn−1ds ‖. If p ∈ Fix(S) where S is the nonexpansive semigroup, then for all n ≥ 0, we have ‖ un − un−1 ‖ = ‖ 1 sn ∫sn 0 (T(s)yn − T(s)yn−1)ds + ( 1 sn − 1 sn−1 ) ∫sn−1 0 (T(s)yn−1 − T(s)p)ds + 1 sn ∫sn sn−1 T(s)yn−1 − T(s)pds ‖ ≤ ‖ yn − yn−1 ‖ + ( 2|sn−sn−1| sn )‖ yn−1 − p ‖. (2.2) Now, for all n ≥ 0, ‖ yn − yn−1 ‖ = ‖ αnf(xn) + (1 − αn)zn − αn−1f(xn−1) − (1 − αn−1)zn−1 ‖ =‖αn(f(xn) − f(xn−1)) + (αn − αn−1)(f(xn−1) − zn−1) + (1 − αn)(zn − zn−1) ‖. Therefore, for all n ≥ 0, ‖ yn − yn−1 ‖ ≤ αn‖ f(xn) − f(xn−1)‖ + |αn − αn−1|‖ f(xn−1) − zn−1 ‖ + (1 − αn)‖zn − zn−1 ‖. (2.3) Again, for all n ≥ 0, ‖zn − zn−1‖ ≤ ‖xn − xn−1‖ + |rn−rn−1| rn ‖zn − xn‖ (using Lemma 1.6) We have lim inf n→∞ rn > 0. Therefore there exists b > 0 such that rn > b for large n ∈ N where N is the set of positive integers. Then, for all n ≥ 0, ‖zn − zn−1‖ ≤ ‖xn − xn−1‖ + |rn−rn−1| b ‖zn − xn‖. (2.4) Using (2.3), (2.4) in (2.2), we get, for all n ≥ 0, ‖un − un−1‖ ≤ αnθ‖xn − xn−1‖ + |αn − αn−1|‖f(xn−1) − zn−1‖ + (1 − αn)‖xn − xn−1‖ + (1 − αn) |rn−rn−1| b ‖zn − xn‖ + 2|sn−sn−1| sn ‖yn−1 − p ‖. (2.5) Using (2.5) in (2.1) we get, for all n ≥ 0, ‖xn+1 − xn‖ ≤ (1−βn)αnθ‖xn −xn−1‖+(1−βn)|αn −αn−1|‖f(xn−1)−zn−1‖+(1−βn)(1−αn)‖xn −xn−1‖ +(1 − βn)(1 − αn) |rn−rn−1| b ‖zn − xn‖ + (1 − βn) 2|sn−sn−1| sn ‖yn−1 − p ‖ + |βn − βn−1|{ ‖ un−1 ‖ + ‖ xn−1 ‖ }+βn‖ xn − xn−1 ‖ ={(1−βn)αnθ+(1−βn)(1−αn)+βn}‖xn −xn−1‖+(1−βn)|αn −αn−1|‖f(xn−1)−zn−1‖+(1− βn)(1−αn) |rn−rn−1| b ‖zn −xn‖+(1−βn) 2|sn−sn−1| sn ‖yn−1 −p ‖+ |βn −βn−1|{ ‖ un−1 ‖+‖ xn−1 ‖ } = {1 − αn(1 − θ)(1 − βn)}‖ xn − xn−1 ‖ + (1 − βn)|αn − αn−1|‖f(xn−1) − zn−1‖ + (1 − βn)(1 − αn) |rn−rn−1| b ‖zn − xn‖ + (1 − βn) 2|sn−sn−1| sn ‖yn−1 − p ‖ + |βn − βn−1|{ ‖ un−1 ‖ + ‖ xn−1 ‖ } ≤ {1 − αn(1 − θ)(1 − d)}‖ xn − xn−1 ‖ + |αn − αn−1|‖f(xn−1) − zn−1‖ + |rn−rn−1| b ‖yn − xn‖ + CUBO 15, 3 (2013) Approximating a solution of an equilibrium problem . . . 15 2|sn−sn−1| sn ‖yn−1 − p ‖ + |βn − βn−1|{ ‖ un−1 ‖ + ‖ xn−1 ‖ } Let M= max{ sup n∈N ‖f(xn−1) − zn−1‖, sup n∈N ‖zn − xn‖, sup n∈N ‖yn−1 − p‖, sup n∈N (‖(un−1‖ + ‖xn−1‖)}. Therefore, for all n ≥ 0, ‖xn+1 − xn‖ ≤ {1 − αn(1 − θ)(1 − d)}‖ xn − xn−1 ‖ + M[|αn − αn−1| + |rn−rn−1| b + 2|sn−sn−1| sn + |βn − βn−1|]. Let γn = αn(1 − θ)(1 − d), σn = 2M |sn−sn−1| sn , δn = M[|αn − αn−1| + |rn−rn−1| b + |βn − βn−1|]. Using the Lemma 1.7 we get lim n→∞ ‖xn+1 − xn‖ = 0. Now, ‖ yn − zn ‖ = ‖ αnf(xn) + (1 − αn)zn − zn ‖ = αn‖ f(xn) − zn‖ → 0 as n → ∞. (2.6) Again, for all n ≥ 0, ‖ xn − un ‖ =‖ βn−1xn−1 + (1 − βn−1)un−1 − un ‖ ≤ ‖ un − un−1‖ + βn−1‖ xn−1 − un−1‖. Since βn → 0 and ‖ un − un−1‖ → 0 as n → ∞, we have, ‖ xn − un ‖ → 0 as n → ∞. (2.7) Also, for all n ≥ 0, ‖ zn − p ‖ 2 = ‖Trnxn − Trnp ‖ 2 ≤ 〈Trnxn − Trnp, xn − p〉 ( by Lemma 1.1) =〈zn − p, xn − p〉 =1 2 [‖ zn − p ‖ 2 + ‖ xn − p ‖ 2 − ‖ xn − zn ‖ 2]. Therefore, for all n ≥ 0, ‖ zn − p ‖ 2 ≤ ‖ xn − p ‖ 2 − ‖ xn − zn ‖ 2. (2.8) Now, for all n ≥ 0, ‖ xn+1 − p ‖ 2 =‖ βnxn + (1 − βn)un − p ‖ 2 ≤ βn‖ xn − p ‖ 2 + (1 − βn)‖ un − p ‖ 2 (2.9) Also for all n ≥ 0, ‖ yn − p ‖ 2 =‖ αnf(xn) + (1 − αn)zn − p ‖ 2 ≤ αn‖f(xn) − p‖ 2 + (1 − αn)‖ zn − p ‖ 2 (2.10) Using (2.8) and (2.10) in (2.9), for all n ≥ 0, we get ‖ xn+1 − p ‖ 2 ≤ βn‖ xn − p ‖ 2 + (1 − βn)[αn‖f(xn) − p‖ 2 + (1 − αn)‖ zn − p ‖ 2] (since ‖ un − p ‖ ≤ ‖ yn − p ‖) ≤ βn‖ xn − p ‖ 2 + (1 − βn)αn‖f(xn) − p‖ 2 + (1 − βn)(1 − αn)‖ zn − p ‖ 2 ≤ ‖ xn − p ‖ 2 + αn‖ f(xn) − p ‖ 2 − (1 − βn)‖ xn − zn ‖ 2 [by (2.8)] Therefore, (1 − βn)‖ xn − zn ‖ 2 ≤ ‖ xn − p ‖ 2 − ‖ xn+1 − p ‖ 2 + αn‖ f(xn) − p ‖ 2 ≤ {‖ xn − p ‖ + ‖ xn+1 − p ‖}‖ xn − xn+1 ‖ + αn‖ f(xn) − p ‖ 2 Therefore, ‖ xn − zn ‖ → 0 as n → ∞. (2.11) Again ‖ zn − un ‖ ≤ ‖ zn − xn ‖ + ‖ xn − un ‖ By (2.7) and (2.11) we have ‖ zn − un ‖ → 0 as n → ∞. (2.12) By (2.6), (2.7), (2.11) and (2.12) we can say that one of the sequences {xn}, {un}, {zn}, {yn} converge if and only if the other three converge to the same limit. By (2.6), (2.7), (2.11) and (2.12) we have 16 Binayak S. Choudhury & Subhajit Kundu CUBO 15, 3 (2013) ωw(xn)=ωw(un)= ωw(zn) =ωw(yn), ωs(xn) = ωs(un)=ωs(zn)=ωs(yn). (2.13) Now we have, p = PFix(S)∩ EP(F)f(p). We shall prove that lim sup n→∞ 〈f(p) − p, yn − p〉 ≤ 0. We take a subsequence {yni} of { yn} such that lim sup n→∞ 〈f(p) − p, yn − p〉 = lim i→∞ 〈f(p) − p, yni − p〉. (2.14) Since {yni} is bounded and the Hilbert space H is reflexive, by Lemma 1.8, there exists a subse- quence {yni k } of {yni} which converges weakly to x ∗. Then x∗ is also a weak limit of {xn}. Let v0=PFix(S)∩ EP(F)x0. Since {xn} is a bounded sequence, there exists K such that B(v0, K) contains {xn}. Moreover, B(v0, K) is T(s)-invariant for every s ≥ 0. Therefore, we can assume that (T(s))s≥ 0 is a nonexpansive semigroup on B(v0, K). So by (2.13), x ∗ ∈ ωw(un)= ωw(zn). Then, from Lemma 1.4, we have , for every h ≥ 0, lim n→∞ ‖ 1 sn ∫sn 0 T(s)ynds−T(h) 1 sn ∫sn 0 T(s)ynds‖= lim n→∞ ‖un− T(h)un‖ = 0. Therefore from Lemma 1.5 , we have x ∗ ∈ Fix(S). Next we prove that x∗ ∈ EP(F). Let {xni k } be a subsequence of {xni} such that xni k ⇀ x∗. From (2.11) we can say that zk ⇀ x ∗. Moreover, by (C2) we obtain (1/rk)〈y − zk, zk − xk〉 ≥ F(y, zk), for all y ∈ H. By condition (C4), for fixed x ∈ H, the function F(x, .) is lower semicontinuous and convex and thus is weakly lower semicontinuous. Since zk ⇀ x, by (2.11) and the fact that lim inf n→∞ rn = b > 0, we get (zk − xk)/rk → 0. Letting k → ∞, we have, F(y, x∗) ≤ lim inf k→∞ F(y, zk) ≤ 0, for all y ∈ H. Replacing y by yt where yt = ty + (1 − t)x ∗, t ∈ [0, 1] and using (C1) and (C4), we get 0=F(yt, yt) ≤ tF(yt, y) + (1 − t)F(yt, x ∗) ≤ F(yt, y). Therefore, F(ty+(1−t)x∗, y) ≥ 0, t ∈ [0, 1], y ∈ H. Letting t → 0+ and using (C3), we conclude that F(x∗, y) ≥ 0, y ∈ H. Therefore, x∗ ∈ EP(F). Since x∗ ∈ Fix(S) ∩ EP(F), from Lemma 1.2, we have, lim n→∞ 〈f(p) − p, yn − p〉 = lim i→∞ 〈f(p) − p, yni − p〉 (by using(2.14)) =〈f(p) − p, x∗ − p〉 ≤ 0. Now for p ∈ Fix(S) ∩ EP(F), for all n ≥ 0, we have, ‖xn+1 − p‖ 2 = ‖βn(xn − p) + (1 − βn)(un − p) ‖ 2 ≤ βn‖xn − p‖ 2 + (1 − βn)‖un − p‖ 2 ≤ βn‖xn − p‖ 2 + (1 − βn)‖yn − p‖ 2 ≤ βn‖xn − p‖ 2 + (1 − βn){(1 − αn) 2‖zn − p‖ 2 + 2αn〈f(xn) − p, yn − p〉} ≤ βn‖xn −p‖ 2 +(1−βn)(1−2αn +α 2 n)‖xn −p‖ 2 +2αn(1−βn)〈f(xn)−p, yn −p〉 ≤ (1 − 2(1 − βn)αn)‖xn − p‖ 2 + α2n‖xn − p‖ 2 + 2αn(1 − βn){〈f(xn) − f(p), yn − p〉 + 〈f(p) − p, yn − p〉} ≤ (1 − 2(1 − βn)αn)‖xn − p‖ 2 + α2nM0 + 2(1 − βn)αn(θ‖ xn − p ‖.‖ yn − p ‖ + ηn) ≤ (1−2(1−βn)αn)‖xn−p‖ 2+α2nM0 +(1−βn)θαn(‖xn−p‖ 2+‖yn−p‖ 2)+2αnηn where ηn=max{〈f(p) − p, yn − p〉, 0} and M0 =sup n≥0 {‖xn − p‖ 2 + ‖f(xn) − p‖ 2}. Now, for all n ≥ 0, ‖yn − p‖ 2 ≤ αn‖f(xn) − p ‖ 2 + (1 − αn)‖zn − p ‖ 2 CUBO 15, 3 (2013) Approximating a solution of an equilibrium problem . . . 17 ≤ αn‖f(xn) − p ‖ 2 + (1 − αn)‖xn − p ‖ 2 ≤ αnM0 + ‖xn − p ‖ 2. Therefore, for all n ≥ 0, ‖xn+1 − p ‖ 2 ≤ (1 − 2(1 − βn)αn)‖xn − p ‖ 2 + α2nM0 + (1 − βn)θαn(2‖xn − p ‖ 2 + αnM0) + 2αnηn ≤ (1 − 2(1 − βn)(1 − θ)αn)‖xn − p‖ 2 + α2nM0 + θα 2 nM0 + 2αnηn ≤ (1 − 2(1 − d)(1 − θ)αn)‖xn − p‖ 2 + (α2nM0 + θα 2 nM0 + 2αnηn) Therefore, by Lemma 1.3, we get xn → p as n → ∞. Received: November 2012. Accepted: September 2013. References [1] Baillon, J. B., Un theorème de type ergodique pour les contractions non linèaires dans un espace de Hilbert, C.R. Acad. Sci. Paris Sèr., 280 (1975), No. A-B , 1511-1514. [2] Baillon, J. B., Brèzis, H., Une remarque sur le comportement asymptotique des semigroupes non linèaires, Houston J. Math., 2 (1976), 5-7. [3] Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), No. 1-4, 123-145. [4] Browder, F. E., Convergence of approximants of fixed points of nonexpansive nonlinear map- pings in Banach spaces, Arch. Ration. Mech. Anal., 24 (1967), 82-89. [5] Buong, N., Strong convergence theorem for nonexpansive semigroups in Hilbert space, Non- linear Anal., 72 (2010), No. 12, 4534-4540. [6] Ceng, L. C., Schaible, S., Yao, J. C., Approximate solutions of variational inequalities on sets of common fixed points of a one parameter semigroup of nonexpansive mappings, J.Optim.Theory.Appl., 143 (2009), No. 2, 245-263. [7] Chen, R., Song, Y., Convergence to common fixed point of nonexpansive semigroups, J.Comp.Appl.Math., 200 (2007), No. 2, 566-575. [8] Cianciaruso, F., Marino, G., Mugila, L., Iterative Methods for Equilibrium and Fixed point Problems for Nonexpansive Semigroups in Hilbert spaces, J.Optim.Theory.Appl., 146 (2010), No. 2, 491-509. [9] Combettes, P. L., Hirstoaga, S.A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), No. 1, 117-136. 18 Binayak S. Choudhury & Subhajit Kundu CUBO 15, 3 (2013) [10] Inchan, I., Hybrid extragradient method for general equilibrium problems and fixed point problems in Hilbert space, Nonlinear Anal.Hybrid system, 5 (2011), No. 3, 467-478. [11] Li, S., Li, L., Su, Y., General iterative methods for a one parameter nonexpansive semigroup in Hilbert space, Nonlinear Anal., 70 (2009), No. 9, 3065-3071. [12] Li, X. N., Gu, J. S., Strong convergence of modified Ishikawa iteration for a nonexpansive semigroup in Banach spaces, Nonlinear Anal., 73 (2010), No. 4, 1085-1092. [13] Lin, Q., Viscosity approximation to common fixed points of a nonexpansive semigroup with a generalized contraction mapping, Nonlinear Anal., 71 (2009), No. 11, 5451-5457. [14] Liu, L. S., Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach space, J.Math.Anal.Appl., 194 (1995), No. 1, 114-125. [15] Moudafi, A., Viscosity approximation methods for fixed point problems, J.Math.Anal.Appl., 241 (2000), No. 1, 46-55. [16] Qin, X., Cho, Y. J., Kang, S.M., Viscosity approximation methods for generalized equilibrium problems and fixed point problems with application, Nonlinear Anal., 72 (2010), No. 1, 99-112. [17] Song, Y., Xu, S., Strong convergence theorems for nonexpansive semigroup in Banach spaces, J.Math.Anal.Appl., 338 (2008), No. 1, 152-161. [18] Shimizu, T., Takahashi, W., Strong convergence to common fixed points of families of nonex- pansive mappings, J.Math.Anal.Appl., 211 (1997), No. 1, 71-83. [19] Tada, A., Takahashi, W., Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, J.Optim.Theory Appl., 133 (2007), No. 3, 359-370. [20] Takahashi, S., Takahashi, W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal.Appl., 331 (2007), No. 1, 506-515. [21] Zegeye, H., Shahzad, N., Strong convergence theorems for a finite family of nonexpansive mappings and semigroups via hybrid method, Nonlinear Anal., 72 (2010), No. 1, 325-329. [22] Zhang, S., Rao, R., Huang, J., Strong convergence theorem for a generalized equilibrium problem and a k-strict pseudocontraction in Hilbert space, Appl.Math.Mech., 30 (2009), No. 6, 685-694. [23] Xu, H. K., Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), 66 (2002), No. 1, 240-256.