CUBO A Mathematical Journal Vol.14, No¯ 03, (115–127). October 2012 A unique common coupled fixed point theorem for four maps under ψ - φ contractive condition in partial metric spaces K.P.R.Rao Department of Mathematics, Nagarjuna Nagar522 510, Acharya Nagarjuna Univertsity Guntur District,Andhra Pradesh,India kprrao2004@yahoo.com G.N.V.Kishore Department of Mathematics, Swarnandhra Institute of Engineering and Technology, West Godavari District, Andhra Pradesh, India kishore.apr2@gmail.com Nguyen Van Luong Department of Natural Sciences, Hong Duc University, Thanh Hoa , Viet Nam luonghdu@gmail.com ABSTRACT In this paper, we obtain a unique coupled common fixed point theorem for four maps in partial metric spaces. RESUMEN En este art́ıculo obtenemos un teorema del punto fijo clásico acoplado único para cuatro aplicaciones en espacios métricos parciales. Keywords and Phrases: Partial metric, weakly compatible maps, complete space. 2010 AMS Mathematics Subject Classification: 54H25, 47H10. 116 K.P.R.Rao , G.N.V.Kishore and Nguyen Van Luong CUBO 14, 3 (2012) 1 Introduction and Preliminaries The notion of partial metric space was introduced by S.G.Matthews [13] as a part of the study of denotational semantics of data flow networks. In fact, it is widely recognized that partial metric spaces play an important role in constructing models in the theory of computation ([6-10, 14-16], etc). S.G.Matthews [13], Sandra Oltra and Oscar Valero[11] and Salvador Romaguera [12] and I.Altun, Ferhan Sola, Hakan Simsek [1], T. Abdeljawad, E. Karapinar, K. Tas [3], E. Karapinar, I.M. Erhan [5] proved fixed point theorems in partial metric spaces for a single map and a pair of maps. Regarding the concept of coupled fixed points introduced by Bhaskar and Lakshmikantham [17], in [4], Aydi proved some coupled fixed point theorems for the mappings satisfying contractive conditions in partial metric spaces. In this paper, we obtain a unique common coupled fixed point theorem for four self mappings satisfying a ψ − φ contractive condition in partial metric spaces. Our result is inspired by the results of Luong and Thuan [18]. First we recall some definitions and lemmas of partial metric spaces. Definition 1.1. [13]. A partial metric on a nonempty set X is a function p : X × X → R+ such that for all x,y,z ∈ X: (p1) x = y ⇔ p(x,x) = p(x,y) = p(y,y), (p2) p(x,x) ≤ p(x,y),p(y,y) ≤ p(x,y), (p3) p(x,y) = p(y,x), (p4) p(x,y) ≤ p(x,z) + p(z,y) − p(z,z). (X,p) is called a partial metric space. It is clear that p(x,y) = 0 implies x = y from (p1) and (p2). But if x = y, p(x,y) may not be zero. A basic example of a partial metric space is the pair (R+,p), where p(x,y) = max{x,y} for all x,y ∈ R+. Each partial metric p on X generates τ0 topology τp on X which has a base the family of open p - balls {Bp(x,ε)|x ∈ X,ε > 0} for all x ∈ X and ε > 0, where Bp(x,ε) = {y ∈ X/p(x,y) < p(x,x)+ε} for all x ∈ X and ε > 0. If p is a partial metric on X, then the function ps : X×X → R+ given by ps(x,y) = 2p(x,y) − p(x,x) − p(y,y) is a metric on X. Definition 1.2. [13]. Let (X, p) be a partial metric space. (i) A sequence {xn} in (X,p) is said to converge to a point x ∈ X if and only if p(x,x) = lim n→∞ p(x,xn). (ii) A sequence {xn} in (X,p) is said to be Cauchy sequence if lim n,m→∞ p(xn,xm) exists and is finite . (iii) (X,p) is said to be complete if every Cauchy sequence {xn} in X converges, w.r.to τp, to a point x ∈ X such that p(x,x) = lim n,m→∞ p(xn,xm). CUBO 14, 3 (2012) A unique common coupled fixed point theorem ... 117 Lemma 1.1. [13]. Let (X,p) be a partial metric space. (a) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X,ps). (b) (X,p) is complete if and only if the metric space (X,ps) is complete. Furthermore, lim n→∞ ps(xn,x) = 0 if and only if p(x,x) = lim n→∞ p(xn,x) = lim n,m→∞ p(xn,xm). Remark 1.2. Let (X,p) be a partial metric space. If {xn} converges to x in (X,p), then lim n→∞ p(xn,y) ≤ p(x,y), ∀ y ∈ X. Proof. Since {xn} converges to x we have p(x,x) = lim n→∞ p(xn,x). Now p(xn,y) ≤ p(xn,x) + p(x,y) − p(x,x). Letting n → ∞, lim n→∞ p(xn,y) ≤ lim n→∞ p(xn,x) + p(x,y) − p(x,x). Thus lim n→∞ p(xn,y) ≤ p(x,y). Definition 1.3. [17]. An element (x,y) ∈ X × X is called a coupled fixed point of mapping F : X × X → X if x = F(x,y) and y = F(y,x). Definition 1.4. [2]. An element (x,y) ∈ X × X is called (g1) a coupled coincident point of mappings F : X × X → X and f : X → X if fx = F(x,y) and fy = F(y,x). (g2) a common coupled fixed point of mappings F : X × X → X and f : X → X if x = fx = F(x,y) and y = fy = F(y,x). Definition 1.5. [2]. The mappings F : X × X → X and f : X → X are called w - compatible if f(F(x,y)) = F(fx,fy) and f(F(y,x)) = F(fy,fx) whenever fx = F(x,y) and fy = F(y,x). Using concept of coupled fixed points, Luong and Thuan in [18] proved some coupled fixed point theorems for a mapping F : X × X → X satisfying the following contractive condition in the partially ordered metric spaces (X,d,≤) ψ(d(F(x,y),F(u,v))) ≤ 1 2 ψ(d(x,u) + d(y,v)) − φ ( d(x,u) + d(y,v) 2 ) for all x,y,u,v ∈ X with x ≥ u and y ≤ v, with φ ∈ Φ and ψ ∈ Ψ, where Ψ denotes the set of all functions ψ : [0,∞) → [0,∞) satisfying (ψ1) ψ is continuous and non-decreasing, (ψ2) ψ(t) = 0 if and only if t = 0, (ψ3) ψ(t + s) ≤ ψ(t) + ψ(s), for all t,s ∈ [0,∞), while Φ denotes the set of all functions φ : [0,∞) → [0,∞) satisfying (φ1) limt→rφ(t) > 0 for all r > 0. 118 K.P.R.Rao , G.N.V.Kishore and Nguyen Van Luong CUBO 14, 3 (2012) (φ2) limt→0+φ(t) = 0. From (φ1), it is clear that φ(t) > 0 for all t > 0. Now we prove our main result. 2 Main Result Theorem 1. Let (X,p) be a partial metric space and let f,g : X → X and F,G : X × X → X be such that (i) For all x,y,u,v ∈ X, ψ(p(F(x,y),G(u,v))) ≤ 1 2 ψ(p(fx,gu) + p(fy,gv)) − φ(p(fx,gu) + p(fy,gv)) , where ψ ∈ Ψ and φ ∈ Φ, (ii) F(X × X) ⊆ g(X),G(X × X) ⊆ f(X), (iii) either f(X) or g(X) is a complete subspace of X and (iv) the pairs (F,f) and (G,g) are w - compatible. Then F,G,f and g have a unique common coupled fixed point in X × X. Moreover, the common coupled fixed point of F,G,f and g have the form (u,u). Proof. Let x0,y0 be arbitrary points in X. From(ii), there exist sequences {xn}, {yn}, {zn} and {wn} in X such that F(x2n,y2n) = gx2n+1 = z2n, F(y2n,x2n) = gy2n+1 = w2n, G(x2n+1,y2n+1) = fx2n+2 = z2n+1 and G(y2n+1,x2n+1) = fy2n+2 = w2n+1, n = 0,1,2, ....... We have ψ(p(z2n+1,z2n)) = ψ(p(F(x2n,y2n),G(x2n+1,y2n+1)) ≤ 1 2 ψ(p(z2n,z2n−1) + p(w2n,w2n−1)) −φ(p(z2n,z2n−1) + p(w2n,w2n−1)) (2.1) Similarly, ψ(p(w2n+1,w2n)) ≤ 1 2 ψ(p(z2n,z2n−1) + p(w2n,w2n−1)) −φ(p(z2n,z2n−1) + p(w2n,w2n−1)) (2.2) CUBO 14, 3 (2012) A unique common coupled fixed point theorem ... 119 From (2.1), (2.2) and (ψ3), we have ψ(p(z2n+1,z2n) + p(w2n+1,w2n)) ≤ ψ(p(z2n+1,z2n)) + ψ(p(w2n+1,w2n)) ≤ ψ(p(z2n,z2n−1) + p(w2n,w2n−1)) −2φ(p(z2n,z2n−1) + p(w2n,w2n−1)) (2.3) ≤ ψ(p(z2n,z2n−1) + p(w2n,w2n−1)) . Since ψ is non - decreasing, we have p(z2n+1,z2n) + p(w2n+1,w2n) ≤ p(z2n,z2n−1) + p(w2n,w2n−1). Similarly, we can show that p(z2n,z2n−1) + p(w2n,w2n−1) ≤ p(z2n−1,z2n−2) + p(w2n−1,w2n−2). Thus p(zn+1,zn) + p(wn+1,wn) ≤ p(zn,zn−1) + p(wn,wn−1). Put δn = p(zn+1,zn) + p(wn+1,wn).Then we have δn ≤ δn−1,n = 1,2,3, ... Thus {δn} is a non - increasing sequence of non- negitive real numbers and must converge to a real number, say, δ ≥ 0. Suppose δ > 0. Letting n → ∞ in (2.3) and using the properties of ψ and φ, we get ψ(δ) ≤ ψ(δ) − 2 lim δ2n→δ φ(δ2n) < ψ(δ) which is a contradiction. Hence δ = 0. Thus lim n→∞ [p(zn+1,zn) + p(wn+1,wn)] = 0 (2.4) Hence from (p2), lim n→∞ [p(zn,zn) + p(wn,wn)] = 0 (2.5) From (2.4) and (2.5) we have that lim n→∞ ps(zn+1,zn) = 0 (2.6) and lim n→∞ ps(wn+1,wn) = 0 (2.7) Now we prove that {z2n} and {w2n} are Cauchy sequences. On contrary, suppose that {z2n} or {w2n} is not Cauchy.This implies that p s(z2m,z2n) 6→ 0 or 120 K.P.R.Rao , G.N.V.Kishore and Nguyen Van Luong CUBO 14, 3 (2012) ps(w2m,w2n) 6→ 0 as n,m → ∞. Consequently max{ps(z2m,z2n),p s (w2m,w2n)} 6→ 0 as n,m → ∞. Then there exist an ǫ > 0 and monotone increasing sequences of natural numbers {2mk} and {2nk} such that nk > mk, max{ps(z2mk,z2nk),p s(w2mk,w2nk)} ≥ ǫ (2.8) and max{ps(z2mk,z2nk−2),p s(w2m,w2nk−2)} < ǫ. (2.9) From (2.8) and (2.9), we have ǫ ≤ max{ps(z2mk,z2nk),p s (w2mk,w2nk)} ≤ max{ps(z2mk,z2nk−2),p s (w2mk,w2nk−2)} + max{ps(z2nk−2,z2nk−1),p s(w2nk−2,w2nk−1)} + max{ps(z2nk−1,z2nk),p s(w2nk−1,w2nk)} < ǫ + max{ps(z2nk−2,z2nk−1),p s(w2nk−2,w2nk−1)} + max{ps(z2nk−1,z2nk),p s(w2nk−1,w2nk)}. Letting k → ∞ and using (2.6) and (2.7) we have lim k→∞ max{ps(z2mk,z2nk),p s(w2mk,w2nk)} = ǫ. (2.10) Also, ǫ ≤ max{ps(z2mk,z2nk),p s (w2mk,w2nk)} ≤ max{ps(z2mk,z2mk−1),p s(w2mk,w2mk−1)} + max{ps(z2mk−1,z2nk),p s(w2mk−1,w2nk)} (2.11) ≤ max{ps(z2mk,z2mk−1),p s(w2mk,w2mk−1)} + max{ps(z2mk−1,z2mk),p s(w2mk−1,w2mk)} + max{ps(z2mk,z2nk),p s(w2mk,w2nk)} = 2max{ps(z2mk,z2mk−1),p s (w2mk,w2mk−1)} + max{ps(z2mk,z2nk),p s (w2mk,w2nk)}. Letting k → ∞ and using (2.6), (2.7), (2.10) and (2.11), we have lim k→∞ max{ps(z2mk−1,z2nk),p s(w2mk−1,w2nk)} = ǫ. (2.12) On other hand we have max {ps(z2mk,z2nk),p s(w2mk,w2nk)} ≤ max {p s(z2mk,z2nk+1),p s(w2mk,w2nk+1)} + max {ps(z2nk+1,z2nk),p s(w2nk+1,w2nk)} CUBO 14, 3 (2012) A unique common coupled fixed point theorem ... 121 Letting k → ∞ and using (2.5),(2.6) and (2.7), we have ǫ ≤ lim k→∞ max{ps(z2mk,z2nk+1),p s(w2mk,w2nk+1)} + 0 ≤ lim k→∞ max { 2p(z2mk,z2nk+1) − p(z2mk,z2mk) − p(z2nk+1,z2nk+1), 2p(w2mk,w2nk+1) − p(w2mk,w2mk) − p(w2nk+1,w2nk+1) } ≤ 2 lim k→∞ max{p(z2mk,z2nk+1),p(w2mk,w2nk+1)} Thus, ǫ 2 ≤ lim k→∞ max{p(z2mk,z2nk+1),p(w2mk,w2nk+1)} By the properties of ψ ψ ( ǫ 2 ) ≤ ψ ( lim k→∞ max{p(z2mk,z2nk+1),p(w2mk,w2nk+1)} ) = lim k→∞ max{ψ(p(z2mk,z2nk+1)),ψ(p(w2mk,w2nk+1))} (2.13) Now ψ(p(z2mk,z2nk+1)) = ψ(p(F(x2mk,y2mk),G(x2nk+1,y2nk+1))) ≤ 1 2 ψ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) −φ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) ≤ 1 2 [ψ(p(z2mk−1,z2nk)) + ψ(p(w2mk−1,w2nk))] −φ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) ≤ max{ψ(p(z2mk−1,z2nk)),ψ(p(w2mk−1,w2nk))} −φ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) = ψ(max{p(z2mk−1,z2nk),p(w2mk−1,w2nk)}) −φ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) Similarly ψ(p(w2mk,w2nk+1)) ≤ ψ(max{p(z2mk−1,z2nk),p(w2mk−1,w2nk)}) −φ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) . 122 K.P.R.Rao , G.N.V.Kishore and Nguyen Van Luong CUBO 14, 3 (2012) Hence from (2.13),(2.5) and (2.12), we have ψ ( ǫ 2 ) ≤ lim k→∞ { ψ(max{p(z2mk−1,z2nk),p(w2mk−1,w2nk)}) −φ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) } ≤ lim k→∞ ψ       max    1 2 ( ps(z2mk−1,z2nk) + p(z2mk−1,z2mk−1) +p(z2nk,z2nk) ) , 1 2 ( ps(w2mk−1,w2nk) + p(w2mk−1,w2mk−1) +p(w2nk,w2nk) )          − lim k→∞ φ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) = ψ ( ǫ 2 ) − lim k→∞ φ(p(z2mk−1,z2nk) + p(w2mk−1,w2nk)) = ψ ( ǫ 2 ) − lim k→∞ φ     1 2     ps(z2mk−1,z2nk) + p(z2mk−1,z2mk−1) +p(z2nk,z2nk) + p s(w2mk−1,w2nk) +p(w2mk−1,w2mk−1) + p(w2nk,w2nk)         = ψ ( ǫ 2 ) − lim t→ ǫ 2 φ(t) , where ǫ 2 = lim k→∞ 1 2     ps(z2mk−1,z2nk) + p(z2mk−1,z2mk−1) +p(z2nk,z2nk) + p s(w2mk−1,w2nk) +p(w2mk−1,w2mk−1) + p(w2nk,w2nk)     < ψ ( ǫ 2 ) , which is a contradiction. Hence {z2n} and {w2n} are Cauchy sequences in the metric space (X,p s). Letting n,m → ∞ in |ps(z2n+1,z2m+1) − p s(z2n,z2m)| ≤ p s(z2n+1,z2n) + p s(z2m+1,z2m). we get lim n→∞ ps(z2n+1,z2m+1) = 0. Letting n,m → ∞ in |ps(w2n+1,w2m+1) − p s(w2n,w2m)| ≤ p s(w2n+1,w2n) + p s(w2m+1,w2m) we get lim n→∞ ps(w2n+1,w2m+1) = 0. Thus {z2n+1} and {w2n+1} are Cauchy sequences in the metric space (X,p s). Hence {zn} and {wn} are Cauchy sequences in the metric space (X,p s). Hence we have that lim n→∞ ps(zn,zm) = 0 = lim n→∞ ps(wn,wm). Now from definition of ps and from (2.5) we have lim n→∞ p(zn,zm) = 0 (2.14) CUBO 14, 3 (2012) A unique common coupled fixed point theorem ... 123 and lim n→∞ p(wn,wm) = 0. (2.15) Suppose f(X) is complete. Since {z2n+1} ⊆ f(X) and {w2n+1} ⊆ f(X) are Cauchy sequences in the complete metric space (f(X),ps), it follows that the sequences {z2n+1} and {w2n+1} are convergent in (f(X),ps).Thus lim n→∞ ps(z2n+1,u) = 0 and lim n→∞ ps(w2n+1,v) = 0 for some u and v in f(X). Since u,v ∈ f(X). there exist s,t ∈ X such that u = fs and v = ft. Since {zn} and {wn} are Cauchy sequences in X and {z2n+1} → u and {w2n+1} → v, it follows that {z2n} → u and {w2n} → v. From Lemma 1.1, we have p(u,u) = lim n→∞ p(z2n,u) = lim n→∞ p(z2n+1,u) = lim n, m→∞ p(zn,zm) (2.16) and p(v,v) = lim n→∞ p(w2n,v) = lim n→∞ p(w2n+1,v) = lim n, m→∞ p(wn,wm) (2.17) From (2.16), (2.17), (2.14) and (2.15) we have p(u,u) = 0 = p(v,v). (2.18) Now, p(F(s,t),u) ≤ p(F(s,t),z2n+1) + p(z2n+1,u) − p(z2n+1,z2n+1) ≤ p(F(s,t),G(x2n+1,y2n+1)) + p(z2n+1,u). Therefore, ψ(p(F(s,t),u)) ≤ ψ(p(F(s,t),G(x2n+1,y2n+1)) + p(z2n+1,u)) ≤ ψ(p(F(s,t),G(x2n+1,y2n+1))) + ψ(p(z2n+1,u)), from (ψ3) ≤ 1 2 ψ(p(u,z2n) + p(v,w2n)) − φ(p(u,z2n) + p(v,w2n)) + ψ(p(z2n+1,u)). Letting n → ∞ and using (2.16), (2.17), (2.18) and (φ2), (ψ1) we get ψ(p(F(s,t),u)) ≤ 0. Hence F(s,t) = u = fs (by (ψ2)). Similarly, we have F(t,s) = v = ft. Since the pair (F,f) is w - compatible, we have fu = F(u,v) and fv = F(v,u). Suppose that fu 6= u or fv 6= v. ps(fu,z2n) = 2p(fu,z2n) − p(fu,fu) − p(z2n,z2n). 124 K.P.R.Rao , G.N.V.Kishore and Nguyen Van Luong CUBO 14, 3 (2012) Letting n → ∞, we get ps(fu,u) = 2 lim n→∞ p(fu,z2n) − p(fu,fu) − 0, from (2.5) or 2p(fu,u) − p(fu,fu) − p(u,u) = 2 lim n→∞ p(fu,z2n) − p(fu,fu) or p(fu,u) = lim n→∞ p(fu,z2n), from (2.18). Similarly, we have p(fv,v) = lim n→∞ p(fv,w2n).Thus lim n→∞ [p(fv,z2n) + p(fv,w2n)] = p(fu,u) + p(fv,v) > 0 (2.19) We have p(fu,u) ≤ p(fu,z2n+1) + p(z2n+1,u) − p(z2n+1,z2n+1) ≤ p(F(u,v),G(x2n+1,y2n+1)) + p(z2n+1,u). Thus, ψ(p(fu,u)) ≤ ψ(p(F(u,v),G(x2n+1,y2n+1)) + ψ(p(z2n+1,u)), from (ψ3) ≤ 1 2 ψ(p(fu,z2n) + p(fv,w2n)) −φ(p(fu,z2n) + p(fv,w2n)) + ψ(p(z2n+1,u)). Similarly, we have ψ(p(fv,v)) ≤ 1 2 ψ(p(fu,z2n) + p(fv,w2n)) −φ(p(fu,z2n) + p(fv,w2n)) + ψ(p(w2n+1,v)). Hence ψ(p(fu,u) + p(fv,v)) ≤ ψ(p(fu,u)) + ψ(p(fv,v)), from (ψ3) ≤ ψ(p(fu,z2n) + p(fv,w2n)) −2φ(p(fu,z2n) + p(fv,w2n)) +ψ(p(z2n+1,u)) + ψ(p(w2n+1,v)). Letting n → ∞ and using (2.19),(φ1),(2.16),(2.17) and (ψ1), we get ψ(p(fu,u) + p(fv,v)) < ψ(p(fu,u) + p(fv,v)). It is a contradiction. Hence fu = u and fv = v. Thus F(u,v) = fu = u and F(v,u) = fv = v. (2.20) CUBO 14, 3 (2012) A unique common coupled fixed point theorem ... 125 Since F(X × X) ⊆ g(X), there exist a,b ∈ X such that u = F(u,v) = ga and v = F(v,u) = gb. ψ(p(u,G(a,b))) = ψ(p(F(u,v),G(a,b))) ≤ 1 2 ψ(p(u,u) + p(v,v)) − φ(p(u,u) + p(v,v)) = 1 2 ψ(0) − φ(0), ( from (2.18)) ≤ 0, (since ψ(0) = 0 and φ(0) ≥ 0). Hence ψ(p(u,G(a,b))) = 0, which implies that G(a,b) = u = ga. Similarly, we have G(b,a) = v = gb. Since the pair (G,g) is w - compatible, we have gu = G(u,v) and gv = G(v,u). Suppose gu 6= u or gv 6= v. We have ψ(p(u,gu)) = ψ(p(F(u,v),G(u,v))) ≤ 1 2 ψ(p(u,gu) + p(v,gv)) − φ(p(u,gu) + p(v,gv)) and ψ(p(v,gv)) = ψ(p(F(v,u),G(v,u))) ≤ 1 2 ψ(p(u,gu) + p(v,gv)) − φ(p(u,gu) + p(v,gv)) . Hence ψ(p(u,gu) + p(v,gv)) ≤ ψ(p(u,gu)) + ψ(p(v,gv)) ≤ ψ(p(u,gu) + p(v,gv)) − 2φ(p(u,gu) + p(v,gv)) < ψ(p(u,gu) + p(v,gv)) (since φ(t) > 0 ∀ t > 0). Hence gu = u and gv = v.Thus, u = gu = G(u,v) and v = gv = G(v,u) (2.21) From (2.20) and (2.21), it follows that (u,v) is a common coupled fixed point of F,G,f and g. Let (u∗,v∗) be another common coupled fixed point of F,G,f and g. We have ψ(p(u,u∗) + p(v,v∗)) ≤ ψ(p(u,u∗)) + ψ(p(v,v∗)) ≤ ψ(p(F(u,v),G(u∗,v∗))) + ψ(p(F(v,u),G(v∗,u∗))) ≤ 1 2 ψ(p(u,u∗) + p(v,v∗)) − φ(p(u,u∗) + p(v,v∗)) + 1 2 ψ(p(u,u∗) + p(v,v∗)) − φ(p(u,u∗) + p(v,v∗)) = ψ(p(u,u∗) + p(v,v∗)) − 2φ(p(u,u∗) + p(v,v∗)) < ψ(p(u,u∗) + p(v,v∗)), 126 K.P.R.Rao , G.N.V.Kishore and Nguyen Van Luong CUBO 14, 3 (2012) which is a contradiction. Hence (u,v) is the unique common coupled fixed point of F,G,f and g. Now we will show that u = v. Suppose u 6= v. ψ(p(u,v)) = ψ(p(F(u,v),G(u,v))) ≤ 1 2 ψ(p(u,v) + p(v,u)) − φ(p(u,v) + p(v,u)) ≤ ψ(p(u,v)) − φ(p(u,v)) < ψ(p(u,v)). Hence u = v. Thus u = fu = F(u,u) = G(u,u) = gu, that is, the common coupled fixed point of F,G,f and g has the form (u,u). Received: June 2011. Revised: February 2012. References (1) Ishak Altun, Ferhan Sola and Hakan Simsek, Generalized contractions on partial metric spaces, Topology and its Applications, 157, (2010), 2778 - 2785. (2) M.Abbas, M.Alikhan and S.Radenovic, Common coupled fixed point theorems in cone metric spaces for w - compatible mappings, Applied Mathematics and Computation, Volume 217, Issue 1, (2010),195 - 202. (3) T. Abdeljawad, E. Karapinar and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., Vol.24, Issue 11, (2011), 1900 - 1904. (4) H. Aydi, Some coupled fixed point results on partial metric spaces, International Journal of Mathematics and Mathematical Sciences, Volume 2011, (2011), Article ID 647091. (5) E. Karapinar and I.M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., Vol.24, Issue 11, (2011), 1894 - 1899, doi:10.1016/j.aml.2011.05.013. (6) M.Schellekens, The Smyth completion: a common foundation for denotational semantics and complexity analysis, Electronic Notes in Theoretical Computer Science, vol 1, (1995), 535 - 556. (7) M.Schellekens, A characterization of partial metrizebility: domains are quantifiable, Theo- retical Computer Sciences, vol 305, no. 1 - 3, (2003), 409 - 432. (8) P.Waszkiewicz, Quantitative continuous domains, Applied Categorical Structures, vol 11, no. 1, (2003), 41 - 67. (9) P.Waszkiewicz, Partial metrizebility of continuous posets, Mathematical Structures in Com- puter Sciences, vol 16, no. 2, (2006), 359 - 372. CUBO 14, 3 (2012) A unique common coupled fixed point theorem ... 127 (10) R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Struc- tures, no.1 - 2, 7, (1999), 71 - 83. (11) Sandra Oltra and Oscar Valero, Banach fixed point theorem for partial metric spaces, Rend.Istit.Mat.Univ.Trieste, vol XXXVI,(2004),17 - 26. (12) Salvador Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and Applications, vol.2010, (2010) Article ID 493298, 6 pages, doi:10.1155/2010/493298. (13) S.G. Matthews, Partial metric topology,Proc. 8th Summer Conference on General Topology and Applications, in : Ann. New York Acad. Sci., vol. 728, (1994), 183 - 197. (14) S.J. O’Neill, Partial metrics, valuations and domain theory, in : Proc. 11th Summer Confer- ence on General Topology and Applications, vol 806 of Annals of the New York Academy of Sciences, (1996), 304 - 315. (15) S.Romaguera and M.Schellekens, Partial metric monoids and semi valuation spaces, Topology and Applications, vol 153, no.5 - 6, (2005), 948 - 962. (16) S.Romaguera and O.Valero, A quantitative computational modal for complete partial metric space via formal balls, Mathematical Structures in Computer Sciences, vol.19, no.3, (2009), 541 - 563. (17) T.G.Bhaskar and V.Lakshmikantham, Fixed point theorems in partially ordered cone metric spaces and applications, Nonlinear Analysis : Theory, Methods and Applications, 65(7), (2006), 825 - 832. (18) Nguyen Van Luong and Nguyen Xuan Thuan, Coupled fixed points in partially order metric spaces and application, Nonlinear Analysis, 74, (2011), 983 - 992.