CUBO A Mathematical Journal Vol.14, No¯ 03, (143–166). October 2012 Weak and strong convergence theorems of a multistep iteration to a common fixed point of a family of nonself asymptotically nonexpansive mappings in banach spaces Shrabani Banerjee and Binayak S.Choudhury Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah-711103, India. email: banerjee.shrabani@yahoo.com, binayak12@yahoo.co.in ABSTRACT In this paper we have defined a multistep iterative scheme with errors involving a fam- ily of asymptotically nonexpansive nonself mappings in Banach spaces. A retraction has been used in the construction of the iteration. We prove here weak and strong convergences of the iteration to common fixed points of the family of asymptotically nonexpansive nonself mappings. We have used several concepts of Banach space geom- etry. Our results improve and extend some recent results. RESUMEN En este art́ıculo definimos un esquema de multi paso iterativo con errores que involucran una familia de aplicaciones no expansivas y no auto asintóticamente en espacios de Banach. Una retracción se ha usado en la construcción de la iteración. Probamos convergencias débiles y fuertes de las iteraciones a puntos fijos clásicos de la familia de aplicaciones no expansivas no auto asintóticamente. Hemos usado varios conceptos de geometŕıa en espacios de Banach. Nuestro resultado mejora y extiende algunos resultados recientes. Keywords and Phrases: Modified multistep iterative process with errors; nonself asymptotically nonexpansive mapping; retraction; Opial’s condition; uniformly convex Banach space; common fixed point; Kadec-klee property; Condition (B); weak and strong convergence. 2010 AMS Mathematics Subject Classification: 47H10 144 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) 1 Introduction Let K be a nonempty subset of real normed space E. A self mapping T : K → K is called nonex- pansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ K A self mapping T : K → K is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1 such that ‖Tnx − Tny‖ ≤ kn‖x − y‖ for all x, y ∈ K and n ≥ 1. (1.1) T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that ‖Tnx − Tny‖ ≤ L‖x − y‖ for all x, y ∈ K and n ≥ 1. (1.2) The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk[7] in 1972 as a generalization of the class of nonexpansive self mappings. They proved that if T is a selfmap on K where K is a nonempty closed convex subset of a real uniformly convex Banach space, then T has a fixed point. Fixed point iterative processes for asymptotically nonexpansive self-mappings on convex subsets of Banach spaces have been studied extensively by many authors. Since T remains a self- mapping of a nonempty closed convex subset K of a Banach space E, the well known Mann[11] and Ishikawa[8] iterative processes are well defined. If however the domain K of T is a proper subset of E (and it is the case of several applications) and T maps K into E, then the iteration processes of Mann and Ishikawa and their modifications fail to be well defined. To overcome this problem Chidume et al.[2] introduced the concept of nonself asymptotically nonexpansive mappings in 2003 as a generalization of asymptotically nonexpansive self mappings. A subset K of E is said to be a retract of E if there exists a continuous mapping P : E → K such that Px = x for all x ∈ K. Every closed convex subset of a uniformly convex Banach space is a retract. A mapping P : E → E is said to be a retraction if P2 = P. It follows that if a map P is a retraction then Py = y for all y in the range of P. The nonself asymptotically nonexpansive mapping is defined as follows: Definition 1.1. ([2]) Let E be a real normed linear space, K be a nonempty subset of E and P : E → K be the nonexpansive retraction of E onto K. Let T : K → E be a non-self mapping. T is said to be a non-self asymptotically nonexpansive mapping if there exists a sequence {kn} ⊂ [1, ∞) with kn → 1 as n → ∞ such that the following inequality holds: ‖T(PT)n−1x − T(PT)n−1y‖ ≤ kn‖x − y‖, for all x, y ∈ K and n ≥ 1. (1.3) T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that ‖T(PT)n−1x − T(PT)n−1y‖ ≤ L‖x − y‖, for all x, y ∈ K and n ≥ 1. (1.4) If T is a self map, then P becomes the identity map so that (1.3) and (1.4) coinside with (1.1) and (1.2) respectively. CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 145 Chidume et al.[2] introduced and studied the weak and strong convergences of the following iterative process { x1 ∈ K xn+1 = P((1 − αn)xn + αnT(PT) n−1xn) (1.5) where {αn} is a appropriate real sequence in [0, 1]. If T is a self map, then P becomes the identity map so that (1.5) reduces to the Mann-type iteration scheme[11]. Then Wang[19] used a similar scheme to prove the weak and strong convergence theorems for a pair of non-self asymptotically nonexpansive mappings which is given by    x1 ∈ K xn+1 = P((1 − αn)xn + αnT1(PT1) n−1yn) yn = P((1 − βn)xn + βnT2(PT2) n−1xn), n ≥ 1. (1.6) If T is a self map, then P becomes the identity map so that (1.6) reduces to the Ishikawa-like iteration scheme without errors [9] involving two asymptotically nonexpansive self mappings. After that Chidume and Bashir ali [3] introduced a new iteration process for approximating common fixed points for finite families of nonself asymptotically nonexpansive mappings which is defined as follows:    x1 ∈ K xn+1 = P[(1 − α1n)xn + α1nT1(PT1) n−1yn+r−2] yn+r−2 = P[(1 − α2n)xn + α2nT2(PT2) n−1yn+r−3] · · · · yn = P[(1 − αmn)xn + αmnTm(PTm) n−1xn] (1.7) Very recently Yang [20] introduced and studied a modified multistep iteration for a finite family of nonself asymptotically nonexpensive mappings and discuss their convergences which is defined as follows. 146 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) For a given x1 ∈ K and n ≥ 1, compute the iterative sequences {xn}, {yn}, ....., {yn+r−2} defined by    yn = P[(1 − anr)xn + anrTr(PTr) n−1xn] yn+1 = P[(1 − an(r−1) − bn(r−1))xn + an(r−1)Tr−1(PTr−1) n−1yn +bn(r−1)Tr−1(PTr−1) n−1xn] yn+2 = P[(1 − an(r−2) − bn(r−2))xn + an(r−2)Tr−2(PTr−2) n−1yn+1 +bn(r−2)Tr−2(PTr−2) n−1yn] . . . . yn+r−2 = P[(1 − an2 − bn2)xn + an2T2(PT2) n−1yn+r−3 +bn2T2(PT2) n−1yn+r−4] xn+1 = P[(1 − an1 − bn1)xn + an1T1(PT1) n−1yn+r−2 +bn1T1(PT1) n−1yn+r−3] (1.8) where {ani}, {bni}, {1 − ani − bni} are appropriate real sequences in [0, 1] for i ∈ I where I = {1, 2, ....., r}. Motivated by these facts we have introduced and studied a new type of multistep iterative process with errors which is defined as follows: Let E be a normed space, K be a nonempty convex subset of E which is also a nonexpansive retract of E. Let Ti : K → E(i ∈ I = {1, 2, ..., r}) be given nonself asymptotically nonexpansive mappings with sequences {kin} ⊂ [1, ∞) with limn→∞ k i n = 1 for i ∈ I. Then for a given x1 ∈ K and n ≥ 1, compute the iterative sequences {xn}, {yn}, ....., {yn+r−2} defined by    yn = P[(1 − a 1 nr − bnr)xn + a 1 nrTr(PTr) n−1xn + bnrunr] yn+1 = P[(1 − a 1 n(r−1) − a2 n(r−1) − bn(r−1))xn + a 1 n(r−1) Tr−1(PTr−1) n−1yn +a2 n(r−1) Tr−1(PTr−1) n−1xn + bn(r−1)un(r−1)] yn+2 = P[(1 − a 1 n(r−2) − a2 n(r−2) − a3 n(r−2) − bn(r−2))xn + a 1 n(r−2) Tr−2(PTr−2) n−1yn+1 +a2 n(r−2) Tr−2(PTr−2) n−1yn + a 3 n(r−2) Tr−2(PTr−2) n−1xn + bn(r−2)un(r−2)] . . . . yn+r−2 = P[(1 − a 1 n2 − a 2 n2 − ..... − a r−1 n2 − bn2)xn + a 1 n2T2(PT2) n−1yn+r−3 +a2n2T2(PT2) n−1yn+r−4 + ..... + a r−1 n2 T2(PT2) n−1xn + bn2un2] xn+1 = P[(1 − a 1 n1 − a 2 n1 − ..... − a r n1 − bn1)xn + a 1 n1T1(PT1) n−1yn+r−2 +a2n1T1(PT1) n−1yn+r−3 + ..... + a r n1T1(PT1) n−1xn + bn1un1] (1.9) where {aknj}, {bnj}, {1 − ∑r−j+1 k=1 aknj − bnj} are appropriate real sequences in [0, 1] for j ∈ I and k ∈ {1, ..., r − j + 1} and {unj} are bounded sequences in K for j ∈ I. The iterative sequence CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 147 (1.9) is called the new modified multistep iteration for a finite family of nonself asymptotically nonexpansive mappings. The iterative sequence (1.9) can be written as in the compact form yn+r−j = P[(1 − r−j+1∑ k=1 aknj − bnj)xn + r−j∑ k=1 aknjTj(PTj) n−1yn+r−j−k + a r−j+1 nj Tj(PTj) n−1xn + bnjunj] where j ∈ I and xn+1 = yn+r−1. As an illustration, for r = 3, (1.9) reduces to the new modified three-step iteration with errors:    yn = P[(1 − a 1 n3 − bn3)xn + a 1 n3T3(PT3) n−1xn + bn3un3] yn+1 = P[(1 − a 1 n2 − a 2 n2 − bn2)xn + a 1 n2T2(PT2) n−1yn +a2n2T2(PT2) n−1xn + bn2un2] xn+1 = P[(1 − a 1 n1 − a 2 n1 − a 3 n1 − bn1)xn + a 1 n1T1(PT1) n−1yn+1 +a2n1T1(PT1) n−1yn + a 3 n1T1(PT1) n−1xn + bn1un1] (1.10) where {aknj}, {bnj}, {1 − ∑3−j+1 k=1 aknj − bnj} are appropriate real sequences in [0, 1] for j ∈ {1, 2, 3} and k ∈ {1, ..., 3 − j + 1} and {unj} are bounded sequences in K for j ∈ {1, 2, 3}. For aknj = 0 for all j ∈ {1, 2, ...., r−2} and k ∈ {3, 4, ..., r−j+1} and bnj = 0 for all j ∈ I, (1.9) reduces to the iteration (1.8). Again if aknj = 0 for all j ∈ {1, 2, ...., r − 2, r − 1} and k = {2, 3, 4, ..., r − j + 1} and bnj = 0 for all j ∈ I, then (1.9) reduces to the iteration (1.7). Next we recall the following definitions and results. Let E be a real normed linear space. The modulus of convexity of E is a function δE : (0, 2] → [0, 1] defined by δE(ǫ) = inf{1 − ‖ 1 2 (x + y)‖ : ‖x‖ = 1, ‖y‖ = 1, ǫ = ‖x − y‖} . E is called uniformly convex if and only if δE(ǫ) > 0 for all ǫ ∈ (0, 2]. The norm of E is said to be Frèchet differentiable if for each x ∈ E with ‖x‖ = 1 the limit limt→0 ‖x+ty‖−‖x‖ t exists and is attained uniformly for y with ‖y‖ = 1 and in this case it has been shown that in [18] that < h, J(x) > + 1 2 ‖x‖2 ≤ 1 2 ‖x + h‖2 ≤< h, J(x) > + 1 2 ‖x‖2 + b(‖h‖) (1.11) for all x, h ∈ E where J is the Frèchet derivative of the functional ‖.‖2 at x ∈ E, < ., . > is the pairing between E and E⋆ and b is a function defined on [0, ∞) such that limt→0 b(t) t = 0. A Banach space E is said to satisfy Opial’s condition [12] if xn ⇀ x and x 6= y imply lim sup n→∞ ‖xn − x‖ < lim sup n→∞ ‖xn − y‖ . A Banach space E is said to satisfy Kadec-Klee property, if for every sequence {xn} ∈ E, xn ⇀ x and ‖xn‖ → ‖x‖ together imply that xn → x as n → ∞. There are uniformly convex Banach spaces which have neither a Frèchet differentiable norm nor satisfy Opial’s property but their dual does have the Kadec-Klee property (see [6],[10]). 148 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) Lemma 1.1. ([18], Lemma1) Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying the inequality an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1. If ∑ ∞ n=1 δn < ∞ and ∑ ∞ n=1 bn < ∞, then (i) limn→∞ an exists, (ii) limn→∞ an = 0 whenever lim infn→∞ an = 0. Lemma 1.2. ([21], Theorem2) Let p > 1 and r > 0 be two fixed real numbers. Then a Banach space E is uniformly convex if and only if there exists a continuous strictly increasing convex function g : [0, ∞) → [0, ∞) with g(0) = 0 such that ‖λx + (1 − λ)y‖p ≤ λ‖x‖p + (1 − λ)‖y‖p − ωp(λ)g(‖x − y‖) for all x, y ∈ Br(0) = {x ∈ E : ‖x‖ ≤ r} and λ ∈ [0, 1] where ωp(λ) = λ p(1 − λ) + λ(1 − λ)p. Lemma 1.3. ([5], Lemma1.4) Let E be a uniformly convex Banach space and Br = {x ∈ E : ‖x‖ ≤ r}, r > 0. Then there exist a continuous, strictly increasing and convex function g : [0, ∞) → [0, ∞), g(0) = 0 such that ‖λx + βy + γz‖2 ≤ λ‖x‖2 + β‖y‖2 + γ‖z‖2 − λβg(‖x − y‖) for all x, y, z ∈ Br and all λ, β, γ ∈ [0, 1] with λ + β + γ = 1. By using Lemma 1.2 and Lemma 1.3 we can easily prove the following Lemma: Lemma 1.4. Let E be a uniformly convex Banach space and Br = {x ∈ E : ‖x‖ ≤ r}, r > 0. Then there exists a continuous, strictly increasing and convex function g : [0, ∞) → [0, ∞), g(0) = 0 such that ‖λ1x1 + λ2x2 + ... + λnxn‖ 2 ≤ λ1‖x1‖ 2 + λ2‖x2‖ 2 + ... + λn‖xn‖ 2 − λ1λ2g(‖x1 − x2‖) for all xi ∈ Br and all λi ∈ [0, 1] for all i = 1, 2, ..., n with ∑n i=1 λi = 1. Proof: The Lemma is true for n = 2 since for n = 2 using Lemma 1.2 we get ‖λ1x1 + λ2x2‖ 2 ≤ λ1‖x1‖ 2 + λ2‖x2‖ 2 − ω2(λ1)g(‖x1 − x2‖) where ω2(λ1) = λ 2 1(1 − λ1) + λ1(1 − λ1) 2 = λ21λ2 + λ1λ 2 2 = λ1λ2(λ1 + λ2) = λ1λ2. Also by Lemma 1.3 we see that this Lemma is true for n = 3. Now let the Lemma is true for n = m. Now ‖λ1x1 + λ2x2 + ... + λmxm + λm+1xm+1‖ 2 = ‖λ1x1 + λ2x2 + ... + λm−1xm−1 + (1 − λ1 − λ2 − .... − λm−1)( λm 1 − λ1 − λ2 − .... − λm−1 xm + λm+1 1 − λ1 − λ2 − .... − λm−1 xm+1)‖ 2. CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 149 By using the above inequality, ‖λ1x1 + λ2x2 + ... + λmxm + λm+1xm+1‖ 2 = ‖λ1x1 + λ2x2 + ... + λm−1xm−1 + (1 − λ1 − λ2 − .... − λm−1)( λm 1 − λ1 − λ2 − .... − λm−1 xm + λm+1 1 − λ1 − λ2 − .... − λm−1 xm+1)‖ 2 ≤ λ1‖x1‖ 2 + λ2‖x2‖ 2 + ... + λm−1‖xm−1‖ 2 + (1 − λ1 − λ2 − .... − λm−1)‖ λm 1 − λ1 − λ2 − .... − λm−1 xm + λm+1 1 − λ1 − λ2 − .... − λm−1 xm+1‖ 2 −λ1λ2g(‖x1 − x2‖) . Since λ1 + λ2 + ... + λm + λm+1 = 1, so λm 1 − λ1 − λ2 − .... − λm−1 + λm+1 1 − λ1 − λ2 − .... − λm−1 = λm + λm+1 1 − λ1 − λ2 − .... − λm−1 = 1 . Then from Lemma 1.2 we get that ‖ λm 1 − λ1 − λ2 − .... − λm−1 xm + λm+1 1 − λ1 − λ2 − .... − λm−1 xm+1‖ 2 ≤ λm 1 − λ1 − λ2 − .... − λm−1 ‖xm‖ 2 + λm+1 1 − λ1 − λ2 − .... − λm−1 ‖xm+1‖ 2 −ω2( λm 1 − λ1 − λ2 − .... − λm−1 )g(‖x1 − x2‖) . Now, ω2( λm 1 − λ1 − λ2 − .... − λm−1 ) = ( λm 1 − λ1 − λ2 − .... − λm−1 )2(1 − λm 1 − λ1 − λ2 − .... − λm−1 ) + λm 1 − λ1 − λ2 − .... − λm−1 (1 − λm 1 − λ1 − λ2 − .... − λm−1 )2 = λm 1 − λ1 − λ2 − .... − λm−1 . λm+1 1 − λ1 − λ2 − .... − λm−1 ( λm 1 − λ1 − λ2 − .... − λm−1 + λm+1 1 − λ1 − λ2 − .... − λm−1 ) = λmλm+1 (1 − λ1 − λ2 − .... − λm−1)2 ≥ 0 . Therefore from above we have ‖ λm 1 − λ1 − λ2 − .... − λm−1 xm + λm+1 1 − λ1 − λ2 − .... − λm−1 xm+1‖ 2 ≤ λm 1 − λ1 − λ2 − .... − λm−1 ‖xm‖ 2 + λm+1 1 − λ1 − λ2 − .... − λm−1 ‖xm+1‖ 2 . 150 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) So finally we get that ‖λ1x1 + λ2x2 + ... + λmxm + λm+1xm+1‖ 2 = ‖λ1x1 + λ2x2 + ... + λm−1xm−1 + (1 − λ1 − λ2 − .... − λm−1)( λm 1 − λ1 − λ2 − .... − λm−1 xm + λm+1 1 − λ1 − λ2 − .... − λm−1 xm+1)‖ 2 ≤ λ1‖x1‖ 2 + λ2‖x2‖ 2 + ... + λm−1‖xm−1‖ 2 + (1 − λ1 − λ2 − .... − λm−1)( λm 1 − λ1 − λ2 − .... − λm−1 ‖xm‖ 2 + λm+1 1 − λ1 − λ2 − .... − λm−1 ‖xm+1‖ 2 ) − λ1λ2g(‖x1 − x2‖) = λ1‖x1‖ 2 + λ2‖x2‖ 2 + ... + λm−1‖xm−1‖ 2 + λm‖xm‖ 2 + λm+1‖xm+1‖ 2 − λ1λ2g(‖x1 − x2‖) . Hence the Lemma is true for n = m + 1. Thus, by induction, the Lemma is true for all n ≥ 2. This completes the proof of the Lemma. Lemma 1.5. ([2], Theorem3.4) Let E be a real uniformly Banach space and K be a nonempty closed convex subset of E and T : K → E be asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1. Then I − T is demiclosed at zero, i.e. if {xn} is a sequence in K which converges weakly to x and if the sequence {xn − Txn} converges strongly to zero, then x − Tx = 0. Lemma 1.6. ([10], Theorem2) Let E be a real reflexive Banach space such that E⋆ has the Kadec- Klee property. Let {xn} be a bounded sequence in E and x ⋆, y⋆ ∈ ww(xn)(weak w-limit set of {xn}). Suppose limn→∞ ‖txn + (1 − t)x ⋆ − y⋆‖ exists for all t ∈ [0, 1]. Then x⋆ = y⋆. Lemma 1.7. ([1]) Let E be a uniformly convex Banach space K be a nonempty bounded closed convex subset of E. Then there exists a strictly increasing continuous convex function φ : [0, ∞) → [0, ∞) with φ(0) = 0 such that for any Lipschitzian mapping T : K → E with the Lipschitz constant L ≥ 1 and for any x, y ∈ K and t ∈ [0, 1] the following inequality holds: ‖T(tx + (1 − t)y) − (tTx + (1 − t)Ty)‖ ≤ Lφ−1(‖x − y‖ − L−1‖Tx − Ty‖) The purpose of this paper is to introduce a new modified multi step iteration with errors for approximating common fixed points for finite families of nonself asymptotically nonexpansive mappings. We prove some strong and weak convergence theorems in real uniformly convex Banach spaces. More precisely we prove convergence theorems in a uniformly convex Banach space which satisfy Opial’s condition or have Frèchet differentiable norm or whose duals have the Kadec-Klee property. Our results generalize some recent results. 2 Main Results We begin this section with the following lemmas. CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 151 Lemma 2.1. Let E be a real normed space and K be a nonempty subset of E which is also a nonexpansive retract of E. Let Ti : K → E(i ∈ I = {1, 2, ..., r}) be given nonself asymptotically nonexpansive mappings with sequences {kin} ⊂ [1, ∞) with ∑ ∞ n=1 (kin − 1) < ∞ for i ∈ I. Let {xn} be defined by (1.9) with ∑ ∞ n=1 bni < ∞ for i ∈ I. If F = ⋂r i=1 F(Ti) 6= ∅, then limn→∞ ‖xn − q‖ exists for all q ∈ F. Proof: Let q ∈ F. For each n ≥ 1, let kn = max {k 1 n, k 2 n, .........., k r n} so that {kn} ⊂ [1, ∞) with ∑ ∞ n=1 (kn − 1) < ∞. Since {uni} are bounded sequences in K for i ∈ I, let M = sup n≥1,i=1,2,...,r‖uni − q‖. From (1.9) we get ‖yn − q‖ = ‖P((1 − a 1 nr − bnr)xn + a 1 nrTr(PTr) n−1xn + bnrunr) − Pq‖ ≤ ‖(1 − a1nr − bnr)(xn − q) + a 1 nr(Tr(PTr) n−1xn − q) + bnr(unr − q)‖ ≤ (1 − a1nr − bnr)‖xn − q‖ + a 1 nr‖Tr(PTr) n−1xn − q‖ + bnr‖unr − q‖ ≤ (1 − a1nr)‖xn − q‖ + a 1 nrkn‖xn − q‖ + bnrM ≤ kn‖xn − q‖ + bnrM = kn‖xn − q‖ + σ 1 n (2.1) where σ1n = bnrM. By the given condition we get that ∑ ∞ n=1 σ1n < ∞. Also from (1.9) and (2.1) we have ‖yn+1 − q‖ = ‖P((1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))xn + a 1 n(r−1)Tr−1(PTr−1) n−1yn + a2n(r−1)Tr−1(PTr−1) n−1xn + bn(r−1)un(r−1)) − Pq‖ ≤ ‖(1 − a1n(r−1) − a 2 n(r−1) − bn(r−1))(xn − q) + a 1 n(r−1)(Tr−1(PTr−1) n−1yn − q) +a2n(r−1)(Tr−1(PTr−1) n−1xn − q) + bn(r−1)(un(r−1) − q)‖ ≤ (1 − a1n(r−1) − a 2 n(r−1) − bn(r−1))‖xn − q‖ + a 1 n(r−1)‖Tr−1(PTr−1) n−1yn − q‖ +a2n(r−1)‖Tr−1(PTr−1) n−1xn − q‖ + bn(r−1)‖un(r−1) − q‖ ≤ (1 − a1n(r−1) − a 2 n(r−1))‖xn − q‖ + a 1 n(r−1)kn‖yn − q‖ +a2n(r−1)kn‖xn − q‖ + bn(r−1)M ≤ (1 − a1n(r−1) − a 2 n(r−1))‖xn − q‖ + a 1 n(r−1)kn[kn‖xn − q‖ + bnrM] +a2n(r−1)kn‖xn − q‖ + bn(r−1)M ≤ [1 + a1n(r−1)(k 2 n − 1) + a 2 n(r−1)(kn − 1)]‖xn − q‖ + a 1 n(r−1)knbnrM + bn(r−1)M ≤ k2n‖xn − q‖ + knbnrM + bn(r−1)M = k2n‖xn − q‖ + σ 2 n (2.2) where σ2n = knbnrM + bn(r−1)M. By the given condition we get that ∑ ∞ n=1 σ2n < ∞. Also from 152 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) (1.9) and (2.2) we have ‖yn+2 − q‖ = ‖P((1 − a1n(r−2) − a 2 n(r−2) − a 3 n(r−2) − bn(r−2))xn + a 1 n(r−2)Tr−2(PTr−2) n−1yn+1 +a2n(r−2)Tr−2(PTr−2) n−1yn + a 3 n(r−2)Tr−2(PTr−2) n−1xn + bn(r−2)un(r−2)) − Pq‖ ≤ ‖(1 − a1n(r−2) − a 2 n(r−2) − a 3 n(r−2) − bn(r−2))(xn − q) + a 1 n(r−2)(Tr−2(PTr−2) n−1yn+1 − q) +a2n(r−2)(Tr−2(PTr−2) n−1yn − q) + a 3 n(r−2)(Tr−2(PTr−2) n−1xn − q) +bn(r−2)(un(r−2) − q)‖ ≤ (1 − a1n(r−2) − a 2 n(r−2) − a 3 n(r−2) − bn(r−2))‖xn − q‖ + a 1 n(r−2)‖Tr−2(PTr−2) n−1yn+1 − q‖ +a2n(r−2)‖Tr−2(PTr−2) n−1yn − q‖ + a 3 n(r−2)‖Tr−2(PTr−2) n−1xn − q‖ +bn(r−2)‖un(r−2) − q‖ ≤ (1 − a1n(r−2) − a 2 n(r−2) − a 3 n(r−2))‖xn − q‖ + a 1 n(r−2)kn‖yn+1 − q‖ +a2n(r−2)kn‖yn − q‖ + a 3 n(r−2)kn‖xn − q‖ + bn(r−2)M ≤ (1 − a1n(r−2) − a 2 n(r−2) − a 3 n(r−2))‖xn − q‖ + a 1 n(r−2)kn[k 2 n‖xn − q‖ +knbnrM + bn(r−1)M] + a 2 n(r−2)kn[kn‖xn − q‖ + bnrM] +a3n(r−2)kn‖xn − q‖ + bn(r−2)M ≤ k3n‖xn − q‖ + σ 3 n (2.3) where σ3n = k 2 nbnrM + knbnrM + knbn(r−1)M + bn(r−2)M. By the given condition we get that∑ ∞ n=1 σ3n < ∞. In general after (j + 1) steps we get ‖yn+j − q‖ ≤ k j+1 n ‖xn − q‖ + σ j+1 n (2.4) for j = 0, 1, ..., r − 2 and {σ j+1 n } is a nonnegative real sequence such that ∑ ∞ n=1 σ j+1 n < ∞ for j = 0, 1, ..., r − 2. Therefore it follows from (1.9) and (2.4) that ‖xn+1 − q‖ ≤ k r n‖xn − q‖ + σ r n = [1 + (k r n − 1)]‖xn − q‖ + σ r n (2.5) where {σrn} is a nonnegative real sequence such that ∑ ∞ n=1 σrn < ∞. Since 0 ≤ t r −1 ≤ rtr−1(t−1) for all t ≥ 1, so 0 ≤ krn − 1 ≤ rk r−1 n (kn − 1). Since ∑ ∞ n=1 (kn − 1) < ∞ so {kn} is bounded, kn ∈ [1, M ′] for some M′ > 0. So ∑ ∞ n=1 (krn−1) < ∞. Thus by Lemma 1.1 we get limn→∞ ‖xn−q‖ exists for all q ∈ F. ♦ Lemma 2.2. Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E which is also a nonexpansive retract of E. Let Ti : K → E(i ∈ I = {1, 2, ..., r}) be given nonself asymptotically nonexpansive mappings with sequences {kin} ⊂ [1, ∞) with ∑ ∞ n=1 (kin − 1) < ∞ for i ∈ I. Let {xn} be defined by (1.9) with ∑ ∞ n=1 bni < ∞ for i ∈ I. If F = ⋂r i=1 F(Ti) 6= ∅, then the following results hold (1) If lim infn→∞ a 1 nk > 0, for all k < r and 0 < lim infn→∞ a 1 nr ≤ lim supn→∞(a 1 nr + bnr) < 1 then limn→∞ ‖Tr(PTr) n−1xn − xn‖ = 0. CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 153 (2) If 0 < lim infn→∞ a 1 n1 ≤ lim supn→∞( ∑r k=1 akn1+bn1) < 1 then limn→∞ ‖T1(PT1) n−1yn+r−2− xn‖ = 0. (3) If lim infn→∞ a 1 nk > 0, for all k < j and 0 < lim infn→∞ a 1 nj ≤ lim supn→∞( ∑r−j+1 m=1 amnj + bnj) < 1, then limn→∞ ‖Tj(PTj) n−1yn+r−j−1 − xn‖ = 0 for j = 2, 3, ....., r − 1. Proof: Let q ∈ F. By Lemma 2.1 we have that limn→∞ ‖xn − q‖ exists for all q ∈ F. So {xn −q} is bounded in K. Since {kn} and {σ j+1 n } are bounded so it follows from (2.4) that {yn+j −q} are bounded for j = 0, 1, ..., r − 2. Since Tj is a nonself asymptotically nonexpansive mapping, we have ‖Tj(PTj) n−1yn+r−j−1 − q‖ ≤ k j n‖yn+r−j−1 − q‖ for j = 1, ..., r−1. Therefore the sequences {Tj(PTj) n−1yn+r−j−1 −q} are bounded for j = 1, ..., r−1. Therefore there exists D > 0 such that K ⊆ BD. From (1.9) and Lemma 1.3 we get ‖yn − q‖ 2 = ‖P((1 − a1nr − bnr)xn + a 1 nrTr(PTr) n−1xn + bnrunr) − Pq‖ 2 ≤ ‖(1 − a1nr − bnr)(xn − q) + a 1 nr(Tr(PTr) n−1xn − q) + bnr(unr − q)‖ 2 ≤ (1 − a1nr − bnr)‖xn − q‖ 2 + a1nr‖Tr(PTr) n−1xn − q‖ 2 + bnr‖unr − q‖ 2 − (1 − a1nr − bnr)a 1 nrg1(‖Tr(PTr) n−1xn − xn‖) ≤ (1 − a1nr)‖xn − q‖ 2 + a1nrk 2 n‖xn − q‖ 2 + bnrM 2 − (1 − a1nr − bnr)a 1 nrg1(‖Tr(PTr) n−1xn − xn‖) ≤ k2n‖xn − q‖ 2 + µ1n − a 1 nr(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖) (2.6) 154 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) where µ1n = bnrM 2 so that ∑ ∞ n=1 µ1n < ∞. From (1.9) and (2.6) and from Lemma 1.4 we get ‖yn+1 − q‖ 2 = ‖P[(1 − a1n(r−1) − a 2 n(r−1) − bn(r−1))xn + a 1 n(r−1)Tr−1(PTr−1) n−1yn + a2n(r−1)Tr−1(PTr−1) n−1xn + bn(r−1)un(r−1)] − Pq‖ 2 ≤ ‖(1 − a1n(r−1) − a 2 n(r−1) − bn(r−1))(xn − q) + a 1 n(r−1)(Tr−1(PTr−1) n−1yn − q) +a2n(r−1)(Tr−1(PTr−1) n−1xn − q) + bn(r−1)(un(r−1) − q)‖ 2 ≤ (1 − a1n(r−1) − a 2 n(r−1) − bn(r−1))‖xn − q‖ 2 + a1n(r−1)‖Tr−1(PTr−1) n−1yn − q‖ 2 +a2n(r−1)‖Tr−1(PTr−1) n−1xn − q‖ 2 + bn(r−1)‖un(r−1) − q‖ 2 −a1n(r−1)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(‖Tr−1(PTr−1) n−1yn − xn‖) ≤ (1 − a1n(r−1) − a 2 n(r−1) − bn(r−1))‖xn − q‖ 2 + a1n(r−1)k 2 n‖yn − q‖ 2 +a2n(r−1)k 2 n‖xn − q‖ 2 + bn(r−1)M 2 −a1n(r−1)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(‖Tr−1(PTr−1) n−1yn − xn‖) ≤ (1 − a1n(r−1) − a 2 n(r−1) − bn(r−1))‖xn − q‖ 2 + a1n(r−1)k 2 n[k 2 n‖xn − q‖ 2 + µ1n −a1nr(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖)] + a 2 n(r−1)k 2 n‖xn − q‖ 2 +bn(r−1)M 2 −a1n(r−1)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(‖Tr−1(PTr−1) n−1yn − xn‖) ≤ k4n‖xn − q‖ 2 + k2nµ 1 n + bn(r−1)M 2 −a1n(r−1)a 1 nr(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖) −a1n(r−1)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(‖Tr−1(PTr−1) n−1yn − xn‖) ≤ k4n‖xn − q‖ 2 + µ2n −a1n(r−1)a 1 nr(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖) −a1n(r−1)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(‖Tr−1(PTr−1) n−1yn − xn‖) (2.7) where µ2n = k 2 nµ 1 n + bn(r−1)M 2, so that ∑ ∞ n=1 µ2n < ∞. Proceeding in this way we have ‖yn+j − q‖ 2 ≤ k2(j+1)n ‖xn − q‖ 2 + µ(j+1)n − ( r∏ i=r−j a1ni)(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖) − ( r−1∏ i=r−j a1ni)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(‖Tr−1(PTr−1) n−1yn − xn‖) − .... − a1n(r−j)(1 − j+1∑ k=1 akn(r−j) − bn(r−j))gj+1(‖Tr−j(PTr−j) n−1yn+j−1 − xn‖) (2.8) for j = 1, 2, ..., r − 2 and {µ (j+1) n } is a nonnegative real sequence such that ∑ ∞ n=1 µ (j+1) n < ∞. Thus CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 155 we get ‖xn+1 − q‖ 2 ≤ k2rn ‖xn − q‖ 2 + µrn − ( r∏ i=1 a1ni)(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖) − ( r−1∏ i=1 a1ni)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(||Tr−1(PTr−1) n−1yn − xn||) −.... − a1n1a 1 n2(1 − r−1∑ k=1 akn2 − bn2)gr−1(‖T2(PT2) n−1yn+r−3 − xn‖) −a1n1(1 − r∑ k=1 akn1 − bn1)gr(‖T1(PT1) n−1yn+r−2 − xn‖) (2.9) where {µrn} is a nonnegative real sequence such that ∑ ∞ n=1 µrn < ∞. Since {kn} is bounded so there exists M1 > 0 such that kn ∈ [1, M1] for all n ≥ 1. Hence k 2r n − 1 ≤ 2rk 2r−1 n (kn − 1) ≤ 2rM2r−1 1 (kn − 1) holds for all n ≥ 1. So ∑ ∞ n=1 (kn − 1) < ∞ implies that ∑ ∞ n=1 (k2rn − 1) < ∞. Therefore from (2.9) we get ‖xn+1 − q‖ 2 ≤ ‖xn − q‖ 2 + (k2rn − 1)‖xn − q‖ 2 + µrn − ( r∏ i=1 a1ni)(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖) − ( r−1∏ i=1 a1ni)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(‖Tr−1(PTr−1) n−1yn − xn‖) −.... − a1n1a 1 n2(1 − r−1∑ k=1 akn2 − bn2)gr−1(‖T2(PT2) n−1yn+r−3 − xn‖) −a1n1(1 − r∑ k=1 akn1 − bn1)gr(‖T1(PT1) n−1yn+r−2 − xn‖) ≤ ‖xn − q‖ 2 + 2rM2r−11 (kn − 1)D 2 + µrn − ( r∏ i=1 a1ni)(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖) − ( r−1∏ i=1 a1ni)(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))g2(‖Tr−1(PTr−1) n−1yn − xn‖) −.... − a1n1a 1 n2(1 − r−1∑ k=1 akn2 − bn2)gr−1(‖T2(PT2) n−1yn+r−3 − xn‖) −a1n1(1 − r∑ k=1 akn1 − bn1)gr(‖T1(PT1) n−1yn+r−2 − xn‖) . (2.10) 156 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) From (2.10) we get ( r∏ i=1 a1ni)(1 − a 1 nr − bnr)g1(‖Tr(PTr) n−1xn − xn‖) ≤ ‖xn − q‖ 2 − ‖xn+1 − q‖ 2 + 2rM2r−1 1 (kn − 1)D 2 + µrn (2.11) and ( j∏ i=1 a1ni)(1 − r−j+1∑ k=1 aknj − bnj)gr−j+1(‖Tj(PTj) n−1yn+r−j−1 − xn‖) ≤ ‖xn − q‖ 2 − ‖xn+1 − q‖ 2 + 2rM2r−11 (kn − 1)D 2 + µrn (2.12) for j = 1, 2, ..., r−1. If lim infn→∞ a 1 ni > 0, for all i < r and 0 < lim infn→∞ a 1 nr ≤ lim supn→∞(a 1 nr+ bnr), then there exists a positive integer n0 and η, η ′ ∈ (0, 1) such that 0 < η < a1ni(i ∈ I), a1nr + bnr < η ′ < 1, for all n ≥ n0. Thus from (2.11) we get ηr(1 − η′)g1(‖Tr(PTr) n−1xn − xn‖) ≤ ‖xn − q‖ 2 − ‖xn+1 − q‖ 2 + 2rM2r−11 (kn − 1)D 2 +µrn, for all n ≥ n0 . This implies that ∞∑ n=n0 g1(‖Tr(PTr) n−1xn − xn‖) ≤ 1 ηr(1 − η′) (‖xn0 − q‖ 2 + 2rM2r−1 1 D2 ∞∑ n=n0 (kn − 1) + ∞∑ n=n0 µrn) < ∞ which further implies that limn→∞ g1(‖Tr(PTr) n−1xn − xn‖) = 0. Since g1 is strictly increasing and continuous with g1(0) = 0, so limn→∞ ‖Tr(PTr) n−1xn − xn‖ = 0. Similarly from (2.12) using the fact that gr−j+1 is strictly increasing and continuous with gr−j+1(0) = 0 we get limn→∞ ‖Tj(PTj) n−1yn+r−j−1 − xn‖ = 0 for j = 1, 2, ....., r − 1. ♦ Lemma 2.3. Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E which is also a nonexpansive retract of E. Let Ti : K → E(i ∈ I = {1, 2, ..., r}) be given nonself asymptotically nonexpansive mappings with sequences {kin} ⊂ [1, ∞) with ∑ ∞ n=1 (kin − 1) < ∞ for i ∈ I. Let {xn} be defined by (1.9) with ∑ ∞ n=1 bni < ∞ for i ∈ I. If F = ⋂r i=1 F(Ti) 6= ∅ and (1) 0 < lim infn→∞ a 1 nr ≤ lim supn→∞(a 1 nr + bnr) < 1 (2) 0 < lim infn→∞ a 1 nj ≤ lim supn→∞( ∑r−j+1 m=1 amnj + bnj) < 1, then limn→∞ ‖xn − Tixn‖ = 0 for i ∈ I. Proof: By Lemma 2.2 we get lim n→∞ ‖Tr(PTr) n−1xn − xn‖ = 0 and lim n→∞ ‖Tj(PTj) n−1yn+r−j−1 − xn‖ = 0 for j = 1, 2, ....., r − 1. (2.13) CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 157 Since P is nonexpansive mapping so from (1.9) together with (2.13) we have ‖yn − xn‖ ≤ a 1 nr‖Tr(PTr) n−1xn − xn‖ + bnr‖unr − xn‖ ≤ ‖Tr(PTr) n−1xn − xn‖ + bnr‖unr − xn‖ → 0 as n → ∞. (2.14) Since Tr−1 is nonself asymptotically nonexpansive mapping, from (2.13) and (2.14) we get ‖Tr−1(PTr−1) n−1xn − xn‖ ≤ ‖Tr−1(PTr−1) n−1xn − Tr−1(PTr−1) n−1yn‖ + ‖Tr−1(PTr−1) n−1yn − xn‖ ≤ kn‖yn − xn‖ + ‖Tr−1(PTr−1) n−1yn − xn‖ → 0 as n → ∞. (2.15) Again from (1.9), (2.13) and (2.15) it follows that ‖yn+1 − xn‖ ≤ a 1 n(r−1)‖Tr−1(PTr−1) n−1yn − xn‖ + a 2 n(r−1)‖Tr−1(PTr−1) n−1xn − xn‖ +bn(r−1)‖un(r−1) − xn‖ → 0 as n → ∞. (2.16) From (2.16) and (2.13) we have that ‖Tr−2(PTr−2) n−1xn − xn‖ ≤ ‖Tr−2(PTr−2) n−1xn − Tr−2(PTr−2) n−1yn+1‖ + ‖Tr−2(PTr−2) n−1yn+1 − xn‖ ≤ kn‖yn+1 − xn‖ + ‖Tr−2(PTr−2) n−1yn+1 − xn‖ → 0 as n → ∞. (2.17) Also from (2.17) and (2.14) we have that ‖Tr−2(PTr−2) n−1yn − xn‖ ≤ ‖Tr−2(PTr−2) n−1yn − Tr−2(PTr−2) n−1xn‖ + ‖Tr−2(PTr−2) n−1xn − xn‖ ≤ kn‖yn − xn‖ + ‖Tr−2(PTr−2) n−1xn − xn‖ → 0 as n → ∞ . (2.18) Continuing in this way we have that lim n→∞ ‖Tj(PTj) n−1yn+r−j−2 − xn‖ = 0 for j = 1, 2, ....., r − 2. (2.19) Again from (1.9), (2.13), (2.17) and (2.18) it follows that ‖yn+2 − xn‖ ≤ a 1 n(r−2)‖Tr−2(PTr−2) n−1yn+1 − xn‖ + a 2 n(r−2)‖Tr−2(PTr−2) n−1yn − xn‖ +a3n(r−2)‖Tr−2(PTr−2) n−1xn − xn‖ + bn(r−2)‖un(r−2) − xn‖ → 0 as n → ∞. (2.20) 158 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) From (2.20) and (2.13) we have that ‖Tr−3(PTr−3) n−1xn − xn‖ ≤ ‖Tr−3(PTr−3) n−1xn − Tr−3(PTr−3) n−1yn+2‖ + ‖Tr−3(PTr−3) n−1yn+2 − xn‖ ≤ kn‖yn+2 − xn‖ + ‖Tr−3(PTr−3) n−1yn+2 − xn‖ → 0 as n → ∞. (2.21) Thus from (2.21) and (2.14) it follows that ‖Tr−3(PTr−3) n−1yn − xn‖ ≤ ‖Tr−3(PTr−3) n−1yn − Tr−3(PTr−3) n−1xn‖ + ‖Tr−3(PTr−3) n−1xn − xn‖ ≤ kn‖yn − xn‖ + ‖Tr−3(PTr−3) n−1xn − xn‖ → 0 as n → ∞ . Continuing in this way we have that lim n→∞ ‖Tj(PTj) n−1yn+r−j−3 − xn‖ = 0 for j = 1, 2, ....., r − 3. Continuing in this way after a finite steps we have that lim n→∞ ‖Ti(PTi) n−1xn − xn‖ = 0, for i ∈ I, and lim n→∞ ‖Tj(PTj) n−1yn+r−j−k − xn‖ = 0 for j = 1, 2, ....., r − k. (2.22) From (1.9), (2.22) we have that ‖xn+1 − xn‖ = ‖P[(1 − r∑ k=1 akn1 − bn1)xn + r−1∑ k=1 akn1T1(PT1) n−1yn+r−1−k + arn1T1(PT1) n−1xn + bn1un1] − xn‖ ≤ r−1∑ k=1 akn1‖T1(PT1) n−1yn+r−1−k − xn‖ + a r n1‖T1(PT1) n−1xn − xn‖ +bn1‖un1 − xn‖ → 0 as n → ∞. (2.23) Since every nonself asymptotically nonexpansive mapping uniformly L-Lipschitzian, so from (2.22) and (2.23) we get ‖Ti(PTi) n−2xn − xn‖ ≤ ‖Ti(PTi) n−2xn − Ti(PTi) n−2xn−1‖ + ‖Ti(PTi) n−2xn−1 − xn−1‖ + ‖xn−1 − xn‖ ≤ (1 + L)‖xn − xn−1‖ + ‖Ti(PTi) n−2xn−1 − xn−1‖ → 0 as n → ∞. (2.24) Now from (2.22) and (2.24) it follows that ‖xn − Tixn‖ ≤ ‖xn − Ti(PTi) n−1xn‖ + ‖Ti(PTi) n−1xn − Tixn‖ ≤ ‖xn − Ti(PTi) n−1xn‖ + L‖Ti(PTi) n−2xn − xn‖ → 0 as n → ∞ . CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 159 Thus we have that limn→∞ ‖xn − Tixn‖ = 0 for i ∈ I.♦ Lemma 2.4. Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E which is also a nonexpansive retract of E which has a Frèchet differentiable norm. Let Ti : K → E(i ∈ I = {1, 2, ..., r}) be given nonself asymptotically nonexpansive mappings with sequences {kin} ⊂ [1, ∞) with ∑ ∞ n=1 (kin − 1) < ∞ for i ∈ I. Let {xn} be defined by (1.9) with∑ ∞ n=1 bni < ∞ for i ∈ I. If F = ⋂r i=1 F(Ti) 6= ∅ and (1) 0 < lim infn→∞ a 1 nr ≤ lim supn→∞(a 1 nr + bnr) < 1 (2) 0 < lim infn→∞ a 1 nj ≤ lim supn→∞( ∑r−j+1 m=1 amnj + bnj) < 1, then for any p1, p2 ∈ F, limn→∞ < xn, J(p1 − p2) > exists. In particular limn→∞ < p − q, J(p1 − p2) >= 0 for all p, q ∈ ww(xn). Proof: Since E has Frèchet differentiable norm, taking x = p1 − p2 with p1 6= p2 and h = t(xn − p1) in the inequality (1.11) we get that t < xn − p1, J(p1 − p2) > + 1 2 ‖p1 − p2‖ 2 ≤ 1 2 ‖txn + (1 − t)p1 − p2‖ 2 ≤ t < xn − p1, J(p1 − p2) > + 1 2 ‖p1 − p2‖ 2 + b(t‖xn − p1‖) . (2.25) Again p1 ∈ F, so by Lemma 2.1 we have that limn→∞ ‖xn − p1‖ exists. Let sup{‖xn − p1‖ : n ∈ N} ≤ M′ for some M′ > 0. Thus from (2.25) we get 1 2 ‖p1 − p2‖ 2 + lim sup n→∞ t < xn − p1, J(p1 − p2) >≤ 1 2 lim n→∞ ‖txn + (1 − t)p1 − p2‖ 2 ≤ 1 2 ‖p1 − p2‖ 2 + b(tM′) + lim inf n→∞ t < xn − p1, J(p1 − p2) > ⇒ lim sup n→∞ < xn − p1, J(p1 − p2) >≤ lim inf n→∞ < xn − p1, J(p1 − p2) > + b(tM′) tM′ M′ ⇒ lim n→∞ < xn − p1, J(p1 − p2) > exists as t → 0. In particular limn→∞ < p − q, J(p1 − p2) >= 0 for all p, q ∈ ww(xn). Lemma 2.5. Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E which is also a nonexpansive retract of E. Let Ti : K → E(i ∈ I = {1, 2, ..., r}) be given nonself asymptotically nonexpansive mappings with sequences {kin} ⊂ [1, ∞) with ∑ ∞ n=1 (kin − 1) < ∞ for i ∈ I. Let {xn} be defined by (1.9) with ∑ ∞ n=1 bni < ∞ for i ∈ I. If F = ⋂r i=1 F(Ti) 6= ∅ and (1) 0 < lim infn→∞ a 1 nr ≤ lim supn→∞(a 1 nr + bnr) < 1 (2) 0 < lim infn→∞ a 1 nj ≤ lim supn→∞( ∑r−j+1 m=1 amnj + bnj) < 1, then limn→∞ ‖txn + (1 − t)p1 − p2‖ exists for all p1, p2 ∈ F. 160 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) Proof: Let dn(t) = ‖txn + (1 − t)p1 − p2‖ for all t ∈ [0, 1] and p1, p2 ∈ F. Then limn→∞ dn(0) = ‖p1 − p2‖ exists and limn→∞ dn(1) = ‖xn − p2‖ exists by Lemma 2.1. De- fine Qn : K → E by Qnx = P[(1 − a 1 n1 − a 2 n1 − ..... − a r n1 − bn1)x + a 1 n1T1(PT1) n−1xr−2 + a2n1T1(PT1) n−1xr−3 + ..... + a r n1T1(PT1) n−1x + bn1un1] xr−2 = P[(1 − a 1 n2 − a 2 n2 − ..... − a r−1 n2 − bn2)x + a 1 n2T2(PT2) n−1xr−3 + a2n2T2(PT2) n−1xr−4 + ..... + a r−1 n2 T2(PT2) n−1x + bn2un2] . . . . x2 = P[(1 − a 1 n(r−2) − a 2 n(r−2) − a 3 n(r−2) − bn(r−2))x + a 1 n(r−2)Tr−2(PTr−2) n−1x1 +a2n(r−2)Tr−2(PTr−2) n−1x0 + a 3 n(r−2)Tr−2(PTr−2) n−1x + bn(r−2)un(r−2)] x1 = P[(1 − a 1 n(r−1) − a 2 n(r−1) − bn(r−1))x + a 1 n(r−1)Tr−1(PTr−1) n−1x0 + a2n(r−1)Tr−1(PTr−1) n−1x + bn(r−1)un(r−1)] x0 = P[(1 − a 1 nr − bnr)x + a 1 nrTr(PTr) n−1x + bnrunr] for all x ∈ K. Thus for all x, z ∈ K ‖x0 − z0‖ ≤ (1 − a 1 nr − bnr)‖x − z‖ + a 1 nr‖Tr(PTr) n−1x − Tr(PTr) n−1z‖ ≤ (1 − a1nr − bnr)‖x − z‖ + a 1 nrkn‖x − z‖ ≤ kn‖x − z‖ . Proceeding in this way we get ‖Qnx − Qnz‖ ≤ k r n‖x − z‖ = [1 + (k r n − 1)]‖x − z‖ . Set Sn,m = Qn+m−1Qn+m−2........Qn, m ≥ 1 and bn,m = ‖Sn,m(txn + (1 − t)p1) − (txn+m + (1 − t)p1)‖. Then ‖Sn,mx − Sn,my‖ ≤ ( n+m−1∏ j=n krj )‖x − y‖ = Hnmr‖x − y‖ where Hnmr = ( ∏n+m−1 j=n krj ) for n ≥ 1, Sn,mxn = xn+m and Sn,mp = p for all p ∈ F. From the facts ∑ ∞ n=1 (kn−1) < ∞ and 0 ≤ tr−1 ≤ rtr−1(t−1) for all t ≥ 1 we have that ∑ ∞ n=1 (krn−1) < ∞ CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 161 which in turn implies that Hnmr → 1 as n, m → ∞. Also we have that Sn,m is Lipschitzian with the lipschitz constant Hnmr. By Lemma 1.7 we have bn,m ≤ Hnmrφ −1(‖xn − p1‖ − H −1 nmr‖Sn,mxn − Sn,mp1‖) = Hnmrφ −1(‖xn − p1‖ − H −1 nmr‖xn+m − p1‖) . Now, dn+m(t) = ‖txn+m + (1 − t)p1 − p2‖ ≤ bn,m + ‖Sn,m(txn + (1 − t)p1) − p2‖ = bn,m + ‖Sn,m(txn + (1 − t)p1) − Sn,mp2‖ ≤ bn,m + Hnmr‖txn + (1 − t)p1 − p2‖ = bn,m + Hnmrdn(t) . It then follows from Lemma 2.1 that the sequence {bn,m} converges uniformly to 0 as n → ∞ for all m ≥ 1. Thus from above we get lim sup n→∞ dn(t) ≤ φ −1(0) + lim inf n→∞ dn(t) = lim inf n→∞ dn(t) . This completes the proof. Theorem 1. Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E which is also a nonexpansive retract of E. Let Ti : K → E(i ∈ I = {1, 2, ..., r}) be given nonself asymptotically nonexpansive mappings with sequences {kin} ⊂ [1, ∞) with ∑ ∞ n=1 (kin − 1) < ∞ for i ∈ I. Let {xn} be defined by (1.9) with ∑ ∞ n=1 bni < ∞ for i ∈ I. Let F = ⋂r i=1 F(Ti) 6= ∅ and (1) 0 < lim infn→∞ a 1 nr ≤ lim supn→∞(a 1 nr + bnr) < 1 (2) 0 < lim infn→∞ a 1 nj ≤ lim supn→∞( ∑r−j+1 m=1 amnj + bnj) < 1. Assume that any one of the following conditions holds: (1)E satisfies Opial’s property (2)E has a Frechet differentiable norm (3)E⋆ has the Kadec-Klee property then {xn} converges weakly to some common fixed point of {Ti}, i ∈ I. Proof: Since F 6= ∅, so let q ∈ F. Then by Lemma 2.1 limn→∞ ‖xn − q‖ exists and so {xn} is bounded. Since E be a uniformly convex Banach space so {xn} has a subsequence {xnj} which is weakly convergent to p ∈ K (say). From Lemma 2.3 we get limn→∞ ‖xn − Tixn‖ = 0 for i ∈ I. By Lemma 1.5 we have Ti is demiclosed at 0 so p ∈ F(Ti) for all i ∈ I. Then p ∈ F. If possible let {xn} has another subsequence {xnk} which converges weakly to another point q ∈ K. Then by similar 162 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) argument as above we have that q ∈ F(T). Let (1) hold. Then by Opial’s property we have ‖xn − p‖ = lim sup j→∞ ‖xnj − p‖ < lim sup j→∞ ‖xnj − q‖ = lim n→∞ ‖xn − q‖ = lim sup k→∞ ‖xnk − q‖ < lim sup k→∞ ‖xnk − p‖ = lim n→∞ ‖xn − p‖ a contradiction. So p = q. Let (2) hold. Then from Lemma 2.4 we get limn→∞ < p − q, J(p1 − p2) >= 0 for all p, q ∈ ww(xn) and p1, p2 ∈ F. Since p, q ∈ F also so from above we get < p − q, J(p − q) >= 0, that is, ‖p − q‖2 = 0 which implies that p = q. Let (3) hold. Then from Lemma 2.5 we get limn→∞ ‖txn + (1 − t)p − q‖ exists, so by Lemma 1.6 we have that p = q. So {xn} converges weakly to some common fixed point of {Ti}, i ∈ I. This completes the proof of the Theorem. ♦ Condition(A)[14] A mapping T : K → E with nonempty fixed point set F(T) in K satisfies Condition (A) if there is a nondecreasing function f : [0, ∞) → [0, ∞) with f(0) = 0 and f(m) > 0 for all m ∈ (0, ∞) such that f(d(x, F(T))) ≤ ‖x − Tx‖ for all x ∈ K . A finite family of mappings Ti : K → E, for all i = 1, 2, 3, ..., r with nonempty fixed point set F = ⋂r i=1 F(Ti) 6= ∅ satisfies (i) Condition(A)[4] if there is a nondecreasing function f : [0, ∞) → [0, ∞) with f(0) = 0 and f(m) > 0 for all m ∈ (0, ∞) such that f(d(x, F)) ≤ 1 r ( r∑ i=1 ‖x − Tix‖) for all x ∈ K (ii) Condition(B)[4] if there is a nondecreasing function f : [0, ∞) → [0, ∞) with f(0) = 0 and f(m) > 0 for all m ∈ (0, ∞) such that f(d(x, F)) ≤ max 1≤i≤r {‖x − Tix‖} for all x ∈ K (iii) Condition(C)[4] if there is a nondecreasing function f : [0, ∞) → [0, ∞) with f(0) = 0 and f(m) > 0 for all m ∈ (0, ∞) such that at least one of the Ti’s satisfies condition(A). Clearly if Ti = T, for all i = 1, 2, 3, ..., r, then Condition(A) reduces to Condition(A). Also Condition(B) reduces to Condition(A) if all but one of Ti’s are identities. Also it contains Condition(A). Furthermore Condition(C) and Condition(B) are equivalent. Tan and Xu [18] pointed out that the Condition(A) is weaker than the compactness of K. It is well known that every continuous and demicompact mapping must satisfy Condition(A) [14]. Since every completely continuous map- ping is continuous and demicompact so it must satisfy Condition(A). Also Condition(B) contains CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 163 Condition(A) therefore to study the strong convergence of the iterative sequence {xn} be defined by (1.9) we use Condition(B) instead of the complete continuity of the mappings {T1, T2, ...., Tr} and Condition(A). Theorem 2. Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E which is also a nonexpansive retract of E. Let Ti : K → E(i ∈ I = {1, 2, ..., r}) be given nonself asymptotically nonexpansive mappings with sequences {kin} ⊂ [1, ∞) with ∑ ∞ n=1 (kin − 1) < ∞ for i ∈ I. Let {xn} be defined by (1.9) with ∑ ∞ n=1 bni < ∞ for i ∈ I. Let F = ⋂r i=1 F(Ti) 6= ∅ and (1) 0 < lim infn→∞ a 1 nr ≤ lim supn→∞(a 1 nr + bnr) < 1 (2) 0 < lim infn→∞ a 1 nj ≤ lim supn→∞( ∑r−j+1 m=1 amnj + bnj) < 1. If the family of mappings {T1, T2, ...., Tr} satisfy Condition(B), then {xn} converges strongly to some common fixed point of {T1, T2, ...., Tr}. Proof: Let q ∈ F then by Lemma 2.1 limn→∞ ‖xn − q‖ exists. Let limn→∞ ‖xn − q‖ = a, for some a ≥ 0. Let a > 0. Now from (2.5) we get ‖xn+1 − q‖ ≤ [1 + (k r n − 1)]‖xn − q‖ + σ r n = [1 + δn]‖xn − q‖ + σ r n (2.26) where {σrn} is a nonnegative real sequence such that ∑ ∞ n=1 σrn < ∞ and δn = k r n − 1 such that∑ ∞ n=1 δn < ∞. So d(xn+1, F) ≤ (1 + δn)d(xn, F) + σ r n . By Lemma 1.1 we have that limn→∞ d(xn, F) exists. By Condition (B) and Lemma 2.3 we get, lim n→∞ f(d(xn, F)) = 0. Since f : [0, ∞) → [0, ∞) is a nondecreasing function with f(0) = 0 so we have limn→∞ d(xn, F) = 0. Since limn→∞ ‖xn −q‖ exists, it follows that {‖xn −q‖} is bounded, so there exists M′′ > 0 such that ‖xn − q‖ ≤ M ′′. From (2.26) we get ‖xn+1 − q‖ ≤ ‖xn − q‖ + δnM ′′ + σrn = ‖xn − q‖ + θn where θn = δnM ′′ + σrn. Now ∑ ∞ n=1 θn < ∞. Now for any m > 1 we have that ‖xn+m − q‖ ≤ ‖xn+m−1 − q‖ + θn+m−1 ≤ ‖xn+m−2 − q‖ + θn+m−2 + θn+m−1 · · · · · · · · · · · · · · · · · · · · · · · · · · · ≤ ‖xn − q‖ + n+m−1∑ k=n θk . 164 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) Since ∑ ∞ n=1 θn < ∞ and limn→∞ d(xn, F) = 0, there exists N1 ∈ N such that for all n ≥ N1 we have d(xn, F) < ǫ 3 and ∑ ∞ n=N1 θn < ǫ 6 . Therefore there exists x ∈ F such that ||xN1 − x|| < ǫ 3 . Therefore we have ||xn+m − xn|| ≤ ||xn+m − x|| + ||xn − x|| < ||xN1 − x|| + n+m−1∑ k=N1 θk + ||xN1 − x|| + n−1∑ k=N1 θk < ǫ 3 + ǫ 6 + ǫ 3 + ǫ 6 = ǫ (2.27) , .nonumber (2.28) Hence {xn} is a Cauchy sequence. Since E is complete so xn → p ∈ E, so for given ǫ > 0 there exists n1 ∈ N such that for all n ≥ n1, ‖xn − p‖ ≤ ǫ 2(1+k1) . Again since limn→∞ d(xn, F) = 0, so for given ǫ > 0 there exists n2 ∈ N such that for all n ≥ n2(≥ n1), d(xn, F) < ǫ 2(1+k1) . so there exists p ∈ F such that ‖xn2 − p‖ ≤ ǫ 2(1+k1) . Therefore ‖p − Tip‖ = ‖p − xn2 + xn2 − p + p − Tip‖ ≤ ‖p − xn2‖ + ‖xn2 − p‖ + ‖p − Tip‖ = ‖p − xn2‖ + ‖xn2 − p‖ + ‖Tip − Tip‖ ≤ ‖p − xn2‖ + ‖xn2 − p‖ + k1‖p − p‖ ≤ (1 + k1)‖p − xn2‖ + (1 + k1)‖xn2 − p‖ ≤ (1 + k1) ǫ 2(1 + k1) + (1 + k1) ǫ 2(1 + k1) = ǫ . Since ǫ is arbitrary so we have Tip = p for all i ∈ I. So p ∈ F(Ti) for all i ∈ I. Thus p ∈ F. Hence {xn} converges strongly to some common fixed point of {T1, T2, ...., Tr}. Remark 2.6. Theorem 1 and Theorem 2 extends and generalize Theorem 2.1 and Theorem 2.5 of [20]. ACKNOWLEDGEMENT This work is supported by Council of Scientific and Industrial Research(CSIR), Government of India . Received: December 2011. Revised: September 2012. References [1] R.E.Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J.Math. 32(1979),107-116. CUBO 14, 3 (2012) Weak and strong convergence theorems of a multistep ... 165 [2] C.E.Chidume, E.U.Ofoedu, H.Zegeye, Strong and weak convergence theorems for asymptoti- cally nonexpansive mappings, J. Math. Anal. Appl. 280(2003)364-374. [3] C.E.Chidume, Bashir Ali, Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 326(2007)960- 973. [4] C.E.Chidume, Bashir Ali, Weak and strong convergence theorems for finite families of asymp- totically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 330(2007)377-387. [5] Y.J.Cho, H.Y.Zhou, G.Guo; Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47(2004)707-717. [6] J.G.Falset, W.Kaczor, T.Kuczumow, S.Reich, Weak convrgence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal.43(2001)377-401. [7] K.Goebel and W.A.Kirk; A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), 171-174. [8] S.Ishikawa; Fixed points by a new iteration, Proc. Amer. Math. Soc. 44(1974), 147-150. [9] J.U.Jeong, S.H.Kim, Weak and strong convergence of the Ishikawa iteration process with errors for two asymptotically nonexpansive mappings, Appl. Math. Comp. 181(2006)1394-1401. [10] W.Kaczor, Weak convergence of almost orbits of asymptotically nonexpansive mappings, J.Math.Anal.Appl. 272(2002)565-574. [11] W.R.Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953),506-510. [12] Z.Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967)591-597. [13] M.O.Osilike, A.Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder-Petryshyn type, J. Math. Anal. Appl. 256(2001)431- 445. [14] H.F.Senter and W.G.Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44,375-380,(1974). [15] N.Shahzad, Approximating fixed points of nonself nonexpansive mappings in Banach spaces, Nonlinear Anal.61(2005)1031-1039. [16] S.Y.Matsushita, D.Kuroiwa, Strong convergence of averaging iteration of nonexpansive nonself-mappings, J. Math. Anal. Appl. 294(2004)206-214. [17] W.Takahashi, G.E.Kim, Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces, Nonlinear Anal.3(32)(1998)447-454. 166 Shrabani Banerjee and Binayak S.Choudhury CUBO 14, 3 (2012) [18] K.K.Tan, H.K.Xu, Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. Math. Anal. Appl. 178(1993)301-308. [19] L.Wang, Strong and weak convergence theorems for common fixed points of nonself asymp- totically nonexpansive mappings, J. Math. Anal. Appl. 323(2006)550-557. [20] L.Yang, Modified multistep iterative for some common fixed point of a finite family of nonself asymptotically nonexpansive mappings, Math. Comput. Modelling 45(2007)1157-1169. [21] H.K.Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16(1991) 1127-1138.