CUBO A Mathematical Journal Vol.14, No¯ 01, (01–07). March 2012 Univariate right fractional Ostrowski inequalities George A. Anastassiou University of Memphis, Department of Mathematical Sciences, Memphis, TN 38152, U.S.A. email: ganastss@memphis.edu ABSTRACT Very general univariate right Caputo fractional Ostrowski inequalities are presented. One of them is proved sharp and attained. Estimates are with respect to ‖·‖ p , 1 ≤ p ≤ ∞. RESUMEN Se presenta de manera muy general desigualdades univariadas derechas de Caputo fraccionarias de Ostrowski. Se prueba que una de ellas es aguda Las estimaciones con respecto a ‖·‖ p , 1 ≤ p ≤ ∞. Keywords and Phrases: Ostrowski inequality, right Caputo fractional derivative. 2010 AMS Mathematics Subject Classification: 26A33, 26D10, 26D15. 2 George A. Anastassiou CUBO 14, 1 (2012) 1 Introduction In 1938, A. Ostrowski [7] proved the following important inequality: Theorem 1. Let f : [a,b] → R be continuous on [a,b] and differentiable on (a,b) whose derivative f′ : (a,b) → R is bounded on (a,b), i.e., ‖f′‖∞ := sup t∈(a,b) |f′ (t)| < +∞. Then ∣∣∣∣∣ 1b − a ∫b a f(t)dt − f(x) ∣∣∣∣∣ ≤ [ 1 4 + ( x − a+b 2 )2 (b − a) 2 ] · (b − a)‖f′‖∞ , (1) for any x ∈ [a,b]. The constant 1 4 is the best possible. Since then there has been a lot of activity around these inequalities with important applications to Numerical Analysis and Probability. This paper is greatly motivated and inspired also by the following result. Theorem 2. (see [1]) Let f ∈ Cn+1 ([a,b]), n ∈ N and x ∈ [a,b] be fixed, such that f(k) (x) = 0, k = 1, ...,n. Then it holds∣∣∣∣∣ 1b − a ∫b a f(y)dy − f(x) ∣∣∣∣∣ ≤ ∥∥f(n+1)∥∥∞ (n + 2) ! · ( (x − a) n+2 + (b − x) n+2 b − a ) . (2) Inequality (2) is sharp. In particular, when n is odd is attained by f∗ (y) := (y − x) n+1 · (b − a), while when n is even the optimal function is f(y) := |y − x| n+α · (b − a) , α > 1. Clearly inequality (2) generalizes inequality (1) for higher order derivatives of f. Also in [2], see Chapters 24-26, we presented a complete theory of left fractional Ostrowski inequalities. 2 Main Results We need Definition 3. ([3], [4], [5], [6], [8]) Let f ∈ L1 ([a,b]), α > 0. The right Riemann-Liouville fractional operator of order α by Iαb−f(x) = 1 Γ (α) ∫b x (J − x) α−1 f(J)dJ, (3) ∀ x ∈ [a,b], where Γ is the gamma function. We set I0b− := I (the identity operator). Definition 4. ([3], [4], [5], [6], [8]) Let f ∈ ACm ([a,b]) (f(m−1) is in AC([a,b])), m ∈ N, m = dαe, α > 0 (d·e the ceiling of the number). We define the right Caputo fractional derivative of order α > 0, by Dαb−f(x) = (−1) m Γ (m − α) ∫b x (J − x) m−α−1 f(m) (J)dJ, ∀ x ≤ b. (4) CUBO 14, 1 (2012) Univariate right fractional Ostrowski inequalities 3 If α = m ∈ N, then Dmb−f(x) = (−1) m f(m) (x) , ∀ x ∈ [a,b] . If x > b we define Dαb−f(x) = 0. We also need Theorem 5. ([3]) Let f ∈ ACm ([a,b]), x ∈ [a,b], α > 0, m = dαe. Then f(x) = m−1∑ k=0 f(k) (b) k! (x − b) k + 1 Γ (α) ∫b x (J − x) α−1 Dαb−f(J)dJ, (5) the right Caputo fractional Taylor formula with integral remainder. We present Theorem 6. Let α > 0, m = dαe, f ∈ ACm ([a,b]). Assume f(k) (b) = 0, k = 1, ...,m − 1, and Dαb−f ∈ L∞ ([a,b]). Then∣∣∣∣∣ 1b − a ∫b a f(x)dx − f(b) ∣∣∣∣∣ ≤ ∥∥Dαb−f∥∥∞,[a,b] Γ (α + 2) (b − a) α . (6) Proof. Let x ∈ [a,b]. We have f(x) − f(b) = 1 Γ (α) ∫b x (J − x) α−1 Dαb−f(J)dJ. Then |f(x) − f(b)| ≤ 1 Γ (α) ∫b x (J − x) α−1 ∣∣Dαb−f(J)∣∣dJ ≤ 1 Γ (α) (∫b x (J − x) α−1 dJ )∥∥Dαb−f∥∥∞,[a,b] = 1 Γ (α) ( (J − x) α α ∣∣∣∣b x )∥∥Dαb−f∥∥∞,[a,b] = 1 Γ (α + 1) (b − x) α ∥∥Dαb−f∥∥∞,[a,b] . Therefore |f(x) − f(b)| ≤ (b − x) α Γ (α + 1) ∥∥Dαb−f∥∥∞,[a,b] , ∀ x ∈ [a,b] . Hence it holds ∣∣∣∣∣ 1b − a ∫b a f(x)dx − f(b) ∣∣∣∣∣ = ∣∣∣∣∣ 1b − a ∫b a (f(x) − f(b))dx ∣∣∣∣∣ ≤ 1 b − a ∫b a |f(x) − f(b)|dx ≤ 1 b − a ∫b a (b − x) α Γ (α + 1) ∥∥Dαb−f∥∥∞,[a,b] dx 4 George A. Anastassiou CUBO 14, 1 (2012) = ∥∥Dαb−f∥∥∞,[a,b] (b − a)Γ (α + 1) ∫b a (b − x) α dx = ∥∥Dαb−f∥∥∞,[a,b] (b − a)Γ (α + 1)  −   (b − x)α+1 α + 1 ∣∣∣∣∣ b a     = ∥∥Dαb−f∥∥∞,[a,b] (b − a)Γ (α + 1) (−1) ( 0 − (b − a) α+1 α + 1 ) = ∥∥Dαb−f∥∥∞,[a,b] (b − a)Γ (α + 2) · (b − a)α+1 = ∥∥Dαb−f∥∥∞,[a,b] · (b − a)α Γ (α + 2) , proving the claim. We also give Theorem 7. Let α ≥ 1, m = dαe, f ∈ ACm ([a,b]). Assume that f(k) (b) = 0, k = 1, ...,m−1, and Dαb−f ∈ L1 ([a,b]). Then∣∣∣∣∣ 1b − a ∫b a f(x)dx − f(b) ∣∣∣∣∣ ≤ ∥∥Dαb−f∥∥L1([a,b]) Γ (α + 1) (b − a) α−1 . (7) Proof. We have again |f(x) − f(b)| ≤ 1 Γ (α) ∫b x (J − x) α−1 ∣∣Dαb−f(J)∣∣dJ ≤ 1 Γ (α) (b − x) α−1 ∫b x ∣∣Dαb−f(J)∣∣dJ ≤ 1 Γ (α) (b − x) α−1 ∥∥Dαb−f∥∥L1([a,b]) . Hence |f(x) − f(b)| ≤ ∥∥Dαb−f∥∥L1([a,b]) Γ (α) (b − x) α−1 , ∀ x ∈ [a,b] . Therefore ∣∣∣∣∣ 1b − a ∫b a f(x)dx − f(b) ∣∣∣∣∣ ≤ 1b − a ∫b a |f(x) − f(b)|dx ≤ 1 b − a ∫b a ∥∥Dαb−f∥∥L1([a,b]) Γ (α) (b − x) α−1 dx = ∥∥Dαb−f∥∥L1([a,b]) (b − a)Γ (α) ∫b a (b − x) α−1 dx = ∥∥Dαb−f∥∥L1([a,b]) (b − a)Γ (α) (b − x) α α = ∥∥Dαb−f∥∥L1([a,b]) Γ (α + 1) (b − x) α−1 , proving the claim. CUBO 14, 1 (2012) Univariate right fractional Ostrowski inequalities 5 We continue with Theorem 8. Let p,q > 1 : 1 p + 1 q = 1, α > 1 − 1 p , m = dαe, f ∈ ACm ([a,b]). Assume that f(k) (b) = 0, k = 1, ...,m − 1, and Dαb−f ∈ Lq ([a,b]). Then∣∣∣∣∣ 1b − a ∫b a f(x)dx − f(b) ∣∣∣∣∣ ≤ ∥∥Dαb−f∥∥Lq([a,b]) Γ (α) (p(α − 1) + 1) 1 p ( α + 1 p ) (b − a)α−1+ 1p . (8) Proof. We have again |f(x) − f(b)| ≤ 1 Γ (α) ∫b x (J − x) α−1 ∣∣Dαb−f(J)∣∣dJ ≤ 1 Γ (α) (∫b x (J − x) p(α−1) dJ )1 p (∫b x ∣∣Dαb−f(J)∣∣q dJ )1 q ≤ 1 Γ (α) (b − x) (α−1)+ 1 p (p(α − 1) + 1) 1 p (∫b x ∣∣Dαb−f(J)∣∣q dJ )1 q ≤ 1 Γ (α) (b − x) (α−1)+ 1 p (p(α − 1) + 1) 1 p ∥∥Dαb−f∥∥Lq([a,b]) . Therefore |f(x) − f(b)| ≤ ∥∥Dαb−f∥∥Lq([a,b]) Γ (α) (p(α − 1) + 1) 1 p (b − x) α−1+ 1 p , ∀ x ∈ [a,b] . Hence ∣∣∣∣∣ 1b − a ∫b a f(x)dx − f(b) ∣∣∣∣∣ ≤ 1b − a ∫b a |f(x) − f(b)|dx ≤ ∥∥Dαb−f∥∥Lq([a,b]) (b − a)Γ (α) (p(α − 1) + 1) 1 p ∫b a (b − x) α−1+ 1 p dx = ∥∥Dαb−f∥∥Lq([a,b]) Γ (α) (p(α − 1) + 1) 1 p (b − a) α−1+ 1 p( α + 1 p ) . Corollary 9. Let α > 1 2 , m = dαe, f ∈ ACm ([a,b]). Assume f(k) (b) = 0, k = 1, ...,m − 1, Dαb−f ∈ L2 ([a,b]). Then∣∣∣∣∣ 1b − a ∫b a f(x)dx − f(b) ∣∣∣∣∣ ≤ ∥∥Dαb−f∥∥L2([a,b]) Γ (α) (√ 2α − 1 )( α + 1 2 ) (b − a)α− 12 . (9) We finish with 6 George A. Anastassiou CUBO 14, 1 (2012) Proposition 10. Inequality (6) is sharp, namely it is attained by f(x) = (b − x) α , α > 0, α /∈ N, x ∈ [a,b] . Proof. Notice that (b − x) α ∈ ACm ([a,b]). We see that f′ (x) = −α(b − x) α−1 , f′′ (x) = (−1) 2 α(α − 1) (b − x) α−2 , ..., f(m−1) (x) = (−1) m−1 α(α − 1) (α − 2) ...(α − m + 2) (b − x) α−m+1 , and f(m) (x) = (−1) m α(α − 1) (α − 2) ...(α − m + 2) (α − m + 1) (b − x) α−m . Thus Dαb−f(x) = (−1) 2m Γ (m − α) α(α − 1) ...(α − m + 1) ∫b x (J − x) m−α−1 (b − J) α−m dJ = α(α − 1) ...(α − m + 1) Γ (m − α) ∫b x (b − J) (α−m+1)−1 (J − x) (m−α)−1 dJ = α(α − 1) ...(α − m + 1) Γ (m − α) Γ (α − m + 1)Γ (m − α) Γ (1) = α(α − 1) ...(α − m + 1)Γ (α − m + 1) = Γ (α + 1) . That is Dαb−f(x) = Γ (α + 1) , ∀ x ∈ [a,b] . Also we see that f(k) (b) = 0, k = 0,1, ...,m−1, and Dαb−f ∈ L∞ ([a,b]). So f fulfills all assumptions. Next we see R.H.S.(6) = Γ (α + 1) Γ (α + 2) (b − a) α = (b − a) α (α + 1) . L.H.S.(6) = 1 b − a ∫b a (b − x) α dx = 1 b − a (b − a) α+1 (α + 1) = (b − a) α α + 1 , proving attainability and sharpness of (6). Received: November 2010. Revised: March 2011. CUBO 14, 1 (2012) Univariate right fractional Ostrowski inequalities 7 References [1] G.A. Anastassiou, Ostrowski type inequalities, Proc. AMS 123 (1995), 3775-3781. [2] G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009. [3] G.A. Anastassiou, On Right Fractional Calculus, Chaos, Solitons and Fractals, 42 (2009), 365- 376. [4] A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic Journal of Theoretical Physics, Vol. 3, No. 12 (2006), 81-95. [5] G.S. Frederico, D.F.M. Torres, Fractional Optimal Control in the sense of Caputo and the fractional Noether’s theorem, International Mathematical Forum, Vol. 3, No. 10 (2008), 479- 493. [6] R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus, 2000, Maphysto Center, http://www.maphysto.dk/oldpages/events/LevyCAC2000/ MainardiNotes/fm2k0a.ps. [7] A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funcktion von ihrem Inte- gralmittelwert, Comment. Math. Helv., 10 (1938), 226-227. [8] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Ap- plications, (Gordon and Breach, Amsterdam, 1993) [English translation from the Russian, In- tegrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)]. Introduction Main Results