CUBO A Mathematical Journal Vol.14, No¯ 01, (119–125). March 2012 Majorization for certain classes of analytic functions defined by a new operator E. A. Eljamal and M. Darus School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 Selangor D. Ehsan, Malaysia. email: n-ebtisam@yahoo.com , maslina@ukm.my ABSTRACT In the present paper, we investigate the majorization properties for certain classes of multivalent analytic functions defined by a new operator. Moreover, we pointed out some new and known consequences of our main result. RESUMEN En el presente art́ıculo, investigamos las propiedades de mayorización para ciertas clases de funciones anaĺıticas multivalentes definidas por un nuevo operador. Además, resalta- mos algunas consecuencias -nuevas y conocidas- de nuestro resultado princresultado. Keywords and Phrases: Majorization properties, multivalent functions, Ruscheweyh derivative operator, Hadamard product. 2010 AMS Mathematics Subject Classification: 30C45. 120 E. A. Eljamal and M. Darus CUBO 14, 1 (2012) 1 Introduction Let f and g be analytic in the open unit disk U = {z : z ∈ C, |z| < 1}. We say that f is majorized by g in U and write f(z) � g(z) (z ∈ U) (1.1) if there exists a function ϕ, analytic in U such that |ϕ(z)| ≤ 1 and f(z) = ϕ(z)g(z) (z ∈ U). (1.2) It maybe noted here that (1.1) is closely related to the concept of quasi-subordination between analytic functions. Let Ap denote the class of functions of the form f(z) = zp + ∞∑ k=p+1 akz k,(p ∈ N = {1,2, ...}), (1.3) which are analytic and multivalent in the open unit disk U. In particular, if p = 1, thenA1 = A. For functions fj ∈ Ap given by fj(z) = z p + ∞∑ k=p+1 ak,jz k,(j = 1,2;p ∈ N), (1.4) we define the Hadamard product or convolution of two functions f1 and f2 by f1 ∗ f2(z) = zp + ∞∑ k=p+1 ak1,ak2z k = (f2 ∗ f1)(z). (1.5) . Definition 1.1. Let the function f be in the class Ap. Ruscheweyh derivative operator is given by Rn = zp + ∞∑ k=p+1 C(k,n)akz k. (1.6) Next we define the following differential operator, D0 = f(z) = zp + ∞∑ k=p+1 akz k D1n,λ1,λ2,p = D 0f(z) p − pλ1 + λ2(k − p) p + λ2(k − p) + (D0f(z))′ zλ1 p + λ2(k − p) = zp + Σ∞k=p+1 [ p + (λ1 + λ2)(k − p) p + λ2(k − p) ] akz k, and D2n,λ1,λ2,p = D 1 n,λ1,λ2,p f(z) p − pλ1 + λ2(k − p) p + λ2(k − p) + (D1n,λ1,λ2,pf(z)) ′ zλ1 p + λ2(k − p) CUBO 14, 1 (2012) Majorization for certain classes of analytic functions . . . 121 = zp + Σ∞k=p+1 [ p + (λ1 + λ2)(k − p) p + λ2(k − p) ]2 akzk. In general, Dmn,λ1,λ2,pf(z) = D(D n−1f(z) = zp + Σ∞k=p+1 [ p + (λ1 + λ2)(k − p) p + λ2(k − p) ]m akz k (1.7) where (m,n ∈ N0 = N ∪ {0},λ2 ≥ λ1 ≥ 0). By applying convolution product on (1.6) and (1.7) we have the following operator Dmn,λ1,λ2,pf(z) = z p + Σ∞k=p+1 [ p + (λ1 + λ2)(k − p) p + λ2(k − p) ]m C(k,n)akz k, (1.8) where C(k,n) = Γ(k+n) Γ(k) . Moreover, for m,n ∈ N0, λ2 ≥ λ1 ≥ 0 (p + λ2(k − p))D m,n λ1,λ2,p f(z) = (p + λ2(k − p) − pλ1)D m,n λ1,λ2,p f(z) + λ1z(D m,n λ1,λ2,p f(z))′ (1.9) Special cases of this operator include: • the Ruscheweyh derivative operator in the case D0,n0,0,1f(z) ≡ R n [6], • the Salagean derivative operator in the case Dm,01,0,1f(z) ≡ D m ≡ Sn [2], • the generalized Salagean derivative operator introduced by Al-Oboudi in the case Dm,0λ1,0,1f(z) ≡ Dmλ1[1], • the generalized Ruscheweyh derivative operator in the case D1,nλ1,0,1f(z) ≡ D λ1 n [3], and • the generalized Al-Shaqsi and Darus derivative operator in the caseDm,nλ1,0,1f(z) ≡ D m,λ1 n [4]. To further our work, we need to define a class of functions as follows: Definition 1.2. A function f ∈ Ap is said to be in the class S m,p,j λ1,λ2,n [A,B,γ] of p-valent functions of complex order γ 6= 0 in U if and only if{ 1 + 1 γ ( z(Dm,nλ1,λ2,pf(z)) (j+1) (Dm,n λ1,λ2,p f(z))(j) − p + j )} ≺ 1 + Az 1 + Bz . (1.10) (z ∈ U,p ∈ N, j ∈ N0 = N ∪ {0},γ ∈ C − {0},λ2 ≥ λ1 ≥ 0). Clearly, we have the following relationships: (i) S0,1,00,0,0[1,−1,γ] = S(γ) 122 E. A. Eljamal and M. Darus CUBO 14, 1 (2012) (ii) S0,1,10,0,0[1,−1,γ] = K(γ) (iii) S0,1,00,0,0[1,−1,1 − α] = S ∗ for 0 < α < 1. The classes S(γ) and K(γ) are said to be classes of starlike and convex of complex order γ 6= 0 in U and S∗(α) denote the class of starlike functions of order α in U. A majorization problem for the class S(γ) has been investigated by Altintas e.tal [5] and for the class S∗=S∗(0) has been investigated by MacGregor [7]. In the present paper, we investigate a majorization problem for the class S m,p,j λ1,λ2,α [A,B,γ]. 2 Majorization problem for the class S m,p,j λ1,λ2,n [A,B,γ] Theorem 2.1. Let the function f ∈ Ap and suppose that g ∈ S m,p,j λ1,λ2,n [A,B,γ]. If (Dm,nλ1,λ2,pf(z)) (j) is majorized by (Dm,nλ1,λ2,pg(z)) (j) in U, then∣∣∣(Dm+1,nλ1,λ2,pf(z))(j)∣∣∣ ≤ ∣∣∣(Dm,nλ1,λ2,pg(z))(j)∣∣∣ for |z| ≤ r0, (2.1) where r0 = r0(p,γ,λ1,λ2,A,B) is the smallest positive root of the equation r3 ∣∣∣∣γ(A − B) − ( p + λ2(k − p) λ1 ) B ∣∣∣∣ − [ p + λ2(k − p) λ1 + 2|B| ] r2− [∣∣∣∣γ(A − B) − (p + λ2(k − p)λ1 )B ∣∣∣∣ + 2 ] r + ( p + λ2(k − p) λ1 ) = 0, (2.2) (−1 ≤ B < A ≤ 1;P ∈ N;γ ∈ C − {0}). Proof. Since g ∈ Sm,p,j λ1,λ2,n [A,B,γ] we find from (1.10) that 1 + 1 γ ( z(Dm,nλ1,λ2,pg(z)) (j+1) (Dm,n λ1,λ2,p g(z))(j) − p + j ) = 1 + Aw(z) 1 + Bw(z) (2.3) (γ ∈ C − 0,j,p ∈ N and p > j), where w is analytic in U with w(0) = 0 and |w(z)| < z (z ∈ U). From (2.3) we get z(Dm,nλ1,λ2,pg(z)) (j+1) (Dm,n λ1,λ2,p g(z))(j) = (p − j) + [γ(A − B) + (p − j)B]w(z) 1 + Bw(z) (2.4) and z(Dm,nλ1,λ2,pf(z)) (j+1) = (p + λ2(k − p) λ1 )(Dm+1,nλ1,λ2,pf(z)) (j)+ CUBO 14, 1 (2012) Majorization for certain classes of analytic functions . . . 123 (p − j − λ2(k − p) λ1 )(Dm,nλ1,λ2,pf(z)) (j). (2.5) By virtue of (2.4) and (2.5) we get ∣∣∣(Dm,nλ1,λ2,pg(z))(j)∣∣∣ ≤ p+λ2(k−p) λ1 [1 + |B|z|] ( p+λ2(k−p) λ1 )|γ(A − B) − ( p+λ2(k−p) λ1 )|B|z| |(Dm+1,nλ1,λ2,pg(z)) (j)|. (2.6) Next, since (Dm,nλ1,λ2,pf(z)) (j) is majorized by (Dm,nλ1,λ2,pg(z)) (j) in the unit disk U, we have from (1.2) that (Dm,nλ1,λ2,pf(z)) (j) = ϕ(z)(Dm,nλ1,λ2,pg(z)) (j). Differentiating it with respect to z and multiplying by z we get z(Dm,nλ1,λ2,pf(z)) (j+1) = zϕ′(z)(Dm,nλ1,λ2,pg(z)) (j) + zϕ(z)(Dm,nλ1,λ2,pg(z)) (j+1). Now by using (2.5) in the above equation, it yields (Dm,nλ1,λ2,pf(z)) (j) = zϕ′(z)(Dm,nλ1,λ2,pg(z)) (j) p+λ2(k−p) λ1 + ϕ(z)(Dm,nλ1,λ2,pg(z)) (j) (2.7) Thus, by noting that ϕ ∈ Ω satisfies the inequality (see, e.g. Nehari [8]) |ϕ′(z)| ≤ 1 − |ϕ(z)|2 1 − |z|2 (z ∈ U) (2.8) and using (2.6) and (2.8) in (2.7), we get∣∣∣(Dm+1,nλ1,λ2,pf(z))(j)∣∣∣ ≤[ |ϕ(z)| + 1 − |ϕ(z)|2 1 − |z|2 |z|(1 + |B||z|) p+λ2(k−p) λ1 − |γ(A − B) − ( p+λ2(k−p) λ1 )|B||z ]∣∣∣(Dm,nλ1,λ2,pg(z))(j+1)∣∣∣ (2.9) which upon setting |z| = r and |ϕ(z)| = ρ (0 ≤ ρ ≤ 1) leads us to the inequality ∣∣∣(Dm+1,nλ1,λ2,pf(z))(j)∣∣∣ ≤ φ(ρ) (1 − r2)( p+λ2(k−p) λ1 ) − |γ(A − B) − ( p+λ2(k−p) λ1 )B|r ∣∣∣(Dm+1,nλ1,λ2,pg(z))(j)∣∣∣ (2.10) where φ(ρ) = −r(1 + |B|)ρ2 + (1 − r2)[ ( p + λ2(k − p) λ1 ) − |γ(A − B) + ( p + λ2(k − p) λ1 )B|r) ] ρ + r(1 + |B|r) (2.11) 124 E. A. Eljamal and M. Darus CUBO 14, 1 (2012) takes its maximum value at ρ = 1 with r1 = r1(p,γ,λ1,λ2,A,B) for r1(p,γ,λ1,λ2,A,B) is the smallest positive root of equation (2.2). Furthermore, if 0 ≤ ρ ≤ r1(p,γ,λ1,λ2,A,B), then function ψ(ρ) defined by ψ(ρ) = −σ(1 + |B|σ)ρ2 + (1 − σ2)[ ( p + λ2(k − 1) λ1 ) − |γ(A − B) + ( p + λ2(k − p) λ1 )B|σ) ] ρ + σ(1 + |B|σ) (2.12) is seen to be an increasing function on the interval 0 ≤ ρ ≤ 1 so that ψ(ρ) ≤ ψ(1) = (1 − σ2)( p + λ2(k − p) λ1 ) − |γ(A − B) + ( p + λ2(k − p) λ1 )B|σ) (2.13) 0 ≤ ρ ≤ 1; (0 ≤ σ ≤ r1(p,γ,λ1,λ2,A,B)). Hence upon setting ρ = 1 in (2.13) we conclude that (2.1) of Theorem 2.1 holds true for |z| ≤ r1(p,γ,λ1,λ2,A,B) where r1(p,γ,λ1,λ2,A,B) is the smallest positive root of equation (2.2). This completes the proof of the Theorem 2.1. Setting p = 1, m = 0, A = 1,B = −1 and j = 0 in Theorem 2.1 we get Corollary 2.1. Let the function f ∈ A be analytic in the open unit disk Uand suppose that g ∈ S0,1,00,0,0[1,−1,γ] = S(γ). If f(z) is majorized by g(z) in U, then |f′(z)| ≤ |g′(z)| (|z| < r3) where r3 = r3(γ) = 3 + |2γ − 1| − √ 9 + 2|2γ − 1| + |2γ − 1|2 2|2γ − 1| . This is a known result obtained by Altintas[5]. For γ = 1, the above corollary reduces to the following result: Corollary 2.2. Let the function f(z) ∈ A be analytic univalent in the open unit disk U and suppose that g ∈ S∗ = S∗(0). If f is majorized by g in U, then |f′(z)| ≤ |g′(z)| (|z| ≤ 2 − √ 3) which is a known result obtained by MacGregor [7]. Some other work related to the class defined by (1.3) can be seen in [9] and of course elsewhere. In fact, recently Ibrahim [10] used the concept of majorization to find solutions of fractional differential equations in the unit disk. Acknowledgement The work presented here was supported by UKM-ST-06-FRGS0244-2010. Received: April 2011. Revised: June 2011. CUBO 14, 1 (2012) Majorization for certain classes of analytic functions . . . 125 References [1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci., 27(2004), 1429-1436. [2] G. Salagean, Subclasses of univalent functions, Lecture in Math. Springer Verlag, Berlin, 1013(1983), 362-372. [3] K. Al-Shaqsi and M. Darus, On univalent functions with respect to k-symmetric points defined by a generalization Ruscheweyh derivative operators, Jour. Anal. Appl., 7(2009), 53-61. [4] M. Darus and K. Al-Shaqsi, Differential Sandwich Theorems with Generalised Derivative Operator, Int. J. Comput. Math. Sci., (22)(2008), 75-78. [5] O. Altintas, Ö.Özkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Var. 46(2001), 207-218. [6] St. Ruscheweyh, New certain for univalent functions, Proc. Amer.Math. soc. 49(1975),109-115. [7] T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34(1967), 95-102. [8] Z. Nehari, Confformal mapping, MacGraw-Hill Book Company, New York,Toronto and Lon- don (1955). [9] M. Darus and R. W. Ibrahim, Multivalent functions based on a linear operator, Miskolc Mathematical Notes, 11(1) (2010), 43-52. [10] R. W. Ibrahim, Existence and uniqueness of holomorphic solutions for fractional Cauchy problem, J. Math. Anal. Appl., 380 (2011), 232-240.