C:/Documents and Settings/Profesor/Escritorio/Cubo/Cubo/Cubo/Cubo 2011/Cubo2011-13-01/Vol13 n\2721/Art N\2602 .dvi CUBO A Mathematical Journal Vol.13, No¯ 01, (11–24). March 2011 Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space Hiroko Manaka1 and Wataru Takahashi2 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ohokayama, Meguroku, Tokyo 152-8552, Japan. email: hiroko.Manaka@is.titech.ac.jp email: wataru@is.titech.ac.jp ABSTRACT Let C be a closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping of C into itself, let A be an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is in- cluded in C. We introduce an iterative sequence of finding a point of F (T )∩(A+B)−10, where F (T ) is the set of fixed points of T and (A + B)−10 is the set of zero points of A + B. Then, we obtain the main result which is related to the weak convergence of the sequence. Using this result, we get a weak convergence theorem for finding a com- mon fixed point of a nonspreading mapping and a nonexpansive mapping in a Hilbert space. Further, we consider the problem for finding a common element of the set of so- lutions of an equilibrium problem and the set of fixed points of a nonspreading mapping. RESUMEN Sea C un subconjunto convexo cerrado de un espacio real de Hilbert H. Sea T una asignación de C en śı mismo, sea A una asignación monótona α-inversa de C en H y 12 Hiroko Manaka and Wataru Takahashi CUBO 13, 1 (2011) sea B un operador monotono máximal en H tal que el dominio de B está incluido en C. Se introduce una secuencia iterativa para encontrar un punto de F (T ) ∩ (A + B)−10, donde F (T ) es el conjunto de puntos fijos de T y (A + B)−10 es el conjunto de los puntos cero de A + B. Entonces, se obtiene el resultado principal que se relaciona con la convergencia débil de la secuencia. Utilizando este resultado, obtenemos un teorema de convergencia para encontrar un punto común de una asignación fija y una asignación en un espacio de Hilbert. Además, consideramos el problema para encontrar un elemento común del conjunto de soluciones de un problema de equilibrio y el conjunto de puntos fijos de una asignación. Keywords: Nonspreading mapping, maximal monotone operator, inverse strongly-monotone map- ping, fixed point, iteration procedure. Mathematics Subject Classification: 46C05. 1 Introduction Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖·‖ and let C be a nonempty closed convex subset of H. For a constant α > 0, the mapping A : C → H is said to be α-inverse strongly monotone if for any x, y ∈ C, 〈x − y, Ax − Ay〉 ≥ α ‖Ax − Ay‖ 2 . It is well-known that an α-inverse strongly monotone mapping is also Lipschitz continuous with a Lipschitz constant 1 α . Let S be a mapping of C into itself. We denote by F (S) the set of fixed points of S. A mapping S of C into itself is nonexpansive if ‖Su − Sv‖ ≤ ‖u − v‖, ∀u, v ∈ C. If S : C → C is a nonexpansive mapping, then I − S is 1 2 -inverse strongly monotone, where I is the identity mapping on H; see, for instance, [18]. A mapping S of C into itself is nonspreading if 2‖Su − Sv‖2 ≤ ‖Su − v‖2 + ‖Sv − u‖2, ∀u, v ∈ C; see [6, 7]. A multi-valued mapping B ⊂ H × H is said to be monotone if 〈x − y, u − v〉 ≥ 0 for all x, y ∈ H, u ∈ Bx and v ∈ By. A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. Recently, in the case when S : C → C is a nonexpansive mapping, A : C → H is an α-inverse strongly monotone mapping and B ⊂ H × H is a maximal monotone operator, Takahashi, Takahashi and Toyoda [15] proved a strong convergence theorem for finding a point of F (S) ∩ (A + B)−10, where F (S) is the set of fixed points of S and (A + B)−10 is the set of zero points of A + B. CUBO 13, 1 (2011) Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space 13 In this paper, motivated by Takahashi, Takahashi and Toyoda [15], we introduce an iteration sequence of finding a common point of the set F (S) of fixed points of a nonspreading mapping S and the set (A+B)−10 of zero points of A+B, where A : C → H is an α-inverse strongly monotone mapping and B ⊂ H × H is a maximal monotone operator. Then, we prove a weak convergence theorem. Using this result, we get a weak convergence theorem for finding a common fixed point of a nonspreading mapping and a nonexpansive mapping in a Hilbert space. Further, we obtain a weak convergence theorem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonspreading mapping. 2 Preliminaries Throughout this paper, let N be the set of positive integers and let H be a real Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖. A Hilbert space satisfies Opial’s condition [10], that is, lim inf n→∞ ‖xn − u‖ < lim inf n→∞ ‖xn − v‖ if xn ⇀ u and u 6= v; see [10]. Let C be a nonempty closed convex subset of a Hilbert space H. The nearest point projection of H onto C is denoted by PC , that is, ‖x − PC x‖ ≤ ‖x − y‖ for all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We know that the metric projection PC is firmly nonexpansive, i.e., ‖PC x − PC y‖ 2 ≤ 〈PC x − PC y, x − y〉 for all x, y ∈ H. Further 〈x − PC x, y − PC x〉 ≤ 0 holds for all x ∈ H and y ∈ C; see, for instance, [16]. Let α > 0 be a given constant. A mapping A : C → H is said to be α-inverse strongly monotone if 〈x − y, Ax − Ay〉 ≥ α ‖Ax − Ay‖ 2 for all x, y ∈ C. We have that ‖Ax − Ay‖ ≤ (1/α) ‖x − y‖ for all x, y ∈ C if A is α-inverse strongly monotone. Let B be a mapping of H into 2H . The effective domain of B is denoted by D(B), that is, D(B) = {x ∈ H : Bx 6= ∅}. A multi-valued mapping B is said to be a monotone operator on H if 〈x − y, u − v〉 ≥ 0 for all x, y ∈ D(B), u ∈ Bx, and v ∈ By. A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. For a maximal monotone operator B on H and r > 0, we may define a single-valued operator Jr = (I + rB) −1 : H → D(B), which is called the resolvent of B for r > 0. Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}. It is known that the resolvent Jr is firmly nonexpansive and B −10 = F (Jr) for all r > 0. We give the crucial lemmas in order to prove the main theorem. Lemma 2.1 ([12]). Let H be a real Hilbert space, let {αn} be a sequence of real numbers such that 0 < a ≤ αn ≤ b < 1 for all n ∈ N and let {vn} and {wn} be sequences in H such that for some c, lim supn→∞ ‖vn‖ ≤ c, lim supn→∞ ‖wn‖ ≤ c and lim supn→∞ ‖αnvn + (1 − αn)wn‖ = c. Then limn→∞ ‖vn − wn‖ = 0. 14 Hiroko Manaka and Wataru Takahashi CUBO 13, 1 (2011) Lemma 2.2 ([19]). Let H be a Hilbert space and let S be a nonempty closed convex subset of H. Let {xn} be a sequence in H. If ‖xn+1 − x‖ ≤ ‖xn − x‖ for all n ∈ N and x ∈ S, then {PS (xn)} converges strongly to some z ∈ S, where PS stands for the metric projection on H onto S. Using Opial’s theorem [10], we can also prove the following lemma; see, for instance, [18]. Lemma 2.3. Let H be a Hilbert space and let {xn} be a sequence in H such that there exists a nonempty subset S ⊂ Hsatisfying (i) and (ii): (i) For every x∗ ∈ S, limn→∞ ‖xn − x ∗‖ exists: (ii) if a subsequence {xnj } ⊂ {xn} converges weakly to x ∗, then x∗ ∈ S. Then there exists x0 ∈ S such that xn ⇀ x0. Let C be a nonempty closed convex subset of a real Hilbert space H, let f : C × C → R be a bifunction and let A : C → H be a nonlinear mapping. Then, we consider the following equilibrium problem [8]: Find z ∈ C such that f (z, y) + 〈Az, y − z〉 ≥ 0, ∀y ∈ C. (2.1) The set of such z ∈ C is denoted by EP (f, A), i.e., EP (f, A) = {z ∈ C : f (z, y) + 〈Az, y − z〉 ≥ 0, ∀y ∈ C}. In the case of A ≡ 0, EP (f, A) is denoted by EP (f ). In the case of F ≡ 0, EP (f, A) is also denoted by V I(C, A). For solving the equilibrium problem, let us assume that the bifunction f satisfies the following conditions: (A1) f (x, x) = 0 for all x ∈ C; (A2) f is monotone, i.e., f (x, y) + f (y, x) ≤ 0 for all x, y ∈ C; (A3) for all x, y, z ∈ C, lim sup t↓0 f (tz + (1 − t)x, y) ≤ f (x, y); (A4) f (x, ·) is convex and lower semicontinuous for all x ∈ C. We know the following lemmas; see, for instance, [1] and [2]. Lemma 2.4 ([1]). Let C be a nonempty closed convex subset of H, let f be a bifunction from C × C to R satisfying (A1)-(A4) and let r > 0 and x ∈ H. Then, there exists z ∈ C such that f (z, y) + 1 r 〈y − z, z − x〉 ≥ 0 for all y ∈ C. CUBO 13, 1 (2011) Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space 15 Lemma 2.5 ([2]). For r > 0 and x ∈ H, define the resolvent Tr : H → C of f for r > 0 as follows: Trx = { z ∈ C : f (z, y) + 1 r 〈y − z, z − x〉 ≥ 0, ∀y ∈ C } for all x ∈ H. Then, the following hold: (i) Tr is single-valued; (ii) Tr is firmly nonexpansive, i.e., for all x, y ∈ H, ‖Trx − Try‖ 2 ≤ 〈Trx − Try, x − y〉; (iii) F (Tr) = EP (f ); (iv) EP (f ) is closed and convex. 3 Main result Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Then, a mapping S of C into itself is nonspreading if 2‖Su − Sv‖2 ≤ ‖Su − v‖2 + ‖Sv − u‖2, ∀u, v ∈ C; see [6, 7]. We know from [6, 7, 3] that if the bifunction f : C × C → R satisfies the conditions (A1), (A2), (A3) and (A4), then for any r > 0, Tr is a nonspreading mapping of C into itself. Further, we can give the following example of nonspreading mappings in a Hilbert space. Let H be a real Hilbert space; see [4]. Set E = {x ∈ H : ‖x‖ ≤ 1}, D = {x ∈ H : ‖x‖ ≤ 2} and C = {x ∈ H : ‖x‖ ≤ 3}. Define a mapping S : C → C as follows: Sx { 0, x ∈ D, PE x, x /∈ D. Then, this mapping S is not nonexpansive but nonspreading because it is not continuous. This implies that the class of nonexpansive mappings does not contain the class of nonspreading map- pings. Now, we can prove a weak convergence theorem. Before proving it, we give the following lemma. Lemma 3.1. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let α > 0. Let A be an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. Let Jλ = (I + λB) −1 be the resolvent of B for any λ > 0. Then, the following hold: (i) If u, v ∈ (A + B)−10, then Au = Av; 16 Hiroko Manaka and Wataru Takahashi CUBO 13, 1 (2011) (ii) for any λ > 0, u ∈ (A + B)−1(0) if and only if u = Jλ(I − λA)u. Proof. (i) If u, v ∈ (A + B)−1(0), then 0 ∈ Au + Bu and 0 ∈ Av + Bv. Then, we have −Au ∈ Bu and −Av ∈ Bv. Since B is monotone, we have 〈u − v, −Au − (−Av)〉 ≥ 0. On the other hand, since A is α-inverse strongly monotone, we have 〈u − v, Au − Av〉 ≥ ‖Au − Av‖2. So, we have 〈u − v, −Au − (−Av)〉 = 0 and hence Au = Av. (ii) For any λ > 0, we have that u = Jλ(I − λA)u ⇔ u − λAu ∈ u + λBu ⇔ 0 ∈ λAu + λBu ⇔ 0 ∈ Au + Bu ⇔ u ∈ (A + B)−1(0). This completes the proof. Now, we can prove the main theorem. Theorem 3.1. Let C be a nonempty convex closed subset of a real Hilbert space H, let A : C → H be α-inverse strongly monotone, let B : D(B) ⊂ C → 2H be maximal monotone, let Jλ = (I + λB) −1 be the resolvent of B for any λ > 0, and let T : C → C be a nonspreading mapping. Assume that F (T ) ∩ (A + B)−1(0) 6= ∅. For any x = x1 ∈ C, define xn+1 = βnxn + (1 − βn)T (Jλn (I − λnA)xn), ∀n ∈ N, where {βn} and {λn} satisfy the following conditions (∗): 0 < c ≤ βn ≤ d < 1 and 0 < a ≤ λn ≤ b < 2α. (∗) Then, xn ⇀ z0 ∈ F (T ) ∩ (A + B) −1(0), where z0 = limn→∞ PF (T )∩(A+B)−1(0)(xn). Proof. Set E = F (T ) ∩ (A + B)−1(0). Let yn = Jλn (I − λnA)xn for all n ∈ N and let z ∈ E. Since z = Jλn (I − λnA)z from Lemma 3.1 and A is α-inverse strongly monotone, we have that ‖yn − z‖ 2 = ‖Jλn (I − λnA)xn − Jλn (I − λnA)z‖ 2 (3.1) ≤ ‖xn − λnAxn − z + λnAz‖ 2 = ‖xn − z‖ 2 − 2λn〈xn − z, Axn − Az〉 + λ 2 n ‖Axn − Az‖ 2 ≤ ‖xn − z‖ 2 − 2λnα ‖Axn − Az‖ 2 + λ2n ‖Axn − Az‖ 2 = ‖xn − z‖ 2 + λn(λn − 2α) ‖Axn − Az‖ 2 . From (∗), we have that ‖yn − z‖ 2 ≤ ‖xn − z‖ 2 , ∀n ∈ N CUBO 13, 1 (2011) Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space 17 and hence ‖xn+1 − z‖ = ‖βnxn + (1 − βn)T yn − z‖ ≤ βn ‖xn − z‖ + (1 − βn) ‖T yn − z‖ ≤ βn ‖xn − z‖ + (1 − βn) ‖yn − z‖ ≤ ‖xn − z‖ . This means that the condition (i) of Lemma 2.3 holds for S = E. We also obtain that limn→∞ ‖xn − z‖ exists. Thus, {xn}, {Axn}, {yn} and {T yn} are bounded. By the inequality (2), ‖xn+1 − z‖ 2 ≤ βn ‖xn − z‖ 2 + (1 − βn) ‖yn − z‖ 2 ≤ βn ‖xn − z‖ 2 + (1 − βn){‖xn − z‖ 2 + λn(λn − 2α) ‖Axn − Ax‖ 2 } ≤ ‖xn − z‖ 2 + λn(λn − 2α)(1 − βn) ‖Axn − Az‖ 2 . Thus we have 0 ≤ (1 − d)a(2α − d) ‖Axn − Az‖ 2 ≤ ‖xn − z‖ 2 − ‖xn+1 − z‖ 2 → 0, as n → ∞. This means that lim n→∞ ‖Axn − Az‖ = 0. (3.2) On the other hand, since Jλn is firmly nonexpansive, we have that ‖yn − z‖ 2 = ‖Jλn (I − λnA)xn − Jλn (I − λnA)z‖ 2 ≤〈yn − z, (I − λnA)xn − (I − λnA)z〉 = 1 2 {‖yn − z‖ 2 + ‖(I − λnA)xn − (I − λnA)z‖ 2 − ‖yn − z − (I − λnA)xn + (I − λnA)z‖ 2 } = 1 2 {‖yn − z‖ 2 + ‖xn − z‖ 2 − ‖yn − z − (I − λnA)xn + (I − λnA)z‖ 2 } = 1 2 {‖yn − z‖ 2 + ‖xn − z‖ 2 − ‖yn − xn‖ 2 − 2λn〈yn − xn, Axn − Az〉 − λn 2 ‖Axn − Az‖ 2 }. Therefore we have ‖yn − z‖ 2 ≤ ‖xn − z‖ 2 − ‖yn − xn‖ 2 − 2λn〈yn − xn, Axn − Az〉 − λn 2 ‖Axn − Az‖ 2 18 Hiroko Manaka and Wataru Takahashi CUBO 13, 1 (2011) and hence ‖xn+1 − z‖ 2 ≤βn ‖xn − z‖ 2 + (1 − βn) ‖T yn − z‖ 2 ≤βn ‖xn − z‖ 2 + (1 − βn) ‖yn − z‖ 2 ≤βn ‖xn − z‖ 2 + (1 − βn){‖xn − z‖ 2 − ‖yn − xn‖ 2 − 2λn〈yn − xn, Axn − Az〉 − λn 2 ‖Axn − Az‖ 2 } ≤ ‖xn − z‖ 2 − (1 − d) ‖yn − xn‖ 2 − λn 2(1 − βn) ‖Axn − Az‖ 2 − 2λn(1 − βn)〈yn − xn, Axn − Az〉. This means that (1 − d) ‖yn − xn‖ 2 ≤ ‖xn − z‖ 2 − ‖xn+1 − z‖ 2 + ‖Axn − Az‖{2b(1 − c) ‖yn − xn‖ + b 2(1 − c) ‖Axn − Az‖}. Since {yn} and {xn} are bounded, limn→∞ ‖Axn − Az‖ = 0 and limn→∞ ‖xn − z‖ exists, we have lim n→∞ ‖yn − xn‖ = 0. Since A is Lipschitz continuous, we also have lim n→∞ ‖Ayn − Axn‖ = 0. Let x∗ be a weak cluster point of {xn}. First, we prove that x ∗ ∈ (A + B)−1(0). Since yn = Jλn (I − λnA)xn, we have that yn = (I + λnB) −1(I − λnA)xn ⇔ (I − λnA)xn ∈ (I + λnB)yn = yn + λnByn ⇔ xn − yn − λnAxn ∈ λnByn ⇔ 1 λn (xn − yn − λnAxn) ∈ Byn. Since B is monotone, we have that for (u, v) ∈ B, 〈 yn − u, 1 λn (xn − yn − λnAxn) − v 〉 ≥ 0 and hence 〈yn − u, xn − yn − λn(Axn + v)〉 ≥ 0. Suppose that a subsequence {xnj } ⊂ {xn} satisfies xnj ⇀ x ∗. Then, since A is α-inverse strongly monotone and Axn → Az by (3), 〈 xnj − x ∗, Axnj − Ax ∗ 〉 ≥ α ∥ ∥Axnj − Ax ∗ ∥ ∥ 2 CUBO 13, 1 (2011) Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space 19 implies that Axnj → Ax ∗ as j → ∞. Moreover, since limn→∞ ‖yn − xn‖ = 0 implies ynj ⇀ x ∗, we have lim j→∞ 〈 ynj − u, xnj − ynj − λnj (Axnj + v) 〉 ≥ 0 and hence 〈x∗ − u, −Ax∗ − v〉 ≥ 0. Since B is maximal monotone, (−Ax∗) ∈ Bx∗. That is, x∗ ∈ (A + B)−1(0). Next, we show x∗ ∈ F (T ). Putting c = limn→∞ ‖xn − z‖, we have lim sup n→∞ ‖T yn − z‖ = lim sup n→∞ ‖T yn − T z‖ ≤ lim sup n→∞ ‖yn − z‖ ≤ lim sup n→∞ ‖xn − z‖ ≤ c. On the other hand, we have lim n→∞ ‖xn+1 − z‖ = lim n→∞ ‖βnxn + (1 − βn)T yn − z‖ = c. From Lemma 2.1, we have lim n→∞ ‖(xn − z) − (T yn − z)‖ = lim n→∞ ‖xn − T yn‖ = 0. (3.3) We have also ‖yn − T yn‖ ≤ ‖yn − xn‖ + ‖xn − T yn‖. Hence, we have lim n→∞ ‖yn − T yn‖ = 0. Since xnj ⇀ x ∗ and xn − yn → 0, we have ynj ⇀ x ∗. Now we shall show that T x∗ = x∗. Since T is nonspreading, we have 0 ≤(‖T yn − x ∗‖ 2 − ‖T yn − T x ∗‖ 2 ) + (‖T x∗ − yn‖ 2 − ‖T yn − T x ∗‖ 2 ) =2 〈T yn, T x ∗ − x∗〉 + ‖x∗‖ 2 − ‖T x∗‖ 2 + 2 〈T yn − yn, T x ∗〉 + ‖yn‖ 2 − ‖T yn‖ 2 ≤ 2 〈T yn − yn, T x ∗ − x∗〉 + 2 〈yn, T x ∗ − x∗〉 + ‖x∗‖ 2 − ‖T x∗‖ 2 + 2 〈T yn − yn, T x ∗〉 + (‖yn‖ + ‖T yn‖)(‖yn − T yn‖). Thus, we have that for all j ∈ N, 0 ≤2 〈 T ynj − ynj , T x ∗ − x∗ 〉 + 2 〈 ynj , T x ∗ − x∗ 〉 + ‖x∗‖ 2 − ‖T x∗‖ 2 + 2 〈 T ynj − ynj , T x ∗ 〉 + ( ∥ ∥ynj ∥ ∥ + ∥ ∥T ynj ∥ ∥)( ∥ ∥ynj − T ynj ∥ ∥). 20 Hiroko Manaka and Wataru Takahashi CUBO 13, 1 (2011) Since limn→∞ ∥ ∥T ynj − ynj ∥ ∥ = 0 and ynj ⇀ x ∗ as j → ∞, the above inequality implies that 0 ≤2 〈x∗, T x∗ − x∗〉 + ‖x∗‖ 2 − ‖T x∗‖ 2 =2 〈x∗, T x∗〉 − ‖x∗‖ 2 − ‖T x∗‖ 2 = − ‖x∗ − T x∗‖ 2 . So, we have T x∗ = x∗, i.e., x∗ ∈ F (T ). Therefore we obtain that x∗ ∈ E = F (T ) ∩ (A + B)−1(0). This implies that the condition (ii) of Lemma 2.3 holds for S = E. We also know that limn→∞ ‖xn − z‖ exists for z ∈ S = E. So, we have from Lemma 2.3 that there exists z∗ ∈ E such that xn ⇀ z ∗ as n → ∞. Moreover, since for any z ∈ S = E, ‖xn+1 − z‖ ≤ ‖xn − z‖ , ∀n ∈ N, by Lemma 2.2 there exists some z0 ∈ S such that PS (xn) → z0. The property of metric projection implies that 〈z∗ − PS (xn), xn − PS (xn)〉 ≤ 0. Therefore, we have 〈z∗ − z0, z ∗ − z0〉 = ‖z ∗ − z0‖ 2 ≤ 0. This means that z∗ = z0, i.e., xn ⇀ z ∗ = limn→∞ PE (xn). 4 Applications Let H be a Hilbert space and let f be a proper lower semicontinuous convex function of H into (−∞, ∞]. Then the subdifferential ∂f of f is defined as follows: ∂f (x) = {z ∈ H : f (x) + 〈z, y − x〉 ≤ f (y), ∀y ∈ H} for all x ∈ H. By Rockafellar [11], it is shown that ∂f is maximal monotone. Let C be a nonempty closed convex subset of H and let iC be the indicator function of C, i.e., iC (x) { 0, if x ∈ C, ∞, if x 6∈ C. Further, for any u ∈ C, we also define the normal cone NC (u) of C at u as follows; NC (u) = {z ∈ H : 〈z, y − u〉 ≤ 0, ∀y ∈ C}. Then iC : H → (−∞, ∞] is a proper lower semicontinuous convex function on H and ∂iC is a maximal monotone operator. Let Jλx = (I + λ∂iC ) −1x for λ > 0 and x ∈ H. Since ∂iC (x) = {z ∈ H : iC (x) + 〈z, y − x〉 ≤ iC (y), ∀y ∈ H} = {z ∈ H : 〈z, y − x〉 ≤ 0, ∀y ∈ C} = NC (x) CUBO 13, 1 (2011) Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space 21 for x ∈ C, we have u = Jλx ⇔ (I + λ∂iC ) −1x = u ⇔ x ∈ u + λ∂iC (u) ⇔ x ∈ u + λNC (u) ⇔ x − u ∈ λNC (u) ⇔ 〈x − u, y − u〉 ≤ 0, ∀y ∈ C ⇔ PC (x) = u. Similarly, we have that for x ∈ C, x ∈ (A + ∂iC ) −1(0) ⇔ 〈−Ax, y − x〉 ≤ 0, ∀y ∈ C ⇔ x ∈ V I(A, C). Thus, putting B = ∂iC , we have Jλn = PC for any n ∈ N. Thus, we have the following theorem from Theorem 3.1. Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let A be an α-inverse strongly monotone mapping of C into H and let T : C → C be a nonspreading mapping. Assume F (T ) ∩ (A + ∂iC ) −1(0) = F (T ) ∩ V I(A, C) 6= ∅. Define a sequence {xn} in C as follows: x = x1 ∈ C and xn+1 = βnxn + (1 − βn)T (PC (I − λnA)xn) for all n ∈ N, where the sequences {βn} and {λn} satisfy the condition (∗): 0 < c ≤ βn ≤ d < 1 and 0 < a ≤ λn ≤ b < 2α. (∗) Then, xn ⇀ z0 ∈ F (T ) ∩ V I(A, C) and z0 = limn→∞ PF (T )∩V I(A,C)(xn). Let S : C → C be nonexpansive. Then, I − S is 1 2 -inverse strongly monotone. So, we obtain the following result. Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H, let S : C → C be a nonexpansive mapping and let T : C → C be a nonspreading mapping. Assume that F (T ) ∩ F (S) 6= ∅. Let x = x1 ∈ C and define xn+1 = βnxn + (1 − βn)T ((1 − λn)xn + λnSxn) for all n ∈ N , where {λn} and {βn} satisfy the condition (∗): 0 < c ≤ βn ≤ d < 1 and 0 < a ≤ λn ≤ b < 1. (∗) Then, xn ⇀ z0 ∈ F (T ) ∩ F (S) and z0 = limn→∞ PF (T )∩F (S)(xn). 22 Hiroko Manaka and Wataru Takahashi CUBO 13, 1 (2011) Proof. Put A = I − S. Then we have PC (xn − λnAxn) = PC (xn − λn(I − S)xn) = PC ((1 − λn)xn + λnSxn) = (1 − λn)xn + λnSxn. For u ∈ C, we have Su ∈ C and u ∈ (A + ∂iC ) −1(0) ⇔ 0 ∈ Au + NC (u) ⇔ Su − u ∈ NC (u) ⇔ 〈Su − u, v − u〉 ≤ 0, ∀v ∈ C ⇔ PC (Su) = u ⇔ Su = u. Thus, we obtain (A + ∂iC ) −1(0) = V I(A, C) = F (S). So, by Theorem 4.1 we have the desired result. Next, we deal with the equilibrium problem with nonspreading mappings in a Hilbert space. Takahashi, Takahashi and Toyoda [15] showed the following. Theorem 4.3 ([15]). Let C be a nonempty closed convex subset of a Hibert space H and let f : C × C → R be a bifunction satisfying the conditions (A1)-(A4). Define Af as follows: Af (x) { {z ∈ H : f (x, y) ≥ 〈y − x, z〉 , ∀y ∈ C}, if x ∈ C, ∅, if x 6∈ C. Then, EP (f ) = A−1 f (0) and Af is maximal monotone with the domain of Af in C. Furthermore, Tr(x) = (I + rAf ) −1(x), ∀r > 0. We obtain the following theorem from Theorem 3.1. Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H, let f : C ×C → R satisfy the conditions (A1)-(A4) and let Tλ be the resolvent of f for λ > 0. Let S : C → C be a nonspreading mapping. Assume that F (T ) ∩ EP (f ) 6= ∅. For x = x1 ∈ C, define xn+1 = βnxn + (1 − βn)STλn xn, ∀n ∈ N, where {βn} and {λn} satisfy the following conditions: 0 < c ≤ βn ≤ d < 1, 0 < a ≤ λn ≤ b < ∞. Then, xn ⇀ z0 ∈ F (T ) ∩ EP (f ) and z0 = limn→∞ PF (S)∩EP (f )(xn). CUBO 13, 1 (2011) Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space 23 Proof. Suppose A = 0. Then, we have that 〈x − y, Ax − Ay〉 ≥ α ‖Ax − Ay‖ 2 = 0, ∀α ∈ R. So, we can choose α = ∞ in Theorem 3.1. Since Tλn = (I + λnAf ) −1 is the resolvent of Af and Af is maximal monotone, Theorem 3.1 implies that xn ⇀ z0 ∈ F (T ) ∩ A −1 f (0). Moreover, we know A−1 f (0) = EP (f ). So, we have the desired result. Received: June 2009. Revised: September 2009. References [1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145. [2] P. L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136. [3] S. Iemoto and W. Takahashi, Approximating common fixed points of nonexpansive map- pings and nonspreading mappings in a Hilbert space, to appear. [4] T. Igarashi, W. Takahashi and K. Tanaka, Weak convergence theorems for nonspreading mappings and equilibrium problems, to appear. [5] H. Iiduka and W. Takahashi, Weak convergence theorem by Cesàro means for nonexpan- sive mappings and inverse-strongly monotone mappings, J. Nonlinear Convex Anal. 7 (2006), 105–113. [6] F. Kosaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J.Optim. 19 (2008), 824-835. [7] F. Kosaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces., Arch. Math. (Basel) 91 (2008), 166-177. [8] A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium prob- lems, J. Nonlinear Convex Anal., to appear. [9] A. Moudafi and M. Théra, Proximal and dynamical approaches to equilibrium problems, Lecture Notes in Economics and Mathematical Systems, 477, Springer, 1999, pp.187–201. [10] Z. Opial, Weak covergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. 24 Hiroko Manaka and Wataru Takahashi CUBO 13, 1 (2011) [11] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216. [12] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive map- pings, Bull. Austral. Math. Soc. 43 (1991), 153–159. [13] A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, J. Optim. Theory Appl., in press. [14] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium prob- lems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506–515. [15] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, to appear. [16] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000. [17] W. Takahashi, Convex Analysis and Approximation of Fixed Points (Japanese), Yokohama Publishers, Yokohama, 2000. [18] W. Takahashi, Introduction to Nonlinear and Convex Analysis (Japanese), Yokohama Pub- lishers, Yokohama, 2005. [19] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428. [20] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301–308. [21] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109–113. [22] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279–291.