C:/Documents and Settings/Profesor/Escritorio/Cubo/Cubo/Cubo/Cubo 2011/Cubo2011-13-01/Vol13 n\2721/Art N\2605 .dvi CUBO A Mathematical Journal Vol.13, No¯ 01, (61–71). March 2011 q− Fractional Inequalities George A. Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A., email: ganastss@gmail.com ABSTRACT Here we give q−fractional Poincaré type, Sobolev type and Hilbert-Pachpatte type integral inequalities, involving q−fractional derivatives of functions. We give also their generalized versions. RESUMEN Estudiamos el tipo q−fraccional Poincaré, el tipo Sobolev y el tipo integral de in- ecuaciones de Hilbert-Pachpatte, involucrando a q−fraccional derivados de funciones. Damos también las versiones generalizadas. Keywords: q−fractional derivative, q−fractional integral, q−fractional Poincaré inequality, q− fractional Sobolev inequality, q−fractio- nal Hilbert-Pachpatte inequality. AMS Subject Classification: 26A24, 26A33, 26A39, 26D10, 26D15, 33D05, 33D60, 81P99. 1 Introduction Here we follow [4] in all of this section, see also [3]. 62 George A. Anastassiou CUBO 13, 1 (2011) Let q ∈ (0, 1), we define [α] q := 1 − qα 1 − q , (α ∈ R) . (1) The q−analog of the Pochhammer symbol (q−shifted factorial) is defined by: (a; q)0 = 1, (a; q)k = k−1 ∏ i=0 ( 1 − aqi ) (k ∈ N ∪ {∞}) . The expansion to reals is (a; q) α = (a; q)∞ (aqα; q)∞ (α ∈ R) ; (2) also define the q−analog (a − b) (α) = aα ( b a ; q ) ∞ ( qα b a ; q ) ∞ , a, b ∈ R, a 6= 0. Notice that (a − b) (α) = aα ( b a ; q ) α . The q−gamma function is defined by Γq (x) = (q; q)∞ (qx; q)∞ (1 − q) 1−x , (x ∈ R − {0, −1, −2, ...}) . (3) Clearly Γq (x + 1) = [x]q Γq (x) . (4) The q−derivative of a function f (x) is defined by (Dqf ) (x) = f (x) − f (qx) x − qx , (x 6= 0) , (5) (Dqf ) (0) = lim x→0 (Dqf ) (x) , (6) and the q−derivatives of higher order: D 0 q f = f, D n q f = Dq ( D n−1 q f ) , n = 1, 2, 3, ... (7) The q−integral is defined by (Iq,0f ) (x) = ∫ x 0 f (t) dqt = x (1 − q) ∞ ∑ k=0 f ( xq k ) q k, (0 < q < 1) , (8) and (Iq,af ) (x) = ∫ x a f (t) dqt = ∫ x 0 f (t) dqt − ∫ a 0 f (t) dqt. (9) CUBO 13, 1 (2011) q− Fractional Inequalities 63 By [2], we see that: if f (x) ≥ 0, then it is not necessarily true that ∫ b a f (x) dqx ≥ 0. In the case of a = xqn, then (9) becomes ∫ x xqn f (t) dqt = x (1 − q) n−1 ∑ k=0 f ( xq k ) q k , (10) see also [2]. Double q−integration is defined the usual iterative way. Also we define I 0 q,af = f, I n q,af = Iq,a ( I n−1 q,a f ) , n = 1, 2, 3, ... (11) The following are valid: (DqIq,af ) (x) = f (x) , (12) (Iq,aDqf ) (x) = f (x) − f (a) . (13) Denote [n] q ! = [1] q [2] q ... [n] q , n ∈ N; [0] q ! = 1, [ n k ] q = [n] q ! [k] q ! [n − k] q ! . In the next we work on (0, b), b > 0, and let a ∈ (0, b). Also the required q−derivatives and q−integrals do exist. Definition 1. The fractional q−integral is ( I α q,af ) (x) = xα−1 Γq (α) ∫ x a ( q t x ; q ) α−1 f (t) dqt (14) = 1 Γq (α) ∫ x a (x − qt) (α−1) f (t) dqt, ( a < x, α ∈ R+ ) . The usual fractional integral (see also [1]) is the limit case of (14) as q ↑ 1, since lim q↑1 x α−1 ( q t x ; q ) α−1 = (x − t) α−1 . (15) Clearly ( I α q,af ) (a) = 0. (16) We mention 64 George A. Anastassiou CUBO 13, 1 (2011) Theorem 2. Let α, β ∈ R+. The q−fractional integration has the semigroup property ( I β q,aI α q,af ) (x) = ( I α+β q,a f ) (x) , (a < x) . (17) Corollary 3. For α ≥ n (n ∈ N) it holds ( D n q I α q,af ) (x) = ( I α−n q,a f ) (x) , (a < x) . (18) We mention the fractional q−derivative of Caputo type: Definition 4. The fractional q−derivative of Caputo type is ( ∗D α q,af ) (x) =    ( I−αq,a f ) (x) , α ≤ 0; ( I ⌈α⌉−α q,a D ⌈α⌉ q f (x) ) , α > 0, (19) where ⌈.⌉ denotes the ceiling of the number. Next we mention the highlight of this introductory section. Again all here come from [4]. So the following is the fractional q−Taylor formula of Caputo type. Theorem 5. Let α ∈ R+ − N, a < x. Then ( I α q,a ∗D α q,af ) (x) = f (x) − ⌈α⌉−1 ∑ k=0 ( Dkq f ) (a) [k] q ! x k ( a x ; q ) k . (20) Also we give Theorem 6. Let α ∈ R+ − N, β ∈ R+, α > β > 0, a < x. Then ( I β q,a ∗D α q,af ) (x) = ( ∗D α−β q,a f ) (x) − (21) ⌈α⌉−1 ∑ k=⌈α−β⌉ ( Dkq f ) (a) Γq (k − α + β + 1) x k−α+β ( a x ; q ) k−α+β . 2 Main Results We need the following q−Hölder’s inequality. Proposition 7. Let x > 0, 0 < q < 1; p1, q1 > 1 such that 1 p1 + 1 q1 = 1; n ∈ N. Then ∫ x xqn |f (t)| |g (t)| dqt ≤ ( ∫ x xqn |f (t)| p1 dqt ) 1 p 1 ( ∫ x xqn |g (t)| q1 dqt ) 1 q 1 . (22) Proof. By the discrete Hölder’s inequality we have ∫ x xqn |f (t)| |g (t)| dqt = x (1 − q) n−1 ∑ k=0 ∣ ∣f ( xq k )∣ ∣ ∣ ∣g ( xq k )∣ ∣q k = CUBO 13, 1 (2011) q− Fractional Inequalities 65 x (1 − q) n−1 ∑ k=0 ( ∣ ∣f ( xq k )∣ ∣ ( q k ) 1 p 1 )( ∣ ∣g ( xq k )∣ ∣ ( q k ) 1 q 1 ) ≤ ( x (1 − q) n−1 ∑ k=0 ∣ ∣f ( xq k )∣ ∣ p1 q k ) 1 p 1 ( x (1 − q) n−1 ∑ k=0 ∣ ∣g ( xq k )∣ ∣ q1 q k ) 1 q 1 = ( ∫ x xqn |f (t)| p1 dqt ) 1 p 1 ( ∫ x xqn |g (t)| q1 dqt ) 1 q 1 . We present a q−fractional Poincaré type inequality. Theorem 8. Let x > 0, 0 < w ≤ x, 0 < q < 1; α > 0, p1, q1 > 1 such that 1 p1 + 1 q1 = 1; n ∈ N. Set ∆ (w) := f (w) − ⌈α⌉−1 ∑ k=0 ( Dkq f ) (wqn) [k] q ! w k (qn; q) k . Then ∫ x 0 |∆ (w)| q1 wq1(α−1) dqw ≤ 1 (Γq (α)) q1 · ( ∫ x 0 ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt )q1 dqw ) 1 p 1 · ( ∫ x 0 ( ∫ w wqn ∣ ∣ ∗D α q,wqn f (t) ∣ ∣ q1 dqt )q1 dqw ) 1 q 1 . (23) Proof. By q−fractional Taylor’s formula (20) we get ∆ (w) = ( I α q,wqn ∗D α q,wqn f ) (w) = wα−1 Γq (α) ∫ w wqn ( q t w ; q ) α−1 ( ∗D α q,wqn f ) (t) dqt. (24) Here by (14) and (19), we see that ( ∗D α q,wqn f ) (t) = t⌈α⌉−α−1 Γq (⌈α⌉ − α) ∫ w wqn ( q s t ; q ) ⌈α⌉−α−1 D ⌈α⌉ q f (s) dq (s) , (25) all wqn ≤ t ≤ w. Here we observe trivially that ∣ ∣ ∣ ∣ ∫ x xqn f (t) dqt ∣ ∣ ∣ ∣ ≤ ∫ x xqn |f (t)| dqt. (26) Furthermore we see that ( q t w ; q ) α−1 = ( q t w ; q ) ∞ ( qα t w ; q ) ∞ = ∏∞ i=0 ( 1 − q t w qi ) ∏∞ i=0 ( 1 − qα t w qi ) = ∏∞ i=0 ( 1 − t w qi+1 ) ∏∞ i=0 ( 1 − t w qi+α ) > 0. (27) 66 George A. Anastassiou CUBO 13, 1 (2011) Hence by (22) we obtain |∆ (w)| ≤ wα−1 Γq (α) ∫ w wqn ( q t w ; q ) α−1 ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣dqt ≤ wα−1 Γq (α) ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt ) 1 p 1 · ( ∫ w wqn ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣ q1 dqt ) 1 q 1 . (28) Consequently we derive |∆ (w)| wα−1 ≤ 1 Γq (α) ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt ) 1 p 1 · (29) ( ∫ w wqn ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣ q1 dqt ) 1 q 1 , and |∆ (w)| q1 wq1(α−1) ≤ 1 (Γq (α)) q1 ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt ) q 1 p 1 · (30) ( ∫ w wqn ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣ q1 dqt ) . Applying q−Hölder’s inequality (which is also valid on [0, x]) on (30), we see that ∫ x 0 |∆ (w)| q1 wq1(α−1) dqw ≤ 1 (Γq (α)) q1 · ∫ x 0   ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt ) q 1 p 1 · ( ∫ w wqn ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣ q1 dqt )  dqw ≤ 1 (Γq (α)) q1 · ( ∫ x 0 ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt )q1 dqw ) 1 p 1 · ( ∫ x 0 ( ∫ w wqn ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣ q1 dqt )q1 dqw ) 1 q 1 , (31) proving the claim. Next we give a q−fractional Sobolev type inequality. Theorem 9. Here all terms and assumptions as in Theorem 8. Additionaly let r1, r2 > 1 : 1 r1 + 1 r2 = 1. Then ( ∫ x 0 ( |∆ (w)| wα−1 )r1 dqw ) 1 r 1 ≤ 1 Γq (α) · CUBO 13, 1 (2011) q− Fractional Inequalities 67    ∫ x 0 ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt ) r 2 1 p 1 dqw    1 r2 1 · ( ∫ x 0 ( ∫ w wqn ∣ ∣ ∗D α q,wqn f (t) ∣ ∣ q1 dqt ) r 1 r 2 q 1 dqw ) 1 r 1 r 2 . (32) Proof. As in the proof of Theorem 8 we get (29), so that ( |∆ (w)| wα−1 )r1 ≤ 1 (Γq (α)) r1 ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt ) r 1 p 1 · (33) ( ∫ w wqn ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣ q1 dqt ) r 1 q 1 . Hence ∫ x 0 ( |∆ (w)| wα−1 )r1 dqw ≤ 1 (Γq (α)) r1 · (34) ∫ x 0   ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt ) r 1 p 1 · ( ∫ w wqn ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣ q1 dqt ) r 1 q 1  dqw (by q−Hölder’s inequality on [0, x]) ≤ 1 (Γq (α)) r1    ∫ x 0 ( ∫ w wqn ( ( q t w ; q ) α−1 )p1 dqt ) r 2 1 p 1 dqw    1 r 1 · (35) ( ∫ x 0 ( ∫ w wqn ∣ ∣ ( ∗D α q,wqn f ) (t) ∣ ∣ q1 dqt ) r 1 r 2 q 1 dqw ) 1 r 2 , proving the claim. It follows a q−fractional Hilbert-Pachpatte type inequality. Theorem 10. Let for i = 1, 2 that xi > 0, 0 < wi ≤ xi, 0 < q < 1; α > 0, p1, q1 > 1 such that 1 p1 + 1 q1 = 1; n ∈ N. Call ∆i (wi) = fi (wi) − ⌈α⌉−1 ∑ k=0 ( Dkq fi ) (wiq n) [k] q ! w k i (q n; q) k , F (w1) = ∫ w1 w1q n ( q t1 w1 ; q )p1 α−1 dqt1, (36) 68 George A. Anastassiou CUBO 13, 1 (2011) and G (w2) = ∫ w2 w2q n ( q t2 w2 ; q )q1 α−1 dqt2. Then ∫ x1 0 ∫ x2 0 |∆1 (w1)| |∆2 (w2)| (w1w2) α−1 ( F (w1) p1 + G(w2) q1 )dqw1dqw2 ≤ (37) x 1 p 1 1 x 1 q 1 2 (Γq (α)) 2 ( ∫ x1 0 ( ∫ w1 w1q n ∣ ∣ ∗D α q,w1q n f1 ∣ ∣ q1 (t1) dqt1 ) dqw1 ) 1 q 1 · ( ∫ x2 0 ( ∫ w2 w2q n ∣ ∣ ∗D α q,w2q n f2 ∣ ∣ p1 (t2) dqt2 ) dqw2 ) 1 p 1 . Proof. We notice by (20) that ∆i (wi) = w α−1 i Γq (α) ∫ wi wiq n ( q ti wi ; q ) α−1 ( ∗D α q,wiq n fi ) (ti) dqti, (38) for i = 1, 2. Therefore we derive |∆1 (w1)| ≤ w α−1 1 Γq (α) ∫ w1 w1q n ( q t1 w1 ; q ) α−1 ∣ ∣ ( ∗D α q,w1q n f1 ) (t1) ∣ ∣dqt1 ≤ w α−1 1 Γq (α) ( ∫ w1 w1q n ( q t1 w1 ; q )p1 α−1 dqt1 ) 1 p 1 · ( ∫ w1 w1q n ∣ ∣ ∗D α q,w1q n f1 ∣ ∣ q1 (t1) dqt1 ) 1 q 1 . (39) Similarly we obtain |∆2 (w2)| ≤ w α−1 2 Γq (α) ∫ w2 w2q n ( q t2 w2 ; q ) α−1 ∣ ∣ ( ∗D α q,w2q n f2 ) (t2) ∣ ∣dqt2 ≤ w α−1 2 Γq (α) ( ∫ w2 w2q n ( ( q t2 w2 ; q ) α−1 )q1 dqt2 ) 1 q 1 · ( ∫ w2 w2q n ∣ ∣ ∗D α q,w2q n f2 ∣ ∣ p1 (t2) dqt2 ) 1 p 1 . (40) Consequently we get |∆1 (w1)| |∆2 (w2)| ≤ (w1w2) α−1 (Γq (α)) 2 (F (w1)) 1 p 1 (G (w2)) 1 q 1 · ( ∫ w1 w1q n ∣ ∣ ∗D α q,w1q n f1 ∣ ∣ q1 (t1) dqt1 ) 1 q 1 · ( ∫ w2 w2q n ∣ ∣ ∗D α q,w2q n f2 ∣ ∣ p1 (t2) dqt2 ) 1 p 1 (41) (by Young’s inequality) ≤ (w1w2) α−1 (Γq (α)) 2 ( F (w1) p1 + G (w2) q1 ) · CUBO 13, 1 (2011) q− Fractional Inequalities 69 ( ∫ w1 w1q n ∣ ∣ ∗D α q,w1q n f1 ∣ ∣ q1 (t1) dqt1 ) 1 q 1 · ( ∫ w2 w2q n ∣ ∣ ∗D α q,w2q n f2 ∣ ∣ p1 (t2) dqt2 ) 1 p 1 . (42) Therefore ∫ x1 0 ∫ x2 0 |∆1 (w1)| |∆2 (w2)| (w1w2) α−1 ( F (w1) p1 + G(w2) q1 )dqw1dqw2 ≤ 1 (Γq (α)) 2 ( ∫ x1 0 ( ∫ w1 w1q n ∣ ∣ ∗D α q,w1q n f1 ∣ ∣ q1 (t1) dqt1 ) 1 q 1 dqw1 ) · ( ∫ x2 0 ( ∫ w2 w2q n ∣ ∣ ∗D α q,w2q n f2 ∣ ∣ p1 (t2) dqt2 ) 1 p 1 dqw2 ) ≤ (43) x 1 p 1 1 x 1 q 1 2 (Γq (α)) 2 ( ∫ x1 0 ( ∫ w1 w1q n ∣ ∣ ∗D α q,w1q n f1 ∣ ∣ q1 (t1) dqt1 ) dqw1 ) 1 q 1 · ( ∫ x2 0 ( ∫ w2 w2q n ∣ ∣ ∗D α q,w2q n f2 ∣ ∣ p1 (t2) dqt2 ) dqw2 ) 1 p 1 , (44) proving the claim. We continue with a generalized q−fractional Poincaré type inequality. Theorem 11. Let x > 0, 0 < w ≤ x, 0 < q < 1; α > β > 0, p1, q1 > 1 : 1 p1 + 1 q1 = 1; n ∈ N. Set K (w) = ( ∗D α−β q,wqn f ) (w) − ⌈α⌉−1 ∑ k=⌈α−β⌉ ( Dkq f ) (wqn) Γq (k − α + β + 1) w k−α+β (qn; q) k−α+β . Then ∫ x 0 ( |K (w)| wβ−1 )q1 dqw ≤ 1 (Γq (β)) q1 · (45) ( ∫ x 0 ( ∫ w wqn ( ( q t w ; q ) β−1 )p1 dqt )q1 dqw ) 1 p 1 · ( ∫ x 0 ( ∫ w wqn ∣ ∣ ∗D α q,wqn f (t) ∣ ∣ q1 dqt )q1 dqw ) 1 q 1 . Proof. By (21) we get K (w) = I β q,wqn ( ∗D α q,wqn f ) (w) = wβ−1 Γq (β) ∫ w wqn ( q t w ; q ) β−1 ( ∗D α q,wqn f ) (t) dqt. (46) Rest of proof goes as in the proof of Theorem 8. Next comes a generalized q−fractional Sobolev’s type inequality. 70 George A. Anastassiou CUBO 13, 1 (2011) Theorem 12. Here all terms and assumptions as in Theorem 11. Additionaly let r1, r2 > 1 : 1 r1 + 1 r2 = 1. Then ( ∫ x 0 ( |K (w)| wβ−1 )r1 dqw ) 1 r 1 ≤ 1 Γq (β) · (47)    ∫ x 0 ( ∫ w wqn ( ( q t w ; q ) β−1 )p1 dqt ) r 2 1 p 1 dqw    1 r2 1 · ( ∫ x 0 ( ∫ w wqn ∣ ∣ ∗D α q,wqn f (t) ∣ ∣ q1 dqt ) r 1 r 2 q 1 dqw ) 1 r 1 r 2 . Proof. As in the Theorem 9, using (46). We finish with a generalized q−fractional Hilbert-Pachpatte type inequality. Theorem 13. Let for i = 1, 2 that xi > 0, 0 < wi ≤ xi, 0 < q < 1; α > β > 0, p1, q1 > 1 : 1 p1 + 1 q1 = 1; n ∈ N. Call Ki (wi) = ( ∗D α−β q,wiq n fi ) (wi) − ⌈α⌉−1 ∑ k=⌈α−β⌉ ( Dkq fi ) (wiq n) Γq (k − α + β + 1) w k−α+β i (q n; q) k−α+β , F ∗ (w1) = ∫ w1 w1q n ( q t1 w1 ; q )p1 β−1 dqt1, (48) G ∗ (w2) = ∫ w2 w2q n ( q t2 w2 ; q )q1 β−1 dqt2. Then ∫ x1 0 ∫ x2 0 |K1 (w1)| |K2 (w2)| (w1w2) β−1 ( F ∗(w1) p1 + G∗(w2) q1 )dqw1dqw2 ≤ x 1 p 1 1 x 1 q 1 2 (Γq (β)) 2 · (49) ( ∫ x1 0 ( ∫ w1 w1q n ∣ ∣ ∗D α q,w1q n f1 ∣ ∣ q1 (t1) dqt1 ) dqw1 ) 1 q 1 · ( ∫ x2 0 ( ∫ w2 w2q n ∣ ∣ ∗D α q,w2q n f2 ∣ ∣ p1 (t2) dqt2 ) dqw2 ) 1 p 1 . Proof. Similar to the proof of Theorem 10, using (21). Received: October 2009. Revised: November 2009. CUBO 13, 1 (2011) q− Fractional Inequalities 71 References [1] George Anastassiou, Fractional Differentiation Inequalities, Springer, N. York, Heidelberg, 2009. [2] H. Gauchman, Integral inequalities in q−Calculus, Computers and Mathematics with Ap- plications, 47 (2004), 281-300. [3] P. Rajkovic, S. Marinkovic, M. Stankovic, Fractional integrals and derivatives in q−Calculus, Applicable Analysis and Discrete Mathematics, 1 (2007), 311-323. [4] M. Stankovic, P. Rajkovic, S. Marinkovic, On q−fractional derivatives of Riemann- Liouville and Caputo type, arXiv: 0909.0387 v1[math.CA] 2 Sept. 2009.