Articulo 2.dvi CUBO A Mathematical Journal Vol.12, No¯ 02, (19–27). June 2010 Differences of weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces Elke Wolf Mathematical Institute, University of Paderborn, D-33095 Paderborn, Germany. email: lichte@math.uni-paderborn.de ABSTRACT We consider analytic self-maps φ1, φ2 of the open unit disk as well as analytic maps ψ1,ψ2. These maps induce differences of weighted composition operators acting between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces. In this article we give necessary and sufficient conditions for such a difference to be bounded resp. compact. RESUMEN Nosotros consideramos auto aplicaciones φ1, φ2 del disco unitario abierto bien como apli- caciones anaĺıticas ψ1,ψ2. Estas aplicaciones inducen diferencias de composición de op- eradores con peso actuando entre espacios de Banach pesados de funciones holomorfas y espacios de tipo Bloch con peso. En este art́ıculo damos condiciones necesarias y suficientes para que tal diferencia sea acotada, respectivamente, compacta. Key words and phrases: weighted composition operators, weighted Bloch type spaces, weighted Banach spaces of holomorphic functions. Math. Subj. Class. 2000: 47B33, 47B38. 20 Elke Wolf CUBO 12, 2 (2010) 1 Introduction For analytic self-maps φ1,φ2 of D and analytic maps ψ1,ψ2 the corresponding weighted composition operators ψiCφi are defined by ψiCφif = ψif ◦ φi, i = 1, 2. Composition operators and weighted composition operators acting on various spaces of analytic functions have recently been of much interest, see for example [14], [8], [12], [2], [4], [13]. Differences of them have been studied e.g. in [3], [9], [16], [17], [18]. Let v and w be strictly positive, continuous and bounded functions (weights) on D and H(D) be the set of all analytic functions on D. In this article we are interested in differences ψ1Cφ1 −ψ2Cφ2 acting between weighted Banach spaces of holomorphic functions H∞v := {f ∈ H(D); ‖f‖v := sup z∈D v(z)|f(z)| < ∞} and the weighted Bloch type spaces Bw of functions f ∈ H(D) satisfying ‖f‖Bw := supz∈D v(z)|f ′(z)| < ∞. Our aim is to give necessary and sufficient conditions for a difference ψ1Cφ1 − ψ2Cφ2 : H ∞ v → Bw to be bounded resp. compact in terms of the involved weights and the analytic maps φ1,φ2,ψ1,ψ2. 2 Notation and auxiliary results An introduction to the concept of composition operators can be found in the monographs [5] and [15]. In this article we are especially interested in radial weights (i.e. weights with v(z) = v(|z|) for every z ∈ D) which satisfy additionally the Lusky condition (L1) (due to Lusky [10]) (L1) inf k∈N v(1 − 2−k−1) v(1 − 2−k) > 0. When dealing with differences of weighted composition operators we need some geometric data. Recall that for any z ∈ D, ϕz is the Möbius transformation which interchanges the origin and z, namely ϕz(w) = z−w 1−zw ,w ∈ D. The pseudohyperbolic distance ρ(z,w) for z,w ∈ D is defined by ρ(z,w) = |ϕz(w)|. Moreover, we have ϕ ′ z(w) = |z|2−1 (1−zw)2 for z,w ∈ D. Let us recall some auxiliary results. The next lemma is taken from [3], see also [6]. Lemma 1. (Bonet-Lindström-Wolf [3]) Let v be a radial weight satisfying the Lusky condition (L1) and let f ∈ H∞v . Then there exists a constant Cv > 0 (depending on the weight v) such that |f(z) − f(p)| ≤ Cv‖f‖v max { 1 v(z) , 1 v(p) } ρ(z,p) for all z,p ∈ D. Theorem 2. (Harutyunyan-Lusky, [7] Theorem 2.1) Let v and w be radial weights which are contin- uously differentiable with respect to |z| with lim|z|→1 v(z) = lim|z|→1 w(z) = 0 and such that H ∞ w is isomorphic to l∞. If lim supr→1 ( − w ′(r) v(r) ) < ∞, then D : H∞v → H ∞ w ,f → f ′ is bounded. CUBO 12, 2 (2010) Differences of weighted composition operators ... 21 For conditions when H∞w is isomorphic to l∞ we refer the reader to [11] and [7]. By [7] we know that the following weights have the desired properties: w(z) = (1 − |z|)α,α > 0,w(z) = e − 1 1−|z| , z ∈ D. For the study of the compactness of the difference ψ1Cφ1 − ψ2Cφ2 we need the following result. Proposition 3. (Cowen-MacCluer, [5] Proposition 3.11) Let X and Y be H∞v or Bw. Then ψ1Cφ1 − ψ2Cφ2 : X → Y is compact if and only if for every bounded sequence (fn)n∈N in X such that fn → 0 uniformly on the compact subsets of D, then (ψ1Cφ1 − ψ2Cφ2 )fn → 0 in Y . 3 Main Result In the sequel we consider weights v of the following type: Let ν be a holomorphic function on D, non-vanishing and strictly positive on [0, 1[. Moreover we assume that ν is decreasing on [0, 1[ and satisfies limr→1 ν(r) = 0. Then we define the corresponding weight v by v(z) := ν(|z| 2) for every z ∈ D. Furthermore, we suppose the boundedness of the function ν′ on D. Next, we give some illustrating examples of weights of this type: (i) Consider ν(z) = (1−z)α, α ≥ 1. Then the corresponding weight is the so-called standard weight v(z) = (1 − |z|2)α. (ii) Selecting ν(z) = e − 1 (1−z)α , α ≥ 1, we obtain the weight v(z) = e − 1 (1−|z|2)α . (iii) Choose ν(z) = sin(1 − z) and the corresponding weight is given by v(z) = sin(1 − |z|2). Fix a point p ∈ D and an analytic self-map φ of D. We introduce a function vφ(p)(z) := ν(φ(p)z) for every z ∈ D. Since ν is holomorphic on D, the function vφ(p) is also holomorphic on D. Furthermore, vφ(p)(φ(p)) = ν(|φ(p)|2) = v(φ(p)) and v′ φ(p) (z) = φ(p)ν′(φ(p)z) for every z ∈ D, i.e. v′ φ(p) (φ(p)) = φ(p)ν′(|φ(p)|2). We start with considering boundedness of operators ψ1Cφ1 − ψ2Cφ2 : H ∞ v → Bw and give first a necessary condition in terms of the involved weights and then a sufficient condition. Proposition 4. Let w be a weight and v be a weight as described in the beginning of this section. Let ψ1,ψ2 ∈ H(D) and φ1,φ2 be analytic self-maps of D. If ψ1Cφ1 − ψ2Cφ2 : H ∞ v → Bw is bounded, then the following conditions are satisfied (a) supz∈D w(z) ∣ ∣ ∣ ∣ ψ ′ 1(z) v(φ1(z)) 1 2 ϕ2 φ2(z) (φ1(z)) + 2 ψ1(z) v(φ1(z)) 1 2 ϕφ2(z)(φ1(z))ϕ ′ φ2(z) (φ1(z)) ∣ ∣ ∣ ∣ < ∞, (b) supz∈D w(z) ∣ ∣ ∣ ∣ ψ ′ 2(z) v(φ2(z)) 1 2 ϕ2 φ1(z) (φ2(z)) + 2 ψ2(z) v(φ2(z)) 1 2 ϕφ1(z)(φ2(z))ϕ ′ φ1(z) (φ2(z)) ∣ ∣ ∣ ∣ < ∞, (c) supz∈D ∣ ∣ ∣ ψ1(z)w(z)φ1(z)ν ′(|φ1(z)| 2) v(φ1(z)) ∣ ∣ ∣ ρ(φ1(z),φ2(z)) < ∞, (d) supz∈D ∣ ∣ ∣ ψ2(z)w(z)φ2(z)ν ′(|φ2(z)| 2) v(φ2(z)) ∣ ∣ ∣ ρ(φ1(z),φ2(z)) < ∞, 22 Elke Wolf CUBO 12, 2 (2010) Proof (a) Fix a point p ∈ D and put fφ1(p)(z) := ( 2 vφ1(p)(z) − vφ1(p)(φ1(p)) vφ1(p)(z) 2 ) 1 2 and gφ1(p)(z) := fφ1(p)(z)ϕ 2 φ2(p) (z) for every z ∈ D. Next, we get ‖gφ1(p)‖v ≤ sup z∈D ∣ ∣ ∣ ∣ v(z)2 2 vφ1(p)(z) − v(z)2 vφ1(p)(φ1(p)) vφ1(p)(z) 2 ∣ ∣ ∣ ∣ 1 2 ≤ (3M) 1 2 where M = supz∈D v(z) and therefore the constant does not depend on the choice of p. Thus, gφ1(p) ∈ H∞v and g ′ φ1(p) (z) = f′ φ1(p) (z)ϕ2 φ2(p) (z)+2fφ1(p)(z)ϕ ′ φ2(p) (z)ϕφ2(p)(z) for every z ∈ D, where f ′ φ1(p) (z) = ( − v ′ φ1(p) (z) vφ1(p)(z) 2 + v ′ φ1(p) (z)vφ1(p)(φ1(p)) vφ1(p)(z) 3 )( 2 vφ1(p)(z) − vφ1(p)(φ1(p)) vφ1(p)(z) 2 )− 1 2 and ϕ′ φ2(p) (z) = |φ2(p)| 2−1 (1−φ2(p)z)2 for every z ∈ D. We get fφ1(p)(φ1(p)) = 1 v(φ1(p)) 1 2 and f′ φ1(p) (φ1(p)) = 0 and hence gφ1(p)(φ1(p)) = ϕ 2 φ2(p) (φ1(p)) v(φ1(p)) 1 2 as well as g′ φ1(p) (φ1(p)) = 2 ϕ ′ φ2(p) (φ1(p))ϕφ2(p)(φ1(p)) v(φ1(p)) 1 2 . Now, w(p) ∣ ∣ ∣ ∣ ∣ ψ′1(p)ϕ 2 φ2(p) (φ1(p)) v(φ1(p))) 1 2 + 2 ψ1(p)ϕφ2(p)(φ1(p))ϕ ′ φ2(p) (φ1(p)) v(φ1(p))) 1 2 ∣ ∣ ∣ ∣ ∣ = w(p) ∣ ∣ ∣ ψ ′ 1(p)gφ1(p)(φ1(p)) + ψ1(p)φ ′ 1(p)g ′ φ1(p) (φ1(p)) − ψ ′ 2(p)gφ1(p)(φ2(p)) − ψ2(p)φ ′ 2(p)g ′ φ1(p) (φ2(p)) ∣ ∣ ∣ ≤ ‖ψ1Cφ1 − ψ2Cφ2‖‖gφ1(p)‖v < ∞. Thus, (a) follows, and we can show (b) analogously. For the proof of condition (c) we fix a point p ∈ D and put fφ1(p)(z) := vφ1(p)(φ1(p)) vφ1(p)(z) − ( vφ1(p)(φ1(p)) vφ1(p)(z) ) 1 2 = v(φ1(p)) vφ1(p)(z) − ( v(φ1(p)) vφ1(p)(z) ) 1 2 and gφ1(p)(z) := fφ1(p)(z)ϕ 2 φ2(p) (z) for every z ∈ D. Hence ‖gφ1(p)‖v ≤ 2M and we get g′φ1(p)(z) = f ′ φ1(p) (z)ϕ2φ2(p)(z) + 2fφ1(p)(z)ϕφ2(p)(z)ϕ ′ φ2(p) (z) for every z ∈ D, where f′φ1(p)(z) = − vφ1(p)(φ1(p))v ′ φ1(p) (z) vφ1(p)(z) 2 + 1 2 vφ1(p)(φ1(p)) 1 2 v′ φ1(p) (z) vφ1(p)(z) 3 2 Thus, we obtain fφ1(p)(φ1(p)) = 0 and f ′ φ1(p) (φ1(p)) = − 1 2 φ1(p)ν ′(|φ1(p)| 2) v(φ1(p)) . Hence gφ1(p)(φ1(p)) = 0 and g′ φ1(p) (φ1(p)) = − 1 2 φ1(p)ν ′(|φ1(p)| 2)ϕ2 φ2(p) (φ1(p)) v(φ1(p)) . Finally, 1 2 w(p) ∣ ∣ ∣ ∣ ∣ φ1(p)ν ′(|φ1(p)| 2)ϕ2 φ2(p) (φ1(p)) vφ2(p)(φ1(p)) ∣ ∣ ∣ ∣ ∣ = w(p) ∣ ∣ ∣ ψ′1(p)gφ1(p)(φ1(p)) + ψ1(p)φ ′ 1(p)g ′ φ1(p) (φ1(p)) − ψ ′ 2(p)gφ1(p)(φ2(p)) − ψ2(p)φ ′ 2(p)g ′ φ1(p) (φ2(p)) ∣ ∣ ∣ ≤ ‖ψ1Cφ1 − ψ2Cφ2‖‖gφ1(p)‖v < ∞. CUBO 12, 2 (2010) Differences of weighted composition operators ... 23 The claim follows. We can show (d) analogously. Proposition 5. Let v and w be weights. If (a) there is a weight u such that the operator D : H∞v → H ∞ u ,f → f ′ is bounded and additionally supz∈D max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } ρ(φ1(z),φ2(z)) < ∞ as well as supz∈D max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } |φ′1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| < ∞, (b) supz∈D max { 1 v(φ1(z)) , 1 v(φ2(z)) } w(z)|ψ′1(z) − ψ ′ 2(z)| < ∞, (c) supz∈D max { 1 v(φ1(z)) , 1 v(φ2(z)) } w(z) max{|ψ′1(z)|, |ψ ′ 2(z)|}ρ(φ1(z),φ2(z)) < ∞ then ψ1Cφ1 − ψ2Cφ2 : H ∞ v → Bw is bounded. Proof Let f ∈ H∞v . Using Lemma 1 we obtain sup z∈D w(z)|((ψ1Cφ1 − ψ2Cφ2 )f) ′(z)| ≤ sup z∈D w(z)|ψ′1(z) − ψ ′ 2(z)||f(φ1(z))| + sup z∈D w(z)|ψ′2(z)||f(φ1(z)) − f(φ2(z))| + sup z∈D w(z)|f′(φ1(z))||φ ′ 1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| + sup z∈D w(z)|φ′2(z)ψ2(z)||f ′(φ1(z)) − f ′(φ2(z))| ≤ sup z∈D w(z)|ψ′1(z) − ψ ′ 2(z)| max { 1 v(φ1(z)) , 1 v(φ2(z)) } ‖f‖v + sup z∈D max{|ψ′1(z)|, |ψ ′ 2(z)|} max { 1 v(φ1(z)) , 1 v(φ2(z)) } ρ(φ1(z),φ2(z))‖f‖v + sup z∈D w(z) u(φ1(z)) ‖f′‖u|φ ′ 1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| + sup z∈D max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } ρ(φ1(z),φ2(z))‖f ′‖u ≤ sup z∈D w(z)|ψ′1(z) − ψ ′ 2(z)| max { 1 v(φ1(z)) , 1 v(φ2(z)) } ‖f‖v + sup z∈D max{|ψ′1(z)|, |ψ ′ 2(z)|} max { 1 v(φ1(z)) , 1 v(φ2(z)) } ρ(φ1(z),φ2(z))‖f‖v + sup z∈D max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } ‖D‖‖f‖v|φ ′ 1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| + sup z∈D max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } ρ(φ1(z),φ2(z))‖D‖‖f‖v and the claim follows. Next, we turn our attention to compactness of ψ1Cφ1 − ψ2Cφ2 : H ∞ v → Bw. Proposition 6. Let w be a weight and v be a weight as described in the beginning of this section. Let ψ1,ψ2 ∈ H(D) and φ1,φ2 be analytic self-maps of D. If ψ1Cφ1 − ψ2Cφ2 : H ∞ v → Bw is bounded, then the following conditions are satisfied 24 Elke Wolf CUBO 12, 2 (2010) (a) lim sup|φ1(z)|→1 w(z) ∣ ∣ ∣ ∣ ψ ′ 1(z) v(φ1(z)) 1 2 ϕ2 φ2(z) (φ1(z)) + 2 ψ1(z) v(φ1(z)) 1 2 ϕφ2(z)(φ1(z))ϕ ′ φ2(z) (φ1(z)) ∣ ∣ ∣ ∣ = 0, (b) lim sup|φ2(z)|→1 w(z) ∣ ∣ ∣ ∣ ψ ′ 2(z) v(φ2(z)) 1 2 ϕ2 φ1(z) (φ2(z)) + 2 ψ2(z) v(φ2(z)) 1 2 ϕφ1(z)(φ2(z))ϕ ′ φ1(z) (φ2(z)) ∣ ∣ ∣ ∣ = 0, (c) lim sup|φ1(z)|→1 ∣ ∣ ∣ ψ1(z)w(z)φ1(z)ν ′(|φ1(z)| 2) v(φ1(z)) ∣ ∣ ∣ ρ(φ1(z),φ2(z)) = 0, (d) lim sup|φ2(z)|→1 ∣ ∣ ∣ ψ2(z)w(z)φ2(z)ν ′(|φ2(z)| 2) v(φ2(z)) ∣ ∣ ∣ ρ(φ1(z),φ2(z)) = 0, Proof (a) Consider a sequence (zn)n ⊂ D such that |φ1(zn)| → 1 if n → ∞. We set fφ1(zn)(z) := vφ1(zn)(φ1(zn)) 1 6 ( 3 2 1 vφ1(zn)(z) 2 − vφ1(zn)(φ1(zn)) vφ1(zn)(z) 3 ) 1 3 and gφ1(zn)(z) := fφ1(zn)(z)ϕ 2 φ2(zn) (z) for every z ∈ D. Thus ‖gφ1(zn)‖v ≤ supz∈D vφ1(zn)(φ1(zn)) 1 6 ∣ ∣ ∣ 3 2 v(z)3 vφ1(zn)(z) 2 − v(z)3vφ1(zn)(φ1(zn)) vφ1(zn)(z) 3 ∣ ∣ ∣ 1 3 ≤ M 1 6 ( 5 2 M ) 1 3 for ev- ery n ∈ N, where M := supz∈D v(z). Thus, (gφ1(zn))n∈N is a bounded sequence in H ∞ v which converges to zero uniformly on the compact subsets of D. Moreover, g′φ1(zn)(z) = f ′ φ1(zn) (z)ϕ2φ2(zn)(z) + 2fφ1(zn)(z)ϕφ2(zn)(z)ϕ ′ φ2(zn) (z) for every z ∈ D, where f ′ φ1(zn) (z) = vφ1(zn)(φ1(zn)) 1 6 ( 3 2 1 vφ1(zn)(z) 2 − vφ1(zn)(φ1(zn)) vφ1(zn)(z) 3 )− 2 3 · · ( − v′ φ1(zn) (z) vφ1(zn)(z) 3 + vφ1(zn)(φ1(zn)) vφ1(zn)(z) 4 v′φ1(zn)(z) ) for every n ∈ N. By Proposition 3, the fact that ψ1Cφ1 − ψ2Cφ2 is compact yields ‖(ψ1Cφ1 − ψ2Cφ2 )gφ1(zn)‖Bw → 0 if n → ∞. Finally, ‖(ψ1Cφ1 − ψ2Cφ2 )gφ1(zn)‖Bw ≥ w(zn) ∣ ∣ ∣ ∣ ∣ ψ′1(zn) v(φ1(zn)) 1 2 ϕ2φ2(zn)(φ1(zn)) + 2 ψ1(zn)ϕφ2(zn)(φ1(zn))ϕ ′ φ2(zn) (φ1(zn)) v(φ1(zn)) 1 2 ∣ ∣ ∣ ∣ ∣ Thus, (a) follows and we can show (b) analogously. Consider now fφ1(zn)(z) := vφ1(zn)(φ1(zn)) vφ1(zn)(z) − ( vφ1(zn)(φ1(zn)) vφ1(zn)(z) ) 1 2 = v(φ1(zn)) vφ1(zn)(z) − ( v(φ1(zn)) vφ1(zn)(z) ) 1 2 and gφ1(zn)(z) := fφ1(zn)(z)ϕ 2 φ2(zn) (z) for every z ∈ D. CUBO 12, 2 (2010) Differences of weighted composition operators ... 25 Then ‖gφ1(zn)‖v ≤ supz∈D v(z) ∣ ∣ ∣ ∣ vφ1(zn)(φ1(zn)) vφ1(zn)(z) − ( vφ1(zn)(φ1(zn)) vφ1(zn)(z) ) 1 2 ∣ ∣ ∣ ∣ ≤ 2M for every n ∈ N. Thus (gφ1(zn))n is a bounded sequence in H ∞ v and gφ1(zn) → 0 uniformly on every compact subset of D. Moreover gφ1(zn)(φ1(zn)) = 0 and g ′ φ1(zn) (φ1(zn)) = − 1 2 v ′ φ1(zn) (φ1(zn)) v(φ1(zn)) ϕ2 φ2(zn) (φ1(zn)). Since ψ1Cφ1 − ψ2Cφ2 is compact, by Proposition 3 we have ‖(ψ1Cφ1 − ψ2Cφ2 )gn‖Bw → 0 if n → ∞. Thus, ‖(ψ1Cφ1 − ψ2Cφ2 )gφ1(zn)‖Bw = sup z∈D w(z)|((ψ1Cφ1 − ψ2Cφ2 )gφ1(zn)) ′(z)| ≥ 1 2 w(zn)|ψ1(zn)φ ′ 1(zn)φ1(zn)|ρ(φ1(zn),φ2(zn)) 2 |ν ′(|φ1(zn)| 2)| v(φ1(zn)) . Finally, lim sup|φ1(z)|→1 w(z)|ψ(z)||φ ′ 1(z)||φ1(z)| |ν′(|φ1(z)| 2)| v(φ1(z)) = 0, and (c) holds. (d) follows analo- gously. Proposition 7. Let v and w be weights. If (a) there is a weight u such that the operator D : H∞v → H ∞ u ,f → f ′ is bounded and additionally lim supmax{|φ1(z)|,|φ2(z)|}→1 max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } ρ(φ1(z),φ2(z)) = 0 as well as lim supmax{|φ1(z)|,|φ2(z)|}→1 max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } |φ′1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| = 0, (b) lim supmax{|φ1(z)|,φ2(z)|}→1 max { 1 v(φ1(z)) , 1 v(φ2(z)) } w(z)|ψ′1(z) − ψ ′ 2(z)| = 0, (c) lim supmax{|φ1(z)|,|φ2(z)|}→1 max { 1 v(φ1(z)) , 1 v(φ2(z)) } w(z) max{|ψ′1(z)|, |ψ ′ 2(z)|}ρ(φ1(z),φ2(z)) = 0 then ψ1Cφ1 − ψ2Cφ2 : H ∞ v → Bw is compact. Proof Let (fn)n∈N be a sequence in H ∞ v with ‖fn‖v ≤ 1 and fn → 0 uniformly on compact subsets of D. By the assumption, for any ε > 0 there is 0 < δ < 1 such that δ < max{|φ1(z)|, |φ2(z)|} < 1 implies max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } ρ(φ1(z),φ2(z)) < ε max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } |φ′1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| < ε max { 1 v(φ1(z)) , 1 v(φ2(z)) } w(z)|ψ′1(z) − ψ ′ 2(z)| < ε max { 1 v(φ1(z)) , 1 v(φ2(z)) } w(z) max{|ψ′1(z)|, |ψ ′ 2(z)|}ρ(φ1(z),φ2(z)) < ε 26 Elke Wolf CUBO 12, 2 (2010) Then applying Lemma 1 sup z∈D w(z)|((ψ1Cφ1 − ψ2Cφ2 )fn) ′(z)| ≤ sup z∈D w(z)|ψ′1(z) − ψ ′ 2(z)||fn(φ1(z))| + sup z∈D w(z)|ψ′2(z)||fn(φ1(z)) − fn(φ2(z))| + sup z∈D w(z)|f′n(φ1(z))||φ ′ 1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| + sup z∈D w(z)|φ′2(z)ψ2(z)||f ′ n(φ1(z)) − f ′ n(φ2(z))| ≤ sup {z; max{|φ1(z)|,|φ2(z)|}>δ} w(z)|ψ′1(z) − ψ ′ 2(z)| max { 1 v(φ1(z)) , 1 v(φ2(z)) } ‖fn‖v + sup {z; max{|φ1(z)|,|φ2(z)|}>δ} max{|ψ′1(z)|, |ψ ′ 2(z)|} max { 1 v(φ1(z)) , 1 v(φ2(z)) } ρ(φ1(z),φ2(z))‖fn‖v + sup {z; max{|φ1(z)|,|φ2(z)|}>δ} w(z) u(φ1(z)) ‖f′‖u|φ ′ 1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| + sup {z; max{|φ1(z)|,|φ2(z)|}>δ} max { w(z) u(φ1(z)) , w(z) u(φ2(z)) } ρ(φ1(z),φ2(z))‖f ′ n‖u + sup {z; max{|φ1(z)|,φ2(z)|}≤δ} w(z)|ψ′1(z) − ψ ′ 2(z)||fn(φ1(z))| + sup {z; max{|φ1(z)|,φ2(z)|}≤δ} w(z)|ψ′2(z)||fn(φ1(z))| + sup {z; max{|φ1(z)|,φ2(z)|}≤δ} w(z)|ψ′2(z)||fn(φ2(z))| + sup {z; max{|φ1(z)|,φ2(z)|}≤δ} w(z)|f′n(φ1(z))||φ ′ 1(z)ψ1(z) − φ ′ 2(z)ψ2(z)| + sup {z; max{|φ1(z)|,φ2(z)|}≤δ} w(z)|φ′2(z)ψ2(z)||f ′ n(φ1(z))| + sup {z; max{|φ1(z)|,φ2(z)|}≤δ} w(z)|φ′2(z)ψ2(z)||f ′ n(φ2(z))|. The claim follows. Received: October 2008. Revised: February 2009. References [1] K.D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), no. 2, 137-168. [2] J. Bonet, P. Domański, M. Lindström and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101-118. [3] J. Bonet, M. Lindström and E. Wolf, Differences of composition operators between weighted Banach spaces of holomorphic functions, J. Austral. Math. Soc. 84 (2008), no. 1, 9-20. CUBO 12, 2 (2010) Differences of weighted composition operators ... 27 [4] M.D. Contreras and A.G. Hernández-Dı́az, Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41-60. [5] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995. [6] P. Domański and M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Plon. Math. 79 (2002), no. 3, 233-264. [7] A. Harutyunyan and W. Lusky, On the boundedness of the differentiation operator between weighted spaces of holomorphic functions, Studia Math. 184 (2008), no. 3, 233-247. [8] T. Hosokawa, K. Izuchi and S. Ohno, Topological structure of the space of weighted com- positon operators on H∞, Integral Equations Operator Theory 53 (2005), no. 4, 509-526. [9] M. Lindström and E. Wolf, Essential norm of the difference of weighted composition operators, Monatshefte Math. 153 (2008), no. 2, 133-143. [10] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. 51 (1995), no. 2, 309-320. [11] W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic func- tions, Studia Math. 175 (2006), no. 1, 19-45. [12] B. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators on H∞, Integral Equations Operator Theory 40 (2001), no. 4, 481-494. [13] S. Ohno, Weighted composition operators between H∞ and the Bloch space, Taiwanese J. Math. 5 (2001), no. 3, 555-563. [14] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191-215. [15] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993. [16] E. Wolf, Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk, Results Math. 51 (2008), no. 3-4, 361-372 [17] E. Wolf, Compact differences of composition operators, Bull. Aust. math. Soc. 77 (2008), no. 1, 161-165. [18] E. Wolf, Differences of weighted composition operators, to appear in Collectanea Math.