OS1.dvi CUBO A Mathematical Journal Vol.12, No¯ 01, (133–148). March 2010 Well-Posedness Results for Anisotropic Nonlinear Elliptic Equations with Variable Exponent and L1-Data Stanislas OUARO Laboratoire d’Analyse Mathématique des Equations (LAME), UFR. Sciences Exactes et Appliquées, Université de Ouagadougou 03 BP 7021 Ouaga 03 Ouagadougou, Burkina Faso email : souaro@univ-ouaga.bf ABSTRACT We study the anisotropic boundary value problem − N ∑ i=1 ∂ ∂xi ai ( x, ∂ ∂xi u ) = f in Ω, u = 0 on ∂Ω, where Ω is a smooth open bounded domain in RN (N ≥ 3) and f ∈ L1(Ω). We prove the existence and uniqueness of an entropy solution for this problem. RESUMEN Estudiamos el problema de valores en la frontera anisotropico − N ∑ i=1 ∂ ∂xi ai ( x, ∂ ∂xi u ) = f en Ω, u = 0 sobre ∂Ω, donde Ω es un dominio abierto suave do RN (N ≥ 3) y f ∈ L1(Ω). Proveamos la existencia y unicidad de una solución de entroṕıa para este problema. Key words and phrases: Anisotropic; variable exponent; entropy solution; electrorheological fluids. Math. Subj. Class.: 35J20, 35J25, 35D30, 35B38, 35J60. 134 Stanislas OUARO CUBO 12, 1 (2010) 1 Introduction Let Ω be an open bounded domain of RN (N ≥ 3) with smooth boundary. Our aim is to prove the existence and uniqueness of an entropy solution to the anisotropic nonlinear elliptic problem            − N ∑ i=1 ∂ ∂xi ai ( x, ∂ ∂xi u ) = f in Ω u = 0 on ∂Ω, (1.1) where the right-hand side f ∈ L1(Ω). We assume that for i = 1, ...,N the function ai : Ω × R → R is Carathéodory and satisfies the following conditions: ai(x,ξ) is the continuous derivative with respect to ξ of the mapping Ai : Ω × R → R, Ai = Ai(x,ξ), i.e. ai(x,ξ) = ∂ ∂ξ Ai(x,ξ) such that the following equality and inequalities holds Ai(x, 0) = 0, (1.2) for almost every x ∈ Ω. There exists a positive constant C1 such that |ai(x,ξ)| ≤ C1(ji(x) + |ξ| pi(x)−1) (1.3) for almost every x ∈ Ω and for every ξ ∈ R, where ji is a nonnegative function in L p′i(.)(Ω), with 1/pi(x) + 1/p ′ i(x) = 1. There exists a positive constant C2 such that (ai(x,ξ) − ai(x,η)) . (ξ − η) ≥ { C2 |ξ − η| pi(x) if |ξ − η| ≥ 1 C2 |ξ − η| p − i if |ξ − η| < 1, (1.4) for almost every x ∈ Ω and for every ξ,η ∈ R, with ξ 6= η, and |ξ| pi(x) ≤ ai(x,ξ).ξ ≤ pi(x)Ai(x,ξ) (1.5) for almost every x ∈ Ω and for every ξ ∈ R. We also assume that the variable exponent pi(.) : Ω → [2,N) are continuous functions for all i = 1, ...,N such that: p̄(N − 1) N(p̄ − 1) < p−i < p̄(N − 1) N − p̄ , N ∑ i=1 1 p−i > 1 and p+i − p − i − 1 p−i < p̄ − N p̄(N − 1) , (1.6) where 1 p̄ = 1 N N ∑ i=1 1 p−i , p−i := ess inf x∈Ω pi(x) and p + i := ess sup x∈Ω pi(x). We introduce the numbers q = N(p̄ − 1) N − 1 , q∗ = Nq N − q = N(p̄ − 1) N − p̄ . (1.7) CUBO 12, 1 (2010) Well-Posedness Results for Anisotropic ... 135 A prototype example that is covered by our assumptions is the following anisotropic (p1(.), ...,pN (.))- harmonic equation: Set Ai(x,ξ) = (1/pi(x)) |ξ| pi(x), ai(x,ξ) = |ξ| pi(x)−2 ξ where pi(x) ≥ 2. Then we get the following equation: − N ∑ i=1 ∂ ∂xi ( ∣ ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ ∣ pi(x)−2 ∂ ∂xi u ) = f which, in the particular case when pi = p for any i ∈ {1, ...,N} is the anisotropic p(.)-Laplace equation. For the proof of existence of entropy solutions of (1.1), we follow [2] and derive a priori estimates for the approximated solutions un and the partial derivatives ∂un ∂xi in the Marcinkiewicz spaces Mq ∗ and Mp − i q/p̄ respectively (see section 2 or [2] for definition of Marcinkiewicz spaces). The study of nonlinear elliptic equations involving the p−Laplace operator is based on the theory of standard Sobolev spaces W m,p(Ω) in order to find weak solutions. For the nonhomogeneous p(.)-Laplace operators, the natural setting for this approach is the use of the variable exponent Lebesgue and Sobolev spaces Lp(.)(Ω) and W m,p(.)(Ω). Variable exponent Lebesgue spaces appeared in the literature for the first time in a 1931 article by Orlicz[21]. After [21], Orlicz abandoned the study of variable exponent spaces to concentrate on the theory of function spaces that now bears his name (Orlicz spaces). After Orlicz’s work (cf. [21]), H. Hudzik [14], and J. Musielak [20] investigated the variable exponent Sobolev spaces. Variable exponent Lebesgue spaces on the real line have been independently developed by Russian researchers, notably Sharapudinov[26] and Tsenov [27]. The next major step in the investigation of variable exponent Lebesgue and Sobolev spaces was the comprehensive paper by O. Kovacik and J. Rakosnik in the early 90’s [16]. This paper established many of basic properties of Lebesgue and Sobolev spaces with variables exponent. Variable Sobolev spaces have been used in the last decades to model various phenomena. In [5], Chen, Levine and Rao proposed a framework for image restoration based on a Laplacian variable exponent. Another application which uses non- homogeneous Laplace operators is related to the modelling of electrorheological fluids. The first major discovery in electrorheological fluids was due to Willis Winslow in 1949 (cf. [28]). These fluids have the interesting property that their viscosity depends on the electric field in the fluid. They can raise the viscosity by as much as five orders of magnitude. This phenomenon is known as the Winslow effect. For some technical applications, consult Pfeiffer et al [22]. Electrorheolog- ical fluids have been used in robotics and space technology. The experimental research has been done mainly in the USA, for instance in NASA laboratories. For more information on properties, modelling and the application of variable exponent spaces to these fluids, we refer to Diening [6], Rajagopal and Ruzicka [22], and Ruzicka [24]. In this paper, the operator involved in (1.1) is more general than the p(.)−Laplace operator. Thus, the variable exponent Sobolev space W 1,p(.)(Ω) is not adequate to study nonlinear problems of this type. This leads us to seek entropy solutions for problems (1.1) in a more general variable exponent Sobolev space which was introduced for the first time by Mihäılescu et al [18]. 136 Stanislas OUARO CUBO 12, 1 (2010) As the right-hand side in (1.1) is in L1(Ω), the suitable notion of solution is a notion of entropy solution (cf. [3]). The remaining part of this paper is organized as follows: Section 2 is devoted to mathematical pre- liminaries including, among other things, a brief discussion of variable exponent Lebesgue, Sobolev, anisotropic spaces and Marcinkiewicz spaces. Existence of weak energy solution for (1.1) where f ∈ L∞(Ω) was proved in [14]; We will also briefly recall the results of [14] in section 2. The main existence and uniqueness result is stated and proved in section 3. 2 Mathematical Preliminaries In this section, we define Lebesgue, Sobolev and anisotropic spaces with variable exponent and give some of their properties. Roughly speaking, anistropic Lebesgue and Sobolev spaces are functional spaces of Lebesgue’s and Sobolev’s type in which different space directions have different roles. Given a measurable function p(.) : Ω → [1,∞). We define the Lebesgue space with variable exponent Lp(.)(Ω) as the set of all measurable function u : Ω → R for which the convex modular ρp(.)(u) := ∫ Ω |u| p(x) dx is finite. If the exponent is bounded, i.e., if p+ < ∞, then the expression |u|p(.) := inf { λ > 0 : ρp(.)(u/λ) ≤ 1 } defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is a separable Banach space. Moreover, if p− > 1, then L p(.)(Ω) is uniformly convex, hence reflexive, and its dual space is isomorphic to Lp ′(.)(Ω), where 1 p(x) + 1 p′(x) = 1. Finally, we have the Hölder type inequality: ∣ ∣ ∣ ∣ ∫ Ω uvdx ∣ ∣ ∣ ∣ ≤ ( 1 p− + 1 p′− ) |u|p(.) |v|p′(.) , (2.1) for all u ∈ Lp(.)(Ω) and v ∈ Lp ′(.)(Ω). Now, let W 1,p(.)(Ω) := { u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω) } , which is a Banach space equipped with the norm ‖u‖1,p(.) := |u|p(.) + |∇u|p(.) . An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the mod- ular ρp(.) of the space L p(.)(Ω). Next, we define W 1,p(.) 0 (Ω) as the closure of C ∞ 0 (Ω) in W 1,p(.)(Ω) under the norm ‖u‖1,p(.). Set C+(Ω) = { p(.) ∈ C(Ω) : min x∈Ω p(x) > 1 } . Furthermore, if p(.) ∈ C+(Ω) is logarithmic Hölder continuous, then C ∞ 0 (Ω) is dense in W 1,p(.) 0 (Ω), CUBO 12, 1 (2010) Well-Posedness Results for Anisotropic ... 137 that is H 1,p(.) 0 (Ω) = W 1,p(.) 0 (Ω) (cf. [13]). Since Ω is an open bounded set and p(.) ∈ C+(Ω) is logarithmic Hölder, the p(.)−Poincaré inequality |u|p ≤ C |∇u|p(.) holds for all u ∈ W 1,p(.) 0 (Ω), where C depends on p, |Ω|, diam(Ω) and N (see [13]), and so ‖u‖ := |∇u|p(.) , is an equivalent norm in W 1,p(.) 0 (Ω). Of course also the norm ‖u‖p(.) := N ∑ i=1 ∣ ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ ∣ p(.) is an equivalent norm in W 1,p(.) 0 (Ω). Hence the space W 1,p(.) 0 (Ω) is a separable and reflexive Banach space. Let us present a natural generalization of the variable exponent Sobolev space W 1,p(.) 0 (Ω) (cf. [18]) that will enable us to study the problem (1.1) with sufficient accuracy. First of all, we denote by −→p (.) : Ω → RN the vectorial function −→p = (p1(.), ...,pN (.)). The anisotropic variable exponent Sobolev space W 1,−→p (.) 0 (Ω) is defined as the closure of C ∞ 0 (Ω) with respect to the norm ‖u‖−→p (.) := N ∑ i=1 ∣ ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ ∣ pi(.) . The space ( W 1,−→p (.) 0 (Ω),‖u‖−→p (.) ) is a reflexive Banach space (cf. [18]). Let us introduce the following notations: −→ P + = (p + 1 , ...,p + N ), −→ P − = (p − 1 , ...,p − N ), P ++ = max { p+1 , ...,p + N } ,P +− = max { p−1 , ...,p − N } ,P−− = min { p−1 , ...,p − N } , and P∗− = N N ∑ i=1 1 p−i − 1 , P−,∞ = max { P +− ,P ∗ − } . We have the following result (cf. [18]): Theorem 2.1. Assume Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary. Assume relation (1.6) is fulfilled. For any q ∈ C(Ω) verifying 1 < q(x) < P−,∞ for all x ∈ Ω, 138 Stanislas OUARO CUBO 12, 1 (2010) then the embedding W 1,−→p (.) 0 (Ω) →֒ L q(.)(Ω) is continuous and compact. We Also recall the result of the study of problem (1.1) for the right-hand side f ∈ L∞(Ω) (cf. [15]). We first recall the definition of weak energy solution of (1.1) for the right-hand side more regular i.e f ∈ L∞(Ω). Definition 2.2. Let f ∈ L∞(Ω); a weak energy solution of (1.1) is a function u ∈ W 1,−→p (.) 0 (Ω) such that ∫ Ω N ∑ i=1 ai(x, ∂ ∂xi u). ∂ ∂xi ϕdx = ∫ Ω f(x)ϕdx, for all ϕ ∈ W 1,−→p (.) 0 (Ω). (2.2) We have proved among other results in [15] the following Theorem Theorem 2.3. Assume (1.2)-(1.6) and f ∈ L∞(Ω). Then there exists a unique weak energy solution of (1.1). Finally, in this paper, we will use the Marcinkiewicz spaces Mq(Ω)(1 < q < ∞) with constant exponent. Note that the Marcinkiewicz spaces Mq(.)(Ω) in the variable exponent setting was introduced for the first time by Sanchon and Urbano (see [25]). Marcinkiewicz spaces Mq(Ω)(1 < q < ∞) contain the measurable functions g : Ω → R for which the distribution function λg(γ) = |{x ∈ Ω : |g(x)| > γ}| , γ ≥ 0, satisfies an estimate of the form λg(γ) ≤ Cγ −q, for some finite constant C > 0. The space Mq(Ω) is a Banach space under the norm ‖g‖ ∗ Mq (Ω) = sup t>0 t1/q ( 1 t ∫ t 0 g∗(s)ds ) , where g∗ denotes the nonincreasing rearrangement of f: g∗(t) = inf {γ > 0 : λg (γ) ≤ t} . We will use the following pseudo norm ‖g‖Mq (Ω) = inf { C : λg(γ) ≤ Cγ −q, ∀γ > 0 } , which is equivalent to the norm ‖g‖ ∗ Mq (Ω) (see [2]). We have the following Lemma (for the proof, see [2, proof of Lemma 2.2]). Lemma 2.4. Let g be a nonnegative function in W 1, −→ P − 0 (Ω). Assume p̄ < N, and that there exists a constant c such that N ∑ i=1 ∫ {|g|≤γ} ∣ ∣ ∣ ∣ ∂g ∂xi ∣ ∣ ∣ ∣ p − i dx ≤ c(γ + 1),∀γ > 0. (2.3) CUBO 12, 1 (2010) Well-Posedness Results for Anisotropic ... 139 Then there exists a constant C, depending on c, such that ‖g‖ M N (p̄−1) N −p̄ (Ω) ≤ C. 3 Existence and Uniqueness of Entropy Solution In this section, we study the problem (1.1) for a right-hand side f ∈ L1(Ω). In the L1 setting, the suitable notion of solution for the study of (1.1) is the notion of entropy solution (cf. [3]). We first define the troncation function Tt by Tt(s) := max{−t,min{t,s}}. Definition 3.1. A measurable function u is an entropy solution to problem (1.1) if, for every t > 0, Tt(u) ∈ W 1,−→p (.) 0 (Ω) and ∫ Ω N ∑ i=1 ai(x, ∂ ∂xi u). ∂ ∂xi Tt(u − ϕ)dx ≤ ∫ Ω f(x)Tt(u − ϕ)dx, (3.1) for all ϕ ∈ W 1,−→p (.) 0 (Ω) ∩ L ∞(Ω). Remark 3.2. A function u such that Tt(u) ∈ W 1,−→p (.) 0 (Ω) for all t > 0 does not necessarily belong in W 1,1 0 (Ω). However, it is possible to define its weak gradient, still denoted by ∇u. Our main result in this section is the following: Theorem 3.3. Assume (1.2)-(1.6) and f ∈ L1(Ω). Then there exists a unique entropy solution u to problem (1.1). Proof. The proof of this Theorem will be done in three steps. ∗Step 1. A priori estimates. We start with the existence of the weak gradient for every measurable function u such that Tt(u) ∈ W 1,−→p (.) 0 (Ω) for all t > 0. Proposition 3.4. If u is a measurable function such that Tt(u) ∈ W 1,−→p (.) 0 (Ω) for all t > 0, then there exists a unique measurable function v : Ω → RN such that vχ{|u| 0, where χA denotes the characteristic function of a measurable set A. Moreover, if u belongs to W 1,1 0 (Ω), then v coincides with the standard distributional gradient of u. Proof. As Tt(u) ∈ W 1,−→p (.) 0 (Ω) →֒ W 1, −→ P − 0 (Ω) ⊂ W 1,1 0 (Ω) for all t > 0 since 1 < p − i for all i = 1, ...,N, then by Theorem 1.5 in [1], the result follows. Proposition 3.5. Assume (1.2)-(1.6) and f ∈ L1(Ω). Let u be an entropy solution of (1.1). If there exists a positive constant M such that N ∑ i=1 ∫ {|u|>t} tqi(x)dx ≤ M, for all t > 0, (3.2) then N ∑ i=1 ∫ { ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ αi(.) >t } tqi(x)dx ≤ ‖f‖1 + M for all t > 0, 140 Stanislas OUARO CUBO 12, 1 (2010) where αi(.) = pi(.)/(qi(.) + 1)., for all i = 1, ...,N. Proof. Take ϕ = 0 in (3.1), we have N ∑ i=1 ∫ Ω ai(x, ∂ ∂xi Tt(u)). ∂ ∂xi Tt(u)dx ≤ ∫ Ω f(x)Tt(u)dx. We deduces from inequality above that N ∑ i=1 ∫ Ω ∣ ∣ ∣ ∣ ∂ ∂xi Tt(u) ∣ ∣ ∣ ∣ pi(x) dx ≤ t‖f‖1 , for all t > 0. Therefore, defining ψ := Tt(u)/t, we have, for all t > 0, N ∑ i=1 ∫ Ω tpi(x)−1 ∣ ∣ ∣ ∣ ∂ ∂xi ψ ∣ ∣ ∣ ∣ pi(x) dx = 1 t ∫ Ω ∣ ∣ ∣ ∣ ∂ ∂xi Tt(u) ∣ ∣ ∣ ∣ pi(x) dx ≤ ‖f‖1 . From the above inequality, the definition of αi(.) and (3.2), we have N ∑ i=1 ∫ { ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ αi(.) >t } tqi(x)dx ≤ ∫ { ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ αi(.) >t } ∩{|u|≤t} tqi(x)dx + ∫ {|u|>t} tqi(x)dx ≤ ∫ {|u|≤t} tqi(x)    ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ αi(x) t    pi(x) αi(x) dx + M ≤ ‖f‖1 + M, for all t > 0. Proposition 3.6. Assume (1.2)-(1.6) and f ∈ L1(Ω). Let u be an entropy solution of (1.1), then 1 h N ∑ i=1 ∫ {|u|≤h} ∣ ∣ ∣ ∣ ∂ ∂xi Th(u) ∣ ∣ ∣ ∣ pi(x) dx ≤ M for every h > 0, with M a positive constant. More precisely, there exists D > 0 such that meas{|u| > h} ≤ DP − − 1 + h hP − − . Proof. Taking ϕ = 0 in the entropy inequality (3.1) and using (1.5), we obtain N ∑ i=1 ∫ {|u|≤h} ∣ ∣ ∣ ∣ ∂ ∂xi Th(u) ∣ ∣ ∣ ∣ pi(x) dx ≤ h‖f‖1 ≤ Mh for all h > 0. Next, N ∑ i=1 ∫ {|u|≤h} ∣ ∣ ∣ ∣ ∂ ∂xi Th(u) ∣ ∣ ∣ ∣ pi(x) dx ≤ Mh ⇒ N ∑ i=1 ∫ {|u|≤h} ∣ ∣ ∣ ∣ ∂ ∂xi Th(u) ∣ ∣ ∣ ∣ P − − dx ≤ C(1 + h). CUBO 12, 1 (2010) Well-Posedness Results for Anisotropic ... 141 We can write the above inequality as N ∑ i=1 ∥ ∥ ∥ ∥ ∂ ∂xi Th(u) ∥ ∥ ∥ ∥ P − − P − − ≤ C(1 + h) or ‖Th(u)‖ W 1,P − − 0 (Ω) ≤ [C(1 + h)] 1 P − − . By the Poincaré inequality in constant exponent, we obtain ‖Th(u)‖ L P − − (Ω) ≤ D(1 + h) 1 P − − . The above inequality imply that ∫ Ω |Th(u)| P − − dx ≤ DP − − (1 + h), from which we obtain meas{|u| > h} ≤ DP − − 1 + h hP − − . ∗ Step 2. Uniqueness of entropy solution. The proof of uniqueness of entropy solutions follow the technics by Bénilan et al [3] (see also [25]). Let h > 0 and u,v two entropy solutions of (1.1). We write the entropy inequality (3.1) corresponding to the solution u, with Thv as test function, and to the solution v, with Thu as test function. Upon addition, we get                              ∫ {|u−Thv|≤t} N ∑ i=1 ai(x, ∂ ∂xi u). ∂ ∂xi (u − Thv)dx+ ∫ {|v−Thu|≤t} N ∑ i=1 a(x, ∂ ∂xi v). ∂ ∂xi (v − Thu)dx ≤ ∫ Ω f(x)(Tt(u − Thv) + Tt(v − Thu))dx. (3.3) Define E1 := {|u − v| ≤ t, |v| ≤ h} , E2 := E1 ∩ {|u| ≤ h} , and E3 := E1 ∩ {|u| > h} . 142 Stanislas OUARO CUBO 12, 1 (2010) We start with the first integral in (3.3). By (1.5), we have                                                                                                                                              ∫ {|u−Thv|≤t} N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − Thv)dx = ∫ {|u−Thv|≤t}∩({|v|≤h}∪{|v|>h}) N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − Thv)dx = ∫ {|u−Thv|≤t,|v|≤h} N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − Thv)dx+ ∫ {|u−Thv|≤t,|v|>h} N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − Thv)dx = ∫ {|u−v|≤t,|v|≤h} N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx + ∫ {|u−Thv|≤t,|v|>h} N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi udx ≥ ∫ {|u−v|≤t,|v|≤h} N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx = ∫ E1 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx = ∫ E1∩({|u|≤h}∪{|u|>h}) N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx = ∫ E2 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx + ∫ E3 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx = ∫ E2 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx+ ∫ E3 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi udx − ∫ E3 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi vdx ≥ ∫ E2 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx − ∫ E3 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi vdx. (3.4) CUBO 12, 1 (2010) Well-Posedness Results for Anisotropic ... 143 Using (1.3) and (2.1), we estimate the last integral in (3.4) as follows                  ∣ ∣ ∣ ∣ ∣ ∫ E3 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi vdx ∣ ∣ ∣ ∣ ∣ ≤ C1 ∫ E3 N ∑ i=1 ( ji(x) + ∣ ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ ∣ pi(x)−1 ) ∣ ∣ ∣ ∣ ∂ ∂xi v ∣ ∣ ∣ ∣ dx ≤ C N ∑ i=1  |j|p′ i (.) + ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ ∣ pi(x)−1 ∣ ∣ ∣ ∣ ∣ p′ i (.),{h<|u|≤h+t}   ∣ ∣ ∣ ∣ ∂ ∂xi v ∣ ∣ ∣ ∣ pi(.),{h−t<|v|≤h} , (3.5) where ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ pi(x)−1 ∣ ∣ ∣ ∣ p′ i (.),{h<|u|≤h+t} = ∥ ∥ ∥ ∥ ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ pi(x)−1 ∥ ∥ ∥ ∥ L p′ i (.) ({h<|u|≤h+t}) . For all i = 1, ...,N, the quantity ( |ji|p′ i (.) + ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∂ ∂xi u ∣ ∣ ∣ pi(x)−1 ∣ ∣ ∣ ∣ p′ i (.),{h<|u|≤h+t} ) is finite, since u ∈ W 1,−→p (.) 0 (Ω) and ji ∈ L p′i(.)(Ω); then by Proposition 3.6, the last expression converges to zero as h tends to infinity. Therefore, from (3.4) and (3.5), we obtain ∫ {|u−Thv|≤t} N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − Thv)dx ≥ Ih + ∫ E2 N ∑ i=1 a(x, ∂ ∂xi u). ∂ ∂xi (u − v)dx, (3.6) where Ih converges to zero as h tends to infinity. We may adopt the same procedure to treat the second term in (3.3) to obtain ∫ {|v−Thu|≤t} N ∑ i=1 a(x, ∂ ∂xi v). ∂ ∂xi (v − Thu)dx ≥ Jh − ∫ E2 N ∑ i=1 a(x, ∂ ∂xi v). ∂ ∂xi (u − v)dx, (3.7) where Jh converges to zero as h tends to infinity. Next, consider the right-hand side of inequality (3.3). Noting that Tt(u − Thv) + Tt(v − Thu) = 0 in {|u| ≤ h, |v| ≤ h} ; we obtain ∣ ∣ ∣ ∣ ∫ Ω f(x)(Tt(u − Thv) + Tt(v − Thu))dx ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∫ {|u|>h} f(x)(Tt(u − Thv) + Tt(v − Thu))dx + ∫ {|u|≤h} f(x)(Tt(u − Thv) + Tt(v − Thu))dx ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∫ {|u|>h} f(x)(Tt(u − Thv) + Tt(v − Thu))dx + ∫ {|u|≤h,|v|>h} f(x)(Tt(u − Thv) + Tt(v − Thu))dx ∣ ∣ ∣ ∣ ∣ ≤ 2t ( ∫ {|u|>h} |f|dx + ∫ {|v|>h} |f|dx ) . According to Proposition 3.6, both meas{|u| > h} and meas{|v| > h} tend to zero as h goes to infinity, then by the inequality above, the right-hand side of inequality (3.3) tends to zero as h 144 Stanislas OUARO CUBO 12, 1 (2010) goes to infinity. From this assertion, (3.3), (3.6) and (3.7), we obtain, letting h → +∞, ∫ {|u−v|≤t} N ∑ i=1 (a(x, ∂ ∂xi u) − a(x, ∂ ∂xi v)). ∂ ∂xi (u − v)dx ≤ 0, for all t > 0. By assertion (1.4), we conclude that ∂ ∂xi u = ∂ ∂xi v, for all i = 1, ..,N a.e. in Ω. We deduce that ‖u − v‖−→p (.) = N ∑ i=1 ∣ ∣ ∣ ∣ ∂ ∂xi u − ∂ ∂xi v ∣ ∣ ∣ ∣ pi(.) = 0, and hence u = v, a.e. in Ω. ∗ Step 3. Existence of entropy solutions. Let (fn)n be a sequence of bounded functions, strongly converging to f ∈ L1(Ω) and such that ‖fn‖1 ≤ ‖f‖1 , for all n. (3.8) We consider the problem            − N ∑ i=1 ∂ ∂xi ai(x, ∂ ∂xi un) = fn in Ω un = 0 on ∂Ω. (3.9) It follows from Theorem 2.3 (cf. [15]) that problem (3.9) has a unique weak energy solution un ∈ W 1,−→p (.) 0 (Ω) since fn ∈ L ∞(Ω). Our interest is to prove that these approximated solutions un tend, as n goes to infinity, to a measurable function u which is an entropy solution of the limit problem (1.1). To this end, we derive a priori estimates for un and ∂ ∂xi un in the Marcinkiewicz spaces Mq ∗ and Mp − i q/p̄ where q∗ and p̄ are defined in (1.6) and (1.7). Let γ > 0, denote Tγ the corresponding truncation function. Note that DTγ (r) =        1 if |r| < γ 0 if |r| > γ. In particular, we have ai(x,ξ)DTγ (r)ξ ≥ ai(x,ξ)ξχ{|r|<γ}, for all i = 1, ...,N. (3.10) Lemma 3.7. There exists a constant c, not depending on n, such that N ∑ i=1 ∫ {|un|≤γ} ∣ ∣ ∣ ∣ ∂un ∂xi ∣ ∣ ∣ ∣ p − i dx ≤ c(γ + 1), for all γ > 0. (3.11) CUBO 12, 1 (2010) Well-Posedness Results for Anisotropic ... 145 Proof. Inserting ϕ = Tγ (un) into (2.2), we have ∫ Ω N ∑ i=1 ai(x, ∂ ∂xi un)DTγ (un) ∂ ∂xi undx = ∫ Ω fnTγ (un)dx. Using (3.10) and the coercivity condition (1.5), we obtain (3.11). Lemma 3.8. There exists a constant C, not depending on n, such that ‖un‖Mq∗ (Ω) ≤ C and ∥ ∥ ∥ ∥ ∂un ∂xi ∥ ∥ ∥ ∥ M p − i q/p̄ (Ω) ≤ C, for all i = 1, ...,N. Proof. The result of Lemma 3.8 is a direct consequence of Lemma 3.7 (cf. [2, proof of Lemma 3.3]). In view of Lemma 3.8 and following [2] ( see also [4, Lemma A.2]), we deduce that un is uni- formly bounded in Lk0 (Ω) for some k0 < q ∗ with k0 > p − i q/p̄ and ∂un ∂xi is uniformly bounded in Lki (Ω) for some ki > 1 with p − i − 1 < ki < p − i q/p̄, for all i = 1, ...,N. From this, we get that un is uniformly bounded in the isotropic Sobolev space W 1,kmin 0 (Ω), where kmin = min(k1, ...,kN ). Consequently, we can assume without loss of generality (see also [2, Lemma 3.4]) that as n → 0,                                un → u a.e in Ω and in L kmin (Ω) un ⇀ u in W 1,kmin 0 (Ω) ∂un ∂xi → ∂u ∂xi in L1(Ω), for all i = 1, ...,N. ai(x, ∂un ∂xi ) → ai(x, ∂u ∂xi ) a.e in Ω and in L1(Ω), for all i = 1, ...,N. (3.12) Now, fix t > 0, ϕ ∈ W 1,−→p (.) 0 (Ω) ∩ L ∞(Ω), and choose Tt(un − ϕ) as a test function in (2.2), with u replaced by un to obtain ∫ Ω N ∑ i=1 ai(x, ∂ ∂xi un). ∂ ∂xi Tt(un − ϕ)dx = ∫ Ω fn(x)Tt(un − ϕ)dx. Note that this choice can be made using a standard density argument. We now pass to the limit in the previous identity. For the right-hand side, the convergence is obvious since fn converges strongly in L1 to f and Tt(un − ϕ) converges weakly-* in L ∞, and a.e., to Tt(u − ϕ). Next, we write the left hand side as ∫ {|un−ϕ|≤t} N ∑ i=1 ai(x, ∂ ∂xi un). ∂ ∂xi undx − ∫ {|un−ϕ|≤t} N ∑ i=1 ai(x, ∂ ∂xi un). ∂ ∂xi ϕdx (3.13) 146 Stanislas OUARO CUBO 12, 1 (2010) By (3.12), the second integral of (3.13) converges to ∫ {|u−ϕ|≤t} N ∑ i=1 ai(x, ∂ ∂xi u). ∂ ∂xi ϕdx. For the first integral in (3.13), as N ∑ i=1 ai(x, ∂ ∂xi un). ∂ ∂xi un is nonnegative by (1.5), we obtain by using (3.12) and Fatou’s Lemma ∫ {|u−ϕ|≤t} N ∑ i=1 ai(x, ∂ ∂xi u). ∂ ∂xi udx ≤ lim n→∞ inf ∫ {|un−ϕ|≤t} N ∑ i=1 ai(x, ∂ ∂xi un). ∂ ∂xi undx. Gathering results, we obtain ∫ Ω N ∑ i=1 ai(x, ∂ ∂xi u). ∂ ∂xi Tt(u − ϕ)dx ≤ ∫ Ω f(x)Tt(u − ϕ)dx, i.e., u is an entropy solution of (1.1). Received: June, 2008. Revised: november, 2008. References [1] Alvino, A., Boccardo, L., Ferone, V., Orsina, L. and Trombetti, G., Existence results for non-linear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., 182 (2003), 53–79. [2] Bendahmane, M. and Karlsen, K.H., Anisotropic nonlinear elliptic systems with measure data and anisotropic harmonic maps into spheres, Electron. J. Differential Equations 2006, No. 46, 30 pp. [3] Bénilan, Ph., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M. and Vazquez, J.L., An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 22 (1995), 241–273. [4] Bénilan, Ph., Brezis, H. and Crandall, M.G., A semilinear equation in L1(R)N , Ann. Scula. Norm. Sup. Pisa, 2 (1975), 523–555. [5] Chen, Y., Levine, S. and Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66, no. 4 (2006), 1383–1406. CUBO 12, 1 (2010) Well-Posedness Results for Anisotropic ... 147 [6] Diening, L., Theoretical and Numerical Results for Electrorheological Fluids, PhD. thesis, University of Frieburg, Germany, 2002. [7] Diening, L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(.) and W 1,p(.), Math. Nachr., 268 (2004), 31–43. [8] Edmunds, D.E. and Rakosnik, J., Density of smooth functions in W k,p(x)(Ω), Proc. R. Soc. A, 437 (1992), 229–236. [9] Edmunds, D.E. and Rakosnik, J., Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267–293. [10] Edmunds, D.E. and Rakosnik, J., Sobolev embeddings with variable exponent, II, Math. Nachr., 246–247 (2002), 53–67. [11] El Hamidi, A., Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl., 300 (2004), 30–42. [12] Fan, X. and Zhang, Q., Existence of solutions for p(x)–Laplacian Dirichlet problem, Non- linear Anal., 52 (2003), 1843–1852. [13] Harjulehto, P., Hästö, P., Koskenova, M. and Varonen, S., The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal., 25 (2006), 79–94. [14] Hudzik, H., On generalized Orlicz-Sobolev space, Funct. Approximatio Comment. Math., 4 (1976), 37–51. [15] Koné, B., Ouaro, S. and Traoré, S., Weak solutions for anisotropic nonlinear elliptic equations with variable exponent, Electron J. Differ. Equ., 144 (2009), 1–11. [16] Kovacik, O. and Rakosnik, J., On spaces Lp(x) and W 1,p(x), Czech. Math. J., 41 (1991), 592–618. [17] Leray, J. and Lions, J.L., Quelques résultats de Visik sur les problèmes elliptiques non- linéaires par les méthodes de Minty et Browder, Bull. Soc. Math. France., 93 (1965), 97–107. [18] Mihailescu, M., Pucci, P. and Radulescu, V., Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl., 340 (2008), no. 1, 687–698. [19] Mihailescu, M. and Radulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A, 462 (2006), 2625– 2641. [20] Musielak, J., Orlicz Spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983), springer, Berlin. 148 Stanislas OUARO CUBO 12, 1 (2010) [21] Orlicz, W., Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200–212. [22] Pfeiffer, C., Mavroidis, C., Bar–Cohen, Y. and Dolgin, B., Electrorheological fluid based force feedback device, in Proc. 1999 SPIE Telemanipulator and Telepresence Technolo- gies VI Conf. (Boston, MA), 3840 (1999), pp. 88–99. [23] Rajagopal, K.R. and Ruzicka, M., Mathematical modelling of electrorheological fluids, Continuum Mech. Thermodyn., 13 (2001), 59–78. [24] Ruzicka, M., Electrorheological fluids: modelling and mathematical theory, Lecture Notes in Mathematics 1748, Springer–Verlag, Berlin, 2000. [25] Sanchon, M. and Urbano, J.M., Entropy solutions for the p(x)-Laplace Equation, Trans. Amer. Math. Soc., 361 (2009), no 12, 6387–6405. [26] Sharapudinov, I., On the topology of the space Lp(t)([0, 1]), Math. Zametki, 26 (1978), 613–632. [27] Tsenov, I.V., Generalization of the problem of best approximation of a function in the space Ls, Uch. Zap. Dagestan Gos. Univ., 7 (1961), 25–37. [28] Winslow, W.M., Induced Fibration of Suspensions, J. Applied Physics, 20 (1949), 1137– 1140.