CUBO A Mathematical Journal Vol.10, N o ¯ 03, (171–194). October 2008 Rosso-Yamane Theorem on PBW Basis of Uq(AN ) ∗ Yuqun Chen, Hongshan Shao School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P. R. China emails: yqchen@scnu.edu.cn, shaohongshan118@163.com and K.P. Shum Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China (SAR) email: kpshum@maths.hku.hk ABSTRACT Let Uq(AN ) be the Drinfeld-Jimbo quantum group of type AN . In this paper, by using Gröbner-Shirshov bases, we give a simple (but not short) proof of the Rosso-Yamane Theorem on PBW basis of Uq(AN ). RESUMEN Sea Uq(AN ) el grupo cuántico de Drinfel-Jimbo de tipo AN . En este art́ıculo, us- ando bases de Gröbner-Shirshov damos una demonstración simple (pero no corta) del Teorema de Rosso-Yamane sobre bases PBW de Uq(AN ). Key words and phrases: Quantum group, Quantum enveloping algebra, Gröbner-Shirshov basis. Math. Subj. Class.: 20G42, 16S15, 13P10. ∗Supported by the NNSF of China (No.10771077) and the NSF of Guangdong Province (No.06025062). 172 Yuqun Chen et al. CUBO 10, 3 (2008) 1 Introduction Since any algebra (commutative, associative, Lie), as well as any module over an algebra, can be presented by generators and defining relations, it is important to have a general method to deal with these presentations. Such a method now exists and is called the Gröbner bases method (due to B. Buchberger [18], [19]), or standand bases method (due to H. Hironaka [21]), or Gröbner- Shirshov bases method (due to A. I. Shirshov [35]). The original Shirshov’s paper [35] is for Lie algebra presentations, but it can be easily adopted for associative algebra presentations as well, see L. A. Bokut [3] and G. Bergman [1]. Let, for example, L = Lie(X|[xixj ] − ∑ αkij xk, i > j, xi, xj , xk ∈ X) be a Lie algebra over a field (or a commutative ring) k presented by a k-basis X and the multiplication table. Then S = {[xixj ] − ∑ αkij xk| i > j, xi, xj , xk ∈ X} is a Gröbner-Shirshov basis (subset) of the free Lie algebra Lie(X) over k. On the other hand, the universal enveloping algebra U (L) = k〈X|xixj − xjxi − ∑ αkij xk, i > j, xi, xj , xk ∈ X〉 is the associative algebra presented by the same set X and the defining relations S(−) (we rewrite S using [xy] = xy − yx). There is a general but not difficult result that for any S ⊂ Lie(X), S is a Gröbner-Shirshov basis in the sense of Lie algebras if and only if S(−) ⊂ k〈X〉 is a Gröbner-Shirshov basis in the sense of associative algebras (see, for example, [9] and [7]). This means that in our case, S(−) is a Gröbner-Shirshov basis (subset) in k〈X〉. By Composition-Diamond lemma (see below), the S-irreducible words on X, Irr(S) = {xi1 . . . xik , i1 ≤ . . . ≤ ik, k ≥ 0} form a k-basis of U (L). This is a conceptional proof of the PBW-Theorem by using Gröbner-Shirshov bases theory. There are many results on Gröbner-Shirshov bases for associative and Lie algebras, as well as for semigroups, groups, conformal algebras, dialgebras, and so on, see, for example, surveys [14], [15], [25] and [8]. Let us mention those for simple Lie algebras and Lie superalgebras via Serre’s presentations ([10], [11], [12], [13], [9]), for modules over simple Lie algebras and Iwahori-Hecke algebras ([23], [24], [25]), for Kac-Moody algebras of types A (1) n , B (1) n , C (1) n , D (1) n ([31], [32], [33]), for Coxeter groups ([17]), for braid groups via Artin-Burau, Artin-Garside and Briman-Ko-Lee presentations ([4], [5] and [6]). Drinfeld-Jimbo ([20], [22]) presentations for quantized enveloping algebras Uq(g), where g is a semisimple Lie algebra, are a natural source of associative presentations. M. Rosso [34] and I. Yamane [36] found the PBW-basis of Uq(AN ). G. Lusztig [29] and [30], and M. Kashiwara [26] and [27] found the bases of Uq(g) for any semisimple algebra g, as well as for their representations. Their approach work equally well for quantized enveloping algebras associated with arbitrary sym- metrizable Cartan matrix, not just those corresponding to finite dimensional Lie algebras. V. K. Kharchenko [28] found the approach to linear bases of quantized enveloping algebras via the so called character Hopf algebras. It the paper [16], Gröbner-Shirshov bases approach was applied to study Uq(g) for any sym- metrizable Cartan matrix. Using this approach, they got a new proof of the triangular decomposi- CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 173 tion of Uq(g) (see, for example, Jantzen [37]). For Uq(AN ), it was proved by Bokut and Malcolmson [16] that the Jimbo relations (see [36]) of U +q (AN ) constitute a Gröbner-Shirshov basis of U + q (AN ) in Jimbo generators xij , 1 ≤ i, j ≤ N + 1 (see below). In this paper, we give an elementary proof that Jimbo relations S is a Gröbner-Shirshov basis of U +q (AN ). For such a purpose, we just check all possible compositions of polynomials from S and proved that all them can be resolved. Also in §1 in this paper, we are giving necessary definitions and Composition-Diamond lemma following Shirshov [35]. 2 Preliminaries We first cite some concepts and results from the literature which are related to the Gröbner- Shirshov bases for associative algebras. Let k be a field, k〈X〉 the free associative algebra over k generated by X and X∗ the free monoid generated by X, where the empty word is the identity which is denoted by 1. For a word w ∈ X∗, we denote the length of w by deg(w). Let X∗ be a well ordered set. Let f ∈ k〈X〉 with the leading word f̄ . Then we call f monic if f̄ has coefficient 1. Definition 2.1. ([35], see also [2], [3]) Let f and g be two monic polynomials in k〈X〉 and < a well ordering on X∗. Then, there are two kinds of compositions: (i) If w is a word such that w = f̄ b = aḡ for some a, b ∈ X∗ with deg(f̄ )+deg(ḡ) >deg(w), then the polynomial (f, g)w = f b − ag is called the intersection composition of f and g with respect to w. (ii) If w = f̄ = aḡb for some a, b ∈ X∗, then the polynomial (f, g)w = f − agb is called the inclusion composition of f and g with respect to w. Definition 2.2. ([2], [3], cf. [35]) Let S ⊂ k〈X〉 such that every s ∈ S is monic. Then the composition (f, g)w is called trivial modulo (S, w) if (f, g)w = ∑ αiaisibi, where each αi ∈ k, ai, bi ∈ X ∗, si ∈ S and aisibi < w. If this is the case, then we write (f, g)w ≡ 0 mod(S, w). In general, for p, q ∈ k〈X〉, we write p ≡ q mod(S, w) which means that p − q = ∑ αiaisibi, where each αi ∈ k, ai, bi ∈ X ∗, si ∈ S and aisibi < w. Definition 2.3. ([2], [3], cf. [35]) We call the set S with respect to the well ordering < a Gröbner-Shirshov set (basis) in k〈X〉 if any composition of polynomials in S is trivial modulo S. If a subset S of k〈X〉 is not a Gröbner-Shirshov basis, then we can add to S all nontrivial compositions of polynomials of S, and by continuing this process (maybe infinitely) many times, we eventually obtain a Gröbner-Shirshov basis Sc. Such a process is called the Shirshov algorithm. 174 Yuqun Chen et al. CUBO 10, 3 (2008) A well ordering > on X∗ is called a monomial order if it is compatible with the multiplication of words, that is, for u, v ∈ X∗, we have u > v ⇒ w1uw2 > w1vw2, f or all w1, w2 ∈ X ∗. A standard example of monomial order on X∗ is the deg-lex order to compare two words first by degree and then lexicographically, where X is a well ordered set. The following lemma was first proved by Shirshov [35] for free Lie algebras (with deg-lex order) in 1962 (see also Bokut [2]). In 1976, Bokut [3] specialized the approach of Shirshov to associative algebras (see also Bergman [1]). For the case of commutative polynomials, this lemma is known as the Buchberger’s Theorem in [18] and [19]. Lemma 2.4. (Composition-Diamond Lemma) Let k be a field, k〈X|S〉 = k〈X〉/Id(S) and < a monomial order on X∗, where Id(S) is the ideal of k〈X〉 generated by S. Then the following statements are equivalent: (i) S is a Gröbner-Shirshov basis. (ii) f ∈ Id(S) ⇒ f̄ = as̄b for some s ∈ S and a, b ∈ X∗. (iii) Irr(S) = {u ∈ X∗|u 6= as̄b, s ∈ S, a, b ∈ X∗} is a basis of the algebra k〈X|S〉. � 3 Rosso-Yamane theorem on PBW basis of Uq(AN ) Let k be a field, A = (aij ) an integral symmetrizable N × N Cartan matrix so that aii = 2, aij ≤ 0 (i 6= j) and there exists a diagonal matrix D with diagonal entries di which are nonzero integers such that the product DA is symmetric. Let q be a nonzero element of k such that q4di 6= 1 for each i. Then the quantum enveloping algebra is (see [20], [22]) Uq(A) = k〈X ∪ H ∪ Y |S + ∪ K ∪ T ∪ S−〉, where CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 175 X = {xi}, H = {h±1 i }, Y = {yi}, S+ = { 1−aij ∑ ν=0 (−1)ν ( 1 − aij ν ) t x 1−aij −ν i xj x ν i , where i 6= j, t = q 2di}, S− = { 1−aij ∑ ν=0 (−1)ν ( 1 − aij ν ) t y 1−aij −ν i yj y ν i , where i 6= j, t = q 2di}, K = {hihj − hj hi, hih −1 i − 1, h−1 i hi − 1, xjh ±1 i − q∓diaij h±1xj , h ±1 i yj − yj h ±1}, T = {xiyj − yjxi − δij h2i − h −2 i q2di − q−2di } and ( m n ) t =    n ∏ i=1 t m−i+1 −t i−m−1 ti−t−i m > n > 0, 1 n = 0 or m = n. Let A = AN =          2 −1 0 · · · 0 −1 2 −1 · · · 0 0 −1 2 · · · 0 · · · · · 0 0 0 · · · 2          and q8 6= 1. It is reminded that in this case, the diagonal matrix D is identity. We introduce some new variables defined by Jimbo (see [36]) which generate Uq(AN ): ˜X = {xij , 1 ≤ i < j ≤ N + 1}, where xij = { xi j = i + 1, qxi,j−1xj−1,j − q −1xj−1,j xi,j−1 j > i + 1. We now order the set ˜X in the following way. xmn > xij ⇐⇒ (m, n) >lex (i, j). 176 Yuqun Chen et al. CUBO 10, 3 (2008) Let us recall from Yamane [36] the following notation: C1 = {((i, j), (m, n))|i = m < j < n}, C2 = {((i, j), (m, n))|i < m < n < j}, C3 = {((i, j), (m, n))|i < m < j = n}, C4 = {((i, j), (m, n))|i < m < j < n}, C5 = {((i, j), (m, n))|i < j = m < n}, C6 = {((i, j), (m, n))|i < j < m < n}. Let the set ˜S+ consist of Jimbo relations: xmnxij − q −2xij xmn ((i, j), (m, n)) ∈ C1 ∪ C3, xmnxij − xij xmn ((i, j), (m, n)) ∈ C2 ∪ C6, xmnxij − xij xmn + (q 2 − q−2)xinxmj ((i, j), (m, n)) ∈ C4, xmnxij − q 2xij xmn + qxin ((i, j), (m, n)) ∈ C5. It is easily seen that U +q (AN ) = k〈 ˜X|˜S+〉. The following theorem is from [16]. Theorem 3.1. ([16] Theorem 4.1) Let the notation be as before. Then, with the deg-lex order on ˜X∗, ˜S+ is a Gröbner-Shirshov basis for k〈 ˜X|˜S+〉 = U +q (AN ). Proof. We will prove that all compositions in ˜S+ are trivial modulo ˜S+. We consider the following cases. Case 1. f = xmnxij − q −2xij xmn, g = xij xkl − q −2xklxij , w = xmnxij xkl. In the case, we have (f, g)w = −q −2 xij xmnxkl + q −2 xmnxklxij . There are four subcases to consider. ((i, j), (m, n)) ∈ C1 ((i, j), (m, n)) ∈ C3 ((k, l), (i, j)) ∈ C1 1.1. ((k, l), (m, n)) ∈ C1 1.3. ((k, l), (m, n)) ∈ C4, C5 or C6 ((k, l), (i, j)) ∈ C3 1.2. ((k, l), (m, n)) ∈ C4 1.4. ((k, l), (m, n)) ∈ C3 1.1. ((i, j), (m, n)) ∈ C1, ((k, l), (i, j)) ∈ C1 and ((k, l), (m, n)) ∈ C1. Then, we have (f, g)w ≡ −q −4xij xklxmn + q −4xklxmnxij ≡ −q−6xklxij xmn + q −6 xklxij xmn ≡ 0. CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 177 1.2. ((i, j), (m, n)) ∈ C1, ((k, l), (i, j)) ∈ C3 and ((k, l), (m, n)) ∈ C4. Then, we have (i, j) = (m, l), ((k, n), (i, j)) ∈ C2 and (f, g)w ≡ −q −2xij [xklxmn − (q 2 − q−2)xknxml] + q −2[xklxmn − (q 2 − q−2)xknxml]xij ≡ −q−4xklxij xmn + q −2(q2 − q−2)xknxij xml +q−4xklxij xmn − q −2(q2 − q−2)xknxij xml ≡ 0. 1.3. ((i, j), (m, n)) ∈ C3, ((k, l), (i, j)) ∈ C1 and ((k, l), (m, n)) ∈ C4, C5 or C6. 1.3.1. If ((k, l), (m, n)) ∈ C4 (m < l), then (k, n) = (i, j), ((i, j), (m, l)) ∈ C2 and (f, g)w ≡ −q −2 xij [xklxmn − (q 2 − q−2)xknxml] + q −2[xklxmn − (q 2 − q−2)xknxml]xij ≡ −q−4xklxij xmn + q −2(q2 − q−2)xij xknxml + q −4 xklxij xmn −q−2(q2 − q−2)xknxij xml ≡ 0. 1.3.2. If ((k, l), (m, n)) ∈ C5 (m = l), then (k, n) = (i, j) and (f, g)w ≡ −q −2xij (q 2xklxmn − qxkn) + q −2(q2xklxmn − qxkn)xij ≡ −xij xklxmn + q −1xij xkn + xklxmnxij − q −1xknxij ≡ −q−2xklxij xmn + q −2xklxij xmn ≡ 0. 1.3.3. If ((k, l), (m, n)) ∈ C6 (m > l), then (f, g)w ≡ −q −2 xij xklxmn + q −2 xklxmnxij ≡ −q−4xklxij xmn + q −4xklxij xmn ≡ 0. 1.4. ((i, j), (m, n)) ∈ C3, ((k, l), (i, j)) ∈ C3 and ((k, l), (m, n)) ∈ C3. This case is similar to 1.1. Case 2. f = xmnxij − q −2xij xmn, g = xij xkl − xklxij , w = xmnxij xkl. In the case, we have (f, g)w = −q −2xij xmnxkl + xmnxklxij . There are also four subcases to consider. ((i, j), (m, n)) ∈ C1 ((i, j), (m, n)) ∈ C3 ((k, l), (i, j)) ∈ C2 2.1. ((k, l), (m, n)) ∈ C2, C3 or C4 2.3. ((k, l), (m, n)) ∈ C2 ((k, l), (i, j)) ∈ C6 2.2. ((k, l), (m, n)) ∈ C6 2.4. ((k, l), (m, n)) ∈ C6 178 Yuqun Chen et al. CUBO 10, 3 (2008) 2.1. ((i, j), (m, n)) ∈ C1, ((k, l), (i, j)) ∈ C2 and ((k, l), (m, n)) ∈ C2, C3 or C4. 2.1.1. If ((k, l), (m, n)) ∈ C2 (n < l), then (f, g)w ≡ −q −2xij xklxmn + xklxmnxij ≡ −q−2xklxij xmn + q −2xklxij xmn ≡ 0. 2.1.2. If ((k, l), (m, n)) ∈ C3 (n = l), then (f, g)w ≡ −q −4 xij xklxmn + q −2 xklxmnxij ≡ −q−4xklxij xmn + q −4 xklxij xmn ≡ 0. 2.1.3. If ((k, l), (m, n)) ∈ C4 (n > l), then ((k, n), (i, j)) ∈ C2, ((i, j), (m, l)) ∈ C1 and (f, g)w ≡ −q −2xij [xklxmn − (q 2 − q−2)xknxml] + [xklxmn − (q 2 − q−2)xknxml]xij ≡ −q−2xklxij xmn + q −2(q2 − q−2)xknxij xml + q −2xklxij xmn −q−2(q2 − q−2)xknxij xml ≡ 0. For the cases 2.2, 2.3 and 2.4, the proofs are similar to 2.1.1. Case 3. f = xmnxij − q −2xij xmn, g = xij xkl − xklxij + (q 2 − q−2)xkj xil, w = xmnxij xkl. In the case, we have (f, g)w = −q −2 xij xmnxkl + xmnxklxij − (q 2 − q−2)xmnxkj xil. There are two subcases to consider. ((i, j), (m, n)) ∈ C1 ((i, j), (m, n)) ∈ C3 3.1. 3.2. ((k, l), (i, j)) ∈ C4 ((k, l), (m, n)), ((k, j), (m, n)) ∈ C4 ((k, l), (m, n)) ∈ C4, C5 or C6 ((k, j), (m, n)) ∈ C3 3.1. ((i, j), (m, n)) ∈ C1, ((k, l), (i, j)) ∈ C4 and (k, l), (m, n)), ((k, j), (m, n)) ∈ C4. Then, we have ((k, n), (i, j)) ∈ C2, ((i, l), (m, n)) ∈ C1, ((i, l), (m, j)) ∈ C1, ((m, l), (i, j)) CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 179 ∈ C1 and (f, g)w ≡ −q −2xij [xklxmn − (q 2 − q−2)xknxml] + [xklxmn − (q 2 − q−2)xknxml]xij −(q2 − q−2)[xkj xmn − (q 2 − q−2)xknxmj ]xil ≡ −q−2[xklxij − (q 2 − q−2)xkj xil]xmn + q −2(q2 − q−2)xknxij xml + q −2xklxij xmn −(q2 − q−2)xknxmlxij − q −2(q2 − q−2)xkj xilxmn + q −2(q2 − q−2)2xknxilxmj ≡ q−4(q2 − q−2)xknxmlxij − (q 2 − q−2)xknxmlxij + q −2(q2 − q−2)xknxmlxij ≡ 0. 3.2. ((i, j), (m, n)) ∈ C3, ((k, l), (i, j)) ∈ C4, (k, l), (m, n)) ∈ C4, C5 or C6 and ((k, j), (m, n)) ∈ C3. 3.2.1. If ((k, l), (m, n)) ∈ C4 (l > m) and ((k, j), (m, n)) ∈ C3, then ((k, n), (i, j)) ∈ C3, ((i, j), (m, l)) ∈ C2, ((i, l), (m, n)) ∈ C4 and (f, g)w ≡ −q −2xij [xklxmn − (q 2 − q−2)xknxml] + [xklxmn − (q 2 − q−2)xknxml]xij −q−2(q2 − q−2)xkj xmnxil ≡ −q−2[xklxij − (q 2 − q−2)xkj xil]xmn + q −4(q2 − q−2)xknxij xml + q −2xklxij xmn −(q2 − q−2)xknxij xml − q −2(q2 − q−2)xkj [xilxmn − (q 2 − q−2)xinxml] ≡ 0. 3.2.2. If ((k, l), (m, n)) ∈ C5 (l = m) and ((k, j), (m, n)) ∈ C3, then ((k, l), (i, j)) ∈ C4, ((k, n), (i, j)) ∈ C3, ((i, l), (m, n)) ∈ C5 and (f, g)w ≡ −q −2xij (q 2xklxmn − qxkn) + (q 2xklxmn − qxkn)xij − q −2(q2 − q−2)xkj xmnxil ≡ −[xklxij − (q 2 − q−2)xkj xil]xmn + q −3 xknxij + xklxij xmn − qxknxij −q−2(q2 − q−2)xkj [q 2 xilxmn − qxin] ≡ q−3xknxij − qxknxij + q −1(q2 − q−2)xknxij ≡ 0. 3.2.3. If ((k, l), (m, n)) ∈ C6 (l < m) and ((k, j), (m, n)) ∈ C3, then ((i, l), (m, n)) ∈ C6 and (f, g)w ≡ −q −2xij xklxmn + xklxmnxij − q −2(q2 − q−2)xkj xmnxil ≡ −q−2[xklxij − (q 2 − q−2)xkj xil]xmn + q −2xklxij xmn − q −2(q2 − q−2)xkj xilxmn ≡ 0. Case 4. f = xmnxij − q −2xij xmn, g = xij xkl − q 2xklxij + qxkj , w = xmnxij xkl. In the case, we have (f, g)w = −q −2 xij xmnxkl + q 2 xmnxklxij − qxmnxkj . 180 Yuqun Chen et al. CUBO 10, 3 (2008) There are two subcases to consider. ((i, j), (m, n)) ∈ C1 ((i, j), (m, n)) ∈ C3 4.1. 4.2. ((k, l), (i, j)) ∈ C5 ((k, l), (m, n)) ∈ C5 ((k, l), (m, n)) ∈ C6 ((k, j), (m, n)) ∈ C4 ((k, j), (m, n)) ∈ C3 4.1. ((i, j), (m, n)) ∈ C1, ((k, l), (i, j)) ∈ C5, ((k, l), (m, n)) ∈ C5 and ((k, j), (m, n)) ∈ C4. Then, we have ((k, n), (i, j)) ∈ C2 (m = i) and (f, g)w ≡ −q −2 xij (q 2 xklxmn − qxkn) + q 2(q2xklxmn − qxkn)xij −q[xkj xmn − (q 2 − q−2)xknxmj ] ≡ −(q2xklxij − qxkj )xmn + q −1xknxij + q 2xklxij xmn −q3xknxij − qxkj xmn + q(q 2 − q−2)xknxmj ≡ 0. 4.2. ((i, j), (m, n)) ∈ C3, ((k, l), (i, j)) ∈ C5, ((k, l), (m, n)) ∈ C6 and ((k, j), (m, n)) ∈ C3. Then, we have (f, g)w ≡ −q −2xij xklxmn + q 2xklxmnxij − q −1xkj xmn ≡ −q−2(q2xklxij − qxkj )xmn + xklxij xmn − q −1xkj xmn ≡ 0. Case 5. f = xmnxij − xij xmn, g = xij xkl − q −2xklxij , w = xmnxij xkl. In the case, we have (f, g)w = −xij xmnxkl + q −2xmnxklxij . There are four subcases to consider. ((i, j), (m, n)) ∈ C2 ((i, j), (m, n)) ∈ C6 ((k, l), (i, j)) ∈ C1 5.1. ((k, l), (m, n)) ∈ C2, C3, C4, C5 or C6 5.3. ((k, l), (m, n)) ∈ C6 ((k, l), (i, j)) ∈ C3 5.2. ((k, l), (m, n)) ∈ C2 5.4. ((k, l), (m, n)) ∈ C6 5.1. ((i, j), (m, n)) ∈ C2, ((k, l), (i, j)) ∈ C1, and ((k, l), (m, n)) ∈ C2, C3, C4, C5 or C6. 5.1.1. If ((k, l), (m, n)) ∈ C2 (l > n), then we have ((k, l), (i, j)) ∈ C1 and (f, g)w ≡ −xij xklxmn + q −2xklxmnxij ≡ −q−2xklxij xmn + q −2 xklxij xmn ≡ 0. CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 181 5.1.2. If ((k, l), (m, n)) ∈ C3 (l = n), then (f, g)w ≡ −q −2xij xklxmn + q −4xklxmnxij ≡ −q−4xklxij xmn + q −4xklxij xmn ≡ 0. 5.1.3. If ((k, l), (m, n)) ∈ C4 (m < l < n), then we have ((k, l), (i, j)) ∈ C1, ((k, n), (i, j)) ∈ C1, ((i, j), (m, l)) ∈ C2 and (f, g)w ≡ −xij [xklxmn − (q 2 − q−2)xknxml] + q −2[xklxmn − (q 2 − q−2)xknxml]xij ≡ −xij xklxmn + (q 2 − q−2)xij xknxml + q −2 xklxmnxij − q −2(q2 − q−2)xknxmlxij ≡ −q−2xklxij xmn + q −2(q2 − q−2)xknxij xml + q −2 xklxij xmn −q−2(q2 − q−2)xknxij xml ≡ 0. 5.1.4. If ((k, l), (m, n)) ∈ C5 (m = l), then we have ((k, n), (i, j)) ∈ C1 and (f, g)w ≡ −xij (q 2 xklxmn − qxkn) + q −2(q2xklxmn − qxkn)xij ≡ −q2xij xklxmn + qxij xkn + xklxmnxij − q −1xknxij ≡ −xklxij xmn + q −1xknxij + xklxij xmn − q −1xknxij ≡ 0. 5.1.5. If ((k, l), (m, n)) ∈ C6 (l < m), the proof is similar to 5.1.1. For the cases of 5.2, 5.3 and 5.4, the proofs are also similar to 5.1.1. Case 6. f = xmnxij − xij xmn, g = xij xkl − xklxij , w = xmnxij xkl. In the case, we have (f, g)w = −xij xmnxkl + xmnxklxij . There are four subcases to consider. ((i, j), (m, n)) ∈ C2 ((i, j), (m, n)) ∈ C6 ((k, l), (i, j)) ∈ C2 6.1. ((k, l), (m, n)) ∈ C2 6.3. ((k, l), (m, n)) ∈ C2, C3, C4, C5 or C6 ((k, l), (i, j)) ∈ C6 6.2. ((k, l), (m, n)) ∈ C6 6.4. ((k, l), (m, n)) ∈ C6 6.1. ((i, j), (m, n)) ∈ C2, ((k, l), (i, j)) ∈ C2 and ((k, l), (m, n)) ∈ C2. Then, we have (f, g)w ≡ −xij xklxmn + xklxmnxij ≡ −xklxij xmn + xklxij xmn ≡ 0. 182 Yuqun Chen et al. CUBO 10, 3 (2008) 6.2. ((i, j), (m, n)) ∈ C2, ((k, l), (i, j)) ∈ C6 and ((k, l), (m, n)) ∈ C6. This case is similar to 6.1. 6.3. ((i, j), (m, n)) ∈ C6, ((k, l), (i, j)) ∈ C2 and ((k, l), (m, n)) ∈ C2, , C3, C4, C5 or C6. 6.3.1. If ((k, l), (m, n)) ∈ C2 (l > n), the proof is similar to 6.1. 6.3.2. If ((k, l), (m, n)) ∈ C3 (l = n), then (f, g)w ≡ −q −2xij xklxmn + q −2xklxmnxij ≡ −q−2xklxij xmn + q −2xklxij xmn ≡ 0. 6.3.3. If ((k, l), (m, n)) ∈ C4 (m < l < n), then we have ((k, n), (i, j)) ∈ C2, ((i, j), (m, n)) ∈ C6 and (f, g)w ≡ −xij [xklxmn − (q 2 − q−2)xknxml] + [xklxmn − (q 2 − q−2)xknxml]xij ≡ −xij xklxmn + (q 2 − q−2)xij xknxml + xklxmnxij − (q 2 − q−2)xknxmlxij ≡ −xklxij xmn + (q 2 − q−2)xknxij xml + xklxij xmn − (q 2 − q−2)xknxij xml ≡ 0. 6.3.4. If ((k, l), (m, n)) ∈ C5 (m = l), then we have ((k, n), (i, j)) ∈ C2 and (f, g)w ≡ −xij (q 2 xklxmn − qxkn) + (q 2 xklxmn − qxkn)xij ≡ −q2xij xklxmn + qxij xkn + q 2 xklxmnxij − qxknxij ≡ −q2xklxij xmn + qxknxij + q 2xklxij xmn − qxknxij ≡ 0. 6.3.5. If ((k, l), (m, n)) ∈ C6 (l < m), the proof is similar to 6.1. 6.4. ((i, j), (m, n)) ∈ C6, ((k, l), (i, j)) ∈ C6 and ((k, l), (m, n)) ∈ C6. This case is also similar to 6.1. Case 7. f = xmnxij − xij xmn, g = xij xkl − xklxij + (q 2 − q−2)xkj xil, w = xmnxij xkl. In the case, we have (f, g)w = −xij xmnxkl + xmnxklxij − (q 2 − q−2)xmnxkj xil. There are two subcases to consider. ((i, j), (m, n)) ∈ C2 ((i, j), (m, n)) ∈ C6 7.1. 7.2. ((k, l), (i, j)) ∈ C4 ((k, l), (m, n)) ∈ C2, C3, C4, C5 or C6 ((k, l), (m, n)), ((k, j), (m, n)) ∈ C2 ((k, j), (m, n)) ∈ C6 CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 183 7.1. ((i, j), (m, n)) ∈ C2, ((k, l), (i, j)) ∈ C4, ((k, l), (m, n)) ∈ C2, C3, C4, C5 or C6 and ((k, j), (m, n)) ∈ C2. 7.1.1. If ((k, l), (m, n)) ∈ C2 (n < l) and ((k, j), (m, n)) ∈ C2, then we have ((i, l), (m, n)) ∈ C2 and (f, g)w ≡ −xij xklxmn + xklxmnxij − (q 2 − q−2)xkj xmnxil ≡ −[xklxij − (q 2 − q−2)xkj xil]xmn + xklxij xmn − (q 2 − q−2)xkj xilxmn ≡ 0. 7.1.2. If ((k, l), (m, n)) ∈ C3 (n = l) and ((k, j), (m, n)) ∈ C2, then ((i, l), (m, n)) ∈ C3 and (f, g)w ≡ −q −2 xij xklxmn + q −2 xklxmnxij − (q 2 − q−2)xkj xmnxil ≡ −q−2[xklxij − (q 2 − q−2)xkj xil]xmn + q −2 xklxij xmn − q −2(q2 − q−2)xkj xilxmn ≡ 0. 7.1.3. If ((k, l), (m, n)) ∈ C4 (m < l < n) and ((k, j), (m, n)) ∈ C2, then we obtain ((k, n), (i, j)) ∈ C4, ((i, j), (m, l)) ∈ C2, ((i, l), (m, n)) ∈ C4 and (f, g)w ≡ −xij [xklxmn − (q 2 − q−2)xknxml] + [xklxmn − (q 2 − q−2)xknxml]xij −(q2 − q−2)xkj xmnxil ≡ −xij xklxmn + (q 2 − q−2)xij xknxml + xklxmnxij − (q 2 − q−2)xknxmlxij −(q2 − q−2)xkj [xilxmn − (q 2 − q−2)xinxml] ≡ −[xklxij − (q 2 − q−2)xkj xil]xmn + (q 2 − q−2)[xknxij − (q 2 − q−2)xkj xin]xml +xklxij xmn − (q 2 − q−2)xknxij xml ≡ 0. 7.1.4. If ((k, l), (m, n)) ∈ C5 (m = l) and ((k, j), (m, n)) ∈ C2, then ((k, n), (i, j)) ∈ C4, ((i, l), (m, n)) ∈ C5 and (f, g)w ≡ −xij (q 2xklxmn − qxkn) + (q 2xklxmn − qxkn)xij − (q 2 − q−2)xkj xmnxil ≡ −q2xij xklxmn + qxij xkn + q 2xklxmnxij − qxknxij −(q2 − q−2)xkj (q 2xilxmn − qxin) ≡ −q2[xklxij − (q 2 − q−2)xkj xil]xmn + q[xknxij − (q 2 − q−2)xkj xin] +q2xklxij xmn − qxknxij − q 2(q2 − q−2)xkj xilxmn + q(q 2 − q−2)xkj xin ≡ 0. 7.1.5. If ((k, l), (m, n)) ∈ C6 (l < m) and ((k, j), (m, n)) ∈ C2, then ((i, l), (m, n)) ∈ C6. This case is similar to 7.1.1. 184 Yuqun Chen et al. CUBO 10, 3 (2008) 7.2. ((i, j), (m, n)) ∈ C6, ((k, l), (i, j)) ∈ C4, ((k, l), (m, n)), ((k, j), (m, n)) ∈ C6. This case is also similar to 7.1.1. Case 8. f = xmnxij − xij xmn, g = xij xkl − q 2xklxij + qxkj , w = xmnxij xkl. In the case, we have (f, g)w = −xij xmnxkl + q 2xmnxklxij + qxmnxkj . There are two subcases to consider. ((i, j), (m, n)) ∈ C2 ((i, j), (m, n)) ∈ C6 8.1. 8.2. ((k, l), (i, j)) ∈ C5 ((k, l), (m, n)) ∈ C6 ((k, l), (m, n)), ((k, j), (m, n)) ∈ C6 ((k, j), (m, n)) ∈ C2 8.1. ((i, j), (m, n)) ∈ C2, ((k, l), (i, j)) ∈ C5, ((k, l), (m, n)) ∈ C6 and ((k, j), (m, n)) ∈ C2. Then, we have (f, g)w ≡ −xij xklxmn + q 2xklxmnxij + qxkj xmn ≡ −(q2xklxij − qxkj )xmn + q 2xklxij xmn + qxkj xmn ≡ 0. 8.2. ((i, j), (m, n)) ∈ C6, ((k, l), (i, j)) ∈ C5, ((k, l), (m, n)), ((k, j), (m, n)) ∈ C6. This case is similar to 8.1. Case 9. f = xmnxij − xij xmn + (q 2 − q−2)xinxmj , g = xij xkl − q −2xklxij , w = xmnxij xkl. In the case, we have (f, g)w = −xij xmnxkl + (q 2 − q−2)xinxmj xkl + q −2xmnxklxij . There are two subcases to consider. ((i, j), (m, n)) ∈ C4 ((k, l), (i, j)) ∈ C1 9.1. ((k, l), (m, n)), ((k, l), (m, j)) ∈ C4, C5 or C6 ((k, l), (i, j)) ∈ C3 9.2. ((k, l), (m, n)) ∈ C4 ((k, l), (m, j)) ∈ C3 9.1. ((i, j), (m, n)) ∈ C4, ((k, l), (i, j)) ∈ C1 and ((k, l), (m, n)), ((k, l), (m, j)) ∈ C4, C5 or C6. CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 185 9.1.1. If ((k, l), (m, n)), ((k, l), (m, j)) ∈ C4 (l > m), then we have ((i, j), (k, n)) ∈ C1, ((k, n), (m, l)) ∈ C2, ((k, j), (i, n)) ∈ C1, ((k, l), (i, n)) ∈ C1, ((i, j), (m, l)) ∈ C2 and (f, g)w ≡ −xij [xklxmn − (q 2 − q−2)xknxml] + (q 2 − q−2)xin[xklxmj − (q 2 − q−2)xkj xml] +q−2[xklxmn − (q 2 − q−2)xknxml]xij ≡ −xij xklxmn + (q 2 − q−2)xij xknxml + (q 2 − q−2)xinxklxmj −(q2 − q−2)2xinxkj xml + q −2xklxmnxij − q −2(q2 − q−2)xknxmlxij ≡ −q−2xklxij xmn + (q 2 − q−2)xij xknxml + q −2(q2 − q−2)xklxinxmj −q−2(q2 − q−2)2xkj xinxml + q −2xkl[xij xmn − (q 2 − q−2)xinxmj ] −q−2(q2 − q−2)xknxij xml ≡ (q2 − q−2)xij xknxml − q −2(q2 − q−2)2xkj xinxml − q −4(q2 − q−2)xij xknxml ≡ 0. 9.1.2. If ((k, l), (m, n)), ((k, l), (m, j)) ∈ C5 (l = m), then we have ((i, j), (k, n)) ∈ C1, ((k, l), (i, n), ((k, j), (i, n)) ∈ C1 and (f, g)w ≡ −xij (q 2xklxmn − qxkn) + (q 2 − q−2)xin(q 2xklxmj − qxkj ) +q−2(q2xklxmn − qxkn)xij ≡ −q2xij xklxmn + qxij xkn + q 2(q2 − q−2)xinxklxmj − q(q 2 − q−2)xinxkj +xklxmnxij − q −1xknxij ≡ −xklxij xmn + qxij xkn + (q 2 − q−2)xklxinxmj − q −1(q2 − q−2)xkj xin +xkl[xij xmn − (q 2 − q−2)xinxmj ] − q −3 xij xkn ≡ qxij xkn − qxkj xin + q −3 xkj xin − q −3 xij xkn ≡ 0. 9.1.3. If ((k, l), (m, n)), ((k, l), (m, j)) ∈ C6 (l < m), then we have ((k, l), (i, n)) ∈ C1 and (f, g)w ≡ −xij xklxmn − (q 2 − q−2)xinxklxmj + q −2 xklxmnxij ≡ −q−2xklxij xmn − q −2(q2 − q−2)xklxinxmj + q −2xkl[xij xmn − (q 2 − q−2)xinxmj ] ≡ 0. 9.2. ((i, j), (m, n)) ∈ C4, ((k, l), (i, j)) ∈ C3, ((k, l), (m, n)) ∈ C4 and ((k, l), (m, j)) ∈ C3. 186 Yuqun Chen et al. CUBO 10, 3 (2008) Then, we have ((k, n), (i, j)) ∈ C2, ((k, l), (i, n)) ∈ C4, ((i, j), (m, l)) ∈ C3 and (f, g)w ≡ −xij [xklxmn − (q 2 − q−2)xknxml] + q −2(q2 − q−2)xinxklxmj +q−2[xklxmn − (q 2 − q−2)xknxml]xij ≡ −xij xklxmn + (q 2 − q−2)xij xknxml + q −2(q2 − q−2)xinxklxmj + q −2 xklxmnxij −q−2(q2 − q−2)xknxmlxij ≡ −q−2xklxij xmn + (q 2 − q−2)xknxij xml + q −2(q2 − q−2)[xklxin −(q2 − q−2)xknxil]xmj + q −2xkl[xij xmn − (q 2 − q−2)xinxmj ] −q−4(q2 − q−2)xknxij xml ≡ (q2 − q−2)xknxij xml − q −2(q2 − q−2)xknxilxmj − q −4(q2 − q−2)xknxij xml ≡ 0. Case 10. f = xmnxij − xij xmn + (q 2 − q−2)xinxmj , g = xij xkl − xklxij , w = xmnxij xkl. In the case, we have (f, g)w = −xij xmnxkl + (q 2 − q−2)xinxmj xkl + xmnxklxij . There are two subcases to consider. ((i, j), (m, n)) ∈ C4 ((k, l), (i, j)) ∈ C2 10.1. ((k, l), (m, n)) ∈ C2, C3 or C4 ((k, l), (m, j)) ∈ C2 ((k, l), (i, j)) ∈ C6 10.2. ((k, l), (m, n)), ((k, l), (m, j)) ∈ C6 10.1. ((i, j), (m, n)) ∈ C4, ((k, l), (i, j)) ∈ C2, ((k, l), (m, n)) ∈ C2, C3 or C4 and ((k, l), (m, j)) ∈ C2. 10.1.1. If ((k, l), (m, n)) ∈ C2 (l > n), then we have ((k, l), (i, n)) ∈ C2 and (f, g)w ≡ −xij xklxmn + (q 2 − q−2)xinxklxmj + xklxmnxij ≡ −xklxij xmn + (q 2 − q−2)xklxinxmj + xkl[xij xmn − (q 2 − q−2)xinxmj ] ≡ 0. 10.1.2. If ((k, l), (m, n)) ∈ C3 (l = n), then we have ((k, l), (i, n)) ∈ C3 and (f, g)w ≡ −q −2xij xklxmn + (q 2 − q−2)xinxklxmj + q −2xklxmnxij ≡ −q−2xklxij xmn + q −2(q2 − q−2)xklxinxmj + q −2 xkl[xij xmn − (q 2 − q−2)xinxmj ] ≡ 0. CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 187 10.1.3. If ((k, l), (m, n)) ∈ C4 (l < n), then we have ((k, n), (i, j)) ∈ C2, ((k, l), (i, n)) ∈ C4, ((i, j), (m, l)) ∈ C4 and (f, g)w ≡ −xij [xklxmn − (q 2 − q−2)xknxml] + (q 2 − q−2)xinxklxmj +[xklxmn − (q 2 − q−2)xknxml]xij ≡ −xij xklxmn + (q 2 − q−2)xij xknxml + (q 2 − q−2)xinxklxmj +xklxmnxij − (q 2 − q−2)xknxmlxij ≡ −xklxij xmn + (q 2 − q−2)xknxij xml + (q 2 − q−2)[xklxin − (q 2 − q−2)xknxil]xmj +xkl[xij xmn − (q 2 − q−2)xinxmj ] − (q 2 − q−2)xkn[xij xml − (q 2 − q−2)xilxmj ] ≡ 0. 10.2. ((i, j), (m, n)) ∈ C4, ((k, l), (i, j)) ∈ C6, ((k, l), (m, n)), (k, l), (m, j)) ∈ C6. This case is similar to 10.1. Case 11. f = xmnxij −xij xmn + (q 2 −q−2)xinxmj , g = xij xkl −xklxij + (q 2 −q−2)xkj xil, w = xmnxij xkl. In the case, we have (f, g)w = −xij xmnxkl + (q 2 − q−2)xinxmj xkl + xmnxklxij − (q 2 − q−2)xmnxkj xil, with ((i, j), (m, n)) ∈ C4 ((k, l), (i, j)) ∈ C4 ((k, l), (m, n)), ((k, l), (m, j)) ∈ C4, C5 or C6 11.1. If ((k, l), (m, n)), ((k, l), (m, j)) ∈ C4 (l > m), then we have ((k, n), (i, j)) ∈ C2, ((k, l), (i, n)) ∈ C4, ((k, j), (i, n)) ∈ C4, ((i, j), (m, l)) ∈ C2, ((i, l), (m, n)) ∈ C4, ((i, l), (m, j)) ∈ C4 and (f, g)w ≡ −xij [xklxmn − (q 2 − q−2)xknxml] + (q 2 − q−2)xin[xklxmj − (q 2 − q−2)xkj xml] +[xklxmn − (q 2 − q−2)xknxml]xij − (q 2 − q−2)[xkj xmn − (q 2 − q−2)xknxmj ]xil ≡ −xij xklxmn + (q 2 − q−2)xij xknxml + (q 2 − q−2)xinxklxmj −(q2 − q−2)xinxkj xml + xklxmnxij − (q 2 − q−2)xknxmlxij −(q2 − q−2)xkj xmnxil + (q 2 − q−2)2xknxmj xil ≡ −[xklxij − (q 2 − q−2)xkj xil]xmn + (q 2 − q−2)xknxij xml + (q 2 − q−2)[xkj xin −(q2 − q−2)xknxil]xmj − (q 2 − q−2)[xkj xin − (q 2 − q−2)xknxij ]xml +xkl[xij xmn − (q 2 − q−2)xinxmj ] − (q 2 − q−2)xknxij xml −(q2 − q−2)xkj [xilxmn − (q 2 − q−2)xinxml] +(q2 − q−2)2xkn[xilxmj − (q 2 − q−2)xij xml] ≡ 0. 188 Yuqun Chen et al. CUBO 10, 3 (2008) 11.2. If ((k, l), (m, n)), ((k, l), (m, j)) ∈ C5 (l = m), then we have ((k, n), (i, j)) ∈ C2, ((k, l), (i, n)) ∈ C4, ((k, j), (i, n)) ∈ C4, ((i, l), (m, n)) ∈ C5, ((i, l), (m, j)) ∈ C5 and (f, g)w ≡ −xij (q 2xklxmn − qxkn) + (q 2 − q−2)xin(q 2xklxmj − qxkj ) + (q 2xklxmn − qxkn)xij −(q2 − q−2)[xkj xmn − (q 2 − q−2)xknxmj ]xil ≡ −q2xij xklxmn + qxij xkn + q 2(q2 − q−2)xinxklxmj − q(q 2 − q−2)xinxkj +q2xklxmnxij − qxknxij − (q 2 − q−2)xkj xmnxil + (q 2 − q−2)2xknxmj xil ≡ −q2[xklxij − (q 2 − q−2)xkj xil]xmn + qxknxij + q 2(q2 − q−2)[xklxin −(q2 − q−2)xknxil]xmj − q(q 2 − q−2)[xkj xin − (q 2 − q−2)xknxij ] +q2xkl[xij xmn − (q 2 − q−2)xinxmj ] − qxknxij −(q2 − q−2)xkj [q 2xilxmn − qxin] + (q 2 − q−2)2xkn[q 2xilxmj − qxij ] ≡ 0. 11.3. If ((k, l), (m, n)), ((k, l), (m, j)) ∈ C6 (l < m), then ((k, j), (m, n)) ∈ C4, ((k, l), (i, n)) ∈ C4, ((i, l), (m, n)), ((i, l), (m, j)) ∈ C6 and (f, g)w ≡ −xij xklxmn + (q 2 − q−2)xinxklxmj + xklxmnxij −(q2 − q−2)[xkj xmn − (q 2 − q−2)xknxmj ]xil ≡ −[xklxij − (q 2 − q−2)xkj xil]xmn + (q 2 − q−2)[xklxin − (q 2 − q−2)xknxil]xmj +xkl[xij xmn − (q 2 − q−2)xinxmj ] − (q 2 − q−2)xkj xilxmn + (q 2 − q−2)2xknxilxmj ≡ 0. Case 12. f = xmnxij −xij xmn+(q 2−q−2)xinxmj , g = xij xkl−q 2xklxij +qxkj , w = xmnxij xkl, with ((i, j), (m, n)) ∈ C4 ((k, l), (i, j)) ∈ C5 ((k, l), (m, n)), ((k, l), (m, j)) ∈ C6 ((k, j), (m, n)) ∈ C4 ((k, l), (i, n)) ∈ C5 In the case, we can deduce that (f, g)w = −xij xmnxkl + (q 2 − q−2)xinxmj xkl + q 2 xmnxklxij − qxmnxkj ≡ −xij xklxmn + (q 2 − q−2)xinxklxmj + q 2xkj xmnxij −q[xkj xmn − (q 2 − q−2)xknxmj ] ≡ −(q2xklxij − qxkj )xmn + (q 2 − q−2)(q2xklxin − qxkn)xmj +q2xkl[xij xmn − (q 2 − q−2)xinxmj ] − qxkj xmn + q(q 2 − q−2)xknxmj ≡ −q2xklxij xmn + qxkj xmn + q 2(q2 − q−2)xklxinxmj − q(q 2 − q−2)xknxmj +q2xklxij xmn − q 2(q2 − q−2)xklxinxmj − qxkj xmn + q(q 2 − q−2)xknxmj ≡ 0. CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 189 Case 13. f = xmnxij − q 2xij xmn + qxin, g = xij xkl − q −2xklxij , w = xmnxij xkl. In the case, we have (f, g)w = −q 2xij xmnxkl + qxinxkl + q −2xmnxklxij . There are two subcases to consider. ((i, j), (m, n)) ∈ C5 ((k, l), (i, j)) ∈ C1 13.1. ((k, l), (m, n)) ∈ C6 ((k, l), (i, n)) ∈ C1 ((k, l), (i, j)) ∈ C3 13.2. ((k, l), (m, n)) ∈ C5 ((k, l), (i, n)) ∈ C4 13.1. ((i, j), (m, n)) ∈ C5, ((k, l), (i, j)) ∈ C1, ((k, l), (m, n)) ∈ C6 and ((k, l), (i, n)) ∈ C1. Then, we have (f, g)w = −q 2xij xklxmn + q −1xklxin + q −2xklxmnxij ≡ −xklxij xmn + q −1xklxin + q −2xkl(q 2xij xmn − qxin) ≡ −xklxij xmn + q −1xklxin + xklxij xmn − q −1xklxin ≡ 0. 13.2. ((i, j), (m, n)) ∈ C5, ((k, l), (i, j)) ∈ C3, ((k, l), (m, n)) ∈ C5 and ((k, l), (i, n)) ∈ C4. Then, we have ((k, n), (i, j)) ∈ C2 and (f, g)w ≡ −q 2 xij (q 2 xklxmn − qxkn) + q[xklxin − (q 2 − q−2)xknxil] −q−2(q2xklxmn − qxkn)xij ≡ −q4xij xklxmn + q 3xij xkn + qxklxin − q(q 2 − q−2)xknxil + xklxmnxij −q−1xknxij ≡ −q2xklxij xmn + q 3xknxij + qxklxin − q 3xknxil +q−1xknxil + q 2xklxij xmn − qxklxin − q −1xknxij ≡ 0. Case 14. f = xmnxij − q 2xij xmn + qxin, g = xij xkl − xklxij , w = xmnxij xkl. In the case, we have (f, g)w = −q 2 xij xmnxkl + qxinxkl + xmnxklxij . There are two subcases to consider. ((i, j), (m, n)) ∈ C5 ((k, l), (i, j)) ∈ C2 14.1. ((k, l), (m, n)), ((k, l), (i, n)) ∈ C2, C3 or C4 ((k, l), (i, j)) ∈ C6 14.2. ((k, l), (m, n)), ((k, l), (i, n)) ∈ C6 190 Yuqun Chen et al. CUBO 10, 3 (2008) 14.1. ((i, j), (m, n)) ∈ C5, ((k, l), (i, j)) ∈ C2 and ((k, l), (m, n)), ((k, l), (i, n)) ∈ C2, C3 or C4. 14.1.1. If ((k, l), (m, n)) and ((k, l), (i, n)) ∈ C2 (l > n), then (f, g)w = −q 2xij xklxmn + qxklxin + xklxmnxij ≡ −q2xklxij xmn + qxklxin + xkl(q 2xij xmn − qxin) ≡ 0. 14.1.2. If ((k, l), (m, n)) and ((k, l), (i, n)) ∈ C3 (l = n), then (f, g)w = −xij xklxmn + q −1xklxin + q −2xklxmnxij ≡ −xklxij xmn + q −1xklxin + xklxij xmn − q −1xklxin ≡ 0. 14.1.3. If ((k, l), (m, n)), ((k, l), (i, n)) ∈ C4 (l < n), then we have ((k, n), (i, j)) ∈ C2, ((i, j), (m, l)) ∈ C5 and (f, g)w ≡ −q 2xij [xklxmn − (q 2 − q−2)xknxml] + q[xklxin − (q 2 − q−2)xknxil] +[xklxmn − (q 2 − q−2)xknxml]xij ≡ −q2xij xklxmn + q 2(q2 − q−2)xij xknxml + qxklxin − q(q 2 − q−2)xknxil +xklxmnxij − (q 2 − q−2)xknxmlxij ≡ −q2xklxij xmn + q 2(q2 − q−2)xknxij xml + qxklxin − q(q 2 − q−2)xknxil +xkn(q 2xij xmn − qxin) − (q 2 − q−2)xkn(q 2xij xmn − qxil) ≡ 0. 14.2. ((i, j), (m, n)) ∈ C5, ((k, l), (i, j)) ∈ C6 and ((k, l), (m, n)), ((k, l), (i, n)) ∈ C6. This case is similar to 14.1.1. Case 15. f = xmnxij −q 2xij xmn +qxin, g = xij xkl −xklxij +(q 2 −q−2)xkj xil, w = xmnxij xkl, with ((i, j), (m, n)) ∈ C5 ((k, l), (i, j)) ∈ C4 ((k, l), (m, n)) ∈ C6 ((k, l), (i, n)) ∈ C4 ((k, j), (m, n)) ∈ C5 ((i, l), (m, n)) ∈ C6 CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 191 Then, we have (f, g)w = −q 2 xij xmnxkl + qxinxkl + xmnxklxij − (q 2 − q−2)xmnxkj xil ≡ −q2xij xklxmn + q[xklxin − (q 2 − q−2)xknxil] + xklxmnxij −(q2 − q−2)(q2xkj xmn − qxkn)xil ≡ −q2[xklxij − (q 2 − q−2)xkj xil]xmn + qxklxin − q(q 2 − q−2)xknxil +xkl(q 2xij xmn − qxin) − q 2(q2 − q−2)xkj xmnxil + q(q 2 − q−2)xknxil ≡ −q2xklxij xmn + q 2(q2 − q−2)xkj xilxmn + qxklxin − q(q 2 − q−2)xknxil +q2xklxij xmn − qxklxin − q 2(q2 − q−2)xkj xilxmn + q(q 2 − q−2)xknxil ≡ 0. Case 16. f = xmnxij − q 2xij xmn + qxin, g = xij xkl − q 2xklxij + qxkj , w = xmnxij xkl, with ((i, j), (m, n)) ∈ C5 ((k, l), (i, j)) ∈ C5 ((k, l), (m, n)) ∈ C6 ((k, l), (i, n)), ((k, j), (m, n)) ∈ C5 In the case, we have (f, g)w = −q 2xij xmnxkl + qxinxkl + q 2xmnxklxij − qxmnxkj ≡ −q2xij xklxmn + q(q 2xklxin − qxkn) + q 2xklxmnxij − q(q 2xkj xmn − qxkn) ≡ −q2(q2xklxij − qxkj )xmn + q 3xklxin − q 2xkn + q 2xkl(q 2xij xmn − qxin) −q3xkj xmn + q 2xkn ≡ 0. Thus, ˜S+ is a Gröbner-Shirshov basis. This completes the proof of Theorem 3.1. � Similarly, with the deg-lex order on ˜Y ∗, ˜S− is a Gröbner-Shirshov basis for U −q (AN ) = k〈˜Y |˜S−〉. We now use the same notation as before. Order the generators by: xi > xj , hi > h −1 i > hj > h −1 j , yi > yj if i > j, and xi > h ±1 j > ym for all i, j, m. Then we obtain a well ordering (deg-lex) on ˜X ∪ H ∪ ˜Y . Thus, by Theorem 3.1, we re-obtain the following theorem in [16]. Theorem 3.2. ([16] Theorem 2.7) Let the notation be as before. Then with the deg-lex order on { ˜X ∪ H ∪ ˜Y }∗, ˜S+ ∪ T ∪ K ∪ ˜S− is a Gröbner-Shirshov basis for Uq(AN ) = k〈 ˜X ∪ H ∪ ˜Y |˜S + ∪ T ∪ K ∪ ˜S−〉. 192 Yuqun Chen et al. CUBO 10, 3 (2008) Acknowledgement: The authors would like to express their deepest gratitude to Professor L. A. Bokut for his kind guidance, useful discussions and enthusiastic encouragement. Received: June 2008. Revised: August 2008. References [1] G.M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(1978), 178–218. [2] L.A. Bokut, Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Mat., 36(1972), 1173–1219. [3] L.A. Bokut, Imbeddings into simple associative algebras, Algebra i Logika, 15(1976), 117– 142. [4] L.A. Bokut, Gröbner-Shirshov bases for the braid groups in the Briman-Ko-Lee generators, sumbitted. [5] L.A. Bokut, Gröbner-Shirshov bases for braid groups in Artin-Garside generators, J. Sym- bolic Compu., Doi:10.1016/j.jsc.2007.02.003. Available online 17 November 2007. [6] L.A. Bokut, V.V. Chainikov and K.P. Shum, Markov and Artin normal form theorem for braid groups, Comm. Algebra, 35(2007), 2105–2115. [7] L.A. Bokut and Y. Chen, Gröbner-Shirshov bases for free Lie algebras: after A.I. Shirshov, SEA. Bull. Math., 31(2007), 1057–1076. [8] L. Bokut and Y. Chen, Gronbner-Shirshov bases: some new results, Proceedings of the Second International Congress in Algebra and Combinatorics, World Scientific, 2008, 35–56. [9] L.A. Bokut, S.J. Kang, K.H. Lee and P. Malcolmson, Gröbner-Shirshov bases for Lie superalgebras and their universal enveloping algebras, J. Algebra, 217(2) (1999), 461–495. [10] L.A. Bokut and A.A. Klein, Serre relations and Gröbner-Shirshov bases for simple Lie algebras I, Internat. J. Algebra Comput., 6(4) (1996), 389–400. [11] L.A. Bokut and A.A. Klein, Serre relations and Gröbner-Shirshov bases for simple Lie algebras II, Internat. J. Algebra Comput., 6(4) (1996), 401–412. [12] L.A. Bokut and A.A. Klein, Gröbner-Shirshov bases for exceptional Lie algebras I, J. Pure Applied Algebra, 133(1998), 51–57. [13] L.A. Bokut and A.A. Klein, Gröbner-Shirshov bases for exceptional Lie algebras E6, E7, E8, Algebra and Combinatorics (Hong Kong), 37–46, Springer, Singapore, 1999. [14] L.A. Bokut and P. Kolesnikov, Gröbner-Shirshov bases: from their incipiency to the prensent, Journal of Mathematical Sciences, 116(1) (2003), 2894–2916. [15] L.A. Bokut and P. Kolesnikov, Gröbner-Shirshov bases, conformal algebras and pseudo- algebras, Journal of Mathematical Sciences, 131(2005), 5962–6003. CUBO 10, 3 (2008) Rosso-Yamane Theorem on PBW Basis of Uq(AN ) 193 [16] L.A. Bokut and P. Malcolmson, Gröbner-Shirshov basis for quantum enveloping algebras, Israel Journal of Mathematics, 96 (1996), 97–113. [17] L.A. Bokut and L.-S. Shiao, Gröbner-Shirshov bases for Coxeter groups, Comm. Algebra, 29(9) (2001), 4305–4319. [18] B. Buchberger, An algorithm for finding a basis for the residue class ring of a zero- dimensional polynomial ideal, [in German], Ph.D thesis, University of Innsbruck, Austria, 1965. [19] B. Buchberger, An algorithmical criteria for the solvability of algebraic systems of equa- tions, [in German], Aequationes Math., 4(1970), 374–383. [20] V.G. Drinfeld, Hopf algebra and the quantum Yang-Baxter equation, Doklady Adakemii Nauk SSSR, 283(5) (1985), 1060–1064. [21] H. Hironaka, Resolution of singularities of an algebraic vareity over a field of characteristic zero I, II, Ann. of Math., 79(1964), 109–203; ibid. 79(1964), 205–326. [22] M. Jimbo, A q-difference analogue of U (G) and the Yang-Baxter equation, Letters in Math- ematical Physics, 10(1) (1985), 63–69. [23] S.-J. Kang and K.-H. Lee, Gröbner-Shirshov bases for repesentation theory, J. Korean Math. Soc., 37(1) (2000), 55–72. [24] S.-J. Kang and K.-H. Lee, Gröbner-Shirshov basis theory for irreducible sl(n+1)−modules, J. Algebra, 232(2000), 1–20. [25] S.-J. Kang, I.-S. Lee, K.-H. Lee and H. OH, Hecke algebras, Speche modules and Gröbner-Shirshov bases, J. Algebra, 252(2002), 258–292. [26] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Commun. Math. Phys., 133(1990), 249–260. [27] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J., 63(1991), 465–516. [28] V.K. Kharchenko, A quantum analog of the Poincare-Birkhoff-Witt theorem, Algebra i Logika, 38(4) (1999), 259–276. [29] G. Lusztig, Canonical bases arising from quantized enveloping algebra, J. Amer. Math. Soc., 3(2) (1990), 447–498. [30] G. Lusztig, Canonical bases arising from quantized enveloping algebra II, Progr. Theor. Phys. Suppl., 102 (1990), 175-201. [31] E.N. Poroshenko, Gröbner-Shirshov bases for the Kac-Moody algebras of the type A (1) n , Comm. Algebra, 30(6) (2002), 2617–2637. [32] E.N. Poroshenko, Gröbner-Shirshov bases for the Kac-Moody algebras of the type C (1) n and D (1) n , Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2(1)(2002), 58–70, (in Russian). 194 Yuqun Chen et al. CUBO 10, 3 (2008) [33] E.N. Poroshenko, Gröbner-Shirshov bases for the Kac-Moody algebras of the type B (1) n , Int. J. Math. Game Theory Algebra, 13(2) (2003), 117–128. [34] M. Rosso, An analogue of the Poincare-Birkhoff-Witt theorem and the universal R-matrix of Uq(sl(N + 1)), Comm. Math. Phys., 124(2) (1989), 307–318. [35] A.I. Shirshov, Some algorithmic problem for Lie algebras, Sibirsk. Mat. Z., 3(1962), 292–296, (in Russian); English translation in SIGSAM Bull., 33(2) (1999), 3–6. [36] I. Yamane, A Poincare-Birkhoff-Witt theorem for quantized universal enveloping algebras of type AN , Publ., RIMS. Kyoto Univ., 25(3) (1989), 503–520. [37] J.C. Jantzen, Lectures on quantum groups, Graduate Texts in Mathematics, Vol. 6, AMS, 1996. N15