CUBO A Mathematical Journal Vol.10, N o ¯ 02, (01–14). July 2008 Semi-Classical Dispersive Estimates for the Wave and Schrödinger Equations with a Potential in Dimensions n ≥ 4 F. Cardoso Universidade Federal de Pernambuco, Departamento de Matemática, Av. Prof. Luiz Freire, S/N, Cid. Universitária, CEP. 50.540-740 – Recife-Pe, Brazil email: fernando@dmat.ufpe.br and G. Vodev Université de Nantes, Département de Mathématiques, UMR 6629 du CNRS, 2, rue de la Houssinière, BP 92208, 44332 Nantes Cedex 03, France email: georgi.vodev@math.univ-nantes.fr ABSTRACT We expand the operators |t|(n−1)/2eit √ −∆+V ϕ(h √ −∆ + V ) and |t|n/2eit(−∆+V ) ψ(h2(−∆ + V )), 0 < h ≪ 1, modulo operators whose L1 → L∞ norm is ON (h N ), ∀N ≥ 1, where ϕ,ψ ∈ C∞0 ((0, +∞)) and V ∈ L ∞ (R n ), n ≥ 4, is a real-valued po- tential satisfying V (x) = O ( 〈x〉−δ ) , δ > (n + 1)/2 in the case of the wave equation and δ > (n + 2)/2 in the case of the Schrödinger equation. As a consequence, we give sufficent conditions in order that the wave and the Schrödinger groups satisfy dispersive estimates with a loss of ν derivatives, 0 ≤ ν ≤ (n − 3)/2. Roughly speaking, we reduce this problem to estimating the L1 → L∞ norms of a finite number of operators with 2 F. Cardoso and G. Vodev CUBO 10, 2 (2008) almost explicit kernels. These kernels are completely explicit when 4 ≤ n ≤ 7 in the case of the wave group, and when n = 4, 5 in the case of the Schrödinger group. RESUMEN En este trabajo son expandidos los operadores |t|(n−1)/2eit √ −∆+V ϕ(h √ −∆ + V ) y |t|n/2eit(−∆+V )ψ(h2(−∆+V )), 0 < h ≪ 1, modulo operadores cuja L1 → L∞ norma es ON (h N ), ∀N ≥ 1, donde ϕ,ψ ∈ C∞0 ((0, +∞)) y V ∈ L ∞ (Rn), n ≥ 4, es un potencial real satisfaziendo V (x) = O ( 〈x〉−δ ) , δ > (n + 1)/2 en el caso de la ecuación de la onda y δ > (n + 2)/2 en el caso de la ecuación de Schrödinger. Como consequencia presentamos condiciones suficientes a fin de que los grupos de la onda y Schrödinger cumplan estimativas dispersivas con una perdida de ν derivadas 0 ≤ ν ≤ (n − 3)/2. Rigurosamente hablando, reduzimos este problema a estimar las normas L1 → L∞ de un número finito de operadores con nucleos casi explicitos. Estos nucleos son comple- tamente explicitos cuando 4 ≤ n ≤ 7 en el caso del grupo de la onda y cuando n = 4, 5 en el caso del grupo de Schrödinger. Key words and phrases: Potential, dispersive estimates. Math. Subj. Class.: 35L15, 35B40, 47F05 1 Introduction and statement of results Denote by G the self-adjoint realization of the operator −∆ + V on L2(Rn), n ≥ 4, where V ∈ L∞(Rn) is a real-valued potential satisfying |V (x)| ≤ C〈x〉−δ, ∀x ∈ Rn, (1.1) with constants C > 0, δ > (n + 1)/2. It is well known that G has no strictly positive eigenvalues and resonances. We will also denote by G0 the self-adjoint realization of the operator −∆ on L2(Rn). It is well known that the free wave group satisfies the following semi-classical dispersive estimate ∥∥∥eit √ G0ϕ(h √ G0) ∥∥∥ L1→L∞ ≤ Ch−(n+1)/2|t|−(n−1)/2, ∀t 6= 0, h > 0, (1.2) where ϕ ∈ C∞0 ((0, +∞)). The natural question is to find the bigest possible class of potentials for which we have an analogue of (1.2) for the perturbed wave group. It is proved in [16] that under the assumption (1.1) only, we have such an estimate but with a significant loss in h for 0 < h ≪ 1, namely ∥∥∥eit √ Gϕ(h √ G) ∥∥∥ L 1 →L ∞ ≤ Ch−n+1|t|−(n−1)/2, ∀t 6= 0, 0 < h ≤ 1, (1.3) CUBO 10, 2 (2008) Semi-classical Dispersive Estimates for the wave ... 3 and this seems hard to improve without extra assumptions on the potential. This estimate is then used in [16] to obtain dispersive estimates with a loss of (n − 3)/2 derivatives for eit √ Gχa( √ G), ∀a > 0, where χa ∈ C ∞ ((−∞, +∞)), χa(λ) = 0 for λ ≤ a, χa(λ) = 1 for λ ≥ 2a. In the present work we will expand eit √ Gϕ(h √ G) modulo remainders whose L1 → L∞ norm is upper bounded by Cmh m−n+1|t|−(n−1)/2, 0 < h ≤ h0 ≪ 1, for every integer m ≥ 0. In order to state the precise result we need to introduce some notations. Let ϕ1 ∈ C ∞ 0 ((0, +∞)) be such that ϕ1 = 1 on supp ϕ, and set ϕ̃(λ) = λϕ(λ), ϕ̃1(λ) = λ −1ϕ1(λ). Under (1.1) there exists a constant h0 > 0 so that for 0 < h ≤ h0, the operator T (h) := ( Id + ϕ1(h √ G0) − ϕ1(h √ G) ) −1 = Id + O(h2) is uniformely bounded on Lp, 1 ≤ p ≤ +∞, as well as on weighted L2 spaces (see Lemma 2.3 of [16] and Lemma A.1 of [11]). Set U0(t,h) = ϕ̃1(h √ G0) sin(t √ G0), E 0 0 (t,h) = e it √ G0ϕ(h √ G0), E0(t,h) = ϕ1(h √ G0) cos(t √ G0)ϕ(h √ G) + iϕ̃1(h √ G0) sin(t √ G0)ϕ̃(h √ G). Furthermore, given any integer j ≥ 1, define the operators Ej (t,h) = −h ∫ t 0 U0(t − τ,h)V T (h)Ej−1(τ,h)dτ, E0 j (t,h) = −h ∫ t 0 U0(t − τ,h)V E 0 j−1(τ,h)dτ. Theorem 1.1 Let V satisfy (1.1). Then, there exists a constant h0 > 0 so that for all 0 < h ≤ h0, t 6= 0, we have the estimate ∥∥∥∥∥∥ eit √ Gϕ(h √ G) − T (h) m∑ j=0 Ej (t,h) ∥∥∥∥∥∥ L 1 →L ∞ ≤ Cmh m−n+1 |t|−(n−1)/2, (1.4) for every integer m ≥ 0 with a constant Cm > 0 independent of t and h. Moreover, the operators Ej satisfy the estimates ‖E0(t,h)‖L1→L∞ ≤ Ch −(n+1)/2 |t|−(n−1)/2, (1.5) ‖Ej (t,h)‖L1→L∞ ≤ Cjh j−n |t|−(n−1)/2, j ≥ 1, (1.6) ∥∥Ej (t,h) − E0j (t,h) ∥∥ L1→L∞ ≤ Cjh j+2−n |t|−(n−1)/2, j ≥ 1. (1.7) It follows from this theorem that to improve the estimate (1.3) in h, it suffices to improve the estimate (1.6). We also have the following 4 F. Cardoso and G. Vodev CUBO 10, 2 (2008) Corollary 1.2 Let V satisfy (1.1) and suppose in addition that there exists 0 ≤ k ≤ (n − 3)/2 such that the operators Ej satisfy the estimate ‖Ej (t,h)‖L1→L∞ ≤ Ch k−n+1 |t|−(n−1)/2, (1.8) for all integers 1 ≤ j < k + 1. Then, for every a > 0, 0 < ǫ ≪ 1, we have the estimate ∥∥∥eit √ G ( √ G)k−n+1−ǫχa( √ G) ∥∥∥ L1→L∞ ≤ Cǫ|t| −(n−1)/2, ∀t 6= 0, (1.9) while for every 0 ≤ q ≤ (n − 3)/2 − k, 2 ≤ p < 2(n−1−2q−2k) n−3−2q−2k , we have ∥∥∥eit √ G ( √ G) −α((n+1)/2+q) χa( √ G) ∥∥∥ L p ′ →L p ≤ C|t| −α(n−1)/2 , ∀t 6= 0, (1.10) where 1/p + 1/p′ = 1, α = 1 − 2/p. Moreover, when 4 ≤ n ≤ 7 the estimates (1.9) and (1.10) hold true if we suppose (1.8) fulfilled with Ej replaced by E 0 j . The estimate (1.8) with k > 0 seems hard to establish (even if we replace Ej by E 0 j ) and the proof would probably require some regularity condition on the potential. Note that when n = 2 and n = 3 the estimates (1.9) and (1.10) (with k = (n − 3)/2, q = 0) are proved in [2] under (1.1) only. In the case of n = 2 these estimates are proved (for a large enough) in [10] for a much larger class of potentials satisfying sup y∈R2 ∫ R2 |V (x)|dx |x − y|1/2 ≤ C < +∞. (1.11) When n = 3 these estimates are proved in [4] for a quite large subclass of potentials satisfying sup y∈R3 ∫ R3 |V (x)|dx |x − y| ≤ C < +∞. (1.12) When n ≥ 4 optimal dispersive estimates (that is, without loss of derivatives) are proved in [1] for potentials belonging to the Schwartz class. When n ≥ 4, as mentioned above, the estimates (1.9) and (1.10) with k = 0 are proved in [16] under (1.1) only. The proof of Theorem 1.1 and Corollary 1.2, which will be given in Section 2, is based very much on the analysis developed in [16]. A similar analysis as above can be carried out for the Schrödinger group as well. The free one satisfies the following dispersive estimate ∥∥eitG0ψ(h2G0) ∥∥ L 1 →L ∞ ≤ C|t| −n/2 , ∀t 6= 0, h > 0, (1.13) where ψ ∈ C∞0 ((0, +∞)). On the other hand, it is proved in [15] that under the assumption (1.1) with δ > (n + 2)/2 only, the perturbed Schrödinger group satisfies ∥∥eitGψ(h2G) ∥∥ L1→L∞ ≤ Ch−(n−3)/2|t|−n/2, ∀t 6= 0, 0 < h ≤ 1. (1.14) This estimate is used in [15] to obtain dispersive estimates with a loss of (n − 3)/2 derivatives for eitGχa(G), ∀a > 0. CUBO 10, 2 (2008) Semi-classical Dispersive Estimates for the wave ... 5 In this work we will also expand eitGψ(h2G) modulo remainders whose L1 → L∞ norm is upper bounded by Cmh m−(n−2)/2−ǫ |t|−n/2, 0 < h ≤ h0 ≪ 1, for every integer m ≥ 0, similarly to the wave group above. To this end, choose a function ψ1 ∈ C ∞ 0 ((0, +∞)) such that ψ1 = 1 on supp ψ, and set T (h) := ( Id + ψ1(h 2G0) − ψ1(h 2G) ) −1 = Id + O(h2), F 00 (t,h) = e itG0ψ(h2G0), F0(t,h) = ψ1(h 2G0)e itG0ψ(h2G), W0(t,h) = e itG0ψ1(h 2G0), Fj (t,h) = i ∫ t 0 W0(t − τ,h)V T (h)Fj−1(τ,h)dτ, j ≥ 1, F 0 j (t,h) = i ∫ t 0 W0(t − τ,h)V F 0 j−1(τ,h)dτ, j ≥ 1. Theorem 1.3 Let V satisfy (1.1) with δ > (n + 2)/2. Then, there exists a constant h0 > 0 so that for all 0 < h ≤ h0, t 6= 0, 0 < ǫ ≪ 1, we have the estimate ∥∥∥∥∥∥ eitGψ(h2G) − T (h) m∑ j=0 Fj (t,h) ∥∥∥∥∥∥ L 1 →L ∞ ≤ Cmh m−(n−2)/2−ǫ |t|−n/2, (1.15) for every integer m ≥ 0 with a constant Cm > 0 independent of t and h. Moreover, the operators Fj satisfy the estimates ‖F0(t,h)‖L1→L∞ ≤ C|t| −n/2, (1.16) ‖Fj (t,h)‖L1→L∞ ≤ Cjh j−n/2−ǫ |t|−n/2, j ≥ 1, (1.17) ∥∥Fj (t,h) − F 0j (t,h) ∥∥ L1→L∞ ≤ Cjh j+2−n/2−ǫ |t|−n/2, j ≥ 1. (1.18) Thus, to improve the estimate (1.14) in h, it suffices to improve the estimate (1.17). We also have the following Corollary 1.4 Let V satisfy (1.1) with δ > (n + 2)/2 and suppose in addition that there exists 0 ≤ k ≤ (n − 3)/2 such that the operators Fj satisfy the estimate ‖Fj (t,h)‖L1→L∞ ≤ Ch k−(n−3)/2 |t|−n/2, (1.19) for all integers 1 ≤ j ≤ k + 3/2. Then, for every a > 0, 0 < ǫ ≪ 1, we have the estimate ∥∥∥eitGGk/2−(n−3)/4−ǫχa(G) ∥∥∥ L1→L∞ ≤ Cǫ|t| −n/2, ∀t 6= 0, (1.20) while for every 0 ≤ q ≤ (n − 3)/2 − k, 2 ≤ p < 2(n−1−2q−2k) n−3−2q−2k , we have ∥∥∥eitGG−αq/2χa(G) ∥∥∥ L p ′ →L p ≤ C|t|−αn/2, ∀t 6= 0, (1.21) where 1/p + 1/p′ = 1, α = 1 − 2/p. Moreover, if there exists an operator Fk(t), independent of h, such that the following estimates hold ∥∥∥Fk(t)Gk/2−(n−3)/40 ∥∥∥ L1→L∞ ≤ C|t|−n/2, (1.22) 6 F. Cardoso and G. Vodev CUBO 10, 2 (2008) ∥∥F1(t,h) − Fk(t)ψ(h2G0) ∥∥ L 1 →L ∞ ≤ Chk−(n−3)/2+ε|t|−n/2, (1.23) ‖Fj (t,h)‖L1→L∞ ≤ Ch k−(n−3)/2+ε |t| −n/2 , (1.24) for 2 ≤ j ≤ k + 3/2 with some ε > 0, then we have ∥∥∥eitGGk/2−(n−3)/4χa(G) ∥∥∥ L 1 →L ∞ ≤ C|t|−n/2, ∀t 6= 0. (1.25) Furthermore, when n = 4, 5 the estimates (1.20), (1.21) and (1.25) hold true if we suppose (1.19), (1.23) and (1.24) fulfilled with Fj replaced by F 0 j . As in the case of the wave group above, the estimates (1.19), (1.22), (1.23) and (1.24) with k > 0 seem hard to establish (even if we replace Fj by F 0 j ) and the proof would certainly require some regularity condition on the potential. Indeed, it follows from the results in [5] that there exist compactly supported potentials V ∈ Cν (Rn), ∀ν < (n− 3)/2, for which these estimates with k = (n − 3)/2 fail to hold. Therefore, it is naural to expect that they hold true for potentials V ∈ C(n−3)/2−k(Rn). We also conjecture that the statements of Theorem 1.3 and Corollary 1.4 hold true for potentials satisfying (1.1) with δ > (n + 1)/2 as for the wave group above. Note that when n = 2 the estimate (1.25) without loss of derivatives (that is, with k = (n − 3)/2) is proved in [12] under (1.1) with δ > 2. In this case this estimate is proved (for a large enough) in [10] for potentials satisfying (1.11). When n = 3 this estimate is proved in [6] for potentials V ∈ L3/2−ǫ ∩L3/2+ǫ, 0 < ǫ ≪ 1, and in particular for potentials satisfying (1.1) with δ > 2. In this case it is also proved in [13] for potentials satisfying (1.12) with C < 4π. When n ≥ 4 the optimal dispersive estimate (that is, without loss of derivatives) is proved in [9] for potentials satisfying (1.1) with δ > n as well as V̂ ∈ L1. This result has been recently extended in [11] to potentials satisfying (1.1) with δ > n − 1 as well as V̂ ∈ L1. When n ≥ 4, as mentioned above, the estimates (1.21) and (1.25) with k = 0 are proved in [15] under (1.1) with δ > (n + 2)/2 only. The proof of Theorem 1.3 and Corollary 1.4, which will be given in Section 3, relies very much on the analysis developed in [15]. Acknowledgements. A part of this work was carried out while F. C. was visiting the University of Nantes in May 2007 with the support of the agreement Brazil-France in Mathematics - Proc. 69.0014/01-5. The first author has also been partially supported by the CNPq-Brazil. 2 Semi-classical expansion of eit √ Gϕ(h √ G) We keep the same notations as in the introduction. Our starting point is the following identity which can be derived easily from Duhamel’s formula (see [16]) ( Id + ϕ1(h √ G0) − ϕ1(h √ G) ) eit √ Gϕ(h √ G) = E0(t,h) − h ∫ t 0 U0(t − τ,h)V e iτ √ G ϕ(h √ G)dτ. (2.1) CUBO 10, 2 (2008) Semi-classical Dispersive Estimates for the wave ... 7 We rewrite (2.1) as follows eit √ Gϕ(h √ G) = Ẽ0(t,h) + ∫ t 0 Ũ0(t − τ,h)V e iτ √ Gϕ(h √ G)dτ, (2.2) where Ẽ0(t,h) = T (h)E0(t,h), Ũ0(t,h) = −hT (h)U0(t,h). Iterating (2.2) m times leads to the identity e it √ G ϕ(h √ G) = m∑ j=0 Ẽj (t,h) + Rm+1(t,h), (2.3) where the operators Ẽj , j ≥ 1, are defined by Ẽj (t,h) = ∫ t 0 Ũ0(t − τ,h)V Ẽj−1(τ,h)dτ, while the operators Rm, m ≥ 0, are defined as follows R0(t,h) = e it √ Gϕ(h √ G), Rm+1(t,h) = ∫ t 0 Ũ0(t − τ,h)V Rm(τ,h)dτ. It is clear from (2.3) that the estimate (1.4) follows from the following Proposition 2.1 Under the assumptions of Theorem 1.1, for all 0 < h ≤ h0, t 6= 0, 1/2 − ǫ/4 ≤ s ≤ (n − 1)/2, 0 < ǫ ≪ 1, we have the estimates ‖Rm+1(t,h)‖L1→L∞ ≤ Cmh m−n+1 |t| −(n−1)/2 , (2.4) ∥∥〈x〉−s−ǫRm+1(t,h) ∥∥ L1→L2 ≤ Cmh m−n/2+1 |t|−s, (2.5) for every integer m ≥ 0. Proof. For m = 0 the estimate (2.4) is proved in [16] (see (4.10)). We will now derive (2.4) for m ≥ 1 from (2.5) and the following estimate proved in [16] (see (2.4)): ∫ ∞ −∞ |t|2s ∥∥∥〈x〉−1/2−s−ǫeit √ G0ϕ(h √ G0)f ∥∥∥ 2 L 2 dt ≤ Ch−n ‖f‖ 2 L 1 , ∀f ∈ L 1, (2.6) for 0 ≤ s ≤ (n − 1)/2, 0 < ǫ ≪ 1. By (2.5) and (2.6), we have |t|(n−1)/2 |〈Rm+1(t,h)f,g〉| ≤ C ∫ t t/2 |τ|(n−1)/2 ∥∥∥〈x〉−1−ǫŨ0(t − τ,h)∗g ∥∥∥ L2 ∥∥∥〈x〉−(n−1)/2−ǫRm(τ,h)f ∥∥∥ L2 dτ 8 F. Cardoso and G. Vodev CUBO 10, 2 (2008) +C ∫ t t/2 |τ| (n−1)/2 ∥∥∥〈x〉−n/2−ǫŨ0(τ,h)∗g ∥∥∥ L 2 ∥∥∥〈x〉−1/2−ǫRm(t − τ,h)f ∥∥∥ L 2 dτ ≤ Ch m−n/2 ‖f‖L1 (∫ ∞ −∞ 〈τ ′ 〉 1+ǫ/2 ∥∥∥〈x〉−1−ǫŨ0(τ′,h)∗g ∥∥∥ 2 L 2 dτ ′ )1/2 +C (∫ ∞ −∞ |τ|n−1 ∥∥∥〈x〉−n/2−ǫŨ0(τ,h)∗g ∥∥∥ 2 L2 dτ )1/2 (∫ ∞ −∞ ∥∥∥〈x〉−1/2−ǫRm(τ′,h)f ∥∥∥ 2 L2 dτ′ )1/2 ≤ Chm+1−n‖f‖L1‖g‖L1. We will now prove (2.5) by induction in m. For m = 0 it is proved in [16] (see (4.6)) with s = (n − 1)/2 but the proof for general s is the same. We will show that (2.5) for Rm+1 follows from (2.5) for Rm and the following estimate proved in [16] (see (2.1)): ∥∥∥〈x〉−seit √ G0ϕ(h √ G0)〈x〉 −s ∥∥∥ L2→L2 ≤ C〈t〉−s, ∀t, 0 < h ≤ 1. (2.7) Consider first the case 1 ≤ s ≤ (n − 1)/2. We have |t| s ∥∥〈x〉−s−ǫRm+1(t,h) ∥∥ L 1 →L 2 ≤ C ∫ t t/2 |τ|s ∥∥∥〈x〉−s−ǫŨ0(t − τ,h)〈x〉−1−ǫ ∥∥∥ L 2 →L 2 ∥∥〈x〉−s−ǫRm(τ,h) ∥∥ L 1 →L 2 dτ +C ∫ t t/2 |τ|s ∥∥∥〈x〉−s−ǫŨ0(τ,h)〈x〉−s−ǫ ∥∥∥ L2→L2 ∥∥〈x〉−1−ǫRm(t − τ,h) ∥∥ L1→L2 dτ ≤ Chm+1−n/2 ∫ ∞ −∞ 〈τ′〉−1−ǫdτ′ + Ch ∫ ∞ −∞ ∥∥〈x〉−1−ǫRm(τ′,h) ∥∥ L 1 →L 2 dτ′ ≤ Chm+1−n/2. Let now 1/2 − ǫ/4 ≤ s ≤ 1. We have |t| s ∥∥〈x〉−s−ǫRm+1(t,h) ∥∥ L 1 →L 2 ≤ C ∫ t t/2 |τ|s ∥∥∥〈x〉−s−ǫŨ0(t − τ,h)〈x〉−1/2−ǫ ∥∥∥ L2→L2 ∥∥∥〈x〉−s−1/2−ǫRm(τ,h) ∥∥∥ L1→L2 dτ +C ∫ t t/2 |τ|s ∥∥∥〈x〉−s−ǫŨ0(τ,h)〈x〉−s−ǫ ∥∥∥ L2→L2 ∥∥〈x〉−1−ǫRm(t − τ,h) ∥∥ L1→L2 dτ ≤ Ch (∫ ∞ −∞ 〈τ′〉−1−ǫdτ′ )1/2 (∫ ∞ −∞ |τ|2s ∥∥∥〈x〉−s−1/2−ǫRm(τ,h) ∥∥∥ 2 L1→L2 dτ )1/2 +Ch ∫ ∞ −∞ ∥∥〈x〉−1−ǫRm(τ′,h) ∥∥ L 1 →L 2 dτ ′ ≤ Ch m+1−n/2 . 2 To prove (1.6) observe first that in the same way as in the proof of (2.5) one can show that the operator Ej satisfies the estimate ∥∥〈x〉−s−ǫEj (t,h) ∥∥ L 1 →L 2 ≤ Cjh j−n/2 |t| −s , j ≥ 1, (2.8) CUBO 10, 2 (2008) Semi-classical Dispersive Estimates for the wave ... 9 for 1/2 − ǫ/4 ≤ s ≤ (n − 1)/2, 0 < ǫ ≪ 1. On the other hand, proceeding as in the proof of (2.4), one can easily see that (2.8) implies (1.6). To prove (1.7) we decompose Ej − E 0 j as follows Ej (t,h) − E 0 j (t,h) = −h ∫ t 0 U0(t − τ,h)V (T (h) − Id)Ej−1(τ,h)dτ +h ∫ t 0 U0(t − τ,h)V (Ej−1(τ,h) − E 0 j−1(τ,h))dτ := E 1 j (t,h) + E2 j (t,h). (2.9) Using (2.8), in the same way as in the proof of (1.6), one gets ∥∥E1 j (t,h) ∥∥ L1→L∞ ≤ Cjh j+2−n |t|−(n−1)/2. (2.10) On the other hand, it is easy to see from (2.9) by induction in j that we have the estimate ∥∥〈x〉−s−ǫ(Ej (t,h) − E0j (t,h)) ∥∥ L 1 →L 2 ≤ Cjh j+2−n/2 |t|−s, j ≥ 0, (2.11) for 1/2 − ǫ/4 ≤ s ≤ (n − 1)/2, 0 < ǫ ≪ 1. It follows from (2.11) that the operator E2 j satisfies the estimate ∥∥E2 j (t,h) ∥∥ L 1 →L ∞ ≤ Cjh j+2−n |t|−(n−1)/2. (2.12) Now (1.7) follows from (2.9), (2.10) and (2.12). Proof of Corollary 1.2. Following [16] we set Φ(t,h) = eit √ Gϕ(h √ G) − eit √ G0ϕ(h √ G0). It follows from (1.4) and (1.8) that the operator Φ satisfies the estimate ‖Φ(t,h)‖ L 1 →L ∞ ≤ Ch k−n+1 |t| −(n−1)/2 . (2.13) On the other hand, we have (see Theorem 3.1 of [16]) ‖Φ(t,h)‖ L2→L2 ≤ Ch, ∀t. (2.14) By interpolation between (2.13) and (2.14) we conclude ‖Φ(t,h)‖ L p ′ →L p ≤ Ch 1−α(n−k) |t| −α(n−1)/2 , (2.15) for every 2 ≤ p ≤ +∞, where 1/p + 1/p′ = 1, α = 1 − 2/p. Now we will make use of the identity σ−α((n+1)/2+q)χa(σ) = ∫ 1 0 ϕ(θσ)θα((n+1)/2+q)−1dθ, where ϕ(σ) = σ1−α((n+1)/2+q)χ′ a (σ) ∈ C∞0 ((0, +∞)). By (2.15) we get ∥∥∥eit √ G ( √ G)−α((n+1)/2+q)χa( √ G) − eit √ G0 ( √ G0) −α((n+1)/2+q)χa( √ G0) ∥∥∥ Lp ′ →Lp 10 F. Cardoso and G. Vodev CUBO 10, 2 (2008) ≤ ∫ 1 0 ‖Φ(t,θ)‖ Lp ′ →Lp θα((n+1)/2+q)−1dθ ≤ C|t|−α(n−1)/2 ∫ 1 0 θ−α((n−1)/2−k−q)dθ ≤ C|t|−α(n−1)/2, (2.16) provided α((n − 1)/2 − k − q) < 1, that is, for 2 ≤ p < 2(n−1−2q−2k) n−3−2q−2k . Now (1.10) follows from (2.16) and the fact that it holds for the free operator. Similarly, by (2.13) we get ∥∥∥eit √ G ( √ G) k−n+1−ǫ χa( √ G) − e it √ G0 ( √ G0) k−n+1−ǫ χa( √ G0) ∥∥∥ L 1 →L ∞ ≤ ∫ 1 0 ‖Φ(t,θ)‖ L1→L∞ θn−k−2+ǫdθ ≤ C|t|−(n−1)/2 ∫ 1 0 θ−1+ǫdθ ≤ Cǫ|t| −(n−1)/2. (2.17) Now (1.9) follows from (2.17) and the fact that it holds for the free operator. 2 3 Semi-classical expansion of eitGψ(h2G) We keep the same notations as in the introduction. We will make use of the following identity which can be derived easily from Duhamel’s formula (see [15]) ( Id + ψ1(h 2G0) − ψ1(h 2G) ) eitGψ(h2G) = F0(t,h) + i ∫ t 0 W0(t − τ,h)V e iτ Gψ(h2G)dτ. (3.1) We rewrite (3.1) as follows e itG ψ(h 2 G) = F̃0(t,h) + ∫ t 0 W̃0(t − τ,h)V e iτ G ψ(h 2 G)dτ, (3.2) where F̃0(t,h) = T (h)F0(t,h), W̃0(t,h) = iT (h)W0(t,h). Iterating (3.2) m times leads to the identity eitGψ(h2G) = m∑ j=0 F̃j (t,h) + Rm+1(t,h), (3.3) where the operators F̃j , j ≥ 1, are defined by F̃j (t,h) = ∫ t 0 W̃0(t − τ,h)V F̃j−1(τ,h)dτ, while the operators Rm, m ≥ 0, are defined as follows R0(t,h) = e itG ψ(h 2 G), CUBO 10, 2 (2008) Semi-classical Dispersive Estimates for the wave ... 11 Rm+1(t,h) = ∫ t 0 W̃0(t − τ,h)V Rm(τ,h)dτ. It is clear from (3.3) that the estimate (1.15) follows from the following Proposition 3.1 Under the assumptions of Theorem 1.2, for all 0 < h ≤ h0, t 6= 0, 1/2 − ǫ/4 ≤ s ≤ (n − 1)/2, 0 < ǫ ≪ 1, we have the estimates ‖Rm+1(t,h)‖L1→L∞ ≤ Cmh m−(n−2)/2−ǫ |t| −n/2 , (3.4) ∥∥∥〈x〉−1/2−s−ǫRm+1(t,h) ∥∥∥ L1→L2 ≤ Cmh m+s−(n−3)/2−ǫ/6 |t|−s−1/2, (3.5) for every integer m ≥ 0. Proof. For m = 0 these estimates are proved in Section 4 of [15]. We will now derive (3.4) for m ≥ 1 from (3.5) and the following estimate proved in [15] (see (2.1)): ∥∥∥eitG0ψ(h2G0)〈x〉−1/2−s−ǫ ∥∥∥ L2→L∞ ≤ Chs−(n−1)/2|t|−s−1/2, t 6= 0, 0 < h ≤ 1, (3.6) for 0 ≤ s ≤ (n − 1)/2, 0 < ǫ ≪ 1. We have |t|n/2 ‖Rm+1(t,h)‖L1→L∞ ≤ C ∫ t t/2 |τ|n/2 ∥∥∥W̃0(t − τ,h)〈x〉−1−ǫ ∥∥∥ L2→L∞ ∥∥∥〈x〉−n/2−ǫRm(τ,h) ∥∥∥ L1→L2 dτ +C ∫ t t/2 |τ| n/2 ∥∥∥W̃0(τ,h)〈x〉−n/2−ǫ ∥∥∥ L 2 →L ∞ ∥∥〈x〉−1−ǫRm(t − τ,h) ∥∥ L 1 →L 2 dτ ≤ Chm−ǫ/6 ∫ ∞ −∞ ∥∥∥W̃0(τ′,h)〈x〉−1−ǫ ∥∥∥ L 2 →L ∞ dτ′ +C ∫ ∞ −∞ ∥∥〈x〉−1−ǫRm(τ′,h) ∥∥ L 1 →L 2 dτ ′ ≤ Ch m−(n−2)/2−ǫ/3 . We will now show that (3.5) for Rm+1 follows from (3.5) for Rm and the following estimate proved in [15] (see (2.2)): ∥∥〈x〉−seitG0ψ(h2G0)〈x〉−s ∥∥ L 2 →L 2 ≤ C〈t/h〉−s, ∀t, 0 < h ≤ 1. (3.7) We have |t|s+1/2 ∥∥∥〈x〉−1/2−s−ǫRm+1(t,h) ∥∥∥ L1→L2 ≤ C ∫ t t/2 |τ| s+1/2 ∥∥∥〈x〉−1/2−s−ǫW̃0(t − τ,h)〈x〉−1−ǫ ∥∥∥ L 2 →L 2 ∥∥∥〈x〉−1/2−s−ǫRm(τ,h) ∥∥∥ L 1 →L 2 dτ +C ∫ t t/2 |τ|s+1/2 ∥∥∥〈x〉−1/2−s−ǫW̃0(τ,h)〈x〉−1/2−s−ǫ ∥∥∥ L2→L2 ∥∥〈x〉−1−ǫRm(t − τ,h) ∥∥ L1→L2 dτ 12 F. Cardoso and G. Vodev CUBO 10, 2 (2008) ≤ Chm+s−(n−1)/2−ǫ/6 ∫ ∞ −∞ 〈τ′/h〉−1−ǫ/2dτ′ +Chs+1/2 ∫ ∞ −∞ ∥∥〈x〉−1−ǫRm(τ′,h) ∥∥ L1→L2 dτ′ ≤ Chm+s−(n−3)/2−ǫ/6. 2 To prove (1.17) observe that in the same way as in the proof of (3.5) one can show that the operator Fj satisfies the estimate ∥∥∥〈x〉−1/2−s−ǫFj (t,h) ∥∥∥ L 1 →L 2 ≤ Cjh j+s−(n−1)/2−ǫ/6 |t| −s−1/2 , j ≥ 1, (3.8) for 1/2 − ǫ/4 ≤ s ≤ (n − 1)/2, 0 < ǫ ≪ 1. On the other hand, proceeding as in the proof of (3.4), one can easily see that (3.8) implies (1.17). To prove (1.18) we decompose Fj − F 0 j as follows Fj (t,h) − F 0 j (t,h) = i ∫ t 0 W0(t − τ,h)V (T (h) − Id)Fj−1(τ,h)dτ −i ∫ t 0 W0(t − τ,h)V (Fj−1(τ,h) − F 0 j−1(τ,h))dτ := N 1 j (t,h) + N2 j (t,h). (3.9) Using (3.8), in the same way as in the proof of (1.17), one gets ∥∥N1 j (t,h) ∥∥ L1→L∞ ≤ Cjh j+2−n/2−ǫ |t|−n/2. (3.10) On the other hand, it is easy to see from (3.9) by induction in j that we have the estimate ∥∥∥〈x〉−1/2−s−ǫ(Fj (t,h) − F 0j (t,h)) ∥∥∥ L 1 →L 2 ≤ Cjh j+2+s−(n−1)/2−ǫ/6 |t| −s−1/2 , j ≥ 0, (3.11) for 1/2 − ǫ/4 ≤ s ≤ (n − 1)/2, 0 < ǫ ≪ 1. It follows from (3.11) that the operator N2 j satisfies the estimate ∥∥N2 j (t,h) ∥∥ L1→L∞ ≤ Cjh j+2−n/2−ǫ |t|−n/2. (3.12) Now (1.18) follows from (3.9), (3.10) and (3.12). Proof of Corollary 1.4. Following [15] we set Ψ(t,h) = eitGψ(h2G) − eitG0ϕ(h2G0). It follows from (1.15) and (1.19) that the operator Ψ satisfies the estimate ‖Ψ(t,h)‖ L 1 →L ∞ ≤ Ch k−(n−3)/2 |t|−n/2. (3.13) On the other hand, we have (see Theorem 3.1 of [15]) ‖Ψ(t,h)‖ L 2 →L 2 ≤ Ch, ∀t. (3.14) CUBO 10, 2 (2008) Semi-classical Dispersive Estimates for the wave ... 13 By interpolation between (3.13) and (3.14) we conclude ‖Ψ(t,h)‖ L p ′ →L p ≤ Ch 1−α((n−1)/2−k) |t| −αn/2 , (3.15) for every 2 ≤ p ≤ +∞, where 1/p + 1/p′ = 1, α = 1 − 2/p. Now we will make use of the identity σ−αq/2χa(σ) = ∫ 1 0 ψ(θσ)θαq/2−1dθ, where ψ(σ) = σ1−αq/2χ′ a (σ) ∈ C∞0 ((0, +∞)). By (3.15) we get ∥∥∥eitGG−αq/2χa(G) − eitG0G−αq/20 χa(G0) ∥∥∥ L p ′ →L p ≤ ∫ 1 0 ∥∥∥Ψ(t, √ θ) ∥∥∥ Lp ′ →Lp θαq/2−1dθ ≤ C|t| −αn/2 ∫ 1 0 θ −1/2−α((n−1)/2−k−q)/2 dθ ≤ C|t| −αn/2 , (3.16) provided 1/2 + α((n − 1)/2 − k − q)/2 < 1, that is, for 2 ≤ p < 2(n−1−2q−2k) n−3−2q−2k . Now (1.21) follows from (3.16) and the fact that it holds for the free operator. Similarly, by (3.13) we get ∥∥∥eitGGk/2−(n−3)/4−ǫχa(G) − eitG0Gk/2−(n−3)/4−ǫ0 χa(G0) ∥∥∥ L1→L∞ ≤ ∫ 1 0 ∥∥∥Ψ(t, √ θ) ∥∥∥ L 1 →L ∞ θ−k/2+(n−3)/4−1+ǫdθ ≤ C|t|−n/2 ∫ 1 0 θ−1+ǫdθ ≤ Cǫ|t| −n/2. (3.17) Now (1.20) follows from (3.17) and the fact that it holds for the free operator. By (1.15), (1.19), (1.23) and (1.24), we have ∥∥Ψ(t,h) − Fk(t)ψ(h2G0) ∥∥ L 1 →L ∞ ≤ Chk−(n−3)/2+ε|t|−n/2. (3.18) Proceeding as above with a suitably chosen function ψ, we obtain from (3.18) ∥∥∥eitGGk/2−(n−3)/4χa(G) − eitG0Gk/2−(n−3)/40 χa(G0) − Fk(t)G k/2−(n−3)/4 0 ∥∥∥ L 1 →L ∞ ≤ ∫ 1 0 ∥∥∥Ψ(t, √ θ) − Fk(t)ψ(θG0) ∥∥∥ L 1 →L ∞ θ−k/2+(n−3)/4−1dθ ≤ C|t| −n/2 ∫ 1 0 θ −1+ε/2 dθ ≤ C|t| −n/2 . (3.19) Now (1.25) follows from (3.19), (1.22) and the fact that it holds for the free operator. 2 Received: October 2007. Revised: December 2007. 14 F. Cardoso and G. Vodev CUBO 10, 2 (2008) References [1] M. Beals, Optimal L∞ decay estimates for solutions to the wave equation with a potential, Commun. Partial Diff. Equations 19 (1994), 1319–1369. [2] F. Cardoso, C. Cuevas and G. Vodev, Dispersive estimates of solutions to the wave equation with a potential in dimensions two and three, Serdica Math. J. 31 (2005), 263–278. [3] F. Cardoso, C. Cuevas and G. Vodev, Weighted dispersive estimates for solutions of the Schrödinger equation, Serdica Math. J., 34 (2008), 39–54. [4] P. D’ancona and V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Analysis 227 (2005), 30–77. [5] V. Georgiev and N. Visciglia, Decay estimates for the wave equation with potential, Commun. Partial Diff. Equations 28 (2003), 1325–1369. [6] M. Goldberg, Dispersive bounds for the three dimensional Schrödinger equation with almost critical potentials, GAFA 16 (2006), 517–536. [7] M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Commun. Math. Phys. 251 (2004), 157–178. [8] M. Goldberg and M. Visan, A conterexample to dispersive estimates for Schrödinger op- erators in higher dimensions, Commun. Math. Phys. 266 (2006), 211–238. [9] J.-L. Journé, A. Soffer and C. Sogge, Decay estimates for Schrödinger operators, Com- mun. Pure Appl. Math. 44 (1991), 573–604. [10] S. Moulin, High frequency dispersive estimates in dimension two, submitted. [11] S. Moulin and G. Vodev, Low frequency dispersive estimates for the Schrödinger group in higher dimensions, Asymptot. Anal., 55 (2007), 49–71. [12] W. Schlag, Dispersive estimates for Schrödinger operators in two dimensions, Commun. Math. Phys. 257 (2005), 87–117. [13] I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), 451–513. [14] G. Vodev, Dispersive estimates of solutions to the Schrödinger equation, Ann. H. Poincaré 6 (2005), 1179–1196. [15] G. Vodev, Dispersive estimates of solutions to the Schrödinger equation in dimensions n ≥ 4, Asymptot. Anal. 49 (2006), 61–86. [16] G. Vodev, Dispersive estimates of solutions to the wave equation with a potential in dimen- sions n ≥ 4, Commun. Partial Diff. Equations 31 (2006), 1709–1733. N1