(OlUliOO J\ ¡\foth c mo t.i co/ J our nol \lol. 9, ft.'"!. J, (39 • -4 5). A ¡wil P.007. Note s on the Isomorphism and Splitting Proble ms for Commutative Modular Group Alge bras P e t e r D a n c h e v 13, Ccncrnl l(utuzov St.rcct, bl. 7, Hoor 2 , npn.rL. <1 t\003 Plovcli v, Bulgaria pvdu11ch cv@ynl100.co1n; pvdanc h cv m ail.bg A BSTRACT h is provee! Lhat. t.hc p-Splitti ug Croup On.sis P roblcm fo r a rbi trury ubclin n grou ps nnd thc S pli tting Croup Busis Problcm for p-mixed groups Rrc, in foc t., c c¡ui\'n lC'.nt in Lhe com1m1 1.ativc g rou p nlgcbrn o f chnrnclcri:slic p. In nddi t.ion , n ncw schcmc o f o btni11ing t hc complete set of invnrinnts for such n g ro up nlgcb ru of n p-splíHing grou p is givou. In pnrticu lnr, ns npplicMion , thc full systom of in- vnrinnt.s fo r a gro u1> nlgobru whcn thc group is p-s plitling Warficld is cstnblit1hcd ns wc ll. This s upplics own rcccnt resulls in (Bol. Soc. Mal. t\l cxic111111 , 20011) nnd ( Acln t\lalh. Si nicn, 2005). RESUME SC' pruebo. que el Problonm de Doses ngru1>ndns p-dh•idid n p arn grnpos nbclianm nrbi t rurlos y ol Prnblcmn de BRSCS ngrnpndns divididn ¡mm grnpos rnl'Zl:lndm 11 es, c u CÍt..."Clo, cqui v11lcntc e n el filgcbrn de gTupo coun111t11tiv11 d e cnrsclerfst icn 11. Adcm ÁN, HO e nt rega un l'tiqucmn nuevo parn obt.encr el conj unto completo de invnrin nt cs parn e:m filgcbrn d e grupo de un grupo 1>-dividido. Eu porticulnr. romo nplknción, se c:;tnhlL>co ndcmfi.s el s islemn comploto de invnri- nnt~ paro un álgcbrn ele grupo cmmdo e l gru¡>0 es \\'l\Tfield ,,..div idido. 8sto e nt ttga rcsult.ndos p roplo11 y novcd O!KlS e n (Bol. Soc. Mal. Mcxicntm, 200•1) y ( Acln Mnth. Sinicn , 2005). •10 Pctcr Danchcv K cy words and phrosos: i.~omorplu.m1 problem. p-6Jlf1fhng group.f, p -mued ymu71/j, ll'arfidd group.~ • .f•mply prc_,c11tc:d grou¡11. Muth. Subj. C loss.: P rinwry ROC01, 1653,, eoK eI : Secondo ry J6U60. 1 Introd u ction Throughout lhis brief puper wc shall m;c, in a traditional mnnnc r, thc lcttcr FG ns thc b'TOup algcbra o f an abclian g:rou p C writtcn multiplicati vcly ovcr a ficlcl F. Por such a group C , 1hc symbols G,. a nd G1, urc rcscrvcd for its ma ximal to rs ion subgroup (= torsio n pnrt in othcr tcrms) a nd 1>-primary cornponent, rcspcctively. The Splitti11g Problem for arbitrnry mixcd g roups1 going fro m i\lny [10] ru; a spccial pa rt of the / somor¡1hism Problem, as ks of whethcr the separntion of G, as a dircct factor of G can invarifmtly be rotricvcd from the group algcbra FG. Unfortmrnt.cly, this qucstion has a ncgative scttling in general firstly provcn aga.in by li.·lay {scc, for cxa mple, ¡t2J). r..lajor advantngc in various aspects on t hc prescntcd t.hcmc was done in ll J {sec [5] t oo for commu1;ntivc grou p ulgcbras ovcr ali fielcls). As was firs t.ly obscrvcd and conjccturcd in [13], t.hc wca k \•crs ion of t.hc Split· ting Pro blcm fo r 1>-mixed g roups can , cvcnt ually, t o have a posit ivo solut.ion ovcr thc commulativc group algcbru with prime charnct eristic 7J. f'or this purposc, li.foy, how- cvcr, assumcd t hat thc Direct Factor Problem fo r p-mixcd g rou ps is true. In whut follows, wc s hall s how thut. thc :;nmc cnn nlso be cxpccted undcr t.hc vnlidity of thc lsomorphis m Problem for 7>-mixcd groups. Thc difficu ltics cncountercd in thc thcory o f mixcd s plitting abelia n g roups can bccomc decidcd ly lcss complcx, if it is po&;iblc to reduce thc qu ·t.ion t.o s plit.t.ing mixcd abclia n groups whosc nu.1.ximal t.ors ion s ubg roup is ¡>-primary, t.hat. is e, = e,,. Call such an a b cli a n grou p a v-mi:i:e-Splitting groups for which lhc com m ut ati \•c modula r g roup algcbrn with chnract eris tic p posscsscs a complclc set. of irwarinnt.s. 2 !Jai n Theore ms As u.sunl. thc mixed abclion group i:s sflid Lo be ¡1-svlitting, rcspecti vcly .SJ1litting, if GP, rcspcctivcly G,, is n dircct fact or of C . Bcfor p rcscnt ing t hc ce nt.mi rc:sults, wc n cccl lhc following tcchnicnl nsscr tion which is thc crucial point. Lc mnm. LA!t C be G / U G q is spltttmg. .... Pro of. First of ali, not e tlmt (G / 11 Cq)1 = G,/ U Gq = (C,. x 11 Gq)/ U C q ~ 1¡i¡t11 '11-P qr¡i.p qfl p Not.cs o n t.hl! lsomorphhm l nud Split.Ling P roblcms for . •11 e:,,. l. º=;-" : Writc C = C 1, x M fo r somc M :5 G. Thcrcforc. it is self-cvident t hn L G/ ll e,,= (G, / ll c,,)(M( ll e:., )/ ll G,,) = (G/ ll G,).(M(ll G,,)/ ll G,,). ,,,.¡.,, ,,,,,_,, <¡ji:p •1 rf.:.1• ,,.,¡,,, '*"''' 'l~l' Wlml. rcnm ins Lo dcmons LrnLc is LllllL Lhc int.crsccLiou bet.wccn thc t,wo fnctors is equul Lo OHC. This, ccrt11 iu ly, is uccomplis hcd by s howing thnl e, n (/1/ lle,,) = Il C:,1. l ndccd , wit.h t.hc nid of t.hc modular law, wo cnlculntc thn1. 1¡rf.¡1 e, n (M il e,,) = = tai ning thc i n vnrinnls o f s pl it.Li ng com m utntivc group nlgcbrns wcrc fir~t givc11 in [2[. T hcor c m 1 ( l n va r ia n t.s). Suppo.~e llwt G is a f)·spl1tt111g Warfirld f1bclio11 group Oltd lhat !( i.s an algebmicolly cloHed fidtl of cJw,.(I< ) = 1' >O. Tlic r1 /( 11 ~ f( C ru /( -olgcbms /01· rmothc r ,qroup 11 ·if tm.f-p why, Lhc Mnin Thcorcm npplics Lo d e ri ve thc cle;ircd clnim. T h cor c m 2 ( l nvu ri n n ts) . S npposc lltat e 1$ a s11litt111g Warfield abelian fJIVUp wiU1 11 jitiile factor G,/C1, cmd thal. F is rw llrb1lrnry firld o/ chor( F) = p > O. Th c11 /·' 11 ~ FC as F -11l9cbm.~ for nnolher gro11¡1 11 1/ and only 1/ lh~ foffowi ng c011ditio118 o,.c 1"Cal1zcd: { I} 11 1s ,:,;p/1ttrng nbrlian; (2) 11, 9! G,; (9) 11/ H, 9! G/ G,; (4) IHf / //,[ = !Gf / G,,I, Jm· all ¡16mes q #- /> aad i E sq(F) U (O). P r oor. Bccnu.sc in vir Luo o f [G] (cf. 17] too) W(' hn\'(' dcduccd thnt c ¡ LJ G'1, ~ q t/;¡> ¡.¡ f li llq, wc cmploy ni o m.:c Lhc rvlniu Throrcm to gct thc '''fmtcd c lnim . . ,-;.,, Wc l('rminnt th(' pnpcr by t.hc hclpíul obM-rvnlions thel although (,' und G'/G'1, urc both Wo..rlicld. // nnd ll / 111, urc noL 11cccssnrily from lhi.s grou p cl n.ss. Also, s iucc (;1, bcing an -group (:.ce o.g. [O] for the ,rlocal cose or ll5J for thc g lobn l 0110) ncccl uol be simply pre;cn1ccl, Lho ln!"!L two thror ms nrc nL firsl look indcpcndonL fro m [3J. llom·vcr. bocatL..C Cp f\8 bci11g H dirc.•ct fo(_·t or oí Lhc Wnrlicld grou p e is nl:so \oVnrfic ld, ho ucc simply p~nlccl , Theorc ms 1 nnd 2 nrc d educible from l3J. R o n mrk In fá, ¡>. 160. lin(' 8(-)] thcrc is n misprint, 1mmt'ly thc farnu d n T(V P [G'j) = V P[T(C')l ,hould be writtrn "" T (I ' P[C'J) = 7'(\I P[T(C')i):""" also [•I/. Morcovcr, in [2, p . 11. line l l{+)J t lw " ifr' 11111st b r<'nd ns "if'. 11 Pctc r Dnn chcv Recei ved: Oc t 2005. Revisad: Oc t 2005 . R e fe r e n ces [t] Z. C llATZ IDAl\I S 1\N D P. P 1\PP1-\ S, On tli e spli tlt ng gro 11p bosi.s pro blt> rii for abelra n 9m1qJ rings, .l. Purc Ap p\. Algc bra (1 ) 78 ( 1992) , 15- 26 . [2 J P . ÜAN Cll EV, lsonw17Jhism o/ commutat.ive group algebms of m ixe. IAY , Com.11ut l. lat. h. Soc. ( 1) 136 ( 1969), 139 1,19. ji lj \V . tl. IAY , ln v m·úm.ls f 01· co 11 mwtative gro up algebrn.'i, llli nois .J. Mnt.h . (3 ) 1 5 (1 97 1), 52:> 531. [12J \V . Lw , /so m.0 1·ph:ü m. of gmup olgt>brns, .J. Algcb ra ( I} <10 ( 1976), 10 18. !I JJ \\" . ~IAY , T he di.rnct f actor probfem f or modular abcli o n gro 11p algebros, Contemp. t-. l nLh. 93 { 19 9), 303- 30 . p .1¡ J . ÜPPE l.T, Ali.xetl nbelilmgro 1111s, Can .. J. Mnth . (6) 19 (1967), 1259 1262. l15J R . STANTON, Wmfre/rl grouJJ s tmd -gro111M, (prc print.). ,«ffl!!!u ot~ 0 11 t lw b o111nrpl1is111 nncl Spli Lting P roblenL-. for . [IG] \\'. LLE!t'i' , A ron;crtwY' rcfot1119 lo /11(' 1somorph1sm J1rY1bfcm fo1· comm:u- tatwc grou¡' algebm.t, in Croup nnd Scmigro up Rinp.. North- 110111111<\ t-. lnth. Studi~, No. 126, o rtl1- l loll1111d, An1SlC'rdnm , 19SG, 2·1i 252. Cubo a mathematical journal 2007 v9 nª1_0044 Cubo a mathematical journal 2007 v9 nª1_0045 Cubo a mathematical journal 2007 v9 nª1_0046 Cubo a mathematical journal 2007 v9 nª1_0047 Cubo a mathematical journal 2007 v9 nª1_0048 Cubo a mathematical journal 2007 v9 nª1_0049 Cubo a mathematical journal 2007 v9 nª1_0050